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We elaborate on the idea that “The Network” encapsulates
knowledge.

Inferential/diffusion geometries on digital data graphs,
enable the organization and analysis of empirical data
as well as "signal processing"” of functions on data.

In particular we will describe various natural multiscale
structures on data which enable automatic ontology and
‘language building” for abstract digital data.

These developments extend geometries of spectral
graph theory, kernel machines and other machine
learning tools.



Digital data clouds can be organized through an affinity

kernel A(x,y) where expert knowledge enters to build
associations between documents. Such affinity is only
robust for “nearest neighbors”.

Two basic approaches for organizing data

Hierarchical folder building and clustering , a bottom up
approach which propagates or diffuses affinity between
documents=points . Can be achieved through probabilistic
model building and statistical/combinatorial “book
keeping” on the data

A dimensional reduction approach which embeds the data
In low dimensional Euclidean space , through the use of
eigenvectors of the affinity kernel A (or related Matrix)
followed by clustering and processing in that dimension.



These two approaches, seemingly different, can be
shown to be mathematically equivalent through the
introduction of multiscale “inferential folder”
structures based on affinity diffusions.

The eigenvectors are global functions on the data
which “integrate” precisely the local “infinitesimal”
affinity geometry.

Conversely “wavelet like” functions defined by
affinity folders enable efficient “informed
embeddings” of the data in low dimensional spaces.
(As well as an efficient synthesis of the
eigenfunctions .)



Overview
Eigenvector “magic”.

Diffusion geometry , eigenvectors as an
extension of Newtonian calculus.

Multiscale geometry , localization of eigenvectors

folder geometries or automatic ontologies. (the
Zygmund program)

The analysis of operators ,or data matrices such
as guestionnaires .



We now illustrate the relation to multiscale organization

Three Dimensional Puzzle

Each puzzle piece is linked to its neighbors (in “feature
space” ) the network of links forms a sphere.

A parameterization of the sphere can be obtained from the
eigenvectors of the inference matrix relating affinity links
between pieces (diffusion operator).



We illustrate the role of graph harmonic analysis to process
complex data such as images .

Given an image, associate with each pixel p a vector v(p)
of features . For example the 5x5 subimage centered at the

pixel ,or any combination of features . Define a Markov
matrix A as

> (-|v(p)—v(a) | 1)

A =
> ep(-|v(p)-v(a) | 12)

P.4

We claim that the eigenvectors of this matrix

contain all the geometric information concerning the
structure of the image
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The image above is
viewed as a data
base of all sub
images of size bxb,
natural structures
are discovered
through projections
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The image on the
left 1s projected
into the three
dimensional space
spanned by the
eigenvectors 5,8
10 (red, green,
blue) which are
active on a chosen
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The First two eigenfunctions organize the small images

which were provided in random order, in fact assembling
the 3D puzzle.
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A simple way to understand
the relation between
eigenvectors and geometry
IS provided by The sensor
network local to global
positioning problem.

~or each city in the US we
Know the distance to a few
neighbors , how do we get
the global position ?
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Solution by A. Singer may 2007

Let P be the location of city (or sensor) I . From the
knowledge of the distance to a few neighbors P, we

can easily calculate from local connections weights W
so that :

P=>W P where W =1

Clearly both x and y coordinates (as well as 1)

are eigenvetors of the matrix W.

The matrix W is a local encapsulation of the
relation between cities.



Generalization of the fundamental theorem of calculus .

Assume that at each site you know the difference of
altitude between cities and some of their neighbours
we get the global function as the z eigenfunction of the
3 dimensional version .

Basically find the altitude function from its local increments.



We observe that given f we can easily solve the Poisson
equation (or any other "differential equation™) on graphs
Au=f, where A=1-A

and A s any local averaging operator.

In fact let B= A+aAo(l-A) with o= L,a =sgn( f),

Alf

It Is easy to check that

Bu=u
and therefore the solution to the Poisson equation IS
an eigenvector of B with eigenvalue 1.



Cryo-Microscopy
Application

Example of E Coli

Observed from random

angles .

The full three d picture is rebuild from
knowledge of local angular distances using
the center of mass method

A similar protein reconstruction from NMR
enables to rebuild in a few seconds on a
laptop a structure that currently takes hours

on a supercomputer using conventional
optimization.
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A simple empirical diffusion/inference matrix A can be constructed as follows

Let X represent normalized data (they are simply rows of a data matrix) ,we “soft
truncate” the covariance matrix defining an infinitesimal affinity as

A =[X eX ] =exp{-(1-X o X )/}
X[ =1

Ais arenormalized Markov version of this matrix

The eigenvectors of this matrix provide a local non linear principal
component analysis of the data . Whose entries are the diffusion coordinates
These are also the eigenfunctions of a discrete Graph Laplace Operator.

