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Sufficient Dimension Reduction

• Regression setting:  observe (X,Y) pairs, where the 
covariate X is high-dimensional

• Find a (hopefully small) subspace S of the covariate 
space that retains the information pertinent to the 
response Y

• Semiparametric formulation: treat the conditional 
distribution p(Y | X) nonparametrically, and estimate the 
parameter S
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Perspectives

• Classically the covariate vector X has been treated as 
ancillary in regression

• The sufficient dimension reduction (SDR) literature has 
aimed at making use of the randomness in X (in settings 
where this is reasonable)

• This has generally been achieved via inverse regression
• at the cost of introducing strong assumptions on the distribution of 

the covariate X

• We’ll make use of the randomness in X without employing 
inverse regression
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• Regression:
Y  : response variable,   
X = (X1 ,...,Xm ): m-dimensional covariate

• Goal: Find the central subspace, which is defined via:
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Dimension Reduction for Regression
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Some Existing Methods
Sliced Inverse Regression (SIR, Li 1991)
– PCA of E[X|Y] use slice of Y
– Elliptic assumption on the distribution of X

Principal Hessian Directions (pHd, Li 1992)
– Average Hessian                                                 is used
– If X is Gaussian, eigenvectors gives the central subspace
– Gaussian assumption on X.  Y must be one-dimensional

Projection pursuit approach (e.g., Friedman et al. 1981)
– Additive model E[Y|X] = g1 (b1

TX) + ... + gd (bd
TX) is used 

Canonical Correlation Analysis (CCA) / Partial Least Squares (PLS)
– Linear assumption on the regression

Contour Regression (Li, Zha & Chiaromonte, 2004)
– Elliptic assumption on the distribution of X

]))()([( T
yxx XXXXYYE −−−≡Σ
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• (U, V)=(BTX, CTX)     
where C: m x (m-d)  with columns orthogonal to B

• B gives the projector onto the central subspace

• Our approach: Characterize conditional independence

vuyuypvuyp UYVUY ,,  )|(),|( |,| allfor=⇔

⇔ Conditional independence UVY |

)|()|( || xBypxyp T
UYXY =⇔

X
U V

Y

Dimension Reduction and Conditional Independence
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“Kernel methods”
– RKHS’s have generally been used to provide basis expansions for 

regression and classification (e.g., support vector machine)

– Kernelization:  map data into the RKHS and apply linear or second- 
order methods in the RKHS

– But RKHS’s can also be used to characterize independence and 
conditional independence

ΩX ΩY

ΦX ΦY

HX HY

X Y

ΦX (X) ΦY (Y) feature mapfeature map

RKHS RKHS

Reproducing Kernel Hilbert Spaces
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Positive Definite Kernels and RKHS

Positive definite kernel (p.d. kernel)

k is positive definite if  k(x,y) = k(y,x) and for any
the matrix                       (Gram matrix) is positive semidefinite.  

– Example: Gaussian RBF kernel

Reproducing kernel Hilbert space (RKHS)
k: p.d. kernel on Ω

H :  reproducing kernel Hilbert space  (RKHS)
1)
2)                                     is dense in H. 
3)

 k :Ω×Ω→ R
n ∈N, x1,…xn ∈Ω

k(xi , x j )( )i, j

k(⋅ , x)∈H for all .Ω∈x

k(⋅ , x), f
H
= f (x) (reproducing property)

Span k(⋅, x) | x ∈Ω{ }

∃

k(x, y) = exp − x − y 2 σ 2( )
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Functional data

Data:  X1 , …, XN ΦX(X1),…, ΦX(XN) : functional data

Why RKHS?
– By the reproducing property, computing the inner product on RKHS 

is easy:

– The computational cost essentially depends on the sample size. 
Advantageous for high-dimensional data of small sample size. 

