Kernel-Based Contrast Functions for Sufficient Dimension Reduction

Michael I. Jordan Departments of Statistics and EECS University of California, Berkeley

Joint work with Kenji Fukumizu and Francis Bach

Outline

Introduction

- dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Manifold KDR
- Summary

Sufficient Dimension Reduction

- Regression setting: observe (X, Y) pairs, where the covariate X is high-dimensional
- Find a (hopefully small) subspace S of the covariate space that retains the information pertinent to the response Y
- Semiparametric formulation: treat the conditional distribution p(Y | X) nonparametrically, and estimate the parameter S

Perspectives

- Classically the covariate vector X has been treated as ancillary in regression
- The sufficient dimension reduction (SDR) literature has aimed at making use of the randomness in X (in settings where this is reasonable)
- This has generally been achieved via inverse regression
 - at the cost of introducing strong assumptions on the distribution of the covariate X
- We'll make use of the randomness in X without employing inverse regression

Dimension Reduction for Regression

- Regression: p(Y | X)
 - Y : response variable,
 - $X = (X_1, ..., X_m)$: *m*-dimensional covariate
- Goal: Find the central subspace, which is defined via:

$$p(Y \mid X) = \widetilde{p}(Y \mid b_1^T X, \dots, b_d^T X) \quad \left(= \widetilde{p}(Y \mid B^T X) \right)$$

Some Existing Methods

- Sliced Inverse Regression (SIR, Li 1991)
 - PCA of E[X|Y] → use slice of Y
 - Elliptic assumption on the distribution of X
- Principal Hessian Directions (pHd, Li 1992)
 - Average Hessian $\Sigma_{yxx} \equiv E[(Y \overline{Y})(X \overline{X})(X \overline{X})^T]$ is used
 - If *X* is Gaussian, eigenvectors gives the central subspace
 - Gaussian assumption on *X*. *Y* must be one-dimensional
- Projection pursuit approach (e.g., Friedman et al. 1981)
 - Additive model $E[Y|X] = g_1(b_1^T X) + \dots + g_d(b_d^T X)$ is used
- Canonical Correlation Analysis (CCA) / Partial Least Squares (PLS)
 - Linear assumption on the regression
- Contour Regression (Li, Zha & Chiaromonte, 2004)
 - Elliptic assumption on the distribution of X

Dimension Reduction and Conditional Independence

• $(U, V) = (B^T X, C^T X)$

where C: $m \times (m-d)$ with columns orthogonal to B

• *B* gives the projector onto the central subspace

$$\Leftrightarrow \quad p_{Y|X}(y \mid x) = p_{Y|U}(y \mid B^T x)$$

$$\Leftrightarrow p_{Y|U,V}(y | u, v) = p_{Y|U}(y | u) \text{ for all } y, u, v$$

 \Leftrightarrow Conditional independence $Y \perp V \mid U$

• Our approach: *Characterize conditional independence*

Outline

Introduction

- dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Manifold KDR
- Summary

Reproducing Kernel Hilbert Spaces

"Kernel methods"

- RKHS's have generally been used to provide basis expansions for regression and classification (*e.g.*, support vector machine)
- Kernelization: map data into the RKHS and apply linear or secondorder methods in the RKHS
- But RKHS's can also be used to characterize independence and conditional independence

Positive Definite Kernels and RKHS

Positive definite kernel (p.d. kernel) $k: \Omega \times \Omega \rightarrow \mathbf{R}$

k is positive definite if k(x,y) = k(y,x) and for any $n \in \mathbb{N}, x_1, \dots, x_n \in \Omega$ the matrix $(k(x_i, x_j))_{i,j}$ (Gram matrix) is positive semidefinite.

- Example: Gaussian RBF kernel $k(x, y) = \exp\left(-\left\|x - y\right\|^2 / \sigma^2\right)$

Reproducing kernel Hilbert space (RKHS)

k: p.d. kernel on Ω

 $\exists H: \text{ reproducing kernel Hilbert space (RKHS)} \\ 1) \ k(\cdot, x) \in H \text{ for all } x \in \Omega. \\ 2) \ \text{Span} \left\{ k(\cdot, x) \mid x \in \Omega \right\} \text{ is dense in } H. \\ 3) \ \left\langle k(\cdot, x), f \right\rangle_{H} = f(x) \text{ (reproducing property)} \end{aligned}$

Functional data

 $\Phi: \Omega \to H, \quad x \mapsto k(\cdot, x) \qquad i.e. \quad \Phi(x) = k(\cdot, x)$

Data: $X_1, ..., X_N \rightarrow \Phi_X(X_1), ..., \Phi_X(X_N)$: functional data

Why RKHS?

