Avoiding Communication
N
Linear Algebra

Jim Demmel
UC Berkeley

bebop.cs.berkeley.edu

Motivation

e Running time of an algorithm is sum of 3 terms:
« #flops * time_per flop
 # words moved / bandwidth

communication
* H# messages * latency

Motivation

e Running time of an algorithm is sum of 3 terms:
« #flops * time_per flop
 # words moved / bandwidth

communication
* H# messages * latency

e Exponentially growing gaps between
* Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
* Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year

Motivation

e Running time of an algorithm is sum of 3 terms:
« #flops * time_per flop
 # words moved / bandwidth

communication
* H# messages * latency

e Exponentially growing gaps between
* Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
* Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year

* Goal : reorganize linear algebra to avoid communication
e Not just hiding communication (speedup < 2x)
e Arbitrary speedups possible

Outline

* Motivation

* Avoiding Communication in Dense Linear
Algebra

* Avoiding Communication in Sparse Linear
Algebra

Outline

Motivation

Avoiding Communication in Dense Linear
Algebra

Avoiding Communication in Sparse Linear
Algebra

A poem in memory of Gene Golub (separate file)

Collaborators (so far)

UC Berkeley
— Kathy Yelick, Ming Gu

— Mark Hoemmen, Marghoob Mohiyuddin, Kaushik Datta,
George Petropoulos, Sam Williams, BeBOp group

— Lenny Oliker, John Shalf

CU Denver
— Julien Langou

INRIA
— Laura Grigori, Hua Xiang

Much related work
— Complete references in technical reports

Why all our problems are solved for dense linear algebra—

in theory
* (Talk by loana Dumitriu on Monday)

e Thm (D., Dumitriu, Holtz, KIeinberg) (Numer.Math. 2007)

— Given any matmul running in O&g ops for some ®>2, it can be
made stable and still run in O(n™"°) ops, for any £>0.

e Currentrecord:® ~ 2.38

e Thm (D., Dumitriu, Holtz) (Numer. Math. 2008)

— Given any stable matmul running in O(n®* °) ops, it is possible
to do backward stable dense linear algebra in O(n®*€) ops:

* GEPP, QR
* rank revealing QR (randomized)
* (Generalized) Schur decomposition, SVD (randomized)

e Also reduces communication to O(n®*¢)
* But constants?

Summary (1) — Avoiding Communication in
Dense Linear Algebra

* QR or LU decomposition of m x n matrix, m >>n

— Parallel implementation
e Conventional: O(n log p) messages
 “New”: O(log p) messages - optimal
— Serial implementation with fast memory of size F

* Conventional: O(mn/F) moves of data from slow to fast memory
— mn/F = how many times larger matrix is than fast memory

 “New”: O(1) moves of data - optimal

— Lots of speed up possible (measured and modeled)
* Price: some redundant computation, stability?

* Extends to square case, with optimality results
e Extends to other architectures (eg multicore)
e (Talk by Julien Langou Monday, on QR)

Minimizing Comm. in Parallel QR

* QR decomposition of m x n matrix W, m >>n
* TSQR = “Tall Skinny QR”
* P processors, block row layout

* Usual Parallel Algorithm

 Compute Householder vector for each column
* Number of messages o« n log P
e Communication Avoiding Algorithm
* Reduction operation, with QR as operator
* Number of messages o« log P

ROO
R10

RZO

b

_ _Rgo_

B
_— Rox T~

Ro2
> R11 —

TSQR in more detail

%\ /Qoo \/Roo\
oW | Q [R
W, Q0 Ry
\Ws) \ Qso) \Rso/
(ROO\ R
Ry (Q)(R] (ijzqm
RZO Qll Rll 11
KRBOJ

Q is represented implicitly as a product
(tree of factors)

Minimizing Communication in TSQR

Wo | = Roo 3R
_— oz
Parallel: w=| W: | ™ Ry T Ro
W, | = Ry > R, _—
—
L W3 R30
Wo | = Rop —— R
Sequential: w=| W; e Rop —
W, = Ros
L W
i Wo_ — Rop —
R
Dual Core: w=| W: | ™ Ru — 01) Roz
W, —> Ry 3R
L Ws R11

