Avoiding Communication

 in
Linear Algebra

Jim Demmel
UC Berkeley
bebop.cs.berkeley.edu

Motivation

- Running time of an algorithm is sum of 3 terms:
- \# flops * time_per_flop
- \# words moved / bandwidth
- \# messages * latency

Motivation

- Running time of an algorithm is sum of 3 terms:
- \# flops * time_per_flop
- \# words moved / bandwidth
- \# messages * latency
- Exponentially growing gaps between
- Time_per_flop << $1 /$ Network BW << Network Latency
- Improving $59 \% /$ year vs $26 \% /$ year vs $15 \% /$ year
- Time_per_flop << 1/Memory BW << Memory Latency
- Improving $59 \% /$ year vs $23 \% /$ year vs $5.5 \% /$ year

Motivation

- Running time of an algorithm is sum of 3 terms:
- \# flops * time_per_flop
- \# words moved / bandwidth
- \# messages * latency
- Exponentially growing gaps between
- Time_per_flop << $1 /$ Network BW << Network Latency
- Improving $59 \% /$ year vs $26 \% /$ year vs $15 \% /$ year
- Time_per_flop << $1 /$ Memory BW << Memory Latency
- Improving $59 \% /$ year vs $23 \% /$ year vs $5.5 \% /$ year
- Goal : reorganize linear algebra to avoid communication
- Not just hiding communication (speedup $\leq 2 x$)
- Arbitrary speedups possible

Outline

- Motivation
- Avoiding Communication in Dense Linear Algebra
- Avoiding Communication in Sparse Linear Algebra

Outline

- Motivation
- Avoiding Communication in Dense Linear Algebra
- Avoiding Communication in Sparse Linear Algebra
- A poem in memory of Gene Golub (separate file)

Collaborators (so far)

- UC Berkeley
- Kathy Yelick, Ming Gu
- Mark Hoemmen, Marghoob Mohiyuddin, Kaushik Datta, George Petropoulos, Sam Williams, BeBOp group
- Lenny Oliker, John Shalf
- CU Denver
- Julien Langou
- INRIA
- Laura Grigori, Hua Xiang
- Much related work
- Complete references in technical reports

Why all our problems are solved for dense linear algebrain theory

- (Talk by loana Dumitriu on Monday)
- Thm (D., Dumitriu, Holtz, Kleinberg) (Numer.Math. 2007)
- Given any matmul running in $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ ops for some $\omega>2$, it can be made stable and still run in $O\left(n^{\omega+\varepsilon}\right)$ ops, for any $\varepsilon>0$.
- Current record: $\omega \approx 2.38$
- Thm (D., Dumitriu, Holtz) (Numer. Math. 2008)
- Given any stable matmul running in $\mathrm{O}\left(\mathrm{n}^{\omega+\varepsilon}\right)$ ops, it is possible to do backward stable dense linear algebra in $O\left(n^{\omega+\varepsilon}\right)$ ops:
- GEPP, QR
- rank revealing QR (randomized)
- (Generalized) Schur decomposition, SVD (randomized)
- Also reduces communication to $\mathrm{O}\left(\mathrm{n}^{\omega+\varepsilon}\right)$
- But constants?

Summary (1) - Avoiding Communication in Dense Linear Algebra

- QR or LU decomposition of $m \times n$ matrix, $m \gg n$
- Parallel implementation
- Conventional: O(n log p) messages
- "New": O(log p) messages - optimal
- Serial implementation with fast memory of size F
- Conventional: O(mn/F) moves of data from slow to fast memory
- $\mathrm{mn} / \mathrm{F}=$ how many times larger matrix is than fast memory
- "New": O(1) moves of data - optimal
- Lots of speed up possible (measured and modeled)
- Price: some redundant computation, stability?
- Extends to square case, with optimality results
- Extends to other architectures (eg multicore)
- (Talk by Julien Langou Monday, on QR)

Minimizing Comm. in Parallel QR

- QR decomposition of $m \times n$ matrix $W, m \gg n$
- TSQR = "Tall Skinny QR"
- P processors, block row layout
- Usual Parallel Algorithm
- Compute Householder vector for each column
- Number of messages $\propto \mathrm{n} \log \mathrm{P}$
- Communication Avoiding Algorithm
- Reduction operation, with QR as operator
- Number of messages $\propto \log P$

