Graph Mining: Laws, Generators and Tools

Christos Faloutsos
CMU

Thanks

- Michael Mahoney
- Lek-Heng Lim
- Petros Drineas
- Gunnar Carlsson

Outline

- Problem definition / Motivation
- Static \& dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection)
- Conclusions

Motivation

Data mining: ~ find patterns (rules, outliers)

- Problem\#1: How do real graphs look like?
- Problem\#2: How do they evolve?
- Problem\#3: How to generate realistic graphs TOOLS
- Problem\#4: Who is the 'master-mind'?
- Problem\#5: Track communities over time

Problem\#1: Joint work with

Dr. Deepayan Chakrabarti (CMU/Yahoo R.L.)

Graphs - why should we care?

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

D_{N}

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- network of companies \& board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

Problem \#1 - network and graph mining

- How does the Internet look like?
- How does the web look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns

Solution\#1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\#1': Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Solution\#1': Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- [Papadimitriou, Mihail, '02]: slope is $1 / 2$ of rank exponent

CMU SCS

But:
How about graphs from other domains?

The Peer-to-Peer Topology

[Jovanovic+]
(a) Gnutella snapshot from Dec. 28, $2000(|r|=0.94)$

- Count versus degree
- Number of adjacent peers follows a power-law

More power laws:

citation counts: (citeseer.nj.nec.com 6/2001)
\log (count)

More power laws:

- web hit counts [w/ A. Montgomery]

epinions.com

Motivation

Data mining: ~ find patterns (rules, outliers)
\checkmark Problem\#1: How do real graphs look like?

- Problem\#2: How do they evolve?
- Problem\#3: How to generate realistic graphs TOOLS
- Problem\#4: Who is the 'master-mind'?
- Problem\#5: Track communities over time

Problem\#2: Time evolution

- with Jure Leskovec (CMU/MLD)

- and Jon Kleinberg (Cornell sabb. @ CMU)

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ $\mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$
- What is happening in real data?

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ ((Cl)
- diameter ~ O (rorog N)
- What is happening in real data?
- Diameter shrinks over time

Diameter - ArXiv citation graph

- Citations among physics papers
- 1992-2003
- One graph per year

Diameter - "Autonomous Systems"

- Graph of Internet
- One graph per day
- 1997-2000

Diameter - "Affiliation Network"

- Graph of collaborations in physics - authors linked to papers
- 10 years of data

Diameter - "Patents"

- Patent citation network
- 25 years of data

C. Faloutsos

Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q : what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})
$$

Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t}) \ldots$ edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q : what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=(2) * \mathrm{E}(\mathrm{t})
$$

- A: over-doubled!
- But obeying the "Densification Power Law"

Densification - Physics Citations

- Citations among physics papers
- 2003:
- 29,555 papers, 352,807 citations

Densification - Physics Citations

- Citations among physics papers
- 2003:
- 29,555 papers, 352,807 citations

Densification - Physics Citations

- Citations among physics papers
- 2003:
- 29,555 papers, 352,807 citations

Densification - Physics Citations

- Citations among physics papers
- 2003:
- 29,555 papers, 352,807 citations

Densification - Patent Citations

- Citations among patents granted
- 1999
- 2.9 million nodes
- 16.5 million edges
- Each year is a datapoint

Densification - Autonomous Systems

- Graph of

Internet

- 2000
- 6,000 nodes
- 26,000 edges
- One graph per day

Densification - Affiliation Network

- Authors linked to their publications
- 2002
- 60,000 nodes
- 20,000 authors
- 38,000 papers
- 133,000 edges

Motivation

Data mining: ~ find patterns (rules, outliers)
\checkmark Problem\#1: How do real graphs look like?
\checkmark Problem\#2: How do they evolve?

- Problem\#3: How to generate realistic graphs TOOLS
- Problem\#4: Who is the 'master-mind'?
- Problem\#5: Track communities over time

Problem\#3: Generation

- Given a growing graph with count of nodes N_{l}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns

Problem Definition

- Given a growing graph with count of nodes N_{l}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Static Patterns

Power Law Degree Distribution
Power Law eigenvalue and eigenvector distribution
Small Diameter

- Dynamic Patterns

Growth Power Law
Shrinking/Stabilizing Diameters

Problem Definition

- Given a growing graph with count of nodes N_{1}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Idea: Self-similarity
- Leads to power laws
- Communities within communities

Kronecker Product - a Graph

1	1	0
1	1	1
0	1	1
G_{1}		

Adjacency matrix

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Properties:

- We can PROVE that
- Degree distribution is multinomial ~ power law
- Diameter: constant
- Eigenvalue distribution: multinomial
- First eigenvector: multinomial
- See [Leskovec+, PKDD’05] for proofs

