
An Algorithm for Improving Graph Partitions

Reid Andersen [Microsoft Research]
–joint work with–

Kevin Lang [Yahoo! Research]

Graph Partitioning

Divide vertex set into groups, with few edges between groups.

Applications:

Divide-and-conquer algorithms for graphs

Parallel computing, VLSI layout

Image processing, finding communities

The Minimum Quotient Cut Problem

Find a set S ⊆ V minimizing the quotient cost Q(S).

S S̄ = V \ S

∂(S)

Quotient cost

Q(S) =
∂(S)

min
(
π(S), π(S̄)

) =
edges between S and S̄

weight of vertices in S

Vertex weights

Let each vertex have a nonnegative integer weight π(v).
π(S) is the total weight of vertices in S.

Algorithms for finding quotient cuts

The Minimum Quotient Cut problem is NP-hard.

Approximation algorithms

Spectral Partitioning [Fiedler 72]

Leighton Rao [LR 88]

Arora Rao Vazirani [ARV 04]
(Best approximation algorithm known, with ratio O(

√
log n))

Effective heuristics

Local search [Kernighan,Lin 70] [Fidducia,Mattheyses 82]

Multilevel methods (METIS) [Karypis, Kumar 98]

A partitioning algorithm

Partitioning
Algorithm

Output cut Input graph

Improving the proposed cut

This talk is about an algorithm called Improve.
We apply it to the cut proposed by the partitioning algorithm
to obtain a cut with better quotient score.

Improvement
Algorithm

Partitioning
Algorithm

Output cutInput graph Improved cut

Q(Proposed cut) = 0.108400 = (542 edges / 5000 nodes)

Q(Improved cut) = 0.040085 = (189 edges / 4715 nodes)

Detail of proposed cut and improved cut

Previous work: methods for improving partitions

Swapping vertices

greedy hill-climbing, simulated annealing

local search: Kernighan-Lin, Fidduccia-Mattheyses

Flow algorithms can find a block of vertices to swap for a big
greedy improvement.

There is a powerful known method for improving the quotient cost,
based on parametric flow . . .

Described in [Gallo Grigoriadis Tarjan 89].

Key tool in the polylog approximation algorithm
for minimum bisection [Feige Krauthgamer 01].

Lang and Rao [LR 04] demonstrated its practical utility.

Previous work: parametric flow improvement algorithm

PFI algorithm

Input : a proposed set A with weight π(A) ≤ π(Ā).
Output : the subset of A with the smallest quotient cost.

Finds the optimal cut that can be obtained by removing
vertices from the proposed cut.

Works by solving a sequence of s− t min cut problems,
or one parametric flow problem. [Gallo Grigoriadis Tarjan 89]

Motivation for the Improve algorithm

What if there exists a great cut C,
and the proposed cut A contains a significant fraction of C,
but not all of it?

PFI could return C ∩A, but that cut might be terrible.

PFI cannot “fill in the holes” by adding nodes from outside A.

Motivation for the Improve algorithm

What if there exists a great cut C,
and the proposed cut A contains a significant fraction of C,
but not all of it?

PFI could return C ∩A, but that cut might be terrible.

PFI cannot “fill in the holes” by adding nodes from outside A.

The Improve algorithm

Improve

Input : a proposed set A with π(A) ≤ π(Ā)
Output : a set S

Adds and removes vertices from the proposed cut.

Works by solving a sequence of s− t min cut problems,
that cannot be cast as a parametric flow problem.

The Improve algorithm

Improve

Input : a proposed set A with π(A) ≤ π(Ā)
Output : a set S

Main theorem: to find a cut nearly as good as C, the
proposed set just needs to have a larger intersection with C
than a randomly chosen set.

Main theorem about Improve

Improve

Input : a proposed set A with π(A) ≤ π(Ā)
Output : a set S

Theorem (part 1)

Improve runs in polynomial time.

The set returned by Improve has quotient cost at least as
small as the best subset of A,

Q(S) ≤ min
C⊆A

Q(C).