By the reproducing property, computing the inner product on RKHS is easy:

$$\begin{split} \left\langle \Phi(x), \Phi(y) \right\rangle &= k(x, y) \\ f &= \sum_{i=1}^{N} a_i \Phi(x_i) = \sum_i a_i k(\cdot, x_i), \qquad g = \sum_{j=1}^{N} b_j \Phi(x_j) = \sum_j b_j k(\cdot, x_j) \\ & \Longrightarrow \quad \left\langle f, g \right\rangle = \sum_{i,j} a_i b_j k(x_i, x_j) \end{split}$$

The computational cost essentially depends on the sample size.
 Advantageous for high-dimensional data of small sample size.

Covariance Operators on RKHS

- X, Y: random variables on Ω_X and Ω_Y , resp.
- Prepare RKHS (H_X , k_X) and (H_Y , k_Y) defined on Ω_X and Ω_Y , resp.
- Define random variables on the RKHS H_X and H_Y by

$$\Phi_X(X) = k_X(\cdot, X) \qquad \Phi_Y(Y) = k_Y(\cdot, Y)$$

• Define the covariance operator Σ_{YX}

$$\Sigma_{YX} = E[\Phi_Y(Y) \langle \Phi_X(X), \cdot \rangle] - E[\Phi_Y(Y)] E[\langle \Phi_X(X), \cdot \rangle]$$

Covariance Operators on RKHS

• Definition

$$\Sigma_{YX} = E[\Phi_Y(Y) \langle \Phi_X(X), \cdot \rangle] - E[\Phi_Y(Y)] E[\langle \Phi_X(X), \cdot \rangle]$$

$$\Sigma_{YX}$$
 is an operator from H_X to H_Y such that
 $\langle g, \Sigma_{YX} f \rangle = E[g(Y)f(X)] - E[g(Y)]E[f(X)] \ (= \operatorname{Cov}[f(X), g(Y)])$
for all $f \in H_X, g \in H_Y$

• cf. Euclidean case

 $V_{YX} = E[YX^{T}] - E[Y]E[X]^{T} : \text{covariance matrix}$ $(b, V_{YX}a) = Cov[(b, Y), (a, X)]$

Characterization of Independence

• Independence and cross-covariance operators If the RKHS's are "rich enough":

⇒ is always true

- requires an assumption on the kernel (universality)
- e.g., Gaussian RBF kernels are universal

$$k(x, y) = \exp\left(-\left\|x - y\right\|^2 / \sigma^2\right)$$

cf. for Gaussian variables,
 X and Y are independent

X and Y are independent \Leftrightarrow $V_{XY} = O$ i.e. uncorrelated

• Independence and characteristic functions Random variables *X* and *Y* are independent

$$\Leftrightarrow E_{XY}\left[e^{i\omega^{T}X}e^{i\eta^{T}Y}\right] = E_{X}\left[e^{i\omega^{T}X}\right]E_{Y}\left[e^{i\eta^{T}Y}\right] \qquad \text{for all } \omega \text{ and } \eta$$

I.e., $e^{i\omega^T x}$ and $e^{i\eta^T y}$ work as test functions

• RKHS characterization

Random variables $X \in \Omega_X$ and $Y \in \Omega_Y$ are independent

 $\Leftrightarrow E_{XY}[f(X)g(Y)] = E_X[f(X)]E_Y[g(Y)] \quad \text{for all } f \in \mathcal{H}_X, \ g \in \mathcal{H}_Y$

- RKHS approach is a generalization of the characteristic-function approach

RKHS and Conditional Independence

Conditional covariance operator

X and *Y* are random vectors. \mathcal{H}_X , \mathcal{H}_Y : RKHS with kernel k_X , k_Y , resp.

Def. $\Sigma_{YY|X} \equiv \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$: conditional covariance operator

- Under a universality assumption on the kernel

$$\langle g, \Sigma_{YY|X} g \rangle = E \left[\operatorname{Var}[g(Y) | X] \right]$$

cf. For Gaussian $\operatorname{Var}_{Y|X}[a^T Y | X = x] = a^T (V_{YY} - V_{YX} V_{XX}^{-1} V_{XY}) a$