),(,: xkxH ⋅→ΩΦ 6 ),()(.. xkxei ⋅=Φ

,),()(1 ∑∑ ⋅=Φ= = i ii
N
i ii xkaxaf 1 ( ) ( , )N

j j j jj jg b x b k x== Φ = ⋅∑ ∑
∑= ji jiji xxkbagf , ),(,

Φ(x),Φ(y) = k(x, y)
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Covariance Operators on RKHS

• X , Y : random variables on ΩX and ΩY , resp. 
• Prepare RKHS (HX , kX ) and (HY , kY ) defined on ΩX and ΩY , resp.
• Define random variables on the RKHS HX and HY by

• Define the covariance operator ΣYX

),()( XkX XX ⋅=Φ ),()( YkY YY ⋅=Φ

ΩX ΩY

ΦX ΦY

HX HY

X Y

ΦX (X) ΦY (Y)
ΣYX

ΣYX = E[ΦY (Y ) ΦX (X), ⋅ ]− E[ΦY (Y )]E[ ΦX (X), ⋅ ]
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• Definition

ΣYX is an operator from HX to HY such that 

•

for all YX HgHf ∈∈ ,

cf.  Euclidean case
VYX = E[YXT] – E[Y]E[X]T : covariance matrix
( ) )],(),,[(, XaYbCovaVb YX =

ΣYX = E[ΦY (Y ) ΦX (X), ⋅ ]− E[ΦY (Y )]E[ ΦX (X), ⋅ ]

g,ΣYX f = E[g(Y ) f (X)]− E[g(Y )]E[ f (X)] (= Cov[ f (X), g(Y )])

Covariance Operators on RKHS
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Characterization of Independence

• Independence and cross-covariance operators
If the RKHS’s are “rich enough”:

– cf. for Gaussian variables,

X Y

is always true      
requires an assumption
on the kernel (universality)

for all YX HgHf ∈∈ ,

or

OVXY =⇔X and Y are independent i.e. uncorrelated

e.g., Gaussian RBF kernels are
universal
k(x, y) = exp − x − y 2 σ 2( )

⇔ ΣXY = O

Cov[ f (X), g(Y )] = 0

E[g(Y ) f (X)] = E[g(Y )]E[ f (X)]
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• Independence and characteristic functions
Random variables X and Y are independent

• RKHS characterization
Random variables               and              are independent

– RKHS approach is a generalization of the characteristic-function approach

⇔ EXY eiωT XeiηTY⎡
⎣

⎤
⎦ = EX eiωT X⎡

⎣
⎤
⎦ EY eiηTY⎡

⎣
⎤
⎦ for all ω and η

I.e.,                          work as test functions

[ ] [ ] [ ])()()()( YgEXfEYgXfE YXXY =⇔ for all YX gf HH ∈∈ ,

 eiωT x  and eiηT y

XX Ω∈ YY Ω∈
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RKHS and Conditional Independence

• Conditional covariance operator
X and Y are random vectors.   HX , HY : RKHS with kernel kX , kY , resp.

– Under a universality assumption on the kernel

– Monotonicity of conditional covariance operators
X = (U,V) : random vectors

:  conditional covariance operator

VarY |X [aTY | X = x] = aT VYY −VYXVXX
−1VXY( )acf. For Gaussian

Def.

XYYUYY || Σ≥Σ ≥ : in the sense of 
self-adjoint operators

ΣYY |X ≡ ΣYY − ΣYXΣXX
−1ΣXY

g,ΣYY |X g = E Var[g(Y ) | X][ ]
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• Conditional independence

Theorem
X = (U,V) and Y are random vectors. 
HX , HU , HY : RKHS with Gaussian kernel kX , kU , kY , resp.

XYYUYYUVY ||| Σ=Σ⇔

This theorem provides a new methodology for solving the 
sufficient dimension reduction problem
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Kernel Dimension Reduction
• Use a universal kernel for BTX and Y

• KDR objective function:

X Y | BTX

(    : the partial order of 
self-adjoint operators)
≥

  
min

B: BT B= Id

Tr Σ
YY |BT X

⎡
⎣

⎤
⎦

Σ
YY |BT X

≥ ΣYY |X

  
Σ

YY |BT X
= ΣYY |X ⇔

which is an optimization over the Stiefel manifold
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• Empirical cross-covariance operator

gives the empirical covariance:

