

Graph Mining: Laws, Generatorsand Tools

Christos Faloutsos
CMU

Thanks

Michael Mahoney

- Lek-Heng Lim
- Petros Drineas
- Gunnar Carlsson

Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection)
- Conclusions

Motivation

Data mining: ~ find patterns (rules, outliers)

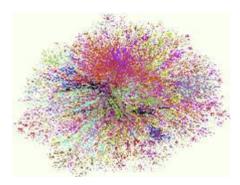
- Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

MMDS 08

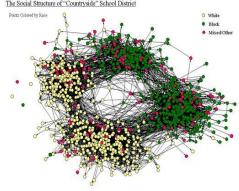
Problem#1: Joint work with

Dr. Deepayan Chakrabarti (CMU/Yahoo R.L.)

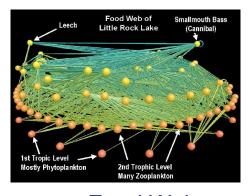
Graphs - why should we care?



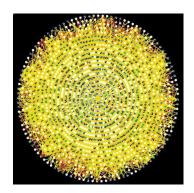
Internet Map [lumeta.com]



Friendship Network [Moody '01]



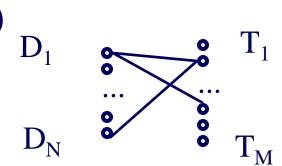
Food Web [Martinez '91]



Protein Interactions [genomebiology.com]

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)



web: hyper-text graph

• ... and more:

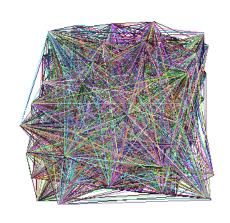
MMDS 08

Graphs - why should we care?

- network of companies & board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

•

Problem #1 - network and graph mining



- How does the Internet look like?
- How does the web look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Graph mining

• Are real graphs random?

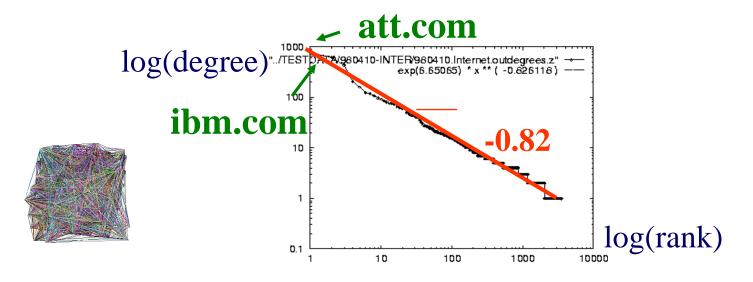
Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns

Solution#1

• Power law in the degree distribution [SIGCOMM99]

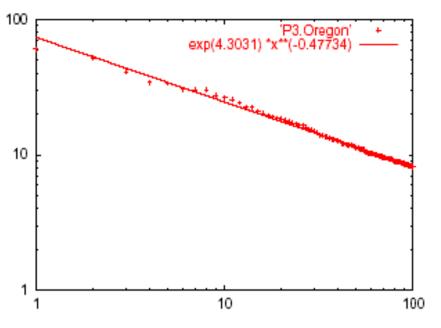
internet domains



MMDS 08

Solution#1': Eigen Exponent E

Eigenvalue



Exponent = slope

E = -0.48

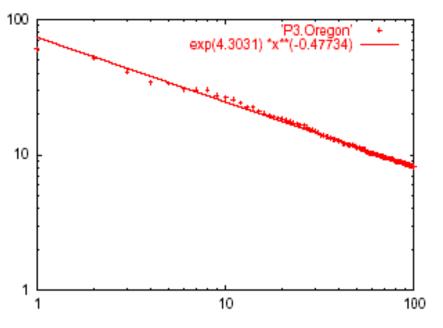
May 2001

Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency matrix

Solution#1': Eigen Exponent E

Eigenvalue



Exponent = slope

E = -0.48

May 2001

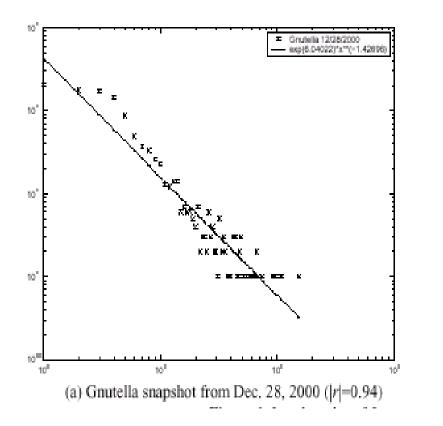
Rank of decreasing eigenvalue

• [Papadimitriou, Mihail, '02]: slope is ½ of rank exponent

But:

How about graphs from other domains?

The Peer-to-Peer Topology

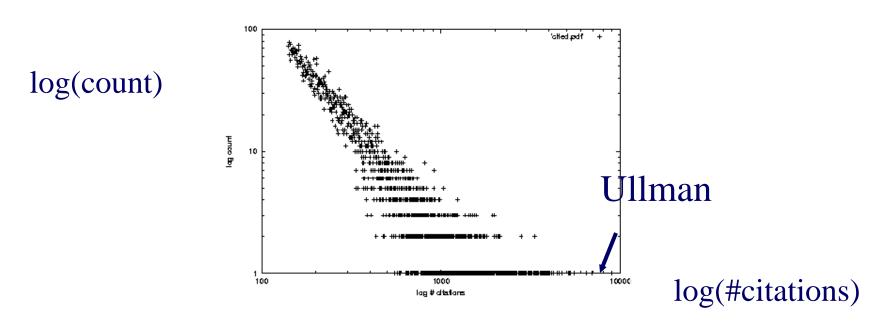


[Jovanovic+]

- Count versus degree
- Number of adjacent peers follows a power-law

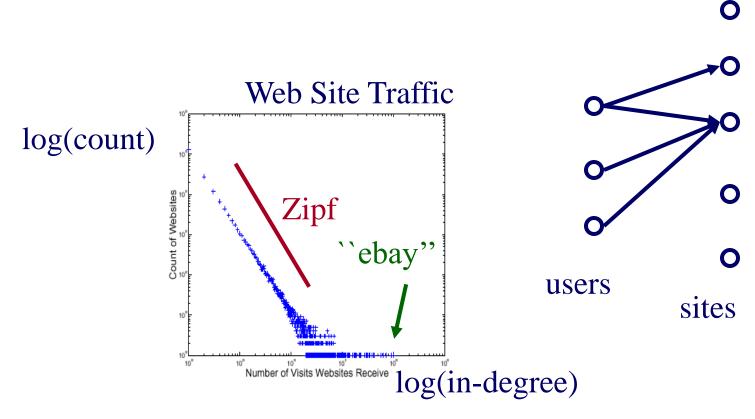
More power laws:

citation counts: (citeseer.nj.nec.com 6/2001)

