
Avoiding Communication
in

Linear Algebra

Jim Demmel
UC Berkeley

bebop.cs.berkeley.edu

Motivation
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop

• # words moved / bandwidth

• # messages * latency
communication

Motivation
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop

• # words moved / bandwidth

• # messages * latency

• Exponentially growing gaps between

• Time_per_flop << 1/Network BW << Network Latency

• Improving 59%/year vs 26%/year vs 15%/year

• Time_per_flop << 1/Memory BW << Memory Latency

• Improving 59%/year vs 23%/year vs 5.5%/year

communication

Motivation
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop

• # words moved / bandwidth

• # messages * latency

• Exponentially growing gaps between

• Time_per_flop << 1/Network BW << Network Latency

• Improving 59%/year vs 26%/year vs 15%/year

• Time_per_flop << 1/Memory BW << Memory Latency

• Improving 59%/year vs 23%/year vs 5.5%/year

• Goal : reorganize linear algebra to avoid communication

• Not just hiding communication (speedup  2x)

• Arbitrary speedups possible

communication

Outline

• Motivation

• Avoiding Communication in Dense Linear
Algebra

• Avoiding Communication in Sparse Linear
Algebra

Outline

• Motivation

• Avoiding Communication in Dense Linear
Algebra

• Avoiding Communication in Sparse Linear
Algebra

• A poem in memory of Gene Golub (separate file)

Collaborators (so far)
• UC Berkeley

– Kathy Yelick, Ming Gu
– Mark Hoemmen, Marghoob Mohiyuddin, Kaushik Datta,

George Petropoulos, Sam Williams, BeBOp group
– Lenny Oliker, John Shalf

• CU Denver
– Julien Langou

• INRIA
– Laura Grigori, Hua Xiang

• Much related work
– Complete references in technical reports

Why all our problems are solved for dense linear algebra–
in theory

• (Talk by Ioana Dumitriu on Monday)
• Thm (D., Dumitriu, Holtz, Kleinberg) (Numer.Math. 2007)

– Given any matmul running in O(n) ops for some >2, it can be
made stable and still run in O(n+) ops, for any >0.

• Current record:   2.38
• Thm (D., Dumitriu, Holtz) (Numer. Math. 2008)

– Given any stable matmul running in O(n+) ops, it is possible
to do backward stable dense linear algebra in O(n+) ops:
• GEPP, QR
• rank revealing QR (randomized)
• (Generalized) Schur decomposition, SVD (randomized)

• Also reduces communication to O(n+)
• But constants?

8

Summary (1) – Avoiding Communication in
Dense Linear Algebra

• QR or LU decomposition of m x n matrix, m >> n
– Parallel implementation

• Conventional: O(n log p) messages

• “New”: O(log p) messages - optimal

– Serial implementation with fast memory of size F
• Conventional: O(mn/F) moves of data from slow to fast memory

– mn/F = how many times larger matrix is than fast memory

• “New”: O(1) moves of data - optimal

– Lots of speed up possible (measured and modeled)
• Price: some redundant computation, stability?

• Extends to square case, with optimality results

• Extends to other architectures (eg multicore)

• (Talk by Julien Langou Monday, on QR)

Minimizing Comm. in Parallel QR

W =

W0

W1

W2

W3

R00

R10

R20

R30

R01

R11

R02

• QR decomposition of m x n matrix W, m >> n
• TSQR = “Tall Skinny QR”
• P processors, block row layout

• Usual Parallel Algorithm
• Compute Householder vector for each column
• Number of messages  n log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages  log P

TSQR in more detail

































































30

20

10

00

30

20

10

00

3

2

1

0

.

