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I. The new nonparametrics



The new nonparametrics

The traditional bane of nonparametric statistics is the 
curse of dimensionality.

For data in RD: convergence rates n- D

But recently, some sources of rejuvenation:

1. Data near low-dimensional manifolds

2. Sparsity in data space or parameter space



Low dimensional manifolds

Motion capture:

N markers on a human body 
yields data in R3N



Benefits of intrinsic low-dimensionality

Benefits you need to work for
Learning the structure of the manifold

(a) Find explicit embedding RD ! Rd, then work in low-dimensional space
(b) Use manifold structure for regularization

This talk:
Simple tweaks that make standard methods “manifold-adaptive”



The k-d tree

Problem: curse of 
dimensionality, as usual

Key notion in statistical theory 
of tree estimators: at what 
rate does cell diameter 
decrease as you move down 
the tree?



Rate of diameter decrease

Consider: X = [Di=1ftei : ¡1 · t · 1g ½RD

Need at least D levels to halve 
the diameter

Intrinsic dimension of this set is 
d = log D (or perhaps even 1, 
depending on your definition)



Random projection trees

K-d tree RP tree

If the data in RD has intrinsic dimension d, then an RP tree 
halves the diameter in just d levels: no dependence on D.

Pick coordinate direction
Split at median

Pick random direction
Split at median plus noise



II. RP trees and Assouad dimension



Assouad dimension

Set S ½ RD has Assouad dimension · d if: for any ball B, 
subset S Å B can be covered by 2d balls of half the 
radius. Also called doubling dimension.

S = line
Assouad dimension = 1

S = k-dimensional affine subspace
Assouad dimension = O(k)

S = set of N points
Assouad dimension · log N

Crucially: if S has Assouad 
dim · d, so do subsets of S

B S = k-dim submanifold of RD

with finite condition number
Assouad dimension = O(k) in small 
enough neighborhoods



RP trees

Spatial partitioning Binary tree
Cell Node



RP tree algorithm

procedure MAKETREE(S)
if |S| < MinSize:

return (Leaf)
else:

Rule ← CHOOSERULE(S)
LeftTree ← MAKETREE(,x ∈ S : Rule(x) = true})
RightTree ← MAKETREE(,x ∈ S : Rule(x) = false})
return ([Rule,LeftTree,RightTree])

procedure CHOOSERULE(S)
choose a random unit direction v ∈ RD

pick any point x ∈ S, and let y be the farthest point from it in S
choose δ uniformly at random in  *−1, 1+ · 6  x − y /D1/2

Rule(x) := x · v ≤ (median(,z · v : z ∈ S}) + δ)
return (Rule)



Performance guarantee

There is a constant c0 with the following property. 

Build RP tree using data set S ½ RD. 

Pick any cell C in tree such that S ∩ C has Assouad dimension ≤ d.

Then, with prob ¸ 1/2 (over construction of subtree rooted at C): 
for every descendant C′ that is more than c0 d log d levels below C, 
we have radius(C′) ≤ radius(C)/2.



One-dimensional random projections

Projection from RD onto (a random line) R1: how does this affect the 
lengths of vectors? Very roughly: it shrinks them by D1/2.
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Effect of RP on diameter

Set S ½ RD is subjected to random projection U.
How does the diameter of S ¢ U compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S). 

S
U

bounding 
ball of S

U

If S has Assouad dimension d:
diam(S ¢ U) · diam(S)             
(with high probability).

Dd



Diameter of projected set

S ½ RD has Assouad dim d. Pick random projection U. With high prob:

diam(S ¢ U) · diam(S) ¢O
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Bounding ball 
of S is (wlog) 
B(0,1)

1. Can cover S by (D/d)d/2 balls of radius
Need 2d balls of radius 1/2, 

4d balls of radius 1/4, 
8d balls of radius 1/8, ..., 
(1/²)d balls of radius ²

2. Pick any of these balls. Its projected 
center is fairly close to the origin.
w.p. O(1): within
w.p. 1-1/Dd: within 

3. Do a union bound over all the balls.

Dd

0

D1

DDd log



Proof outline

Pick any cell in the RP tree, and let S ½ RD be the data in it. 
Suppose S has Assouad dim d and lies in a ball of radius 1.
Show: In every descendant cell d log d levels below, the data is 

contained in a ball of radius 1/2.