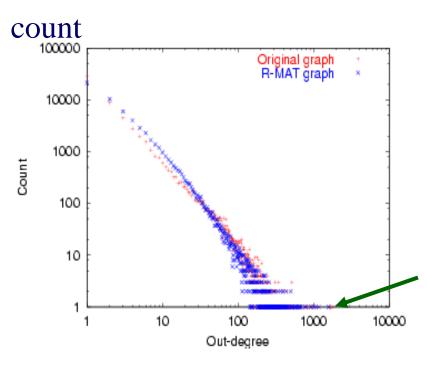


More power laws:

• web hit counts [w/ A. Montgomery]



epinions.com



who-trusts-whom[Richardson +Domingos, KDD2001]

trusts-2000-people user

(out) degree

Motivation

- Data mining: ~ find patterns (rules, outliers)
- ✓ Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

MMDS 08

Problem#2: Time evolution

 with Jure Leskovec (CMU/MLD)

and Jon Kleinberg (Cornell – sabb. @ CMU)

Evolution of the Diameter

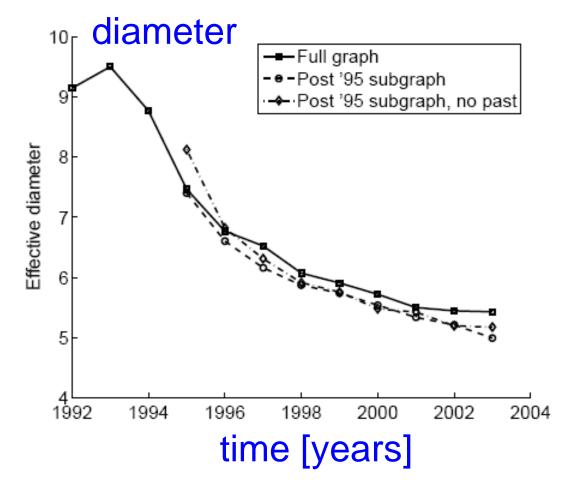
- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter \sim O(log N)
 - diameter \sim O(log log N)
- What is happening in real data?

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter ~ (log N
 - diameter ~ O(N)
- What is happening in real data?
- Diameter shrinks over time

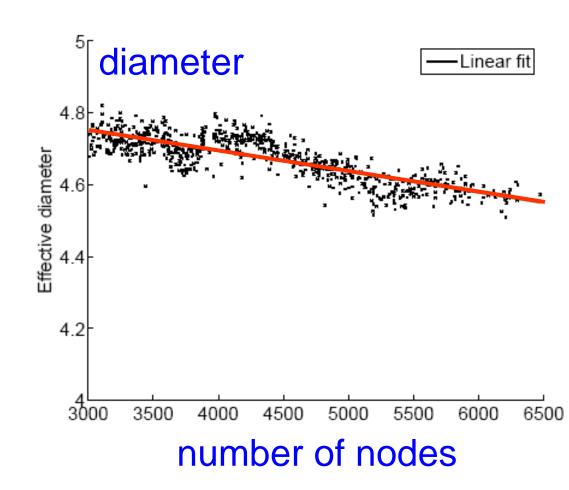
Diameter – ArXiv citation graph

- Citations among physics papers
- 1992 –2003
- One graph per year



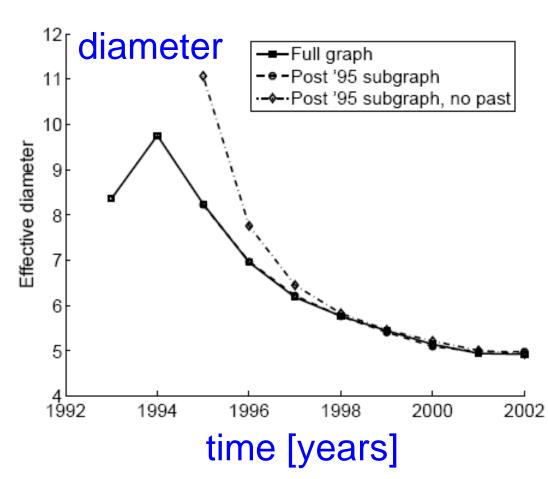
Diameter – "Autonomous Systems"

- Graph of Internet
- One graph per day
- 1997 2000



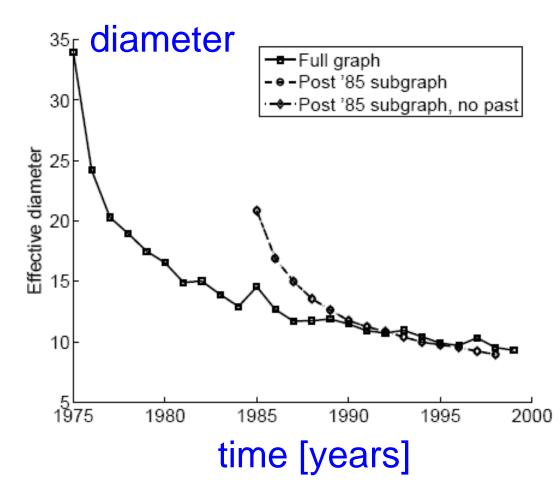
Diameter – "Affiliation Network"

- Graph of collaborations in physics – authors linked to papers
- 10 years of data



Diameter - "Patents"

- Patent citation network
- 25 years of data



Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ?2 * E(t)$$

Temporal Evolution of the Graphs

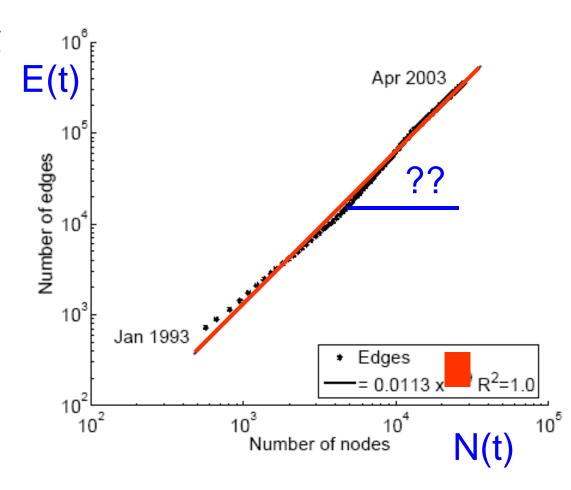
- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for $E(t+1) = (2)^k E(t)$