• Empirical conditional covariance operator

εN : regularization coefficient

Σ̂YX
(N ) =

1
N

kY (⋅,Yi )− m̂Y{ }⊗ kX (⋅, Xi )− m̂X{ }
i=1

N

∑

m̂X =
1
N

kX (⋅, Xi )
i=1

N

∑

Σ̂YX
(N )

  
g, öΣYX

( N ) f = 1
N f ( Xi )g(Yi )i=1

N∑ − 1
N f ( Xi )i=1

N∑ 1
N g(Yi )i=1

N∑

Σ̂YY |X
(N ) = Σ̂YY

(N ) − Σ̂YX
(N ) Σ̂XX

(N ) + εN I( )−1
Σ̂XY

(N )

m̂Y =
1
N

kY (⋅,Yi )
i=1

N

∑

Estimator



22

• Estimating function for KDR:

• Optimization problem:

),( j
T

i
T

U XBXBkK =

: centered Gram matrix
where

min
B:BT B=Id

Tr GY G
BT X

+ NεN IN( )−1⎡
⎣⎢

⎤
⎦⎥

XBU T=Tr Σ̂YY |U
(N )⎡⎣ ⎤⎦ = Tr Σ̂YY

(N ) − Σ̂YU
(N ) Σ̂UU

(N ) + εN I( )−1
Σ̂UY

(N )⎡
⎣⎢

⎤
⎦⎥

= Tr GY −GY GU GU + NεN IN( )−1⎡
⎣

⎤
⎦

 GU = IN − 1
N 1N1N

T( )KU IN − 1
N 1N1N

T( )
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Experiments with KDR

Wine data
Data 

13 dim. 178 data. 
3 classes 
2 dim. projection
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Consistency of KDR

Suppose kd is bounded and continuous, and  

Let S0 be the set of optimal parameters:

Then, under some conditions, for any open set  

  εN → 0, N1/2εN →∞ (N →∞).

Theorem

  
S0 = B | BT B = Id , Tr ΣYY |X

B⎡⎣ ⎤⎦ = min
B '

Tr ΣYY |X
B '⎡⎣ ⎤⎦{ }

0U S⊃

  Pr öB( N ) ∈U( )→1 (N →∞).
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sup

B:BT B= Id

Tr öΣYY |X
B( N )⎡⎣ ⎤⎦ − Tr ΣYY |X

B⎡⎣ ⎤⎦ → 0 (N →∞)

Suppose kd is bounded and continuous, and  

Then, under some conditions, 

in probability. 

  εN → 0, N1/2εN →∞ (N →∞).

Lemma 
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Conclusions
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Technical report available at:

www.cs.berkeley.edu/~jordan/papers/kdr.pdf
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Dimensionality Reduction
Sufficient Dimension Reduction

Dimensionality Reduction in Regression

I Find a lower-dimensional subspace Z ⊂ X and a mapping

X 3 xi 7→ zi ∈ Z, i = 1, . . . ,m

such that {zi} retains maximal predictive power w.r.t. {yi}.
I “Supervised dimensionality reduction”

Regression on Manifolds using Kernel Dimension Reduction
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Dimensionality Reduction
Sufficient Dimension Reduction

Sufficient Dimension Reduction

I Parameterize Z by B ∈ RD×d where BTB = I.
I Find B such that

Y y X | BTX (1)

I Under weak conditions, the intersection of all suchZB defines
the central subspace, S.

Regression on Manifolds using Kernel Dimension Reduction
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Dimensionality Reduction
Sufficient Dimension Reduction

Kernel Dimension Reduction
Measure conditional independence in RKHS

I Map X and Y to reproducing kernel Hilbert spaces HX ,HY .

X 7→ f ∈ HX , Y 7→ g ∈ HY

I Cross-covariance C f g between f and g can be represented by
an operator ΣYX : HX → HY such that

〈g,ΣYX f〉HY = C f g, ∀f , g (2)

I Conditional covariance operator

ΣYY |X = ΣYY −ΣYXΣ−1
XXΣXY . (3)

Regression on Manifolds using Kernel Dimension Reduction
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Dimensionality Reduction
Sufficient Dimension Reduction

KDR Theorem

1. ΣYY |X ≺ ΣYY |BTX

2. ΣYY |X = ΣYY |BTX ⇐⇒ Y y X |BTX

I The central space can be found by minimizing ΣYY |BTX .

Regression on Manifolds using Kernel Dimension Reduction
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Dimensionality Reduction
Sufficient Dimension Reduction

KDR Algorithm

I The minimization of ΣYY |BTX can be formulated as

min Tr JK c
Y (K c

BTX
+ NεI)−1K

such that BTB = I
(4)

where K c
Y and K c

BTX
are centered Gram matrices.

