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Four graph partitioning algorithms



History of graph partitioning

•
 

Spectral method, Fiedler 73, Folklore
•

 
Multicommunity

 
flow, Leighton+Rao

 
88

•
 

Semidefinite
 

programming,    
xxxxxxxxxxxxxArora+Rao+Vazirani

 
04

•
 

Expander flow,  Arora+Hazan+Kale
 

04
•

 
Single commodity flows,

 xxxxxxxxxxKhandekar+Rao+Vazirani
 

06

NP-hard        approximation algorithms



“traditional”
 

applications of

Divide-and-conquer algorithms

• Circuit layout & designs

• Parallel computing

• Bioinformatics

• …

graph partition algorithms:

• Hierarchical clusterings



• Web search

• locate hot spots
• identify communities

Applications of partitioning algorithms

for massive graphs 

• trace targets

• …

• combat link spam
• epidemics





Outline of the talk
• Motivations

• Conductance and Cheeger’s
 

inequality
•

 
Four graph paritioning

 
algorithms 

xxby
 

using:

• Local graph algorithms

eigenvectors
random walks
PageRank
heat kernel

• Future directions



Two types of cuts:

• Vertex cut

• edge cut

How “good”
 

is the cut?
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The Cheeger
 

constant

( , )min
min( , )G S

e S Sh
vol S vol S

=

The Cheeger
 

constant for graphs

hG

 

and its variations are sometimes  called

“conductance”, “isoperimetric number”, …
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The volume of
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x S

vol S d
∈
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The Cheeger
 

constant

( , )min
min( , )G S

e S Sh
vol S vol S

=

The Cheeger
 

inequality

GΦ

2

2
2
G
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Φ ≥ ≥

The Cheeger
 

inequality

λ
 

: the first nontrivial eigenvalue
 

of the   
xx(normalized) Laplacian.



The spectrum of a graph

Many ways  to define the spectrum of a 
graph. 

How are the How are the eigenvalueseigenvalues
 

related to related to 

properties of graphs?properties of graphs?

•Adjacency matrix



•Combinatorial Laplacian

L D A= −
diagonal degree matrix

adjacency matrix

The spectrum of a graph

•Adjacency matrix

•Normalized Laplacian

Random walks

Rate of convergence



The spectrum of a graph

•Normalized Laplacian
symmetric 
normalized

1( ) ( ( ) ( ))
y xx

f x f x f y
d

Δ = −∑
∼

Discrete Laplace operator

with eigenvalues
0 1 10 2nλ λ λ −= ≤ ≤ ⋅⋅⋅ ≤ ≤
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x

if x y and x y
d
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L( , )x y =
1 if x y={ 1

x y

if x y and x y
d d

− ≠ ∼

not symmetric in general



Can you hear the shape of a network?

dictates many properties 

of a graph.
• connectivity

• diameter  

•
 

isoperimetry
 z(bottlenecks)  

• … …

λ

How “good”
 

is the cut by 
using the eigenvalue

 
?λ



Using a sweep by the eigenvector, 

can reduce the exponential number of 

choices of subsets to a linear
 

number. 

Finding a cut by a sweep



Using a sweep by the eigenvector, 

can reduce the exponential number of 

choices of subsets to a linear number. 

Finding a cut by a sweep

Still, there is a lower bound guarantee

by using the Cheeger
 

inequality.

2

2
2

λ Φ
Φ ≥ ≥



where λ
 

is the first non-trivial eigenvalue
 of the Laplacian

 
and      is the minimum 

Cheeger
 

ratio in a sweep using the 
eigenvector

 
.

f

2 2

2
2 2

αλ Φ
Φ ≥ ≥ ≥

Using eigenvector 

the Cheeger
 

inequality can be stated as 

The Cheeger
 

inequality

α

Partitioning algorithm

, 

f



Eigenvalue
 

problem for n x n
 

matrix:.

n
 

≈
 

30 billion websites

Hard to compute eigenvalues

Even harder to compute eigenvectors



In the old days, 

compute for a given (whole) graph.

In reality,

can only afford to compute “locally”.

(Access to a (huge) graph, 

e.g., for a vertex v, find its neighbors.

Bounded number of access.)



Using a sweep by the eigenvector can 
reduce the exponential number of choices 
of subsets to a linear

 
number. 