Problem Definition

- Given a growing graph with nodes N_{1}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Static Patterns
\checkmark Power Law Degree Distribution
\checkmark Power Law eigenvalue and eigenvector distribution
\checkmark Small Diameter
- Dynamic Patterns
\checkmark Growth Power Law
\checkmark Shrinking/Stabilizing Diameters
- First and only generator for which we can prove all these properties

Stochastic Kronecker Graphs

- Create $N_{1} \times N_{l}$ probability matrix P_{l}
- Compute the $k^{\text {th }}$ Kronecker power P_{k}
- For each entry $p_{u v}$ of P_{k} include an edge (u, v) with probability $p_{u v}$

Experiments

- How well can we match real graphs?
- Arxiv: physics citations:
- 30,000 papers, 350,000 citations
- 10 years of data
- U.S. Patent citation network
- 4 million patents, 16 million citations
- 37 years of data
- Autonomous systems - graph of internet
- Single snapshot from January 2002
- 6,400 nodes, 26,000 edges
- We show both static and temporal patterns

(Q: how to fit the parm's?)

A:

- Stochastic version of Kronecker graphs +
- Max likelihood +
- Metropolis sampling
- [Leskovec+, ICML’07]

Experiments on real AS graph

Degree distribution

Adjacency matrix eigen values

Hop plot

Network value

Conclusions

- Kronecker graphs have:
- All the static properties
\checkmark Heavy tailed degree distributions
\checkmark Small diameter
\checkmark Multinomial eigenvalues and eigenvectors
- All the temporal properties
\checkmark Densification Power Law
\checkmark Shrinking/Stabilizing Diameters
- We can formally prove these results

Motivation

Data mining: ~ find patterns (rules, outliers) \downarrow Problem\#1: How do real graphs look like?
\checkmark Problem\#2: How do they evolve?
\checkmark Problem\#3: How to generate realistic graphs TOOLS
\Rightarrow Problem\#4: Who is the 'master-mind'?

- Problem\#5: Track communities over time

Problem\#4: MasterMind - 'CePS'

- w/ Hanghang Tong, KDD 2006
- htong <at> cs.cmu.edu

Center-Piece Subgraph(Ceps)

- Given Q query nodes
- Find Center-piece ($\leq b$)
- App.
- Social Networks
- Law Inforcement, ...
- Idea:
- Proximity -> random walk with restarts

Case Study: AND query

Jiawei Han

M. Jordan

Case Study: AND query

Case Study: AND query

Conclusions

- Q1:How to measure the importance?
- A1: RWR+K_SoftAnd
- Q2:How to do it efficiently?
- A2:Graph Partition (Fast CePS)
- ~90\% quality
- 150x speedup (ICDM'06, b.p. award)

Outline

- Problem definition / Motivation
- Static \& dynamic laws; generators Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection)
- Conclusions

Motivation

Data mining: ~ find patterns (rules, outliers)
\checkmark Problem\#1: How do real graphs look like?
\checkmark Problem\#2: How do they evolve?
\checkmark Problem\#3: How to generate realistic graphs TOOLS
\checkmark Problem\#4: Who is the 'master-mind'?

- Problem\#5: Track communities over time

Tensors for time evolving graphs

- [Jimeng Sun+ KDD'06]
- [" , SDM'07]
- [CF, Kolda, Sun, SDM'07 tutorial]

Social network analysis

- Static: find community structures

Keywords
1990

Social network analysis

- Static: find community structures

Social network analysis

- Static: find community structures
- Dynamic: monitor community structure evolution; spot abnormal individuals; abnormal time-stamps

CMU SCS

Application 1: Multiway latent semantic indexing (LSI)

- Projection matrices specify the clusters
- Core tensors give cluster activation level

Bibliographic data (DBLP)

- Papers from VLDB and KDD conferences
- Construct 2nd order tensors with yearly windows with <author, keywords>
- Each tensor: 4584×3741
- 11 timestamps (years)

Multiway LSI

Authors ${ }^{\text {a }}$ Keywords	Year
	1995
surajit chaudhuri,mitc§ vribut,systems,view,storage,servic,pr cherniack,michael ocess cache tonebraker,ugur etinteme	2004
jiawei han, ian pei,philip s. yu, sy/ams pattern,support, cluster, jianyong wang,charu c. aggary aener,queri	2004

- Two groups are corectly identified: Databases and Data mining
- People and concepts are drifting over time

Network forensics

- Directional network flows
- A large ISP with 100 POPs, each POP 10Gbps link capacity [Hotnets2004]
- $450 \mathrm{~GB} /$ hour with compression
- Task: Identify abnormal traffic pattern and find out the cause

Conclusions

Tensor-based methods (WTA/DTA/STA):

- spot patterns and anomalies on time evolving graphs, and
- on streams (monitoring)

Motivation

Data mining: ~ find patterns (rules, outliers) \checkmark Problem\#1: How do real graphs look like?