- Monotonicity of conditional covariance operators X = (U,V): random vectors

$$\Sigma_{YY|U} \geq \Sigma_{YY|X}$$

 \geq : in the sense of self-adjoint operators

• Conditional independence

Theorem

$$X = (U,V)$$
 and Y are random vectors.
 \mathcal{H}_X , \mathcal{H}_U , \mathcal{H}_Y : RKHS with Gaussian kernel k_X , k_U , k_Y , resp.
 $I \longrightarrow Y \perp V \mid U \iff \Sigma_{YY\mid U} = \Sigma_{YY\mid X}$

This theorem provides a new methodology for solving the sufficient dimension reduction problem

Outline

Introduction

- dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Manifold KDR
- Summary

Kernel Dimension Reduction

• Use a universal kernel for *B^TX* and *Y*

$$\Sigma_{YY|B^T X} \ge \Sigma_{YY|X}$$

(≥: the partial order of self-adjoint operators)

$$\Sigma_{YY|B^T X} = \Sigma_{YY|X} \quad \Longleftrightarrow \quad X \amalg Y \mid B^T X$$

• KDR objective function:

$$\min_{B: B^T B = I_d} \operatorname{Tr}\left[\Sigma_{YY|B^T X}\right]$$

which is an optimization over the Stiefel manifold

Estimator

• Empirical cross-covariance operator

$$\hat{\Sigma}_{YX}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} \left\{ k_Y(\cdot, Y_i) - \hat{m}_Y \right\} \otimes \left\{ k_X(\cdot, X_i) - \hat{m}_X \right\}$$
$$\hat{m}_X = \frac{1}{N} \sum_{i=1}^{N} k_X(\cdot, X_i) \qquad \hat{m}_Y = \frac{1}{N} \sum_{i=1}^{N} k_Y(\cdot, Y_i)$$

 $\hat{\Sigma}_{YX}^{(N)}$ gives the empirical covariance:

$$\left\langle g, \dot{\mathfrak{D}}_{YX}^{(N)} f \right\rangle = \frac{1}{N} \sum_{i=1}^{N} f(X_i) g(Y_i) - \frac{1}{N} \sum_{i=1}^{N} f(X_i) \frac{1}{N} \sum_{i=1}^{N} g(Y_i)$$

• Empirical conditional covariance operator

$$\hat{\Sigma}_{YY|X}^{(N)} = \hat{\Sigma}_{YY}^{(N)} - \hat{\Sigma}_{YX}^{(N)} \left(\hat{\Sigma}_{XX}^{(N)} + \mathcal{E}_N I \right)^{-1} \hat{\Sigma}_{XY}^{(N)}$$

 \mathcal{E}_N : regularization coefficient

• Estimating function for KDR:

$$\operatorname{Tr}\left[\hat{\Sigma}_{YY|U}^{(N)}\right] = \operatorname{Tr}\left[\hat{\Sigma}_{YY}^{(N)} - \hat{\Sigma}_{YU}^{(N)}\left(\hat{\Sigma}_{UU}^{(N)} + \varepsilon_{N}I\right)^{-1}\hat{\Sigma}_{UY}^{(N)}\right] \qquad U = B^{T}X$$
$$= \operatorname{Tr}\left[G_{Y} - G_{Y}G_{U}\left(G_{U} + N\varepsilon_{N}I_{N}\right)^{-1}\right]$$

where

$$G_{U} = \left(I_{N} - \frac{1}{N}\mathbf{1}_{N}\mathbf{1}_{N}^{T}\right)K_{U}\left(I_{N} - \frac{1}{N}\mathbf{1}_{N}\mathbf{1}_{N}^{T}\right) \text{ : centered Gram matrix}$$
$$K_{U} = k(B^{T}X_{i}, B^{T}X_{j})$$

• Optimization problem:

$$\min_{B:B^T B=I_d} \operatorname{Tr} \left[G_Y \left(G_{B^T X} + N \varepsilon_N I_N \right)^{-1} \right]$$

Experiments with KDR

Consistency of KDR

<u>Theorem</u>

Suppose k_d is bounded and continuous, and $\varepsilon_N \to 0, \ N^{1/2} \varepsilon_N \to \infty \quad (N \to \infty).$

Let S_0 be the set of optimal parameters: $S_0 = \left\{ B \mid B^T B = I_d, \operatorname{Tr} \left[\Sigma_{YY|X}^B \right] = \min_{B'} \operatorname{Tr} \left[\Sigma_{YY|X}^{B'} \right] \right\}$ Then, under some conditions, for any open set $U \supset S_0$ $\operatorname{Pr} \left(\dot{\mathcal{B}}^{(N)} \in U \right) \rightarrow 1 \quad (N \rightarrow \infty).$

<u>Lemma</u>

Suppose k_d is bounded and continuous, and $\varepsilon_N \to 0, \ N^{1/2} \varepsilon_N \to \infty \quad (N \to \infty).$

Then, under some conditions,

$$\sup_{B:B^T B=I_d} \left| \operatorname{Tr} \left[\dot{\mathfrak{D}}_{YY|X}^{B(N)} \right] - \operatorname{Tr} \left[\Sigma_{YY|X}^B \right] \right| \to 0 \quad (N \to \infty)$$

in probability.