Finding a cut by a sweep

Using a local sweep by random walks, 
PageRank

 
and its variations can further 

reduce the a linear
 

number of choices to 
a specified finite number of sizes.



• graph spectral method

• random walks

• PageRank

• heat kernel

spectral partition algorithm

local partition algorithms

Four one-sweep
 

graph partitioning algorithms



• graph spectral method

• random walks

• PageRank

• heat kernel

Lovasz, Simonovits, 90, 93 
Spielman, Teng, 04

Andersen, Chung, Lang, 06

Chung, PNAS , 08.

Fiedler ’73, Cheeger, 60’s

4 Cheeger
 

inequalities4 Partitioning algorithm

Mihail
 

89



Graph partitioning Local graph partitioning

Courtesy of Reid Andersen



What is a local graph partitioning algorithm?

A local graph partitioning algorithm finds a small

cut near the given seed(s) with running time 

depending only on the size of the output.



The definition of PageRank
 

given by 

Brin
 

and Page is based on 

random walks.



Partitioning         Computing  PageRank

History of computing Pagerank

• Brin+Page
 

98

• Personalized PageRank, Haveliwala
 

03

•
 

Computing personalized PageRank, 
xxxxxxxxxxxxxxxxxxxxxxxxJeh+Widom

 
03 

xxxxxxxxxxxxxxxxxxxxxxxx
 

Berkhin
 

06



Random walks in a graph.

1 ,
( , )

0 .
u

if u v
dP u v

otherwise

⎧     ⎪= ⎨
⎪     ⎩

∼

G : a graph

P
 

: transition probability matrix

2
I PW +

=
A lazy walk:

ud := the degree of u.



A (bored) surfer

• either surf a random webpage

with probability
 

1-
 

α

Original definition of  PageRank

α
 

: the jumping constant 

• or surf a linked webpage

with probability
 

α

1 1 1( , ,...., ) (1 )n n np pWα α= + −



Two equivalent ways to define PageRank
 

pr(α,s)

(1) (1 )p s pWα α= + −

s:  the seed as a row vector

Definition of  personalized PageRank

α
 

: the jumping constant

s



Two equivalent ways to define PageRank
 

p=pr(α,s)

(1) (1 )p s pWα α= + −

0
(1 ) ( )t t

t
p sWα α

∞

=

= −∑(2)

s = 1 1 1( , ,...., )n n n

Definition of  PageRank

the (original) PageRank

some “seed”, e.g.,s = (1,0,....,0)

personalized PageRank
(Organize the random walks by a scalar α.)



2 2

2
8log 8log

G

n n
βλ Φ

Φ ≥ ≥ ≥

where
 
is the minimum Cheeger

 
ratio over 

sweeps by using a lazy walk of k
 

steps from 
every vertex for an appropriate range of k

 
.

Partitioning algorithm using random walks

Gβ

Mihail
 

89, Lovász+Simonovits, 90, 93
2( )( , ) ( ) 1

8

k
k k

u

vol SW u S S
d

βπ
⎛ ⎞

− ≤ −⎜ ⎟
⎝ ⎠

Leads to a Cheeger
 

inequality:



Algorithmic aspects of PageRank

•
 

Fast approximation algorithm for                     
x

 
personalized PageRank

Can use the jumping constant to approximate 
PageRank

 
with a support of the desired size. 

greedy type algorithm, linear complexity

•

• Errors can be  effectively bounded.



Approximate  the pagerank
 

vector :

( , ) ( , )pr s p pr rα α= +

Approximate pagerank
Residue vector



with seed as a subset
 

S

2 2

8log 8log
u u

S s s
γ Φ

Φ ≥ ≥

Using the PageRank
 

vector 

and                                a Cheeger
 

inequality 

can be obtained : 

where
 
is the minimum Cheeger

 
ratio over 

sweeps by using personalized PageRank
 

with a 
random seed in S. The volume of the set of 
such u

 
is > vol(S)/4.

Partitioning algorithm using PageRank

uγ

( ) ( ) / 4,vol S vol G≤



• Compute ε-approximate Pagerank
 

p=pr(α,s)
 with

 
α=0.1/(φ2

 
b), ε=2-b/b.

• One sweep algorithm
 

using
 

p for finding cuts 
with conductance <

 
φ.