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right] \longrightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}
$$

TSQR in more detail

$$
\left.W=\binom{\frac{W_{0}}{W_{1}}}{\frac{W_{2}}{W_{3}}}=\binom{\frac{Q_{00}}{Q_{10}}}{\frac{Q_{20}}{Q_{30}}} \cdot \frac{\frac{R_{00}}{R_{10}}}{\frac{R_{20}}{R_{30}}}\right)
$$

Q is represented implicitly as a product (tree of factors)

Minimizing Communication in TSQR

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow R_{00} \rightarrow R_{00} \rightarrow R_{01} \rightarrow R_{30} \longrightarrow R_{11} \longrightarrow R_{02}$
Sequential: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{ } R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}$

Dual Core: $w=\left[\begin{array}{c}w_{0} \\ w_{1} \\ w_{2} \\ w_{3}\end{array}\right] \xrightarrow{\longrightarrow} R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{11} \longrightarrow R_{11} \longrightarrow R_{03}$
Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Choose reduction tree dynamically

Performance of TSQR vs Sca/LAPACK

- Parallel
- Pentium III cluster, Dolphin Interconnect, MPICH
- Up to 6.7x speedup (16 procs, 100K x 200)
- BlueGene/L
- Up to $4 x$ speedup (32 procs, $1 \mathrm{M} \times 50$)
- Both use Elmroth-Gustavson locally - enabled by TSQR
- Sequential
- OOC on PowerPC laptop
- As little as 2x slowdown vs (predicted) infinite DRAM
- See UC Berkeley EECS Tech Report 2008-74

QR for General Matrices

- CAQR - Communication Avoiding QR for general A
- Use TSQR for panel factorizations
- Apply to rest of matrix
- Cost of CAQR vs ScaLAPACK's PDGEQRF
$-n \times n$ matrix on $P^{1 / 2} \times P^{1 / 2}$ processor grid, block size b
- Flops: $\quad(4 / 3) n^{3} / P+(3 / 4) n^{2} b \log P / P^{1 / 2}$ vs $(4 / 3) n^{3} / P$
- Bandwidth: (3/4) $n^{2} \log P / P^{1 / 2}$ vs same
- Latency: $2.5 \mathrm{n} \log \mathrm{P} / \mathrm{b} \quad$ vs $1.5 \mathrm{n} \log \mathrm{P}$
- Close to optimal (modulo log P factors)
- Assume: $\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{P}\right)$ memory/processor, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm,
- Choose b near $n / \mathrm{P}^{1 / 2}$ (its upper bound)
- Bandwidth lower bound: $\Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right)$ - just $\log (\mathrm{P})$ smaller
- Latency lower bound: $\Omega\left(\mathrm{P}^{1 / 2}\right)$ - just polylog(P) smaller
- Extension of Irony/Toledo/Tishkin (2004)
- Implementation - Julien's summer project

Modeled Speedups of CAQR vs ScaLAPACK

Petascale machine with 8192 procs, each at $500 \mathrm{GFlops} / \mathrm{s}$, a bandwidth of $4 \mathrm{~GB} / \mathrm{s}$.

$$
\gamma=2 \cdot 10^{-12} s, \alpha=10^{-5} s, \beta=2 \cdot 10^{-9} s / \text { word } .
$$

TSLU: LU factorization of a tall skinny matrix
First try the obvious generalization of TSQR:

$$
\left(\begin{array}{l}
U_{00} \\
\frac{U_{10}}{U_{20}} \\
U_{30}
\end{array}\right)=\underbrace{\left.\frac{\prod_{01}}{\prod_{11}}\right)}_{\Pi_{1}} \cdot\left(\frac{L_{01}}{L_{11}}\right) \cdot\left(\frac{U_{01}}{U_{11}}\right) \quad\binom{U_{01}}{U_{11}}=\underbrace{\prod_{02} L_{02} U_{02}}_{\Pi_{2}}
$$

Growth factor for TSLU based factorization

Unstable for large P and large matrices.
When P = \# rows, TSLU is equivalent to parallel pivoting.