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Choose reduction tree dynamically

Performance of TSQR vs Sca/LAPACK

e Parallel
— Pentium Il cluster, Dolphin Interconnect, MPICH
* Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
e Up to 4x speedup (32 procs, 1M x 50)
— Both use ElImroth-Gustavson locally — enabled by TSQR

e Sequential

— OOC on PowerPC laptop
 As little as 2x slowdown vs (predicted) infinite DRAM

* See UC Berkeley EECS Tech Report 2008-74

QR for General Matrices

CAQR — Communication Avoiding QR for general A
— Use TSQR for panel factorizations
— Apply to rest of matrix

Cost of CAQR vs ScalLAPACK’s PDGEQRF
— n x n matrix on PY2 x P2 processor grid, block size b

— Flops: (4/3)n3/P + (3/4)n%b log P/PY2 vs (4/3)n3/P
— Bandwidth: (3/4)n? log P/P/2 VS same
— Latency: 25nlogP/b vs 1.5nlog P

Close to optimal (modulo log P factors)

— Assume: O(n?/P) memory/processor, O(n3) algorithm,

— Choose b near n/ PY2 (its upper bound)

— Bandwidth lower bound: Q(n2 /PY/2) — just log(P) smaller
— Latency lower bound: Q(P¥/2) — just polylog(P) smaller

— Extension of Irony/Toledo/Tishkin (2004)

Implementation — Julien’s summer project

Modeled Speedups of CAQR vs ScaLAPACK

Peta: Time PDGEQRFTImMe CAQH max==228444 n=10000 F=E8192

“ Petascale
” up to 22.9x
O 1.0 1.0 . b
0 1.0 1.0 14 1.2 1. [|° IBM Power 5
uh up to 9.7x
© “Grid”
; up to 11x

& B
log, (P

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"s,a=10"s, f=2-10"s/word.

TSLU: LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR:

% 1_[oo I—oo Uoo
w | T Lo Uy
% 1_[20 I—zo Uzo
W3 \ Hso Lso Uso)
I,
U
S e R T
Hllj L, \Uy, 11 I,

Growth factor for TSLU based factorization

average growth factor (partial pivoting:b=1,2,4,8,15,32)
10 F

parallel pivoting

10 ¢

growth factor
o
l

10 ¢

10 =
10 10 10 10
matirx size

Unstable for large P and large matrices.
When P = # rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang

Making TSLU Stable

At each node in tree, TSLU selects b pivot rows from 2b
candidates from its 2 child nodes

At each node, do LU on 2b original rows selected by child
nodes, not U factors from child nodes

When TSLU done, permute b selected rows to top of original
matrix, redo b steps of LU without pivoting

CALU — Communication Avoiding LU for general A

— Use TSLU for panel factorizations

— Apply to rest of matrix

— Cost: redundant panel factorizations

Benefit:

— Stable in practice, but not same pivot choice as GEPP
— b times fewer messages overall - faster

Growth factor for better CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)

600~
—v—P-256b-32 g
500H ° P=256.b=18 P ,_::3
—a—-P=128,h=G4 P
- i
—=-P=128b=32 e 2
400 —&-P=128b=16 P
oy
— <+ P-B4b-128 LI,
-y
P=64,b=64 o o
- '
300! P=64,h=32 e
P=64)b=16 7
IIIIIII -
y=n?’3 =
,/
-
-
-
-
200 o
1024 2048 4096 8192

Like threshold pivoting with worst case threshold =.33, so |L| <=3
Testing shows about same residual as GEPP

Performance vs ScaLAPACK

TSLU
— IBM Power 5
* Up to 4.37x faster (16 procs, 1M x 150)
— Cray XT4
* Up to 5.52x faster (8 procs, 1M x 150)
CALU
— IBM Power 5
e Up to 2.29x faster (64 procs, 1000 x 1000)
— Cray XT4
e Up to 1.81x faster (64 procs, 1000 x 1000)

Optimality analysis analogous to QR
See INRIA Tech Report 6523 (2008)

Speedup prediction for a Petascale machine - up to 81x faster

Time LU ScalAPACK/Time new LU max=80,8832, n=10000. P=4036
8 N e T e e el e e 80

70

60

50

log10(n)

40

30

20

10
26.8| 50.8 | 26.6

0 2 4 6 8 10 12 14
log2z(P)

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"s,a=10"s, f=2-10"s/word.