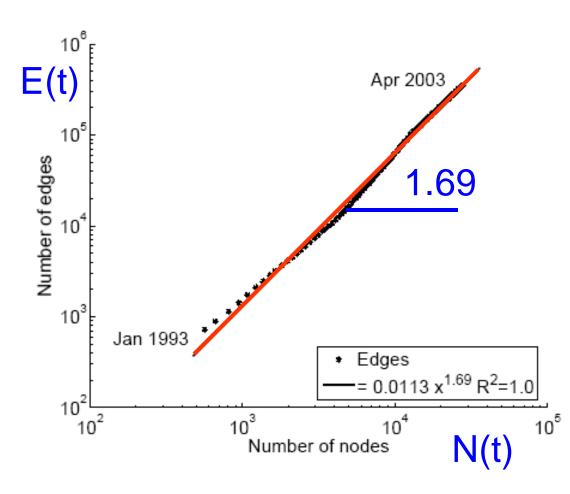
- A: over-doubled!
 - But obeying the "Densification Power Law"

- Citations among physics papers
- 2003:
 - 29,555 papers,352,807citations

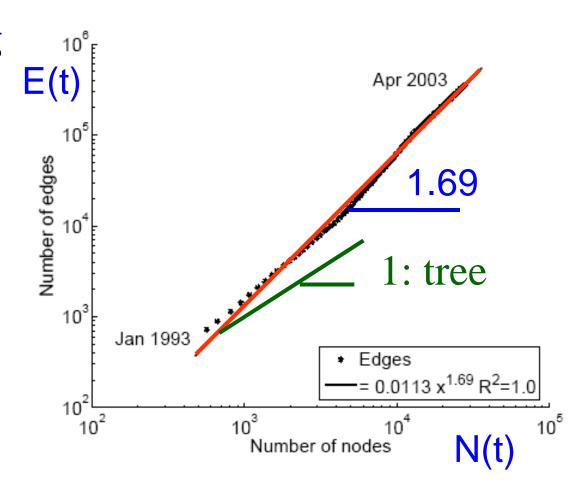


MMDS 08

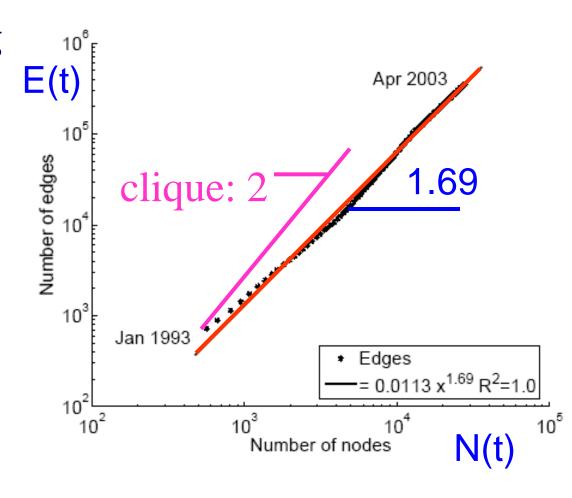
- Citations among physics papers
- 2003:
 - 29,555 papers,352,807citations



- Citations among physics papers
- 2003:
 - 29,555 papers,352,807citations

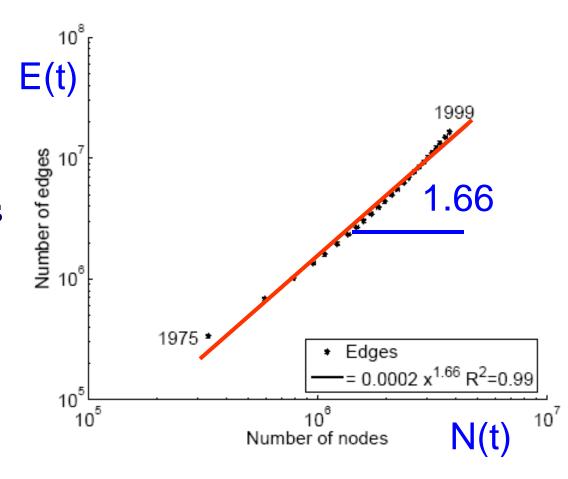


- Citations among physics papers
- 2003:
 - 29,555 papers,352,807citations



Densification – Patent Citations

- Citations among patents granted
- 1999
 - 2.9 million nodes
 - 16.5 million edges
- Each year is a datapoint

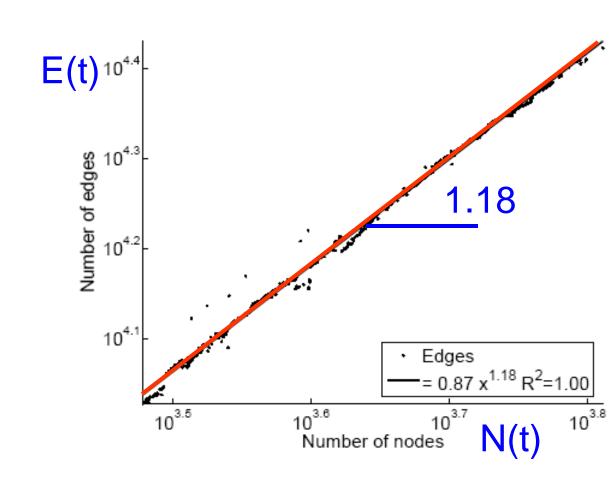


MMDS 08

C. Faloutsos

Densification – Autonomous Systems

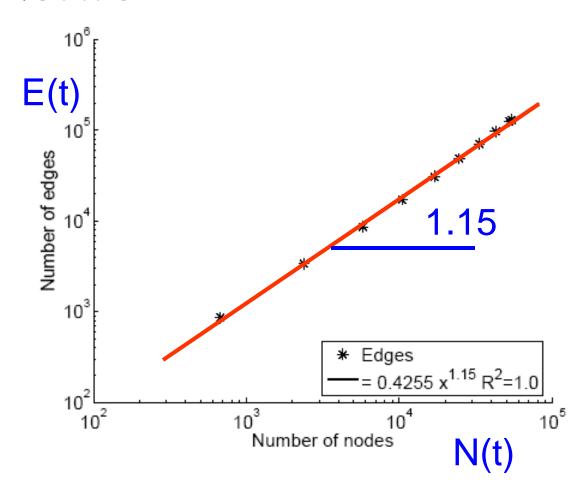
- Graph of Internet
- 2000
 - -6,000 nodes
 - 26,000 edges
- One graph per day



36

Densification – Affiliation Network

- Authors linked to their publications
- 2002
 - 60,000 nodes
 - 20,000 authors
 - 38,000 papers
 - 133,000 edges



MMDS 08

C. Faloutsos

Motivation

- Data mining: ~ find patterns (rules, outliers)
- ✓ Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

MMDS 08

Problem#3: Generation

- Given a growing graph with count of nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns

Problem Definition

- Given a growing graph with count of nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns

Power Law Degree Distribution
Power Law eigenvalue and eigenvector distribution
Small Diameter

Dynamic Patterns

Growth Power Law

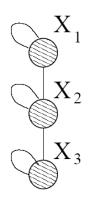
Shrinking/Stabilizing Diameters

Problem Definition

- Given a growing graph with count of nodes $N_1, N_2, ...$
- Generate a realistic sequence of graphs that will obey all the patterns

- Idea: Self-similarity
 - Leads to power laws
 - Communities within communities

_ ...