Algorithm(φ,s,b):

Performance analysis:

A partitioning algorithm using PageRank

If s
 

is in a set S
 

with conductance Φ>φ2log s, 
with constant probability, the algorithm 
outputs a cut C

 
with condutance

 
<

 
φ

 
, of size 

order
 

s  and 1
4( ) ( ).vol C S vol S∩ >

(Improving previous bounds by a factor of φlog s.
 

)
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Kevin Lang 2007



• graph spectral method

• random walks

• PageRank

• heat kernel

Lovasz, Simonovits, 90, 93 
Spielman, Teng, 04

Andersen, Chung, Lang, 06

Chung, PNAS , 08.

Fiedler ’73, Cheeger, 60’s

4 Cheeger
 

inequalities4 Partitioning algorithm

Mihail
 

89



PageRank
 

versus
 

heat kernel
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PageRank
 

versus
 

heat kernel
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( )I W
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Heat equation
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Definition of  heat kernel
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Partitioning algorithm using the heat kernel

Theorem:

where
 

is the minimum Cheeger
 

ratio over 
sweeps by using heat kernel pagerank

 
over all 

u
 

in S.

,t uκ

2
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Theorem:

where
 

is the minimum Cheeger
 

ratio over 
sweeps by using heat kernel pagerank

 
over all 

u
 

in S.

,t uκ

Theorem:  For 

, ( ) ( ) .Sth
t S S S eρ π −− ≥

2/3( ) ( ) ,vol S vol G≤

Partitioning algorithm using the heat kernel

(Improving the previous PageRank
 

lower bound 1-t hS

 

.)



Theorem:
( )/ 1 ( )

, ( ) ( ) (1 ( )) Sh t S
t S S S S e πρ π π − −− ≥ −

Sketch of a proof:
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Random walks         versus
 

heat kernel

How fast is the 
convergence to the 

stationary distribution?
Choose t

 
to satisfy 

the required 
property. 

For what k, can one have 

?kf W π→



2 2

8 8
S S

S S
κλ Φ

Φ ≥ ≥ ≥

Using the upper and lower bounds,                      

a  Cheeger
 

inequality can be obtained : 

where
 

λS

 

is the Dirichlet
 

eigenvalue
 

of the 
Laplacian, and       is the minimum Cheeger

 ratio over sweeps by using heat kernel with 
seeds S  for appropriate t.

Sκ

Partitioning algorithm using the heat kernel



2

2

( ( ) ( ))
inf

( )
u v

S f
w

w

f u f v

f w d
λ

−
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∑
∑

∼

over all f satisfying the Dirichlet
 

boundary

condition:

Dirichlet
 

eigenvalues
 

for a subset

( ) 0f v =

S V⊆

S

V

for all .v S∉
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8 8
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Using the upper and lower bounds,                      

a  Cheeger
 

inequality can be obtained : 

where
 

λS

 

is the Dirichlet
 

eigenvalue
 

of the 
Laplacian, and       is the minimum Cheeger

 ratio over sweeps by using heat kernel with 
seeds S  for appropriate t.

Sκ

Partitioning algorithm using the heat kernel



2 2

8 8
S S
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κλ Φ
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Using the upper and lower bounds,                      

a  Cheeger
 

inequality can be obtained : 

where
 

λS

 

is the Dirichlet
 

eigenvalue
 

of the 
Laplacian, and       is the minimum Cheeger

 ratio over sweeps by using heat kernel with 
seeds S  for appropriate t.

Sκ

Partitioning algorithm using the heat kernel



2 2

8log 8log
u u

S S s s
κλ Φ
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Using the upper and lower bounds,                      

a  Cheeger
 

inequality can be obtained : 

where
 

λS

 

is the Dirichlet
 

eigenvalue
 

of the 
Laplacian, and       is the minimum Cheeger

 ratio over sweeps by using heat kernel with a 
random seed in S . The volume of the set of 
such

 
u  is > vol(S)/4.

uκ

Partitioning algorithm using the heat kernel
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Future directions:

Use PageRank
 

and the heat kernel    
xxpagerank

 
to shed light on:

• The geometry of graphs?

• Graph drawing, visualization

• Metric embedding …

•
 

Solving combinatorial problems, such    
xxas

 
covering, packing, matching, etc.



Courtesy of Reid Andersen
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