Main theorem about Improve

Theorem (part 2)

Let C be any set whose intersection with the proposed set A
satisfies

π(A ∩ C)
π(C)

≥ π(A)
π(V)

+ ε.

Then the set S output by Improve has quotient cost almost as
small as C,

Q(S) ≤ 1
ε
Q(C).

If the fraction of C contained in the proposed set A is larger
than you would expect if A were chosen randomly, then
Improve will return a cut almost as good as C.

The role of partitioning and improvement algorithms

Improvement
Algorithm

Partitioning
Algorithm

The role of partitioning and improvement algorithms

Improvement
Algorithm

Partitioning
Algorithm

Techniques

Modified quotient cost
We define a modified quotient cost relative to A that penalizes
sets for including vertices outside of A.

Iterated minimum cut computations
Improve computes and outputs a set minimizing the modified
quotient cost.

It does this by constructing and solving a sequence of s-t minimum
cut problems in an augmented graph.

Weight function relative to the proposed cut

This modified weight function gives you credit for including
vertices in A, and penalizes you for including vertices outside of A.

Given a proposed set A ⊆ V , define

DA(S) = π(S ∩A)− π(S ∩ Ā)
(
π(A)/π(Ā)

)
.

S

A

Remarks

The modified weight DA(S) is at most the true weight π(S).
It can be zero or negative.

Quotient cost relative to the proposed cut

The modified quotient cost uses the weight relative to the
proposed cut as the denominator, instead of the true weight.

Quotient cost relative to A

Given a set A ⊆ V that satisfies π(A) ≤ π(Ā), define

Q̃A(S) =

{
∂(S)/DA(S) if DA(S) > 0.

+∞ if DA(S) ≤ 0.

Remark:

Defined for all subsets of V .

Relating the relative quotient cost to the true quotient cost

Lemma (Relative quotient cost is bigger than true quotient cost)

Assume π(A) ≤ π(Ā).
1 For any set S ⊆ V , we have Q̃A(S) ≥ Q(S).

Lemma (Upper bounds on the relative quotient cost)

1 If C ⊆ A, then Q̃A(S) = Q(S).
2 If C is a set for which the intersection of A with C satisfies

π(A ∩ C)
π(C)

≥ π(A)
π(V)

+ ε
π(Ā)
π(V)

,

then Q̃A(C) ≤ 1
ε Q(C).

Sketch of the main theorem

Proof sketch of Theorem 1.

Improve(A) outputs a set S that minimizes Q̃A.

If C and A have a large intersection, say π(C ∩A) ≥ (1
2 + ε)π(C),

then

Q̃A(C) ≤ 1
ε
Q(C).

That gives us an upper bound on the true quotient cost of the set
output by Improve,

Q(S) ≤ Q̃A(S) ≤ Q̃A(C) ≤ 1
ε
Q(C).

Augmented graph construction

The augmented graph GA(α) depends on the input graph G, on
the proposed set A, and on a parameter α ∈ [0,∞)

Keep the nodes and edges
in G with their original
weights.

Add a source node s and
sink node t.

Add edges from s to each
node v in A, with weight
απ(v).

Add edges from t to each
node v in Ā, with weight
απ(v)f(A), where
f(A) = π(A)/π(Ā).

How to use the augmented graph cuts

Let costA,α(S) be the cutsize of {s} ∪ S in the augmented graph.

By construction,

costA,α(S) = απ(A) + (∂(S)− αDA(S)) .

By computing the minimum cut, you answer the following question:

Is there a set of vertices in the graph for which
∂(S)

DA(S)
< α?

Improve pseudocode

This is a simple iterative procedure for finding the set that
minimizes Q̃A.

Input. a set A ⊆ V satisfying π(A) ≤ π(Ā).
Initialization. Let S = A and let α = Q(A).

Main loop.
1 Compute the minimum s− t cut in the graph GA(α).
2 Let S′ be the set of vertices on the source side.
3 Let α′ = Q̃A(S′) be the new value of α.
4 If α′ < α, continue the loop. Otherwise, halt and output S.