Conclusions

Introduction

- dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Technical report available at:

www.cs.berkeley.edu/~jordan/papers/kdr.pdf

Regression on Manifolds using Kernel Dimension Reduction

Jens Nilsson¹ Fei Sha² Michael I. Jordan³

¹Centre for Mathematical Sciences Lund University

²Computer Science Division University of California, Berkeley

³Computer Science Division and Department of Statistics University of California, Berkeley

June 28, 2008

Regression on Manifolds using Kernel Dimension Reduction

Dimensionality Reduction Sufficient Dimension Reduction

Dimensionality Reduction in Regression

Find a lower-dimensional subspace $\mathcal{Z} \subset \mathcal{X}$ and a mapping

$$X \ni x_i \mapsto z_i \in \mathbb{Z}, \quad i = 1, \dots, m$$

such that $\{z_i\}$ retains maximal predictive power w.r.t. $\{y_i\}$.

"Supervised dimensionality reduction"

Dimensionality Reduction Sufficient Dimension Reduction

Sufficient Dimension Reduction

- Parameterize \mathcal{Z} by $\boldsymbol{B} \in \mathbb{R}^{D \times d}$ where $\boldsymbol{B}^{T} \boldsymbol{B} = \boldsymbol{I}$.
- Find B such that

$$Y \perp X \mid \boldsymbol{B}^{\mathrm{T}} X \tag{1}$$

► Under weak conditions, the intersection of all such Z_B defines the central subspace, S.

Regression on Manifolds using Kernel Dimension Reduction

< □ > < □ > < □ > < □ > < □ > < □ >

Dimensionality Reduction Sufficient Dimension Reduction

Kernel Dimension Reduction

Measure conditional independence in RKHS

• Map X and Y to reproducing kernel Hilbert spaces H_X, H_Y .

$$X \mapsto f \in H_X, \quad Y \mapsto g \in H_Y$$

Cross-covariance C_{fg} between f and g can be represented by an operator Σ_{YX} : H_X → H_Y such that

$$\langle g, \boldsymbol{\Sigma}_{YX} f \rangle_{\mathcal{H}_{\mathcal{Y}}} = \boldsymbol{C}_{fg}, \quad \forall f, g$$
 (2)

Conditional covariance operator

$$\boldsymbol{\Sigma}_{YY|X} = \boldsymbol{\Sigma}_{YY} - \boldsymbol{\Sigma}_{YX} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\Sigma}_{XY}.$$
 (3)

Dimensionality Reduction Sufficient Dimension Reduction

KDR Theorem

1.
$$\Sigma_{YY|X} < \Sigma_{YY|B^TX}$$

2. $\Sigma_{YY|X} = \Sigma_{YY|B^TX} \iff Y \perp X|B^TX$

• The central space can be found by minimizing $\Sigma_{\gamma\gamma}B^{T}\chi$.

Regression on Manifolds using Kernel Dimension Reduction

イロト イヨト イヨト イヨト

Dimensionality Reduction Sufficient Dimension Reduction

KDR Algorithm

► The minimization of $\Sigma_{YY|B^TX}$ can be formulated as

min
$$\operatorname{Tr} \llbracket \boldsymbol{K}_{Y}^{c} (\boldsymbol{K}_{\boldsymbol{B}^{\mathrm{T}}X}^{c} + N \epsilon \boldsymbol{I})^{-1} \rrbracket$$

such that $\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B} = \boldsymbol{I}$ (4)

where K_Y^c and $K_{B^T \chi}^c$ are centered Gram matrices.

Regression on Manifolds using Kernel Dimension Reduction

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Reduction to Manifolds?

- Large literature on "manifold learning"
- The goal is to uncover the intrinsic geometry underlying a data set
 - often the goal is visualization
- This is usually done without taking into account a response variable
- As before, we're motivated to find a way to estimate manifolds while taking into account a response
 - e.g., can help provide guidance for visualization
- We'll combine (normalized) graph Laplacian technology with KDR

イロト イヨト イヨト イヨト

Eigenvectors of the Graph Laplacian

Figure: First four (non-constant) eigenvectors of the graph Laplacian on a torus.