Cell has bounding ball of radius · 1



Proof outline

1. Cover S by dd/2 balls Bi of radius 1/d1/2

2. Consider any pair of balls Bi, Bj at 
distance ¸ 1/2 apart. 

A single random split has constant 
probability of cleanly separating them

3. There are at most dd such pairs Bi, Bj

So after d log d splits, every faraway 
pair of balls will be separated… which 
means all cells will have radius · 1/2

Bi

Bj

Current cell (radius · 1):



Big picture

radius 1

radius 

radius  

Recall effect of random projection: lengths x  1/D1/2, diameter x  (d/D)1/2

dist > 1/2

random line U
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III. RP trees and local covariance dimension



Intrinsic low dimensionality of sets

Empirically
verifiable?

Conducive to 
analysis?

Small covering 
numbers

Kind of Yes, but too weak in
some ways

Small Assouad 
dimension

Not really Yes

Low-dimensional 
manifold

No To some extent

Low-dimensional
affine subspace

Yes Yes
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Obvious extension to distributions: at least 1-± of the probability mass 
lies within distance ² of a set of low intrinsic dimension

Summary

Small global covers

AND: small local 
covers

AND: smoothness 
(local flatness)

AND: global flatness



Local covariance dimension

A distribution over RD has covariance dimension (d, ²) if its 
covariance matrix has eigenvalues ¸1 ¸  ¸ ¸D that satisfy: 

(¸1 +  + ¸d)  ¸ (1-²) (¸1 +  + ¸D).

That is, there is a d-dimensional affine 
subspace such that 
(avg dist2 from subspace)

· ² ¢ (avg dist2 from mean)

We are interested in distributions that locally have this property, 
ie., for some partition of RD, the restriction of the distribution to 
each region of the partition has covariance dimension (d,²).



Performance guarantee

Instead of cell diameter, use vector quantization error:

VQ(cell) = avg squared dist from point in cell to mean(cell)

[Using slightly different RP tree construction.] 
There are constants c1, c2 for which the following holds.

Build an RP tree from data S ½ RD. Suppose a cell C has 
covariance dimension (d, c1). Then for each of its children C’:

E*VQ(C’)+   · VQ(C) (1 – c2/d)
where the expectation is over the split at C.



Proof outline

Pick any cell in the RP tree, and let S ½ RD be the data in it. 

Show that the VQ error of the 
cell decreases by (1-1/d) as a 
result of the split.



The change in VQ error

If  a set S is split into two pieces S1 and S2 with equal 
numbers of points, by how much does its VQ error drop? 

By exactly ||mean(S1) – mean(S2)||2.

Set S

S1

S2



Proof outline -- 3

U

S1

S2

VQ(S)
= average squared distance to mean(S) 
= (1/2) average squared interpoint distance 
= “variance of S”

Projection onto U shrinks distances by D1/2, 
so shrinks variance by D

Variance of projected S is roughly VQ(S)/D

Distance between projected means is at 
least

DS)(VQ

DS)(VQ



Proof outline -- 4

U

S1

S2

DS)(VQ

S is close to a d-dimensional affine 
subspace; so mean(S1) and mean(S2) 
lie very close to this subspace

The subspace has Assouad 
dimension O(d), so all vectors in it 
shrink to · (d/D)1/2 their original 
length when projected onto U

Therefore the distance between 
mean(S1) and mean(S2) is at least 

dS)(VQ



IV. Connections and open problems



The uses of k-d trees

1. Classification and regression
Given data points (x1, y1), …, (xn, yn), build a tree on the xi. For any 
subsequent query x, assign it a y-label that is an average or majority 
vote of yi values in cell(x).

2. Near neighbor search
Build tree on data base x1, …, xn. Given query x, find an xi close to it: 
return nearest neighbor in cell(x).

3. Nearest neighbor search
Like (2), but may need to look beyond cell(x).

4. Speeding up geometric computations
For instance, N-body problems in which all interactions between 
nearby pairs of particles must be computed.



Vector quantization

Setting: lossy data compression.

Data generated from some distribution P over RD. Pick:

finite codebook C ½ RD

encoding function ®: RD ! C 

such that E ||X - ®(X)||2 is small.

Tree-based VQ in applications with large |C|.

Typical rate: VQ error · e-r/D (r = depth of tree).

RP trees have VQ error e-r/d.



Compressed sensing

New model for working with D-dimensional data:
Never look at the original data X!
Work exclusively with a few random projections Á(X)

Candes-Tao, Donoho: sparse X can be reconstructed from Á(X).
Cottage industry of algorithms working exclusively with Á(X).

RP trees are compatible with this viewpoint.
Use the same random projection across a level of the tree
Precompute random projections



What next

1. Other tree data structures?
e.g. nearest neighbor search *such as “cover trees”+

2. Other nonparametric estimators
e.g. kernel density estimation

3. Other structure (such as clustering) that can be 
exploited to improve convergence rates of statistical 
estimators
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