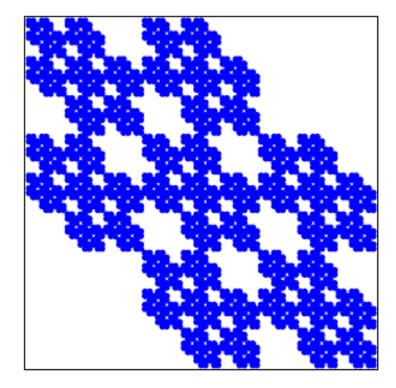


1	1	0
1	1	1
0	1	1

 G_1

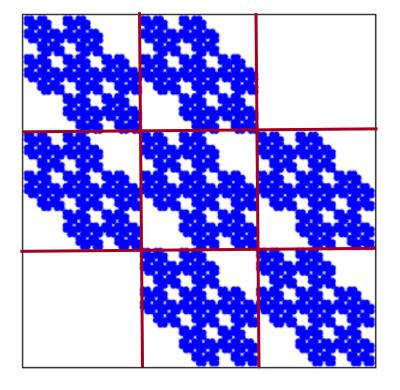
Adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...



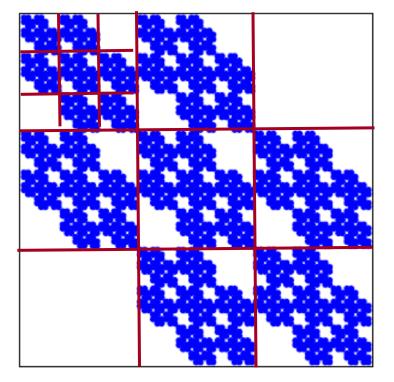
G₄ adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...



G₄ adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...



G₄ adjacency matrix

Properties:

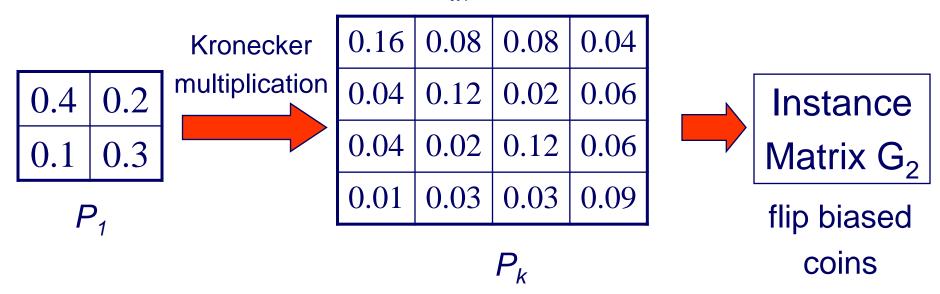
- We can PROVE that
 - Degree distribution is multinomial ~ power law
 - Diameter: constant
 - Eigenvalue distribution: multinomial
 - First eigenvector: multinomial
- See [Leskovec+, PKDD'05] for proofs

Problem Definition

- Given a growing graph with nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First and only generator for which we can **prove** all these properties

Stochastic Kronecker Graphs

- Create $N_1 \times N_1$ probability matrix P_1
- Compute the k^{th} Kronecker power P_k
- For each entry p_{uv} of P_k include an edge (u,v) with probability p_{uv}



Experiments

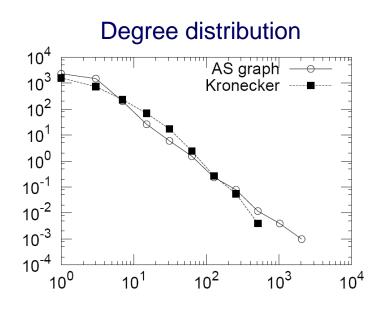
- How well can we match real graphs?
 - Arxiv: physics citations:
 - 30,000 papers, 350,000 citations
 - 10 years of data
 - U.S. Patent citation network
 - 4 million patents, 16 million citations
 - 37 years of data
 - Autonomous systems graph of internet
 - Single snapshot from January 2002
 - 6,400 nodes, 26,000 edges
- We show both static and temporal patterns

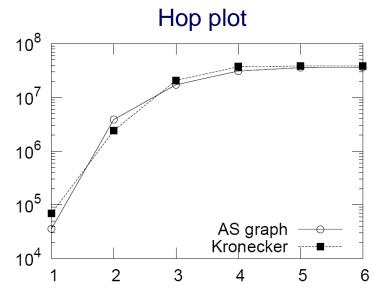
(Q: how to fit the parm's?)

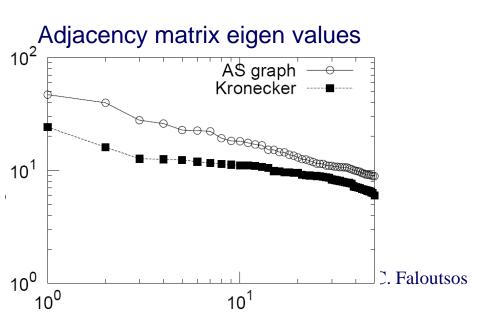
A:

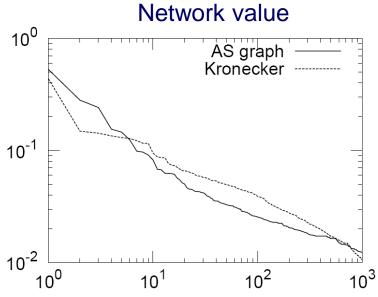
- Stochastic version of Kronecker graphs +
- Max likelihood +
- Metropolis sampling
- [Leskovec+, ICML'07]