Making TSLU Stable

- At each node in tree, TSLU selects b pivot rows from $2 b$ candidates from its 2 child nodes
- At each node, do LU on 2 b original rows selected by child nodes, not U factors from child nodes
- When TSLU done, permute b selected rows to top of original matrix, redo b steps of LU without pivoting
- CALU - Communication Avoiding LU for general A
- Use TSLU for panel factorizations
- Apply to rest of matrix
- Cost: redundant panel factorizations
- Benefit:
- Stable in practice, but not same pivot choice as GEPP
- b times fewer messages overall - faster

Growth factor for better CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)

Like threshold pivoting with worst case threshold = . 33 , so $|\mathrm{L}|<=3$ Testing shows about same residual as GEPP

Performance vs ScaLAPACK

- TSLU
- IBM Power 5
- Up to $4.37 x$ faster (16 procs, $1 \mathrm{M} \times 150$)
- Cray XT4
- Up to 5.52x faster (8 procs, $1 \mathrm{M} \times 150$)
- CALU
- IBM Power 5
- Up to 2.29x faster (64 procs, 1000×1000)
- Cray XT4
- Up to 1.81x faster (64 procs, 1000×1000)
- Optimality analysis analogous to QR
- See INRIA Tech Report 6523 (2008)

Speedup prediction for a Petascale machine - up to 81x faster

Petascale machine with 8192 procs, each at $500 \mathrm{GFlops} / \mathrm{s}$, a bandwidth of $4 \mathrm{~GB} / \mathrm{s}$.

$$
\gamma=2 \cdot 10^{-12} s, \alpha=10^{-5} s, \beta=2 \cdot 10^{-9} s / \text { word } .
$$

Summary (2) - Avoiding Communication in

Sparse Linear Algebra

- Take k steps of Krylov subspace method
- GMRES, CG, Lanczos, Arnoldi
- Assume matrix "well-partitioned," with modest surface-to-volume ratio
- Parallel implementation
- Conventional: O(k log p) messages
- "New": O(log p) messages - optimal
- Serial implementation
- Conventional: O(k) moves of data from slow to fast memory
- "New": O(1) moves of data - optimal
- Can incorporate some preconditioners
- Hierarchical, semiseparable matrices ...
- Lots of speed up possible (modeled and measured)
- Price: some redundant computation

Locally Dependent Entries for [x,Ax], A tridiagonal, 2 processors

Can be computed without communication

Locally Dependent Entries for
[$x, A x, A^{2} x$], A tridiagonal, 2 processors

Can be computed without communication

Locally Dependent Entries for [$x, A x, \ldots, A^{3} x$], A tridiagonal, 2 processors

Can be computed without communication

Locally Dependent Entries for

[$x, A x, \ldots, A^{4} x$], A tridiagonal, 2 processors

Proc 1
Proc 2

Can be computed without communication

Locally Dependent Entries for
[$x, A x, \ldots, A^{8} x$], A tridiagonal, 2 processors

Can be computed without communication $k=8$ fold reuse of A

Remotely Dependent Entries for [$x, A x, \ldots, A^{8} x$], A tridiagonal, 2 processors

One message to get data needed to compute remotely dependent entries, not $\mathbf{k}=\mathbf{8}$
Minimizes number of messages = latency cost Price: redundant work \propto "surface/volume ratio"

Fewer Remotely Dependent Entries for [$x, A x, \ldots, A^{8} x$], A tridiagonal, 2 processors

Proc 1
Proc 2

Remotely Dependent Entries for [$\mathbf{x}, \mathrm{A}_{\mathrm{x}}, \mathrm{A}^{2} \mathbf{x}, \mathrm{~A}^{3} \mathrm{x}$], A irregular, multiple processors

Sequential $\left[x, A x, \ldots, A^{4} x\right]$, with memory hierarchy

Performance Results

- Measured
- Sequential/OOC speedup up to $\mathbf{3 x}$
- Modeled
- Sequential/multicore speedup up to $\mathbf{2 . 5 x}$
- Parallel/Petascale speedup up to 6.9x
- Parallel/Grid speedup up to 22x
- See bebop.cs.berkeley.edu/\#pubs

