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Modern massive data = modern massive headache?

Cluster headache: PET functional 
imaging shows activation of 
specific brain areas during pain

MMDS

http://upload.wikimedia.org/wikipedia/commons/3/3e/PET3.jpg
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OUTLINE

• Motivation 
• Definition of generalizability

– Operational definitions
– Theory: Universality of learning curves

• Understanding the limits to learning in high-dimensional data
– SVD/PCA: simple subspace models are well understood
– ”Retarded” learning
– What about ICA, NMF, Kmeans clustering, etc?

• Heuristics to heal bad factors in poor SNR’s
– Re-scaling projections

Do not multiply causes!
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Factor models

• Represent a datamatrix by a low-dimensional approximation

1
( , ) ( , ) ( , )K

k
V i n W i k H k n

=
≈ ∑

W

H
TIME (N)

v

LO
C
A
T
IO

N
 (

D
)

LO
C
A
T
IO

N
 (

D
)

TIME (N)



Lars Kai Hansen

IMM, Technical University of Denmark

….real world applications

• Many high-dimensional problems are
analysed in pipelines with an initial 
dimension reduction step (SVD, NMF, 
ICA, VQ/kmeans, PLS, kOPLS etc)

• Unsupervised methods are less
committed than supervised
counterparts for exploratory
investigations in eg. 

fMRI based ’mind reading’

(McKeown, Hansen, Sejnowski, 2003)
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Matrix factorization:  SVD/PCA, NMF, Clustering
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Probabilistic interpretation

(Gaussier, Goutte: Relation between PLSA and NMF.., 2005)

Multinomial mixture model, V is a matrix of ’counts’
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(Mølgaard, Jørgensen, Hansen, 
ICASSP, 2007)
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Generalizability

• Generalizability is defined as the expected performance on a random new sample 
– the av. performance of a model on a ”fresh” test data set is an unbiased estimate of generalization
– in simulations how similar are estimated parameters to the ”true” values

• Typical loss functions (supervised/unsupervised): 

• Results can be presented as ”bias-variance trade-off curves” or ”learning curves”
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NPAIRS: Reproducibility of parameters

NeuroImage: Hansen et al (1999), Hansen et al (2000), Strother et al (2002), 
Kjems et al. (2002), LaConte et al (2003), Strother et al (2004)
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Modeling the generalizability of SVD
(D. Hoyle, M. Rattray: Statistical mechanics of learning multiple orthogonal signals…, 2007):

• Rich physics literature on ”retarded” learning

• Universality
– Generalization for a ”single symmetry

breaking direction” is a function of ratio 
of N/D and signal to noise S

– For subspace models-- a bit more 
complicated -- depends on the
component SNR’s and eigenvalue
separation

– For a single direction, the mean squared
overlap R2  =<(uT

1*u0)2> is computed
for N,D -> ∞

Hoyle, Rattray: Phys Rev E 75 016101 (2007)
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Nc = (0.0001, 0.2, 2, 9, 27, 64, 128, 234, 400, 625)
σ = (0.01, 0.06, 0.12, 0.17, 0.23, 0.28, 0.34, 0.39, 0.45, 0.5)
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SVD of movie actor network -> 
”eigencasts, eigengenre”

D = 128.000 movies
N = 400.000 actors
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SUBSAMBLING MOVIE−ACTOR NETWORK

1’st EIGENVECTOR 
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http://images.google.dk/imgres?imgurl=http://images.quickblogcast.com/94060-86797/grouchomarxx.jpg&imgrefurl=http://nostalgic-radio.com/2008/01/20/the-marx-brothers-groucho-the-hypochondriac-with-groucho-marx-and-dinah-shore.aspx&h=600&w=546&sz=41&hl=da&start=1&sig2=NARCfZqeCegDWgjwD3y-fQ&um=1&tbnid=Tw_6KjEsZY3ghM:&tbnh=135&tbnw=123&ei=lylmSMaCFYqaoQSgru3CDQ&prev=/images%3Fq%3Dgroucho%2Bmarx%26um%3D1%26hl%3Dda%26rls%3DGGLG,GGLG:2005-38,GGLG:da%26sa%3DN
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Universality in PCA, NMF, Kmeans

• Looking for universality by 
simulation
– learning two clusters in 

white noise. 

• Train K=2 component factor 
models. 

• Measure overlap between line 
of sigth and plane spanned by 
the two factors.

Experiment
Variable: N, D
Fixed: SNR
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Restoring the generalizability of SVD

• Now what happens if you are on the slope
of generalization, i.e., N/D is just beyond
the transition to retarded learning ?

• The estimated projection is offset, hence, 
future projections will be too small!

• …problem if discriminant is optimized for 
unbalanced classes in the training data!
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Heuristic: Leave-one-out re-scaling of SVD test projections

Kjems, Hansen, Strother: ”Generalizable SVD for 
Ill-posed data sets” NIPS (2001)

N=72, D=2.5 104
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Re-scaling the component variances

• Possible to compute the
new scales by leave-one-
out doing N SVD’s of size
N << D

Kjems, Hansen, Strother: NIPS (2001)
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Re-scaling for other factorizations: NMF? 

• Test projections are
obtained by running the
factorization alg with W 
fixed

• NMF suffers from the same 
distributional problem as 
SVD

• Simple scaling can fail
because of non-normal
distributions

• Use histogram equalization
for re-mapping the
densities of the factors

• Implicit hypothesis: 
– NMF factors are approx

independent
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Conclusion & Perspectives

• Evidence of universality in SVD/PCA, NMF, Kmeans,

• Evidence for ”phase transition”-like learning curves in high-dimensional
unsupervised learning

• Working heuristic for re-scaling of projection on test set
– Linear scaling in SVD/PCA
– Non-linear scaling in NMF

• More formal investigation of NMF, Kmeans, higher order factorizations, etc – how
universal are the learning curves

• Structured/sparse matrices?

– How do priors shift the phase transition?
– Multiple order parameters: Sequence of phase transitions ala fractal structure

in disordered systems

http://upload.wikimedia.org/wikipedia/commons/3/3e/PET3.jpg
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Thanks and … a little add placement
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BCFinder: Tool for bi-clique community
detection

http://www2.imm.dtu.dk/~mhs/bcfinder/
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