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Combinatorial group testing

Rat dies only 1 week after drinking poisoned wine



Being good (computer) scientists, they do the following:





Unique encoding of each bottle



If bottle 5 were poison...



...after 1 week



Problem statement: CGT

m as small
as possible

Construct matrix A : Bn → Bm

Assume x has
low complexity:
x has k-defects
the rest are zero

Given Ax for any signal x ∈ Bn, we can quickly recover k defects
present in x . Note: arithmetic is boolean and result from pooled
test is {0, 1}.



Parameters

Number of measurements m

Recovery time

Recovery of all k defects

One matrix vs. distribution over matrices

Explicit construction of matrix

Tolerance to measurement errors (bits flipped, missing bits)

Number of replicates (number of times test each item)

Number of items in each pool



Problem statement: Sparse signal recovery

m as small
as possible

Construct matrix A : Rn → Rm

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x ∈ Rn, we can quickly recover x̂ with

‖x − x̂‖p ≤ C min
y k−sparse

‖x − y‖q



Parameters

Number of measurements m

Recovery time

Approximation guarantee (norms, mixed)

One matrix vs. distribution over matrices

Explicit construction

Tolerance to measurement noise



High Throughput Screening (HTS)

HTS is an essential step in drug discovery
(and elsewhere in biology)

Large chemical libraries screened on a
biological target for activity

Basic {0, 1} type biological assays to find
active compounds

Usually a small number of compounds found

One-at-a-time screening: automation and
miniaturization

Noisy assays with false positives and
negative errors
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High Throughput Screening (HTS)

HTS is an essential step in drug discovery (and elsewhere in biology).

Large chemical libraries screened on
a biological target for activity.

Basic yes-no type biological assays
to find active compounds .

Usually a small number of
compounds found.

One-at-a-time screening – power
comes from automation and
miniaturization.

Noisy Assays with false positive and
negative errors.



Current HTS uses one-at-a-time testing scheme (with repeated
trials).
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Current HTS Design

Current HTS uses a one-at-a-time testing scheme.



Pooled HTS design
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Pooled HTS Design

Propose the use of pooled
testing of compounds.

Uses fewer tests.

Work is moved from testing
(costly) to analysis (cheap).

Handles errors in testing due
to in-built redundancy.

Propose using pooled testing of
compounds

Uses fewer tests

Work moved from testing
(costly) to computational
analysis (cheap)

Handles errors in testing better
due to built-in replication

Additional quantitative
information



HTS and signal recovery
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Analogy to HTS

To use compressed sensing approach we need a linear model.



Quantitative analysis of pooling in HTS

Constraints

linearity: measured quantities map linearly to compound
activities
sparsity: most compounds inactive


y1

y2

...
ym

 =


1 0 . . . 0 1
0 1 . . . 0 1

...
...

1 0 . . . 1 0




x1

x2

...
xn−1

xn


Challenges

choosing a good mixing scheme
enforcing a mixing constraint
recovery algorithm tolerant to measurement noise + errors



Our approach

Binary measurement matrix: adjacency
matrix of unbalanced expander graph

Appropriate linear biochemical model

Decoding via linear programming
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Sparse Recovery Problem

QUAPO

Binary measurement matrix : Adjacency
matrix of unbalanced expander graph.a

Appropriate linear biochemical model.

Decoding : via Linear Programming.

aBerinde et. al. (2008) – Combining geometry and
combinatorics: A unified approach to sparse signal
recovery



Compressed sensing: sparse matrices

LP decoding using sparse matrices

Deterministic (explicit) constructions

Control over number of replicates, number of compounds per
pool

LP decoding robust to measurement noise

Recall: Piotr Indyk’s talk Thursday



Sparse matrices: Expander graphs

S N(S)

Adjacency matrix A of a d regular (1, ε) expander graph
Graph G = (X ,Y ,E ), |X | = n, |Y | = m
For any S ⊂ X , |S | ≤ k, the neighbor set

|N(S)| ≥ (1− ε)d |S |

Probabilistic construction:

d = O(log(n/k)/ε),m = O(k log(n/k)/ε2)

Deterministic construction:

d = O(2O(log3(log(n)/ε))),m = k/ε 2O(log3(log(n)/ε))



RIP(p)

A measurement matrix A satisfies RIP(p, k , δ) property if for any
k-sparse vector x ,

(1− δ)‖x‖p ≤ ‖Ax‖p ≤ (1 + δ)‖x‖p.