Number of iterations required

To bound the number of iterations, we show that Q̃A(Si), DA(Si),
and ∂(Si) strictly decrease at each step.

Corollary

If the vertex weights π(v) are integers, the algorithm halts
after at most π(V)2 iterations.

If the edges of the graph are unweighted, the algorithm halts
after at most m iterations, where m is the number of edges in
the graph.

In our experiments. . .

The average number of flow computations required was 4.

No instance required more than 10 flow computations.

In our experiments. . .

Details from each iteration

iteration cutsize numnodes swap-ins denom Q(S) Q̃A(S)
0 542 5000 0 5000 0.108400 0.108400
1 198 4908 133 4642 0.040342 0.042654
2 189 4715 132 4451 0.040085 0.042462

After 1 iterationOriginal cut After 2 iterations
(done)

Detail of the set minimizing the relative quotient cost

Experiments

We ran off-the-shelf partitioning algorithms
(spectral partitioning and METIS)
on three different families of graphs.

We want to compare:
Partitioning algorithm alone
Partitioning algorithm + PFI
Partitioning algorithm + Improve

First family of test graphs:
random geometric graphs plus random edges.
We generated 1000 random graphs from this distribution.

Improved METIS cuts

Histogram: for each of the 1000 graphs, how much worse is the
resulting cut from the best cut we could find?

 0

 50

 100

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5 4

(s
hi

fte
d)

 h
is

to
gr

am
 b

uc
ke

t c
ou

nt
s

factor worse than best known qcut for each of 1000 graphs

Outcome Distributions for Improved Metis Cuts

Metis
Metis + MQI

Metis + Improve

Improved spectral cuts

Solution quality histograms for 4 different methods for finding a
cut from the Fiedler eigenvector.

 0

 50

 100

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5 4

(s
hi

fte
d)

 h
is

to
gr

am
 b

uc
ke

t c
ou

nt
s

factor worse than best known qcut for each of 1000 graphs

Outcome Distributions for Improved Spectral Cuts

Fiedler Median Cut
Fiedler Sweep Cut

Fiedler Median Cut + MQI
Fiedler Median Cut + Improve

Improve vs PFI on benchmark graphs

Test graphs Benchmark meshlike graphs from the graph
partitioning archive (run by Chris Walshaw).

Experiment For each graph we ran METIS many times,
improved the cuts using Improve and PFI,
and took the best qcut cost over all runs.

Table 1 Improve always beats or ties PFI.
The table shows how many times it beats it.

Improve vs PFI
name n nodes wins ties losses

wing 62032 3914 2378 0
fe tooth 78136 1970 625 0
fe rotor 99617 1794 241 0
598a 110971 1263 181 0
144 144649 999 14 0
wave 156317 1132 0 0
m14b 214765 605 27 0

Improve vs PFI on benchmark graphs

Table 2
This table shows the ratio between the best balanced qcut
obtained by METIS+Improve and the best balanced cut from the
graph partitioning archive.

Both cuts are required to contain at least 47.5% of the graph

best qcut found with at compared to
name least 475:525 balance archive cut

wing 0.025504 = 791 / 31015 1.000032
fe tooth 0.097809 = 3821 / 39066 0.992518
fe rotor 0.041964 = 2004 / 47755 1.036868
598a 0.043219 = 2398 / 55485 1.000000
144 0.089733 = 6488 / 72303 0.999982
wave 0.111400 = 8702 / 78115 1.001702
m14b 0.035723 = 3836 / 107382 1.000000

Random graphs with planted bisections

Test graphs Take two random 4-regular graphs with 50k nodes
and 100k edges, then add c random edges between
the two sides.

Experiment Generate 16 graphs with varying values of c.
Compare the qcuts found by 5 algorithms.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 22000 24000 26000 28000 30000 32000 34000

qc
ut

 s
co

re

size of planted bisection

Looking for Planted Bisections

Metis
SpecMid

SpecMid+MQI
SpecMid+Improve

SpecMid+FM
Planted

Concluding remarks

