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Modern massive data = modern masswe"headache’>

Cluster headache: PET functional
imaging shows activation of
specific brain areas during pain

rne, may 1 be excused? My brain 1s full.”
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Do not multiply causes!
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Motivation

Definition of generalizability
— Operational definitions
— Theory: Universality of learning curves

Understanding the limits to learning in high-dimensional data
— SVD/PCA: simple subspace models are well understood
— "Retarded” learning
— What about ICA, NMF, Kmeans clustering, etc?

Heuristics to heal bad factors in poor SNR's
— Re-scaling projections
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Factor models
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 Represent a datamatrix by a low-dimensional approximation
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....real world applications

e Many high-dimensional problems are
analysed in pipelines with an initial
dimension reduction step (SVD, NMF,
ICA, VQ/kmeans, PLS, kOPLS etc)

e Unsupervised methods are less
committed than supervised
counterparts for exploratory
investigations in eg.

fMRI based ‘mind reading’

(McKeown, Hansen, Sejnowski, 2003)
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Matrix factorization: SVD/PCA, NMF, Clustering
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Figure 1 Non-negative matrix factorization (NMF) leams a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) leam
holistic representations. The three learming methods were applied to a database of

m = 2.429 facial images, each consisting of n = 19 x 19 pixels, and constituting an
n » m matrix I All three find approaximate factorizations of the form V' == WH, but with
three different types of constraints on Wand H, as described maore fully in the main text
and methods. As shown in the 7 x 7 montages, each method has leamed a set of

r = 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 > 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces,

Leaming the parts of objects hy
non-negative matrix factorization
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Probabilistic interpretation

(Gaussier, Goutte: Relation between PLSA and NMF.., 2005)

CASTSEARCH - CONTEXT BASED SPEECH DOCUMENT RETRIEVAL

audio Speach speaker

e LEB'“"“N-

segments
stream m d ‘ speaker turns
Lasse Lohilalti Melgaard, Kasper Winther Jorgensen, and Lars Kai Hansen classifl ‘ segmenta- ASR WARIN RAS I
M cation I tion —
Informatics and Mathematical Modelling Audio analysis | —
Technical University of Denmark Richard Petersens Plads [ Text segments — )
Building 321, DK-2800 Kongens Lyngby, Denmark l
Term-doc e — -
Vector matrix
space N Canlext space ome- -
model B e m =
Text processing (a) Manual segmentation,
Fig. 1. The system setup. The audio stream is first processed using “"a‘““”m—.ll
audio segmentation. Segments are then using an automatic speech oo e ey
recognition (ASR) system to produce text segments. The text is e~ Il
then processed using a vector representation of text and apply non- —
negative matrix factorization (NMF) to find a topic space. —
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(b) p{k|d* ) for each context. Black means high probability.
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Multinomial mixture model, V is a matrix of ‘counts’

(c} The segmentation based on p{k|d*).

Fig. 3. Figure 3(a) shows the manual segmentation of the news
show inte 7 classes. Figure 3(b) shows the distribution p(k|d*)
used to do the actual segmentation shown in figure 3(c). The NMF-
segmentation is in general consistent with the manual segmentation.
Though, the segment that is manually segmented as "crime’ is la-
beled 'other” by the NMF-segmentation

(Mglgaard, Jgrgensen, Hansen,
ICASSP, 2007)
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Generalizability

Generalizability is defined as the expected performance on a random new sample
— the av. performance of a model on a "fresh” test data set is an unbiased estimate of generalization
— in simulations how similar are estimated parameters to the "true” values

Typical loss functions (supervised/unsupervised):

(=log p(c|v,0)), ( (-logp(v|0)),

~\2 (C,V7)
(e=er). {rog p(cp|;)pl(v}|9)>

Results can be presented as "bias-variance trade-off curves” or “learning curves”
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NPAIRS: Reproducibility of parameters

SPM
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Neurolmage: Hansen et al (1999), Hansen et al (2000), Strother et al (2002),
Kjems et al. (2002), LaConte et al (2003), Strother et al (2004)

Lars Kai Hansen .. 3 E'[g
IMM, Technical University of Denmark =




Modeling the generalizability of SVD

(D. Hoyle, M. Rattray: Statistical mechanics of learning multiple orthogonal signals..., 2007):

Rich physics literature on "retarded” learning

Universality

Generalization for a "single symmetry
breaking direction” is a function of ratio
of N/D and signal to noise S

For subspace models-- a bit more
complicated -- depends on the
component SNR's and eigenvalue
separation

For a single direction, the mean squared
overlap R? =<(u',;*u,)?> is computed
for N,D -> oo

I ———Tt—oT——o——9

B (xS*-1)/SQ+aS) a>1/5?
0 a<1/S?

a=N/D S=1/6° N_=D/S*

Hoyle, Rattray: Phys Rev E 75 016101 (2007)
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SINGLE SYMMETRY BREAKING DIRECTION (D=104)
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SVD of movie actor network ->
’elgencasts, eigengenre”

D = 128.000 movies
N = 400.000 actors
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Universality in PCA, NMF, Kmeans

e Looking for universality by
simulation

— learning two clusters in
white noise.

OVERLAP

e Train K=2 component factor
models.

e Measure overlap between line
of sigth and plane spanned by
the two factors.

o
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OVERLAP
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» o

Experiment
Variable: N, D 0.2
Fixed: SNR
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Restoring the generalizability of SVD

e Now what happens if you are on the slope
of generalization, i.e., N/D is just beyond
the transition to retarded learning ?
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e The estimated projection is offset, hence,
future projections will be too small!

e ...problem if discriminant is optimized for
unbalanced classes in the training data!
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Heuristic: Leave-one-out re-scaling of SVD test projections
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Kjems, Hansen, Strother: “Generalizable SVD for

N 1 S A L Ill-posed data sets” NIPS (2001)
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Re-scaling the component variances
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2.00

: — — — 8VD training set projection stdev
GenSVYD training set proj. stdev
m—— Test set projection stdev

e Possible to compute the
new scales by leave-one-
out doing N SVD’s of size

N <<D osof \ .

Compute Uy AV, =svd(X) and Q, = [Qj] = AV,
foreach j = 1...N

_ 1
q_; = w1 2jizi 4y _
Compute B.A_ V| =svd(Q, - Q)
i = B—jB—;r(qj —4q_;)

2 1 2
A= N Zj “ij

Standard deviation

Kjems, Hansen, Strother: NIPS (2001)
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Re-scaling for other factorizations: NMF?

C mbi Lars Kai Hansen

e Test projections are
obtained by running the
factorization alg with W
fixed

e NMF suffers from the same
distributional problem as
SVvD

e Simple scaling can fail
because of non-normal
distributions

e Use histogram equalization : : : . :
for re-mapping the 3.5 4 4.5 S 5.9 6
densities of the factors

e Implicit hypothesis:
— NMF factors are approx
independent
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Conclusion & Perspectives

e Evidence of universality in SVD/PCA, NMF, Kmeans,

e Evidence for “"phase transition”-like learning curves in high-dimensional
unsupervised learning

e  Working heuristic for re-scaling of projection on test set
— Linear scaling in SVD/PCA
— Non-linear scaling in NMF

¢ More formal investigation of NMF, Kmeans, higher order factorizations, etc — how
universal are the learning curves

e  Structured/sparse matrices?

— How do priors shift the phase transition?

— Multiple order parameters: Sequence of phase transitions ala fractal structure
in disordered systems
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