Problem\#2: How do they evolve?
Problem\#3: How to generate realistic graphs TOOLS
\checkmark Problem\#4: Who is the 'master-mind'?
Problem\#5: Track communities over time

Outline

- Problem definition / Motivation
- Static \& dynamic laws; generators
- Tools: CenterPiece graphs; Tensors

Other projects (Virus propagation, e-bay fraud detection, blogs)

- Conclusions

Virus propagation

- How do viruses/rumors propagate?
- Blog influence?
- Will a flu-like virus linger, or will it become extinct soon?

The model: SIS

- 'Flu’ like: Susceptible-Infected-Susceptible
- Virus 'strength' $s=\beta / \delta$

Epidemic threshold τ

of a graph: the value of τ, such that if strength $s=\beta / \delta<\tau$ an epidemic can not happen
Thus,

- given a graph
- compute its epidemic threshold

Epidemic threshold τ

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?

Epidemic threshold

- [Theorem] We have no epidemic, if

$$
\beta / \delta<\tau=1 / \lambda_{1, A}
$$

Epidemic threshold

- [Theorem] We have no epidemic, if recovery prob.
epidemic threshold

of adj. matrix \boldsymbol{A}
Proof: [Wang+03]

CMU SCS

Experiments (Oregon)

Outline

- Problem definition / Motivation
- Static \& dynamic laws; generators
- Tools: CenterPiece graphs; Tensors

Other projects (Virus propagation, e-bay fraud detection, blogs)

- Conclusions

E-bay Fraud detection

w/ Polo Chau \& Shashank Pandit, CMU

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?
- or him/her?

CMU SCS

E-bay Fraud detection - NetProbe

MMDS 08
C. Faloutsos

85

Outline

- Problem definition / Motivation
- Static \& dynamic laws; generators
- Tools: CenterPiece graphs; Tensors

Other projects (Virus propagation, e-bay fraud detection, blogs)

- Conclusions

Blog analysis

- with Mary McGlohon (CMU)
- Jure Leskovec (CMU)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)
[SDM'07]

Cascades on the Blogosphere

Blogosphere blogs + posts

Blog network links among blogs

Post network
links among posts

Q1: popularity-decay of a post?
Q2: degree distributions?

Q1: popularity over time

\# in links

Post popularity drops-off - exponentially?

Q1: popularity over time

\# in links (log)

days after post (log)

Post popularity drops-off - expor ent ally? POWER LAW!

Exponent?

Q1: popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expor ent ally? POWER LAW!
Exponent? -1.6 (close to -1.5: Barabasi's stack model)

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.
in-degree slope: -1.7
out-degree: -3
'rich get richer'

Next steps:

- edges with categorical attributes and/or timestamps
- nodes with attributes
- scalability (hadoop - PetaByte scale)
- first eigenvalue; diameter [done]
- rest eigenvalues; community detection [to be done]
- modularity, anomalies etc etc
- visualization (-> summarization)

E.g.: self-* system @ CMU

- >200 nodes
- target: 1 PetaByte

D.I.S.C.

- 'Data Intensive Scientific Computing' [R. Bryant, CMU]
- 'big data'
- http://www.cs.cmu.edu/~bryant/pubdir/cmu-cs-07-128.pdf

Scalability

- Google: > 450,000 processors in clusters of ~ 2000 processors each

Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003

- Yahoo: 5Pb of data [Fayyad, KDD’07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/

2' intro to hadoop

- master-slave architecture; n-way replication (default $\mathrm{n}=3$)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
- slaves compute local histograms
- master merges into global histogram
select course-id, count(*)
from ENROLLMENT group by course-id

2' intro to hadoop

- master-slave architecture; n-way replication (default $\mathrm{n}=3$)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
- slaves compute local histograms
- master merges into global histogram
select course-id, count(*)
reduce
from ENROLLMENT
group by course-id

OVERALL CONCLUSIONS

- Graphs: Self-similarity and power laws work, when textbook methods fail!
- New patterns (shrinking diameter!)
- New generator: Kronecker
- SVD / tensors / RWR: valuable tools
- hadoop/mapReduce for scalability

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan Fast Random Walk with Restart and Its Applications ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations KDD 2005, Chicago, IL. ("Best Research Paper" award).
- Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication (ECML/PKDD 2005), Porto, Portugal, 2005.

References

- Jure Leskovec and Christos Faloutsos, Scalable Modeling of Real Graphs using Kronecker Multiplication, ICML 2007, Corvallis, OR, USA
- Shashank Pandit, Duen Horng (Polo) Chau, Samuel Wang and Christos Faloutsos NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks WWW 2007, Banff, Alberta, Canada, May 8-12, 2007.
- Jimeng Sun, Dacheng Tao, Christos Faloutsos Beyond Streams and Graphs: Dynamic Tensor Analysis, KDD 2006, Philadelphia, PA

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007. [pdf]

Contact info:

www. cs.cmu.edu /~christos

(w/ papers, datasets, code, etc)