Summary (2) — Avoiding Communication in

Sparse Linear Algebra
* Take k steps of Krylov subspace method
— GMRES, CG, Lanczos, Arnoldi

— Assume matrix “well-partitioned,” with modest surface-
to-volume ratio

— Parallel implementation

* Conventional: O(k log p) messages

* “New”: O(log p) messages - optimal
— Serial implementation

* Conventional: O(k) moves of data from slow to fast memory
 “New”: O(1) moves of data — optimal

* Canincorporate some preconditioners
— Hierarchical, semiseparable matrices ...

e Lots of speed up possible (modeled and measured)
— Price: some redundant computation

Locally Dependent Entries for
[x,AX], A tridiagonal, 2 processors

Proc 1 . Proc 2

D P ® H ® OO0 O O O OO O O OO O O O O O

X o ® O O O O O OO OO O®H® OO OOOO OO0 O0OO0OO OO OO0 O

! ! ! ! ! !
5 10 15 20 25 30

Can be computed without communication

Locally Dependent Entries for
[x,Ax,A%x], A tridiagonal, 2 processors

Proc 1 . Proc 2

Can be computed without communication

Locally Dependent Entries for
[x,AX,...,A3x], A tridiagonal, 2 processors
Proc1 . Proc 2

Can be computed without communication

¢ > P > >
¢ N w S
X X X

Locally Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors
Proc1 . Proc 2

Can be computed without communication

Locally Dependent Entries for
[x,AX,...,A8x], A tridiagonal, 2 processors

Proc 1 Proc 2

Can be computed without communication
k=8 fold reuse of A

Remotely Dependent Entries for
[x,AX,...,A8X], A tridiagonal, 2 processors

Proc 1 Proc 2

A8x 8O O O O O O O ¢ 0O OO0 0000000000 O

A7x 7oooooo

® O O O OO OO0 OO0 OO0 o0 Of

OOOOOOOOOOOOO—

< < > >

<[< <>

00’00’
A

oonooﬂo O O O O O O O O 0O

MNW;

0F© OO0 OO0 O0O0O0O 000 Oo0o0 """""‘ O O O O O O O

5 10 15 20 25 30
One message to get data needed to compute remotely dependent entries, not k=8

Minimizes number of messages = latency cost
Price: redundant work oc “surface/volume ratio”

Fewer Remotely Dependent Entries for
[x,AX,...,A%x], A tridiagonal, 2 processors

Proc 1

Proc 2

OOOOOO

OOOOOOO

OOOOOOOO

OOOOOOOOO

OOOOOOOOOO

OOOOOOOOOOO

OOOOOOOOOOOO

OOOOOO

OOOOOOOOOOOOO

OOOOOOOOOOOOOO

» O OO OO OO0 OO 00 0o

OOOOOOOOOOOOO

OOOOOOOOOOO

OOOOOOOOOO

B G ® OO OO O O O O 0 O0

Reduce redundant work by half

gular, multiple processors

Airre

ooooooooooooooo

Performance Results

e Measured

— Sequential/O0C speedup up to 3x
* Modeled

— Sequential/multicore speedup up to 2.5x

— Paral
— Paral

e See be

el/Petascale speedup up to 6.9x
el/Grid speedup up to 22x

pop.cs.berkeley.edu/#pubs

Optimizing Communication Complexity of
Sparse Solvers

 Example: GMRES for Ax=b on “2D Mesh”
— x lives on n-by-n mesh
— Partitioned on p” -by- p” grid
— A has “5 point stencil” (Laplacian)
* (Ax)(i,j) = linear_combination(x(i,j), x(i,jx1), x(i+1,j))

— Ex: 18-by-18 mesh on 3-by-3 grid

Minimizing Communication of GMRES

 What is the cost = (#flops, #words, #mess)
of k steps of standard GMRES?

