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We elaborate on the idea that “The Network”  encapsulates 

knowledge.

Inferential/diffusion geometries on digital data graphs, 

enable the organization and analysis of empirical data 

as well as "signal processing" of functions on data.

In particular we will describe various natural multiscale 

structures on data which enable automatic ontology and 

“language building”  for abstract digital data.

These developments extend geometries of spectral 

graph theory,  kernel machines and other machine 

learning tools.



Digital data clouds can be organized through an affinity 

kernel  A(x,y) where expert knowledge enters to build 

associations between documents. Such affinity is only 

robust for “nearest neighbors”.

Two basic approaches for organizing data

I. Hierarchical folder building and clustering , a bottom up 

approach which propagates or diffuses affinity between 

documents=points . Can be achieved through probabilistic 

model building and statistical/combinatorial  “book 

keeping” on the data 

II. A dimensional reduction approach which embeds the data 

in low dimensional Euclidean space , through the use of 

eigenvectors of the affinity kernel A (or related Matrix)  

followed by clustering and processing in that dimension.



These two approaches, seemingly different, can be 

shown to be  mathematically equivalent through the 

introduction of multiscale “inferential folder” 

structures based on affinity diffusions.

The eigenvectors are global functions on the data 

which “integrate”  precisely  the local “infinitesimal” 

affinity  geometry. 

Conversely “wavelet like” functions  defined by 

affinity folders enable efficient “informed 

embeddings” of the data in low dimensional spaces. 

(As well as an efficient synthesis of the 

eigenfunctions .)



Overview

• Eigenvector “magic”.

• Diffusion geometry , eigenvectors as an 

extension of Newtonian calculus.

• Multiscale geometry , localization of eigenvectors 

folder geometries or automatic ontologies. (the 

Zygmund program)

• The analysis of operators ,or data matrices such 

as questionnaires .



We now illustrate the relation to multiscale organization

Each puzzle piece is linked to its neighbors (in “feature 

space” )  the network of links forms a sphere. 

A parameterization of the sphere can be obtained from  the 

eigenvectors of the inference matrix relating affinity links 

between pieces (diffusion operator).



We illustrate the role of graph harmonic analysis to process 

complex data such as  images .

Given an image, associate with each pixel p a vector v(p) 

of features . For example  the 5x5 subimage centered at the 

pixel ,or any combination of features . Define a Markov 

matrix A as 
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We claim that  the eigenvectors of this matrix  

contain all the geometric information concerning the 

structure of the image 



The image on the 
left is projected 
into the three 
dimensional space 
spanned by the 
eigenvectors  5 ,8 
10 (red, green, 
blue)   which are 
active on a chosen 
point on the scarf.

The image above is 
viewed as a data 
base of all sub 
images of size 5x5, 
natural structures 
are discovered 
through projections 
on various 



The First two eigenfunctions organize the small images 
which were provided in random order, in fact assembling 
the 3D puzzle.



Organizing audio segments 

extracted from a large data 

base of tracks



The topical 

clusters are 

typically 

“linear”



A simple way to understand 

the relation between 

eigenvectors and geometry 

is provided by The sensor 

network local to global 

positioning problem. 

For each city in the US we 

know the distance to a few 

neighbors , how do we get 

the global position ?
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Let  P  be the location of city (or sensor) i . From the

 knowledge of the distance to a few neighbors P  we

 can easily calculate from local connections weights  

so that :

P P  where 
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Clearly both x and y coordinates (as well as 1) 

are eigenvetors of the matrix W.

The matrix W is a local encapsulation of the

relation between cities.
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Solution by A. Singer    may 2007



   Generalization of the fundamental theorem of calculus .

Assume that at each site you know the difference of

altitude between cities and some of their neighbours

we get the global function as the z eigenfunction of the 

3 dimensional version .  

Basically find the altitude function from its local increments.



We observe that given f we can easily solve the Poisson

 equation (or any other "differential equation") on graphs   

u=f,  where , 

and A is any local averaging operator.