- Harmonics on the manifold
- Reflect intrinsic coordinates

mKDR Formulation

Nilsson, Sha, and Jordan (2007)

- Compute the eigenvectors \mathbf{v}_i , i = 1, ..., M of the normalized graph Laplacian
- Define an RKHS explicitly as the span of these eigenvectors
- Approximate the image of central subspace with a linear transformation **Φ***V*^T

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

mKDR Algorithm

mKDR minimization problem:

min
$$\operatorname{Tr} \llbracket K_{Y}^{c} (V \Omega V^{T} + N \epsilon I)^{-1} \rrbracket$$

such that $\Omega \geq 0$ (5)
 $\operatorname{Tr}(\Omega) = 1$

$$\bullet \ \Phi = \sqrt{\Omega}$$

Regression on Manifolds using Kernel Dimension Reduction

< □ > < □ > < □ > < □ > < □ > < □ >

590

크

Regression on a Torus Global Temperature Data Image Data

Regression on a Torus

► { x_i } have intrinsic coordinates [θ_i, ϕ_i] $\in \mathbf{S}^1 \times \mathbf{S}^1$

• *y* is a logistic function of $\|(\theta, \phi)\|$

Regression on Manifolds using Kernel Dimension Reduction

イロト イヨト イヨト イヨト

æ

Regression on a Torus Global Temperature Data Image Data

Regression on a Torus

- ► { x_i } have intrinsic coordinates [θ_i, ϕ_i] $\in \mathbf{S}^1 \times \mathbf{S}^1$
- *y* is a logistic function of $\|(\theta, \phi)\|$

イロト イヨト イヨト イヨト

æ

Regression on a Torus Global Temperature Data Image Data

mKDR finds the Central Subspace

• Ω nearly rank 1 $\Rightarrow \Omega \approx aa^{T}$; Project onto a

Figure: Uniform grid sampling

Figure: Uniformly random sampling with additive noise

Regression on Manifolds using Kernel Dimension Reduction

イロト イヨト イヨト イヨト

Regression on a Torus Global Temperature Data Image Data

mKDR can be used to guide visualization

- Map $\{x_i\}$ onto the eigenvectors $\{v_i\}$ with largest weight in Φ .
- "Predictive eigenvectors" in contrast to principal eigenvectors used in e.g. Laplacian eigenmaps.

Figure: Principal eigenvectors

Figure: Predictive eigenvectors

Regression on Manifolds using Kernel Dimension Reduction

Regression on a Torus Global Temperature Data Image Data

Global Temperature Data

- {y_i} are satellite measurements of atmospherical temperatures around the globe.
- 3168 observation points
- $\{x_i\}$ lie on a spheroid in \mathbb{R}^3
- Regress the temperature y on x.

イロト イヨト イヨト イヨト

Regression on a Torus Global Temperature Data Image Data

Regression Model of Temperature Distribution

Compute the central space ΦV^{T} and use linear regression to model $E[Y|\Phi V^{T}]$.

Figure: Central space coordinate

Figure: Predicted temperature

Figure: Prediction error = 🔊 ५ ९

Regression on Manifolds using Kernel Dimension Reduction

Regression on a Torus Global Temperature Data Image Data

Visualization of an Image Data Manifold

- $\{x_i\}$ are a set of 1000 grayscale images of size 100×80 pixels
- 4 degrees of freedom: rotation angle, tilt angle and translations in the image plane
- Data lie on a 4-dimensional manifold in $\mathbb{R}^{100\cdot80}$
- Create a lower-dimensional embedding that captures the variation in rotation angle

Regression on a Torus Global Temperature Data Image Data

Unsupervised Embedding

 Project onto the principal eigenvectors, i.e. Laplacian Eigenmaps

Figure: Principal eigenvectors. Color by tilt angle.

Figure: Principal eigenvectors. Color by rotation angle.

Regression on Manifolds using Kernel Dimension Reduction

イロト イヨト イヨト イヨト

Regression on a Torus Global Temperature Data Image Data

Predictive embedding guided by mKDR

- Apply mKDR with rotation angle as response
- Map data onto predictive eigenvectors of the Graph Laplacian

Figure: Predictive eigenvectors

Summary

- mKDR discovers manifolds that optimally preserve predictive power w.r.t response variables.
- mKDR enables:
 - flexible regression modeling
 - supervised exploration of nonlinear data manifolds
- mKDR extends:
 - sufficient dimension reduction to nonlinear manifolds.
 - manifold learning to the supervised setting.