R

R

R

R

Q

Q

Q

Q

W

W

W

W

W







































11

01

11

01

30

20

10

00

.
R

R

Q

Q

R

R

R

R

0202

11

01
RQ

R

R










Q is represented implicitly as a product
(tree of factors)

Minimizing Communication in TSQR

W =

W0

W1

W2

W3

R00

R10
R20

R30

R01

R11

R02Parallel:

W =

W0

W1

W2

W3

R01
R02

R00

R03

Sequential:

W =

W0

W1

W2

W3

R00

R01
R01

R11

R02

R11

R03

Dual Core:

Choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Performance of TSQR vs Sca/LAPACK

• Parallel
– Pentium III cluster, Dolphin Interconnect, MPICH

• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L

• Up to 4x speedup (32 procs, 1M x 50)

– Both use Elmroth-Gustavson locally – enabled by TSQR

• Sequential
– OOC on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM

• See UC Berkeley EECS Tech Report 2008-74

QR for General Matrices
• CAQR – Communication Avoiding QR for general A

– Use TSQR for panel factorizations
– Apply to rest of matrix

• Cost of CAQR vs ScaLAPACK’s PDGEQRF
– n x n matrix on P1/2 x P1/2 processor grid, block size b
– Flops: (4/3)n3/P + (3/4)n2b log P/P1/2 vs (4/3)n3/P
– Bandwidth: (3/4)n2 log P/P1/2 vs same
– Latency: 2.5 n log P / b vs 1.5 n log P

• Close to optimal (modulo log P factors)
– Assume: O(n2/P) memory/processor, O(n3) algorithm,
– Choose b near n / P1/2 (its upper bound)
– Bandwidth lower bound: (n2 /P1/2) – just log(P) smaller
– Latency lower bound: (P1/2) – just polylog(P) smaller
– Extension of Irony/Toledo/Tishkin (2004)

• Implementation – Julien’s summer project

Modeled Speedups of CAQR vs ScaLAPACK

Petascale
up to 22.9x

IBM Power 5
up to 9.7x

“Grid”
up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

./102,10,102 9512 wordsss   

TSLU: LU factorization of a tall skinny matrix

































































































30

20

10

00

30

20

10

00

30

20

10

00

3

2

1

0

.

0

U

U

U

U

L

L

L

L

W

W

W

W

W

  





















































11

01

11

01

11

01

30

20

10

00

..

1

U

U

L

L

U

U

U

U


 020202

11

01

2

UL
U

U












First try the obvious generalization of TSQR:

Growth factor for TSLU based factorization

Unstable for large P and large matrices.
When P = # rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang

Making TSLU Stable

• At each node in tree, TSLU selects b pivot rows from 2b
candidates from its 2 child nodes

• At each node, do LU on 2b original rows selected by child
nodes, not U factors from child nodes

• When TSLU done, permute b selected rows to top of original
matrix, redo b steps of LU without pivoting

• CALU – Communication Avoiding LU for general A
– Use TSLU for panel factorizations
– Apply to rest of matrix
– Cost: redundant panel factorizations

• Benefit:
– Stable in practice, but not same pivot choice as GEPP
– b times fewer messages overall - faster

Growth factor for better CALU approach

Like threshold pivoting with worst case threshold = .33 , so |L| <= 3
Testing shows about same residual as GEPP

Performance vs ScaLAPACK
• TSLU

– IBM Power 5
• Up to 4.37x faster (16 procs, 1M x 150)

– Cray XT4
• Up to 5.52x faster (8 procs, 1M x 150)

• CALU
– IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
– Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)

• Optimality analysis analogous to QR
• See INRIA Tech Report 6523 (2008)

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

Speedup prediction for a Petascale machine - up to 81x faster

./102,10,102 9512 wordsss   

P = 8192

Summary (2) – Avoiding Communication in
Sparse Linear Algebra

• Take k steps of Krylov subspace method
– GMRES, CG, Lanczos, Arnoldi
– Assume matrix “well-partitioned,” with modest surface-

to-volume ratio
– Parallel implementation

• Conventional: O(k log p) messages
• “New”: O(log p) messages - optimal

– Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• “New”: O(1) moves of data – optimal

• Can incorporate some preconditioners
– Hierarchical, semiseparable matrices …

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for
[x,Ax], A tridiagonal, 2 processors

Can be computed without communication

Proc 1 Proc 2

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,A2x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,…,A3x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,…,A4x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for
[x,Ax,…,A8x], A tridiagonal, 2 processors

Can be computed without communication
k=8 fold reuse of A

Proc 1 Proc 2

Remotely Dependent Entries for
[x,Ax,…,A8x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8
Minimizes number of messages = latency cost