RIP(p) ⇐⇒ expander

Theorem
(k , ε) expansion implies

(1− 2ε)d‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1

for any k-sparse x. Get RIP(p) for 1 ≤ p ≤ 1 + 1/ log n.

Theorem
RIP(1) + binary sparse matrix implies (k, ε) expander for

ε =
1− 1/(1 + δ)

2−
√

2
.



Expansion =⇒ LP decoding

Theorem
Φ adjacency matrix of (2k , ε) expander. Consider two vectors x, x∗
such that Φx = Φx∗ and ‖x∗‖1 ≤ ‖x‖1. Then

‖x − x∗‖1 ≤
2

1− 2α(ε)
‖x − xk‖1

where xk is the optimal k-term representation for x and
α(ε) = (2ε)/(1− 2ε).

Guarantees that Linear Program recovers good sparse
approximation

Robust to noisy measurements too



RIP(1) =⇒ LP decoding

`1 uncertainty principle

Lemma
Let y satisfy Ay = 0. Let S the set of k largest coordinates of y .
Then

‖yS‖1 ≤ α(ε)‖y‖1.

LP guarantee

Theorem
Consider any two vectors u, v such that for y = u − v we have
Ay = 0, ‖v‖1 ≤ ‖u‖1. S set of k largest entries of u. Then

‖y‖1 ≤
2

1− 2α(ε)
‖uSc‖1.



Small library

Synthetic screen: small molecule ligands for formylpeptide
receptor, 6 active [Edwards, et al., Nature Protocols ’06]

n = 272, k = 6, using deterministic STD matrix, m = 116
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Small Library : Competitive Binding

Synthetic Screen : small molecule ligands for formylpeptide receptor (FPR) with
6 showing activity.6

poolHiTS(n = 272, d = 3, e = 0%, m = 10) required t = 116 tests.

y =
(1+Ka[L])

[D]
%I

100−%I
=
P

i Ki

[L] = 1.5µM, 1/Ka = 3µM and [D] = 1.5µM

6Edwards et. al., Nature Protocols (2006)



In silico
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Small Library : QUAPO Result



Large library

Actual screen: 50,000 compounds screened against E. coli
dihydrofolate reductase (DHFR), 12 active [McMaster HTS Lab Data

Mining and Docking Competition ’05]

n = 50, 000, k = 12 screened in 122 blocks of 410 compounds
using STD deterministic matrix, m = 10, 004
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Large Library : Competitive Inhibition

50, 000 compounds screened against E. coli dihydrofolate reductase (DHFR)
with 12 showing activity.7

poolHiTS(n = 50, 000, d = 12, e = 0%, m = 10) screened in 122 blocks of 410
compounds requiring a total t =10,004 tests.

y =
(1+[S]/Km)

[D]
100−%RA

%RA
=
P

i Ki

[S] = 30µM, Km = 9.5µM and [D] = 10µM

7McMaster HTS Lab Data Mining and Docking Competition (2005)



In silico
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Large Library : QUAPO Result



Current/Future work

Computer Science:

greedy algorithms in place of LP decoding
decoding with noise + missing measurements
refined error analysis
decoding algorithms to rank compounds

Chemical Engineering:

good/best explicit constructions which meet experimental
constraints
refine error analysis, algorithm output for cultural
interpretations of biologists
design and implementation of several in vitro experiments
(HTS, differential gene expression)