Optimizing Communication Complexity of Sparse Solvers

- Example: GMRES for $A x=b$ on " 2 D Mesh"
$-x$ lives on n-by-n mesh
- Partitioned on $\mathrm{p}^{1 / 2}$-by- $\mathrm{p}^{1 / 2}$ grid
- A has "5 point stencil" (Laplacian)
- (Ax) $(\mathrm{i}, \mathrm{j})=$ linear_combination $(\mathrm{x}(\mathrm{i}, \mathrm{j}), \mathrm{x}(\mathrm{i}, \mathrm{j} \pm 1), \mathrm{x}(\mathrm{i} \pm 1, \mathrm{j}))$
- Ex: 18-by-18 mesh on 3-by-3 grid

Minimizing Communication of GMRES

- What is the cost = (\#flops, \#words, \#mess) of k steps of standard GMRES?

GMRES, ver.1:
for $i=1$ to k
$w=A * v(i-1)$
MGS(w, v(0), ...v(i-1))
update $\mathrm{v}(\mathrm{i}), \mathrm{H}$
endfor
solve LSQ problem with H

- $\operatorname{Cost}\left(A^{*} v\right)=k^{*}\left(9 n^{2} / p, 4 n / p^{1 / 2}, 4\right)$
- $\operatorname{Cost}(M G S)=k^{2} / 2 *\left(4 n^{2} / p, \log p, \log p\right)$
- Total cost $\sim \operatorname{Cost}\left(A^{*} v\right)+\operatorname{Cost}(M G S)$
- Can we reduce the latency?

Minimizing Communication of GMRES

- $\operatorname{Cost}(G M R E S$, ver.1 $)=\operatorname{Cost}\left(A^{*} v\right)+\operatorname{Cost}(M G S)$

$$
=\left(9 \mathrm{kn}^{2} / \mathrm{p}, 4 \mathrm{kn} / \mathrm{p}^{1 / 2}, 4 \mathrm{k}\right)+\left(2 \mathrm{k}^{2} \mathrm{n}^{2} / \mathrm{p}, \mathrm{k}^{2} \log \mathrm{p} / 2, \mathrm{k}^{2} \log \mathrm{p} / 2\right)
$$

- How much latency cost from A^{*} v can you avoid? Almost all

GMRES, ver. 2:

$$
\begin{aligned}
& W=\left[v, A v, A^{2} v, \ldots, A^{k} v\right] \\
& {[Q, R]=M G S(W)}
\end{aligned}
$$

Build H from R, solve LSQ problem

- $\operatorname{Cost}(\mathrm{W})=(\sim$ same, \sim same , 8)
- Latency cost independent of k - optimal
- Cost (MGS) unchanged
- Can we reduce the latency more?

Minimizing Communication of GMRES

- $\operatorname{Cost}(G M R E S$, ver. 2$)=\operatorname{Cost}(W)+\operatorname{Cost}(M G S)$

$$
=\left(9 k n^{2} / p, 4 k n / p^{1 / 2}, 8\right)+\left(2 k^{2} n^{2} / p, k^{2} \log p / 2, k^{2} \log p / 2\right)
$$

- How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:

$$
\begin{aligned}
& W=\left[v, A v, A^{2} v, \ldots, A^{k} v\right] \\
& {[Q, R]=\operatorname{TSQR}(W) \ldots \text { "Tall Skinny } Q R "}
\end{aligned}
$$

Build H from R, solve LSQ problem

$$
\mathrm{w}=\left[\begin{array}{l}
W_{1} \\
W_{2} \\
W_{3} \\
W_{4}
\end{array}\right] \rightarrow\left[\begin{array}{l}
R_{1} \\
R_{2} \\
R_{3} \\
R_{4}
\end{array}\right] \rightarrow \mathrm{R}_{34} \longrightarrow \mathrm{R}_{1234}
$$

- $\operatorname{Cost}(T S Q R)=(\sim$ same, \sim same , $\log p)$
- Latency cost independent of s-optimal

Minimizing Communication of GMRES

- $\operatorname{Cost}(G M R E S$, ver. 2$)=\operatorname{Cost}(W)+\operatorname{Cost}(M G S)$

$$
=\left(9 k n^{2} / p, 4 k n / p^{1 / 2}, 8\right)+\left(2 k^{2} n^{2} / p, k^{2} \log p / 2, k^{2} \log p / 2\right)
$$