Price: redundant work  “surface/volume ratio”

Proc 1 Proc 2

Fewer Remotely Dependent Entries for
[x,Ax,…,A8x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Proc 1 Proc 2

Remotely Dependent Entries for [x,Ax,A2x,A3x],
A irregular, multiple processors

Sequential [x,Ax,…,A4x], with memory hierarchy

v

One read of matrix from slow memory, not k=4
Minimizes words moved = bandwidth cost

No redundant work

Performance Results

• Measured

– Sequential/OOC speedup up to 3x

• Modeled

– Sequential/multicore speedup up to 2.5x

– Parallel/Petascale speedup up to 6.9x

– Parallel/Grid speedup up to 22x

• See bebop.cs.berkeley.edu/#pubs

Optimizing Communication Complexity of
Sparse Solvers

• Example: GMRES for Ax=b on “2D Mesh”
– x lives on n-by-n mesh
– Partitioned on p½ -by- p½ grid
– A has “5 point stencil” (Laplacian)

• (Ax)(i,j) = linear_combination(x(i,j), x(i,j±1), x(i±1,j))

– Ex: 18-by-18 mesh on 3-by-3 grid

Minimizing Communication of GMRES

• What is the cost = (#flops, #words, #mess)
of k steps of standard GMRES?

GMRES, ver.1:
for i=1 to k

w = A * v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H n/p½

n/p½

• Cost(A * v) = k * (9n2 /p, 4n / p½ , 4)
• Cost(MGS) = k2/2 * (4n2 /p , log p , log p)

• Total cost ~ Cost(A * v) + Cost (MGS)
• Can we reduce the latency?

Minimizing Communication of GMRES
• Cost(GMRES, ver.1) = Cost(A*v) + Cost(MGS)

• Cost(W) = (~ same, ~ same , 8)
• Latency cost independent of k – optimal

• Cost (MGS) unchanged
• Can we reduce the latency more?

= (9kn2 /p, 4kn / p½ , 4k) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from A*v can you avoid? Almost all

GMRES, ver. 2:
W = [v, Av, A2v, … , Akv]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

k = 3

Minimizing Communication of GMRES
• Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Latency cost independent of s - optimal

GMRES, ver. 3:
W = [v, Av, A2v, … , Akv]
*Q,R+ = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =

W1

W2

W3

W4

R1

R2

R3

R4

R12

R34

R1234

Minimizing Communication of GMRES
• Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Oops

GMRES, ver. 3:
W = [v, Av, A2v, … , Akv]
*Q,R+ = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =

W1

W2

W3

W4

R1

R2

R3

R4

R12

R34

R1234

Minimizing Communication of GMRES
• Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Oops – W from power method, precision lost!

GMRES, ver. 3:
W = [v, Av, A2v, … , Akv]
*Q,R+ = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =

W1

W2

W3

W4

R1

R2

R3

R4

R12

R34

R1234

Minimizing Communication of GMRES
• Cost(GMRES, ver. 3) = Cost(W) + Cost(TSQR)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , log p)

• Latency cost independent of k, just log p – optimal
• Oops – W from power method, so precision lost – What to do?

• Use a different polynomial basis
• Not Monomial basis W = [v, Av, A2v, …+, instead …
• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …+ or
• Chebyshev Basis WC = [v, T1(v), T2(v), …+

Summary and Conclusions (1/2)

• Possible to minimize communication complexity
of much dense and sparse linear algebra
– Practical speedups

– Approaching theoretical lower bounds

• Optimal asymptotic complexity algorithms for
dense linear algebra – also lower communication

• Hardware trends mean the time has come to do
this

• Lots of prior work (see pubs) – and some new

Summary and Conclusions (2/2)

• Many open problems

– Automatic tuning - build and optimize complicated
data structures, communication patterns, code
automatically: bebop.cs.berkeley.edu

– Extend optimality proofs to general architectures

– Dense eigenvalue problems – SBR or spectral D&C?

– Sparse direct solvers – CALU or SuperLU?

– Which preconditioners work?

– Why stop at linear algebra?