Regression on Manifolds using Kernel Dimension Reduction
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Reduction to Manifolds?

I Large literature on “manifold learning”
I The goal is to uncover the intrinsic geometry underlying a

data set
I often the goal is visualization

I This is usually done without taking into account a response
variable

I As before, we’re motivated to find a way to estimate manifolds
while taking into account a response

I e.g., can help provide guidance for visualization

I We’ll combine (normalized) graph Laplacian technology with
KDR

Regression on Manifolds using Kernel Dimension Reduction
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Eigenvectors of the Graph Laplacian

Figure: First four (non-constant)
eigenvectors of the graph
Laplacian on a torus.

I Harmonics on the manifold
I Reflect intrinsic coordinates

Regression on Manifolds using Kernel Dimension Reduction
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mKDR Formulation
Nilsson, Sha, and Jordan (2007)

I Compute the eigenvectors v i , i = 1, . . . ,M of the normalized
graph Laplacian

I Define an RKHS explicitly as the span of these eigenvectors
I Approximate the image of central subspace with a linear

transformation ΦVT

Regression on Manifolds using Kernel Dimension Reduction
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mKDR Algorithm

I mKDR minimization problem:

min Tr JK c
Y (VΩVT + NεI)−1K

such that Ω � 0
Tr(Ω) = 1

(5)

I Φ =
√
Ω

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Regression on a Torus

I {xi} have intrinsic coordinates
[θi , φi] ∈ S1 × S1

I y is a logistic function of
∣∣∣∣∣∣(θ, φ)∣∣∣∣∣∣

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Regression on a Torus

I {xi} have intrinsic coordinates
[θi , φi] ∈ S1 × S1

I y is a logistic function of
∣∣∣∣∣∣(θ, φ)∣∣∣∣∣∣

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

mKDR finds the Central Subspace
I Ω nearly rank 1⇒ Ω ≈ aaT ; Project onto a
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Figure: Uniform grid sampling
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Figure: Uniformly random
sampling with additive noise

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

mKDR can be used to guide visualization
I Map {xi} onto the eigenvectors {vi} with largest weight in Φ.
I “Predictive eigenvectors” in contrast to principal eigenvectors

used in e.g. Laplacian eigenmaps.

v
1v

2

v 3

Figure: Principal eigenvectors

v
1v

3

v 5

Figure: Predictive eigenvectors

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Global Temperature Data

I {yi} are satellite measurements of atmospherical
temperatures around the globe.

I 3168 observation points
I {xi} lie on a spheroid in R3

I Regress the temperature y on x.

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Regression Model of Temperature Distribution
Compute the central space ΦVT and use linear regression to model E[Y |ΦVT].

Figure: Central space coordinate

Figure: Predicted temperature

Figure: Prediction error
Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Visualization of an Image Data Manifold

I {xi} are a set of 1000 grayscale images of size 100 × 80 pixels
I 4 degrees of freedom: rotation angle, tilt angle and

translations in the image plane
I Data lie on a 4-dimensional manifold in R100·80

I Create a lower-dimensional embedding that captures the
variation in rotation angle

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Unsupervised Embedding
I Project onto the principal eigenvectors, i.e. Laplacian

Eigenmaps

Figure: Principal eigenvectors.
Color by tilt angle.

Figure: Principal eigenvectors.
Color by rotation angle.

Regression on Manifolds using Kernel Dimension Reduction
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Regression on a Torus
Global Temperature Data
Image Data

Predictive embedding guided by mKDR

I Apply mKDR with rotation
angle as response

I Map data onto predictive
eigenvectors of the Graph
Laplacian

Figure: Predictive eigenvectors

Regression on Manifolds using Kernel Dimension Reduction
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Summary

I mKDR discovers manifolds that optimally preserve predictive
power w.r.t response variables.

I mKDR enables:
I flexible regression modeling
I supervised exploration of nonlinear data manifolds

I mKDR extends:
I sufficient dimension reduction to nonlinear manifolds.
I manifold learning to the supervised setting.

Regression on Manifolds using Kernel Dimension Reduction
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