- How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:

$$
\begin{aligned}
& W=\left[v, A v, A^{2} v, \ldots, A^{k} v\right] \\
& {[Q, R]=\operatorname{TSQR}(W) \ldots \text { "Tall Skinny } Q R "}
\end{aligned}
$$

Build H from R, solve LSQ problem

$$
\mathrm{W}=\left[\begin{array}{l}
\mathrm{W}_{1} \\
\mathrm{w}_{2} \\
\mathrm{w}_{3} \\
\mathrm{~W}_{4}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathrm{R}_{1} \\
\mathrm{R}_{2} \\
\mathrm{R}_{3} \\
\mathrm{R}_{4}
\end{array}\right] \rightarrow \mathrm{R}_{34} \longrightarrow \mathrm{R}_{1234}
$$

- $\operatorname{Cost}(T S Q R)=(\sim$ same, \sim same , $\log p)$
- Oops

Minimizing Communication of GMRES

- $\operatorname{Cost}(G M R E S$, ver. 2$)=\operatorname{Cost}(W)+\operatorname{Cost}(M G S)$

$$
=\left(9 k n^{2} / p, 4 k n / p^{1 / 2}, 8\right)+\left(2 k^{2} n^{2} / p, k^{2} \log p / 2, k^{2} \log p / 2\right)
$$

- How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:

$$
\begin{aligned}
& W=\left[v, A v, A^{2} v, \ldots, A^{k} v\right] \\
& {[Q, R]=\operatorname{TSQR}(W) \ldots \text { "Tall Skinny } Q R "}
\end{aligned}
$$

Build H from R, solve LSQ problem

$$
\mathrm{W}=\left[\begin{array}{l}
\mathrm{W}_{1} \\
\mathrm{~W}_{2} \\
\mathrm{~W}_{3} \\
\mathrm{~W}_{4}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathrm{R}_{1} \\
\mathrm{R}_{2} \\
\mathrm{R}_{3} \\
\mathrm{R}_{4}
\end{array}\right] \rightarrow \mathrm{R}_{34} \longrightarrow \mathrm{R}_{1234}
$$

- $\operatorname{Cost}(T S Q R)=(\sim$ same, \sim same , log p $)$
- Oops - W from power method, precision lost!

Minimizing Communication of GMRES

- $\operatorname{Cost}(G M R E S$, ver. 3$)=\operatorname{Cost}(W)+\operatorname{Cost}(T S Q R)$

$$
=\left(9 k n^{2} / p, 4 k n / p^{1 / 2}, 8\right)+\left(2 k^{2} n^{2} / p, k^{2} \log p / 2, \log p\right)
$$

- Latency cost independent of k, just log p - optimal
- Oops - W from power method, so precision lost - What to do?
- Use a different polynomial basis
- Not Monomial basis $W=\left[v, A v, A^{2} v, \ldots\right]$, instead ...
- Newton Basis $W_{N}=\left[v,\left(A-\theta_{1} I\right) v,\left(A-\theta_{2} I\right)\left(A-\theta_{1} I\right) v, \ldots\right]$ or
- Chebyshev Basis $\mathrm{W}_{\mathrm{C}}=\left[\mathrm{v}, \mathrm{T}_{1}(\mathrm{v}), \mathrm{T}_{2}(\mathrm{v}), \ldots\right]$

Summary and Conclusions (1/2)

- Possible to minimize communication complexity of much dense and sparse linear algebra
- Practical speedups
- Approaching theoretical lower bounds
- Optimal asymptotic complexity algorithms for dense linear algebra - also lower communication
- Hardware trends mean the time has come to do this
- Lots of prior work (see pubs) - and some new

Summary and Conclusions (2/2)

- Many open problems
- Automatic tuning - build and optimize complicated data structures, communication patterns, code automatically: bebop.cs.berkeley.edu
- Extend optimality proofs to general architectures
- Dense eigenvalue problems - SBR or spectral D\&C?
- Sparse direct solvers - CALU or SuperLU?
- Which preconditioners work?
- Why stop at linear algebra?