A :Zﬂ‘ft¢l(xi)¢l(xj) = at(xi1xj)
X = (48X, 4, 8, (X)), A 8, (X))
d2 (X, X ) =a (X, X)) +a, (X, X;) =24, (X, X ) =X, =% ©

j
This map 1s a diffusion embedding into Euclidean space (at time t) .

2




An alternative affinity matrix between points
)

A exp(—|X — X,

]

w0

Where the weights are selected so that A is Markov or
similar to a Markov matrix defining a diffusion on the
cloud of points X .



If we consider the spectrum of the various
powers of the diffusion operator A we see that

Its numerical rank can drop dramatically.

This property enables both data filtering

and multiscale analysis
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Diffusions between A and B have to go through the bottleneck ,while-C IS
easily reachable from B. The Markov matrix defining a diffusion could be
given by a kernel , or by inference between neighboring nodes.

The diffusion distance accounts for preponderance of inference links . The
shortest path between A and C is roughly the same as between B and C .
The diffusion distance however is larger since diffusion occurs through a
bottleneck.



The long term diffusion of heterogeneous material is remapped below . The left side
has a higher proportion of heat conducting material ,thereby reducing the diffusion
distance among points , the bottle neck increases that distance
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Embedding

The natural diffusion on the surface of the dumbbell 1s
mapped out in the embedding . Observe that A 1s closer
to B than to C ,and that the two lobes are well
separated by the bottleneck.
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Here organization is achieved through ,eigenfunctions and wavelet constructions

Application to text document classification

1000 Science News articles, from 8 different categories. We compute about 10000
coordinates, «-th coordinate of document d represents frequency in document d of
the -th word in a fixed dictionary. The diffusion map gives the embedding
below. Clustering in the range of diffusion map results in good unsupervised
performance for dociment classification.
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Handwritten Digits

Data base of about 60, 000

28 x 28 gray-scale pictures of handwritten digits,
collected by USPS. Goal: automatic recognition.

It is a point clond in 28% dimensions. We can

think of being given this cloud, and some points are
labeled by the digit they correspond to, and we would
like to prediet the digit corresponding to each point.
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Set of 10, 000 picture (28 by 28 pixelz) of 10 handwritten digits. Color repressnts the label {(digit) of each point.



Multiscale organization of Graphs.

We now describe a simple book keeping

strategy to organize folders on a data graph.
We follow the “puzzle strategy’

We organize a graph into a hierarchy of graphs

consisting of disjoint subsets at different time
scales of diffusion.

Let

a (X, y) be the diffusion at time t on the graph,

l,ea (X,Y)Isthe kernel of the power tof the diffusion operator
A'(T)(x)=Ta,(x,y)T(y)dy

d (X, y)=a(x,x)+a(y y)—2a(xy)

IS the distance at scalet betweenx and y,



A very simple way to build a hierarchical
multiscale structure is as follows.

Start with a disjoint partition of the graph into clusters of diameter
between 1 and 2 relative in the diffusion distance with t=2.
Consider the new graph formed by letting the elements of the
partition be the vertices .

Using the distance between sets and affinity between sets
described above we repeat with t=4, until we end with one folder,
and a tree of graphs ,each a coarse version of the preceding with its
own temporally rescaled geometry (folder structure)

In the next image we see this organization as it applies to a
random collection of 4 Gaussian clouds .






We now organize the set of subimages of 8x8 squares extracted
from the left image and organized “naturally” by their average and
orientation of the edge (the first two eigenfunction coordinates) .

The first 3 eigenfunctions
describe the full geometry
of this data .
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original image.



We described a calculus of digital data as a first step in
addressing and setting up many of the issues mentioned
above ,and much more, including multidimensional document
rankings extending Google, information navigation,
heterogeneous material modeling, multiscale complex
structure organization etc.

Remarkably this can be achieved with algorithms which scale
linearly with the number of samples.

The methods described below are also known as nonlinear
principal component analysis, kernel methods, support
vector machines, spectral graph theory, and many more
They are documented in literally hundreds of papers in
various communities.

A simple description of many of these ideas and more is
given through diffusion geometries. ( see the July 2006
Issue of Applied and Computational Harmonic Analysis).



