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Introduction

• Dyadic Data
– Relationship between two entities

• Examples
– (Users, Movies): Ratings, Tags, Reviews 
– (Genes, Experiments): Expression
– (Buyers, Products): Purchase, Ratings, Reviews  
– (Webpages, Advertisements): Click-through rate

• Co-clustering
– Simultaneous clustering of rows and columns
– Matrix approximation based on co-clusters

• Mixed membership co-clustering
– Row/column has memberships in multiple row/column clusters
– Flexible model, naturally handles sparsity
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Example: Gene Expression Analysis

Original Co-clustered
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Co-clustering and Matrix Approximation
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Example: Collaborative Filtering
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Related Work
• Partitional co-clustering

– Bi-clustering (Hartigan ’72)
– Bi-clustering of expression data (Cheng et al., ’00)
– Information theoretic co-clustering (Dhillon et al., ’03)
– Bregman co-clustering and matrix approximation (Banerjee et al., ’07)

• Mixed membership models
– Probabilistic latent semantic indexing (Hoffman, ’99)
– Latent Dirichlet allocation (Blei et al., ’03)

• Bayesian relational models
– Stochastic block structure (Nowicki et al, ’01)
– Infinite relational model (Kemp et al, ’06)
– Mixed membership stochastic block model (Airoldi et al, ’07)
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Background

• Bayesian Networks

• Plates
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Latent Dirichlet Allocation (LDA) [BNJ’03]

document1 document2
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Bayesian Naïve Bayes (BNB) [BS’07] 
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Bayesian Co-clustering (BCC)
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Bayesian Co-clustering (BCC)
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Variational Inference
• Expectation Maximization

• Variational EM
– Introduce a variational distribution                                                   to 

approximate                                         .
– Use Jensen’s inequality to get a tractable lower bound for log-likelihood

– Maximize the lower bound w.r.t for the best lower bound, 
i.e., minimize the KL divergence between                        
and                                             

– Maximize the lower bound  w.r.t
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Variational Distribution

• for each row,                          for each column 
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Variational EM for Bayesian Co-clustering

=  lower bound of log -likelihood



Bayesian Co-clustering 15

EM for Bayesian Co-clustering

• Inference (E-step)

• Parameter Estimation (M-step) (Gaussians)
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Fast Latent Dirichlet Allocation (FastLDA)

• Introduce a different variational distribution                    as an 
approximation of                        . 

• Number of variational parameters φ: m*n →n.
• Number of optimizations over φ: m*n →n. 

Original FastLDA
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FastLDA vs LDA: Perplexity
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FastLDA vs LDA: Time
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Word List for Topics (Classic3)

LDA Fast LDA
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Word List for Topics (Newsgroups)

LDA Fast LDA



Bayesian Co-clustering 21

BCC Results: Simulated Data
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BCC Results: Real Data

• Movielens: Movie recommendation data 
– 100,000 ratings (1-5) for 1682 movies from 943 users  (6.3%)
– Binarize: 0 (1-3), 1(4-5).
– Discrete (original), Bernoulli (binary)

• Foodmart: Transaction data
– 164,558 sales records for 7803 customers and 1559 products  (1.35%)
– Binarize: 0 (less than median), 1(higher than median)
– Poisson (original), Bernoulli (binary)

• Jester: Joke rating data
– 100,000 ratings (-10.00 - +10.00) for 100 jokes from 1000 users (100%)
– Binarize: 0 (lower than 0), 1 (higher than 0)
– Gaussian (original), Bernoulli (binary)
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BCC vs BNB vs LDA (Binary data)

Training Set Test Set

Perplexity on Binary Jester Dataset with Different Number of User Clusters 
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BCC vs BNB (Original data) 

Training Set Test Set

Perplexity on Movielens Dataset with Different Number of User Clusters 
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BNB BCC LDA

Jester 1.7883 1.8186 98.3742

Movielens 1.6994 1.9831 439.6361

Foodmart 1.8691 1.9545 1461.7463

BNB BCC LDA

Jester 4.0237 2.5498 98.9964

Movielens 3.9320 2.8620 1557.0032

Foodmart 6.4751 2.1143 6542.9920

Training Set Test Set

On Binary Data 

BNB BCC

Jester 15.4620 18.2495

Movielens 3.1495 0.8068

Foodmart 4.5901 4.5938

BNB BCC

Jester 39.9395 24.8239

Movielens 38.2377 1.0265

Foodmart 4.6681 4.5964

Training Set Test Set

On Original Data

Perplexity Comparison with 10 User Clusters
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Co-cluster Parameters (Movielens)
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Co-embedding: Users
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Co-embedding: Movies
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Summary

• Bayesian co-clustering
– Mixed membership co-clustering for dyadic data
– Flexible Bayesian priors over memberships
– Applicable to variety of data types
– Stable performance, consistently better in test set

• Fast variational inference algorithm  
– One variational parameter for each row/column
– Maintains coupling between row/column cluster memberships
– Same idea leads to FastLDA (try it at home)

• Future work
– Open problem: Joint decoding of missing entries
– Predictive models based on mixed membership co-clusters
– Multi-relational clustering
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