In fact let   B= A+ A (I-A

I A

 

   

) with = , sgn( ),

It is easy to check that 

                                         Bu=u 

 and therefore the solution to the Poisson equation is 

an eigenvector of B with eigenvalue 1. 

f
f

A f
  



Example of E Coli 

Observed from random 

angles .

The full three d picture is rebuild from 

knowledge of local angular  distances using 

the center of mass method

A similar protein reconstruction from NMR 

enables to rebuild in a few seconds on a 

laptop a structure that currently takes hours 

on a supercomputer using conventional 

optimization.

reconstructions

Cryo-Microscopy 

Application



A simple empirical diffusion/inference matrix A  can be constructed as follows

Let         represent normalized data (they are simply rows of a data matrix) ,we “soft 

truncate” the covariance matrix defining an infinitesimal affinity  as 
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A is  a renormalized Markov version of this matrix

The eigenvectors of this matrix  provide a local non linear principal

component analysis of the data . Whose entries are the diffusion coordinates

These are also the eigenfunctions of a discrete Graph Laplace Operator.
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This map is a diffusion embedding into Euclidean space (at time t) .
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An alternative affinity matrix between points
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Where the weights are selected so that A is Markov or 

similar to a Markov matrix defining a diffusion on the 

cloud of points       .
i
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If we consider the spectrum of the various 

powers of the diffusion operator A we see that 

its numerical rank can drop dramatically. 

This property enables both data filtering 

and multiscale analysis
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Diffusions between A and B have to go through the bottleneck ,while C is 

easily reachable from B. The Markov matrix defining a diffusion could be 

given by a kernel , or by inference between neighboring nodes. 

The diffusion distance accounts for preponderance of inference links . The 

shortest path between A and C is roughly the same as between B and C . 

The diffusion distance however is larger since diffusion occurs through a 

bottleneck.

Diffusion Geometry



The long term diffusion of heterogeneous material is remapped below . The left side 
has a higher proportion of heat conducting material ,thereby reducing the diffusion 
distance among points , the bottle neck increases that distance



The natural diffusion on the surface of the dumbbell is 
mapped out in the embedding . Observe that A is closer 
to B  than to C ,and that the two lobes are well 
separated by the bottleneck.



Original data set Embedding of data into the first
3 diffusion coordinates



Here organization is achieved through ,eigenfunctions and wavelet constructions







Multiscale organization of Graphs.

We now describe a simple book keeping 
strategy to organize folders on a data graph. 
We follow the “puzzle strategy”
We organize a graph into a hierarchy of graphs 
consisting of disjoint subsets at different time 
scales of diffusion. 
Let
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A very simple way to build a hierarchical 
multiscale structure is as follows. 

Start with a disjoint partition of the graph into clusters of diameter  

between 1 and 2 relative in the diffusion distance with t=2.

Consider the new graph formed by letting the elements of the 

partition be the vertices .

Using the distance between sets  and affinity between sets 

described above we repeat with t=4, until we end with one folder, 

and a tree of graphs ,each a coarse version of the preceding with its 

own temporally rescaled geometry  (folder structure)

In the next image we see this organization as it applies to a 

random collection of 4 Gaussian clouds .



4 Gaussian Clouds



We now organize the set of subimages of 8x8 squares extracted 

from the left image and organized “naturally” by their average and 

orientation of the edge (the first two eigenfunction coordinates) .

The first 3 eigenfunctions 

describe the full geometry 

of this data .



The clusters of nearby points in the multiscale hierarchy ,corresponds ot features in the 

original image.



We described a calculus of digital data as a first step in 

addressing and setting up many of the issues mentioned 

above ,and much more, including multidimensional document 

rankings extending Google, information navigation, 

heterogeneous material modeling, multiscale complex 

structure organization etc. 

Remarkably this can be achieved with algorithms which scale 

linearly with the number of samples.

The methods described below are also known as nonlinear 

principal component analysis, kernel methods, support 

vector machines, spectral graph theory, and many more 

They are documented  in literally hundreds of papers in 

various communities.

A simple description of many of these ideas and more is 

given through diffusion geometries. ( see the July 2006 

issue of Applied and Computational Harmonic Analysis).