GMRES, ver.1:
for i=1 to B i
w = A * y(i-1) n/p% | ¢
MGS(w, v(0),...v(i-1) |
update v(i), H
endfor e
solve LSQ problem with H =

e Cost(A *v) =k *(9n2 /p, 4n / p*, 4)

® Cost(MGS) =k2/2 * (4n? /p,logp,logp)
e Total cost ~ Cost(A * v) + Cost (MGS)
e Can we reduce the latency?

Minimizing Communication of GMRES

e Cost(GMRES, ver.1) = Cost(A*v) + Cost(MGS)
= (9kn? /p, 4kn / p”, 4k)+ (2k*n? /p,k%®logp/2,k*logp/2)

« How much latency cost from A*v can you avoid? Almost all

endenciss for Appraach (1) to 2D mesh with 5 ptstancil

GMRES, ver. 2:
W =[v Av, A2y, ..., Akv]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

. Cost(W) =(~ same, ~ same, 8)
® Latency cost independent of k — optimal

e Cost (MGS) unchanged
e Can we reduce the latency more?

Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn?/p, 4kn/p”, 8)+(2k?n? /p,k%*logp/2,k*logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v Av, A2y, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

_Wl__’_Rl—\‘R
7 Ry
w=| Wy | 7| R ™~ R1234
Wal 710 >R34/
_>
LW, | R,

. Cost(TSQR) = (~ same, ~ same, logp)
® Latency cost independent of s - optimal

Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn?/p, 4kn/p”, 8)+(2k?n? /p,k%*logp/2,k*logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v Av, A2y, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

_Wl__’_Rl—\‘R
7 Ry
w=| Wy | 7| R ™~ R1234
Wal 710 >R34/
_>
LW, | R,

. Cost(TSQR) = (~ same, ~ same, logp)
e Oops

Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn?/p, 4kn/p”, 8)+(2k?n? /p,k%*logp/2,k*logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v Av, A2y, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

_Wl__’_Rl—\‘R
7 Ry
w=| Wy | 7| R ™~ R1234
Wal 710 >R34/
_>
LW, | R,

. Cost(TSQR) = (~ same, ~ same, logp)
e Oops — W from power method, precision lost!

rm relative residual

Leg10 of 2-n

Mafrix diag-cond-1.000000e-11: rel. 2—nrm resid.

1 1
Monrestarted GMEES
v Restarted GMRES{192)
O Monomigl-GMRES(24 ,8)
Mewton-GMRES(24,8)

oG e ﬂ::

100

200

300 400 L1 GO0 700 800 00
nner iteration number

Minimizing Communication of GMRES

 Cost(GMRES, ver. 3) = Cost(W) + Cost(TSQR)
= (9kn?/p, 4kn/p”, 8)+(2k?n?/p,k%*logp/2,logp)

e Latency cost independent of k, just log p — optimal
e Oops—W from power method, so precision lost — What to do?

® Use a different polynomial basis

e Not Monomial basis W = [v, Av, A2y, ...], instead ..

e Newton Basis Wy =[v, (A—-0 l)v, (A 6, I)(A- 6 v, ...] 0
e Chebyshev Basis W = v, Tl(v) TH(v), ..]

rm relative residual

Leg10 of 2-n

Mafrix diag-cond-1.000000e-11: rel. 2—nrm resid.

1 1
Monrestarted GMEES
v Restarted GMRES{192)
O Monomigl-GMRES(24 ,8)
Mewton-GMRES(24,8)

oG e ﬂ::

100

200

300 400 L1 GO0 700 800 00
nner iteration number

Summary and Conclusions (1/2)

Possible to minimize communication complexity
of much dense and sparse linear algebra

— Practical speedups
— Approaching theoretical lower bounds

Optimal asymptotic complexity algorithms for
dense linear algebra — also lower communication

Hardware trends mean the time has come to do
this

Lots of prior work (see pubs) —and some new

Summary and Conclusions (2/2)

* Many open problems

— Automatic tuning - build and optimize complicated
data structures, communication patterns, code
automatically: bebop.cs.berkeley.edu

— Extend optimality proofs to general architectures
— Dense eigenvalue problems — SBR or spectral D&C?
— Sparse direct solvers — CALU or SuperLU?

— Which preconditioners work?

— Why stop at linear algebra?