Experiments on real AS graph









Conclusions

- Kronecker graphs have:
 - All the static properties
 - ✓ Heavy tailed degree distributions
 - ✓ Small diameter
 - ✓ Multinomial eigenvalues and eigenvectors
 - All the temporal properties
 - ✓ Densification Power Law
 - ✓ Shrinking/Stabilizing Diameters
 - We can formally prove these results

Motivation

- Data mining: ~ find patterns (rules, outliers)
- ✓ Problem#1: How do real graphs look like?
- ✓ Problem#2: How do they evolve?
- ✓ Problem#3: How to generate realistic graphs TOOLS
- Problem#4: Who is the 'master-mind'?
 - Problem#5: Track communities over time

MMDS 08

Problem#4: MasterMind - 'CePS'

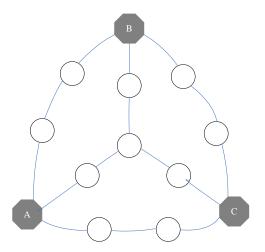
- w/ Hanghang Tong,
 KDD 2006
- htong <at> cs.cmu.edu

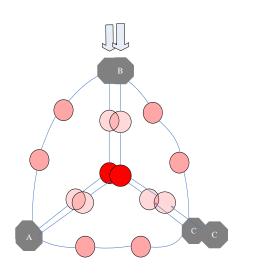
Center-Piece Subgraph(Ceps)

- Given Q query nodes
- Find Center-piece ($\leq b$)

- Social Networks
- Law Inforcement, ...

Proximity -> random walk with restarts

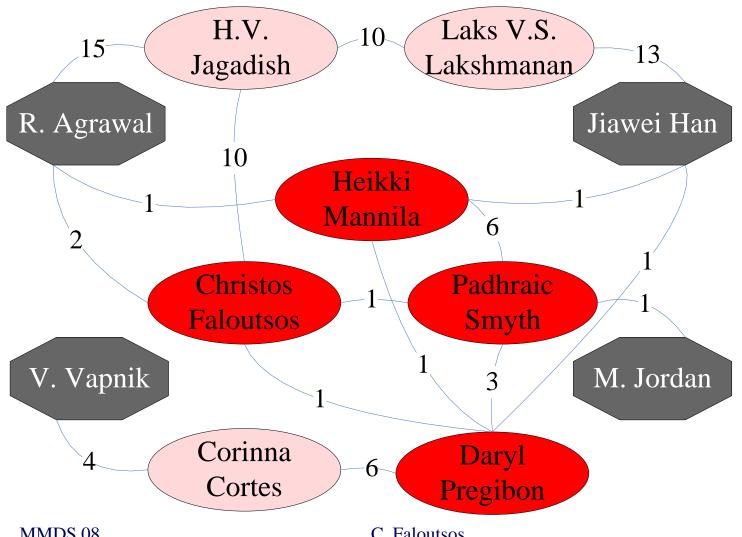




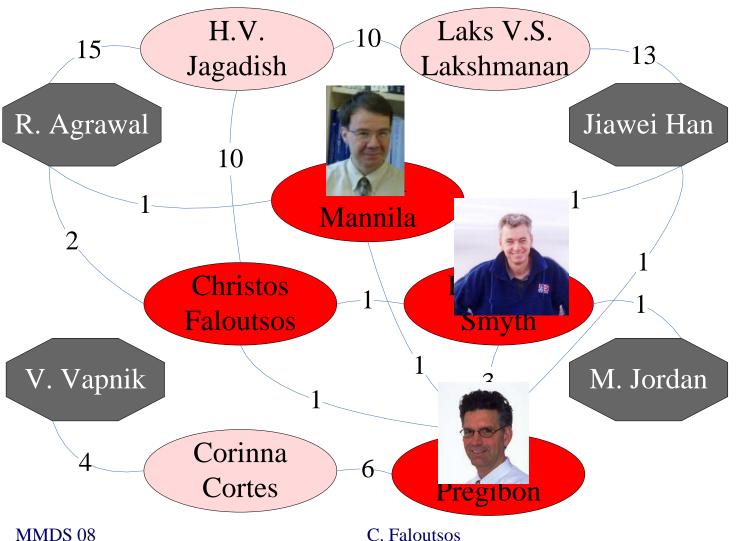
Case Study: AND query

V. Vapnik

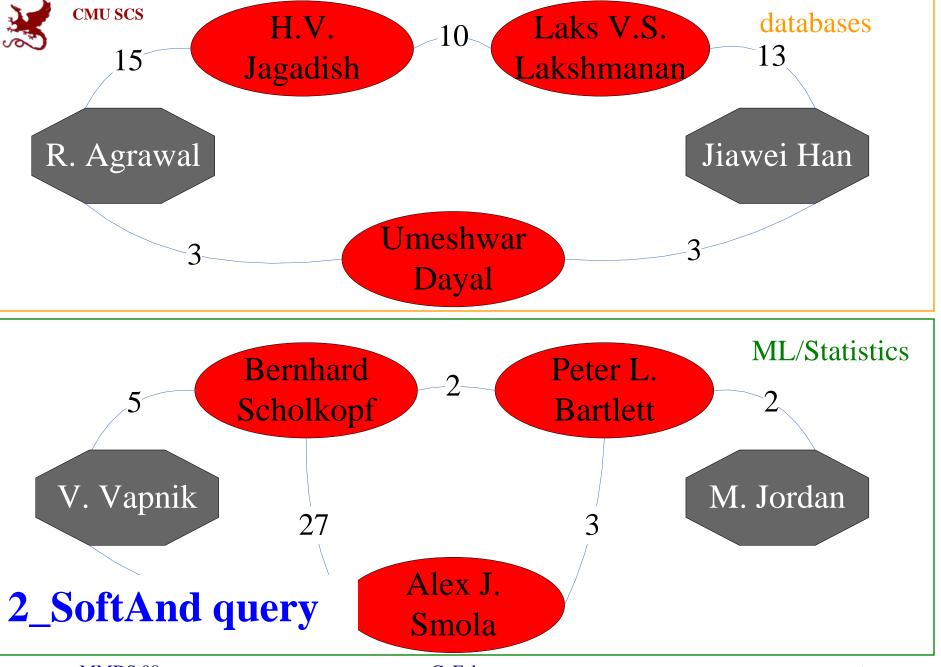
Case Study: AND query



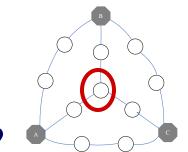
Case Study: AND query



C. Faloutsos 58



Conclusions



- Q1:How to measure the importance?
- A1: RWR+K_SoftAnd
- Q2:How to do it efficiently?
- A2:Graph Partition (Fast CePS)
 - − ~90% quality
 - 150x speedup (ICDM'06, b.p. award)

Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; **Tensors**
 - Other projects (Virus propagation, e-bay fraud detection)
 - Conclusions

MMDS 08

Motivation

- Data mining: ~ find patterns (rules, outliers)
- ✓ Problem#1: How do real graphs look like?
- ✓ Problem#2: How do they evolve?
- ✓ Problem#3: How to generate realistic graphs

TOOLS

- ✓ Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

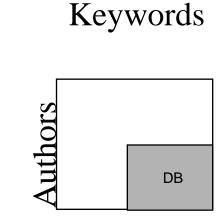
MMDS 08

Tensors for time evolving graphs

- [Jimeng Sun+ KDD'06]
- [", SDM'07]
- [CF, Kolda, Sun, SDM'07 tutorial]

Social network analysis

• Static: find community structures

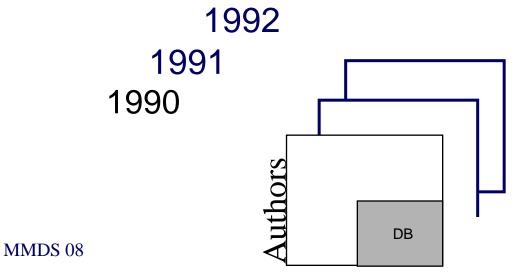


MMDS 08

1990

Social network analysis

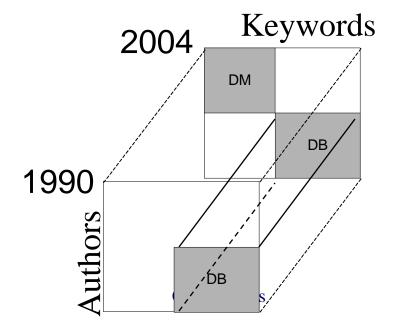
• Static: find community structures



65

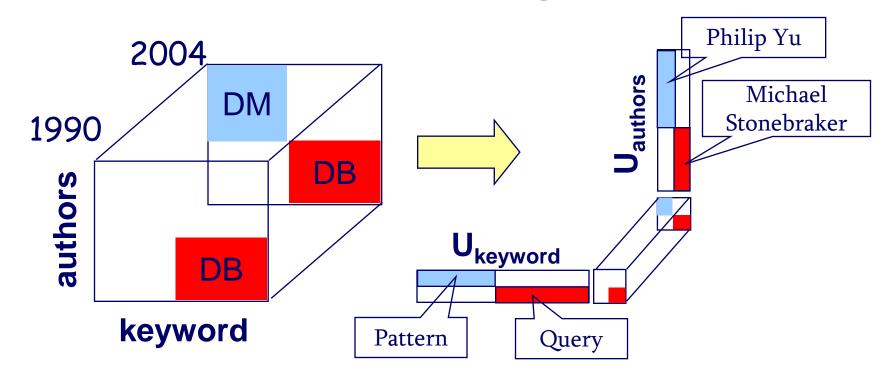
Social network analysis

- Static: find community structures
- Dynamic: monitor community structure evolution; spot abnormal individuals; abnormal time-stamps



MMDS 08

Application 1: Multiway latent semantic indexing (LSI)



- Projection matrices specify the clusters
- Core tensors give cluster activation level

Bibliographic data (DBLP)

- Papers from VLDB and KDD conferences
- Construct 2nd order tensors with yearly windows with <author, keywords>
- Each tensor: 4584×3741
- 11 timestamps (years)

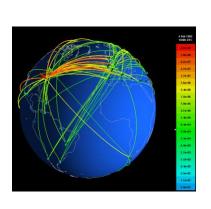
Multiway LSI

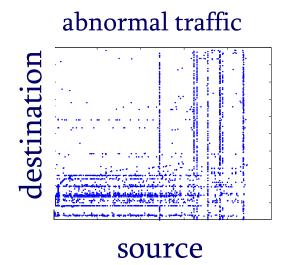
Authors	Keywords	Year
michael carey, michael stonebraker, h. jagadish, hector garcia-molina	queri,parallel,optimization,concurr, objectorient	1995
surajit chaudhuri,mitch cherniack,michael stonebraker,ugur etintemel	ocess, cache	2004
jiawei han, jian pei, philip s. yu, jianyong wang, charu c. aggary	st ams pattern, support, cluster,	2004

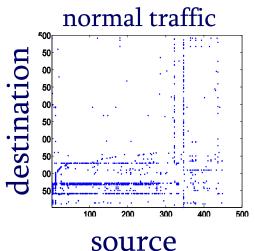
- Two groups are correctly identified: Databases and Data mining
- People and concepts are drifting over time

Network forensics

- Directional network flows
- A large ISP with 100 POPs, each POP 10Gbps link capacity [Hotnets2004]
 - 450 GB/hour with compression
- Task: Identify abnormal traffic pattern and find out the cause







Conclusions

Tensor-based methods (WTA/DTA/STA):

- spot patterns and anomalies on time evolving graphs, and
- on streams (monitoring)

Motivation

- Data mining: ~ find patterns (rules, outliers)
- ✓ Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs

TOOLS

- Problem#4: Who is the 'master-mind'?
 - Problem#5: Track communities over time

MMDS 08

Outline

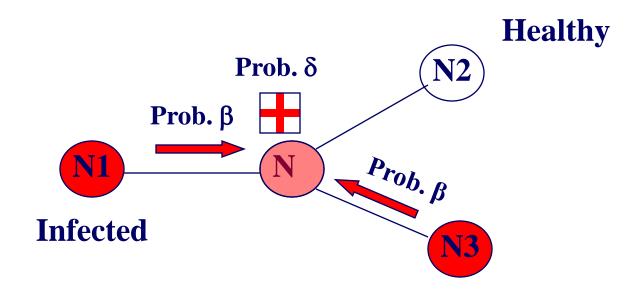
- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (<u>Virus propagation</u>, e-bay fraud detection, blogs)
 - Conclusions

Virus propagation

- How do viruses/rumors propagate?
- Blog influence?
- Will a flu-like virus linger, or will it become extinct soon?

The model: SIS

- 'Flu' like: Susceptible-Infected-Susceptible
- Virus 'strength' $s = \beta/\delta$



MMDS 08

Epidemic threshold τ

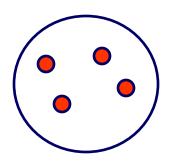
of a graph: the value of τ , such that if strength $s=\beta/\delta<\tau$ an epidemic can not happen Thus,

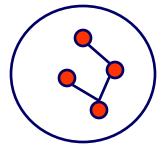
- given a graph
- compute its epidemic threshold

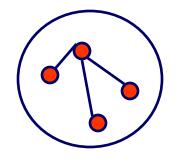
Epidemic threshold τ

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?







