Sparse recovery using sparse random matrices Or: Fast and Effective Linear Compression Piotr Indyk MIT

Joint work with: R. Berinde, A. Gilbert, H. Karloff, M. Ruzic, M. Strauss

Linear Compression

- High-dimensional data: x
- Low-dimensional sketch: Ax
- Goal: design A so that given Ax we can recover an "approximation" x* of x
 - Sparsity parameter k
 - Want x* such that ||x*-x||_p≤ C ||x'-x||_q
 over all x' that are k-sparse (at most k non-zero entries)
 - The best x' contains k coordinates of x with the largest abs value
- Short history:
 - Learning (Fourier coefficients)
 - Fourier matrices, algebraic methods
 - Streaming (Heavy hitters)
 - Mostly sparse binary matrices, combinatorial methods
 - Compressed sensing
 - Dense matrices (Gaussian, Fourier), geometric methods

Application I: Monitoring Network Traffic

- Router routs packets (many packets)
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic matrix x[.,.]
 - Easy to update: given a (src,dst) packet, perform
 x_{src,dst}++
 - Requires way too much space!
 (2³² x 2³² entries)
 - Need to compress x, increment easily
- Using linear compression we can:
 - Maintain sketch Ax under increments to x, since $A(x+\Delta) = Ax + A\Delta$
 - Recover x* from Ax

Other applications

• Single pixel camera

. . .

 High throughput screening (Anna, Sat, 3:30 pm)

Parameters

- Given: dimension n, sparsity k
- Parameters:
 - Sketch length m
 - Time to compute/update Ax
 - Time to recover x^* from Ax
 - Randomized/Deterministic/Explicit matrix A
 - Measurement noise, universality, ...

Results

(best known in blue)

March'08

Paper	A/E	Sketch length	Encode time	Update time	Decode time	Approx. error	Noise
[DM08]	A	$k \log(n/k)$	$nk \log(n/k)$	$k \log(n/k)$	$nk \log(n/k) \log D$	$\ell_2 \leq \frac{C}{k^{1/2}}\ell_1$	Y
[NT08]	А	$k \log(n/k)$	$nk \log(n/k)$	$k \log(n/k)$	$nk \log(n/k) \log D$	$\ell_2 \le \frac{C}{2^{1/2}} \ell_1$	Y
	Α	$k \log^{5} n$	$n \log n$	$k \log^{c} n$	$n \log n \log D$	$\ell_2 \leq \frac{\kappa_G}{k^{1/2}}\ell_1$	Y
This talk	А	$k\log(n/k)$	$n\log(n/k)$	$\log(n/k)$	$n\log(n/k)$	$\ell_1 \leq C \ell_1$	Y
This talk	A A	$k \log(n/k)$	$n\log(n/k)$	$\log(n/k)$	$n\log(n/k)$	$\ell \leq \frac{1}{k^{1/2}} \ell_1$ $\ell_1 \leq C \ell_1$	Y

General approach

- Dichotomy:
 - Sparse matrices: faster algorithms
 - Dense metrices: shorter sketches
- Approach:
 - Unify
 - Best of both worlds

Dense matrices: ideas

- Restricted Isometry Property [Candes-Tao]:
 - A satisfies (k,C)-RIP if for all k-sparse vectors x

 $||\mathbf{x}||_{2} \le ||\mathbf{A}\mathbf{x}||_{2} \le C ||\mathbf{x}||_{2}$

- Examples:
 - Random Gaussian: m=O(k log (n/k))
 - Random Fourier: $m=O(k \log^{O(1)} n)$
- Recovery algorithms:
 - Linear Programming :
 - Find x* such that Ax=Ax* and ||x*||₁ minimal
 - Orthogonal Matching Pursuit:
 - Iteratively find large coordinates of the residual x-x*
 - Update x*
- Both rely on RIP

Dealing with Sparsity

- Consider "random" m x n adjacency matrices of d-regular bipartite graphs
- Do they satisfy RIP ?

- No, unless $m=\Omega(k^2)$ [Chandar'07]

 However, they do satisfy the following RIP-1 property: for any k-sparse x
 d (1-2ε) ||x||₁≤ ||Ax||₁ ≤ d||x||₁

if the graph is a (k, $d(1-\epsilon)$)-expander [Berinde-Gilbert-Indyk-Karloff-Strauss'08]

- Randomized: m=O(k log (n/k))
- Explicit: m=k quasipolylog n
- What is the use of RIP-1?

A satisfies RIP-1 \Rightarrow LP works

[Berinde-Gilbert-Indyk-Karloff-Strauss'08]

- Compute a vector x* such that Ax=Ax* and ||x*||₁ minimal
- Then we have, over all k-sparse x'
 ||x-x*||₁ ≤ C min_{x'} ||x-x'||₁

 C→2 as the expansion parameter ε→0
- Can be extended to the case when Ax is noisy

A satisfies RIP-1 \Rightarrow OMP works

[Indyk-Ruzic'08]

- Algorithm I: Expander Matching Pursuit
 - Very fast running time O(n log(n/k))
 - Uses multiple parameters
- Algorithm II (new): "Sparse Matching Pursuit" (influenced by [Needell-Tropp'08])
 - Slower running time of O(n log D log(n/k))
 - Only one parameter k

"Sparse Matching Pursuit"

- Algorithm:
 - x*=0
 - Repeat T times
 - Let c'=Ax-Ax* = A(x-x*)
 - Compute z such that z_i is the median of its neighbors in c
 - x*=x*+z
 - Sparsify x*

 (set all but k largest entries of x* to 0)
- After T=O(log D) steps we have, over all k-sparse x'

 $||x-x^*||_1 \le C \min_{x'} ||x-x'||_1$

Experiments

- Probability of recovery of random k-sparse +1/-1 signals from m measurements
 - Sparse matrices with d=20 1s per column
 - Signal length n=20,000

Countmin [Cormode-Muthukrishnan'04] Sparse MatchingLiPursuit (20 iterations)Same a

Linear Programming Same as for Gaussian matrices!

Conclusions

- Sparse approximation possible with sparse matrices:
 - RIP-1 vs. expansion
 - Unify geometric and combinatorial view
- State of the art: can do 2 out of 3:
 - Near-linear encoding/decoding
 - O(k log (n/k)) measurements
 - Approximation guarantee with respect to L2 norm

This talk

- Open problems:
 - 3 out of 3 ?
 - Precise understanding ?
 - Further applications ?

Resources

- References:
 - R. Berinde, A. Gilbert, P. Indyk, H. Karloff, M. Strauss, "Combining geometry and combinatorics: a unified approach to sparse signal recovery", 2008.
 - R. Berinde, P. Indyk, "Sparse Recovery Using Sparse Random Matrices", 2008.
 - P. Indyk, M. Ruzic, "Near-Optimal Sparse Recovery in the L1 norm", 2008.