MMDS 08

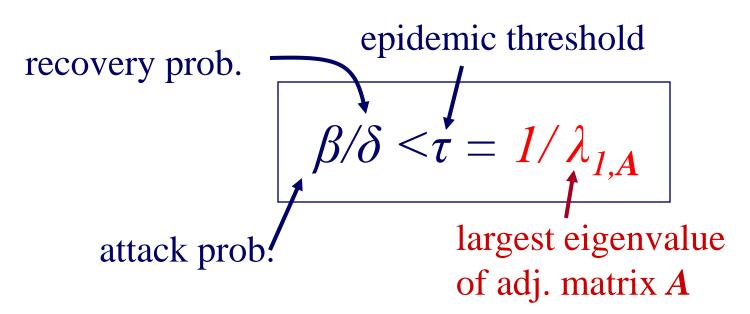
Epidemic threshold

• [Theorem] We have no epidemic, if

$$\beta/\delta < \tau = 1/\lambda_{1,A}$$

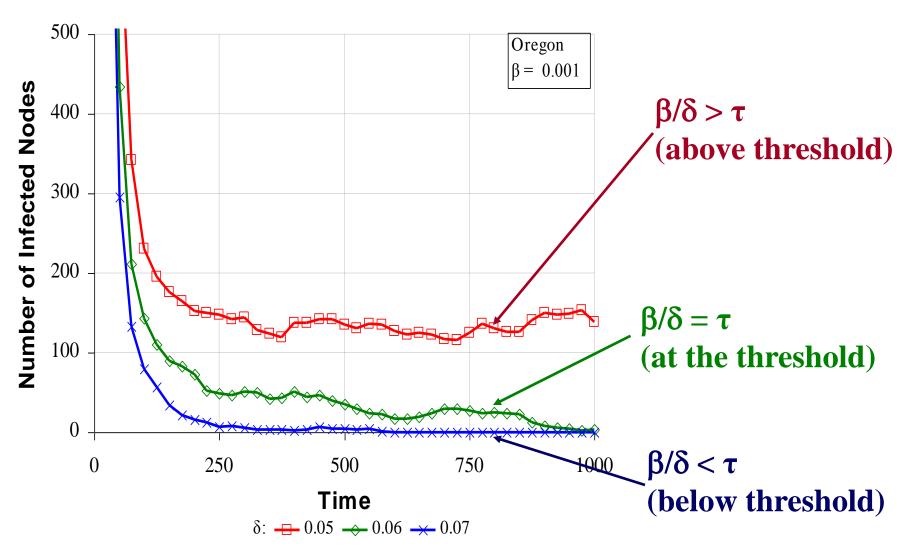
Epidemic threshold

• [Theorem] We have no epidemic, if



Proof: [Wang+03]

Experiments (Oregon)

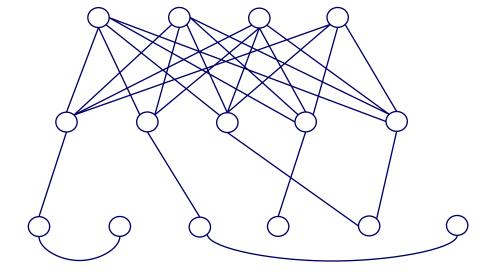


Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, <u>e-bay</u> <u>fraud detection</u>, blogs)
 - Conclusions

E-bay Fraud detection

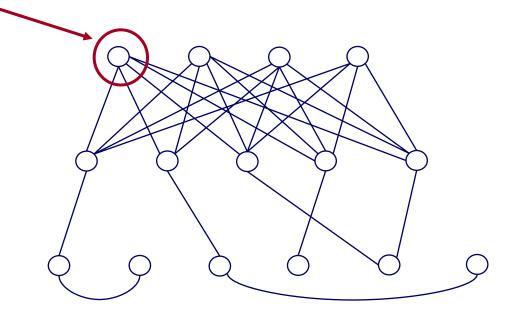
w/ Polo Chau & Shashank Pandit, CMU



E-bay Fraud detection

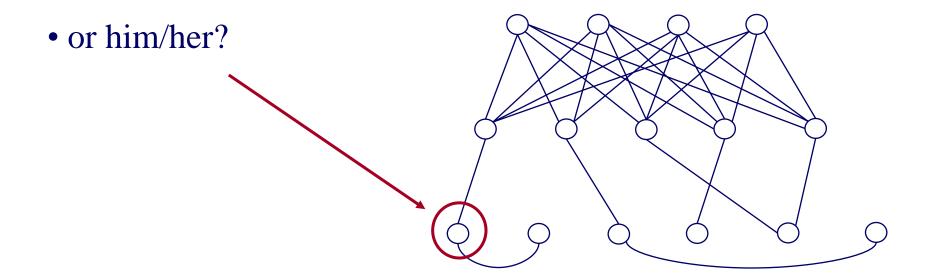
• lines: positive feedbacks

would you buy from him/her?

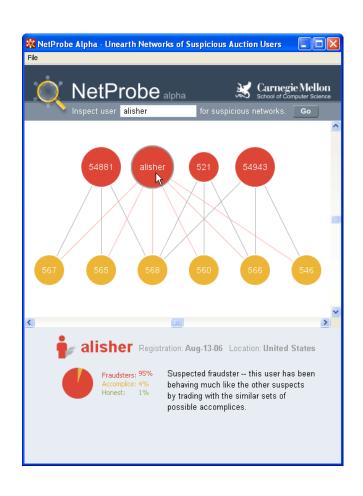


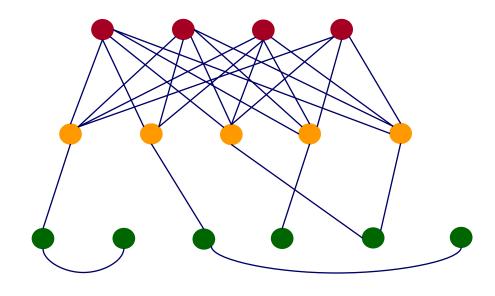
E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?



E-bay Fraud detection - NetProbe





Outline

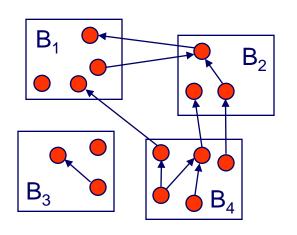
- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection, blogs)
 - Conclusions

Blog analysis

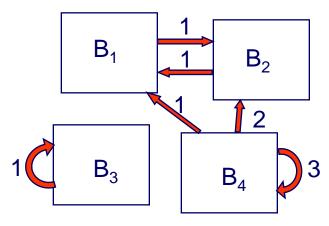
- with Mary McGlohon (CMU)
- Jure Leskovec (CMU)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)

[SDM'07]

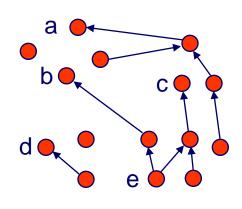
Cascades on the Blogosphere



Blogosphere blogs + posts



Blog network links among blogs



Post network links among posts

Q1: popularity-decay of a post?

Q2: degree distributions?

Q1: popularity over time

in links

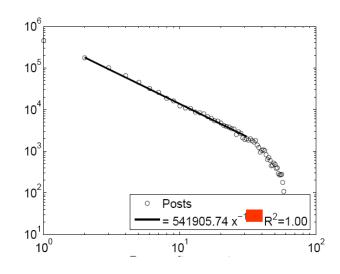


00

Post popularity drops-off – exponentially?

Q1: popularity over time

in links (log)



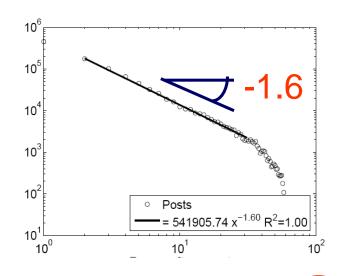
days after post (log)

Post popularity drops-off – exporentally? POWER LAW!

Exponent?

Q1: popularity over time

in links (log)



days after post (log)

Post popularity drops-off – exporentally? POWER LAW!

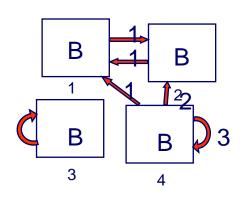
Exponent? -1.6 (close to -1.5: Barabasi's stack model)

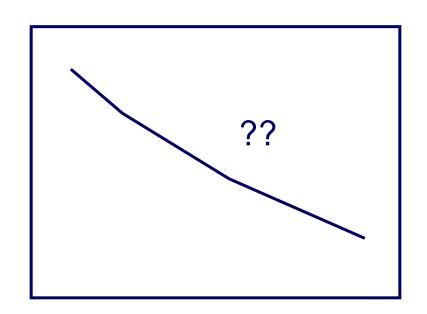
MMDS 08 C. Faloutsos Days after post

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

count



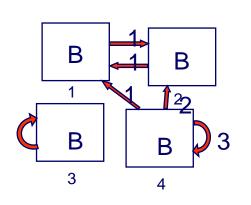


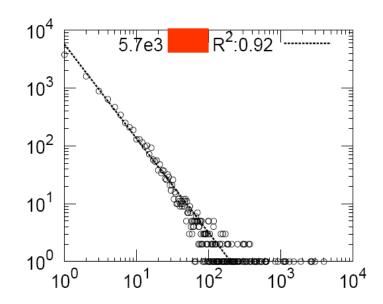
blog in-degree

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

count





blog in-degree

Q2: degree distribution

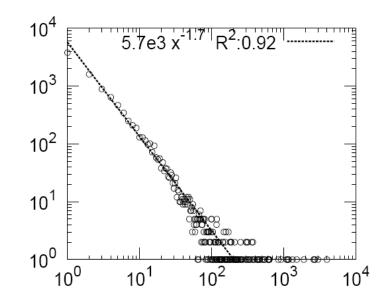
44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

count

in-degree slope: -1.7

out-degree: -3

'rich get richer'



blog in-degree

Next steps:

- edges with categorical attributes and/or timestamps
- nodes with attributes

- **scalability** (hadoop PetaByte scale)
 - first eigenvalue; diameter [done]
 - rest eigenvalues; community detection [to be done]
 - modularity, anomalies etc etc
- visualization (-> summarization)

MMDS 08

E.g.: self-* system @ CMU

- >200 nodes
- target: 1 PetaByte

D.I.S.C.

- 'Data Intensive Scientific Computing' [R. Bryant, CMU]
 - 'big data'
 - http://www.cs.cmu.edu/~bryant/pubdir/cmucs-07-128.pdf

Scalability

• Google: > 450,000 processors in clusters of ~2000 processors each

Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003

- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce hadoop (open-source clone)
 http://hadoop.apache.org/

2' intro to hadoop

- master-slave architecture; n-way replication (default n=3)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
 - slaves compute local histograms
 - master merges into global histogram

select course-id, count(*) from ENROLLMENT group by course-id

2' intro to hadoop

- master-slave architecture; n-way replication (default n=3)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
 - slaves compute local histograms
 - master merges into global histogram

select course-id, count(*)
from ENROLLMENT
group by course-id

reduce

map

OVERALL CONCLUSIONS

- Graphs: Self-similarity and power laws work, when textbook methods fail!
- New patterns (shrinking diameter!)
- New generator: Kronecker
- SVD / tensors / RWR: valuable tools
- hadoop/mapReduce for scalability

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan <u>Fast Random Walk with Restart and Its</u> <u>Applications</u> ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos <u>Center-Piece</u>
 <u>Subgraphs: Problem Definition and Fast</u>
 <u>Solutions</u>, KDD 2006, Philadelphia, PA

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos *Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations* KDD 2005, Chicago, IL. ("Best Research Paper" award).
- Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos <u>Realistic</u>, <u>Mathematically Tractable Graph Generation and</u> <u>Evolution, Using Kronecker Multiplication</u> (<u>ECML/PKDD 2005</u>), Porto, Portugal, 2005.

- Jure Leskovec and Christos Faloutsos, *Scalable Modeling of Real Graphs using Kronecker Multiplication*, ICML 2007, Corvallis, OR, USA
- Shashank Pandit, Duen Horng (Polo) Chau, Samuel Wang and Christos Faloutsos <u>NetProbe: A</u> <u>Fast and Scalable System for Fraud Detection in</u> <u>Online Auction Networks</u> WWW 2007, Banff, Alberta, Canada, May 8-12, 2007.
- Jimeng Sun, Dacheng Tao, Christos Faloutsos
 <u>Beyond Streams and Graphs: Dynamic Tensor</u>
 <u>Analysis</u>, KDD 2006, Philadelphia, PA

• Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. *Less is More: Compact Matrix Decomposition for Large Sparse Graphs*, SDM, Minneapolis, Minnesota, Apr 2007. [pdf]

Contact info:

www.cs.cmu.edu/~christos

(w/ papers, datasets, code, etc)