Fast Dimension Reduction

MMDS 2008

Nir Ailon
Google Research NY
-"Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes" (with Edo Liberty)
-The Fast Johnson Lindenstrauss Transform (with Bernard Chazelle)

Original Motivation:

Nearest Neighbor Searching

- Wanted to improve algorithm by Indyk, Motwani for approx. NN searching in Euclidean space.
- Evidence for possibility to do so came from improvement on algorithm by Kushilevitz, Ostrovsky, Rabani for approx NN searching over GF(2).
- If we were to do the same for Euclidean space, it was evident that improving run time of Johnson-Lindenstrauss was key.

Later Motivation

- Provide more elegant proof, use modern techniques.
- Improvement obtained as bonus.
- Exciting use of
- Talagrand concentration bounds
- Error correcting codes

Random Dimension Reduction

- Sketching [Woodruff, Jayram, Li]
- (Existential) metric embedding
- Distance preserving
- Sets of points, subspaces, manifolds [Clarkson]
- Volume preserving [Magen, Zouzias]
- Fast approximate linear algebra
- SVD, linear regression (Muthukrishnan, Mahoney, Drineas, Sarlos)
- Computational aspects:
- Time [A, Chazelle, Liberty] + \{Sketching Community\} + \{Fast Approximate Linear Algebra Community\}
- randomness \{Functional Analysis community\}

Theoretical Challenge

Find random projection Φ from R^{d} to R^{k}
(d big, k small)
such that for every $x \in R^{d},\|x\|_{2}=1,0<\varepsilon<1$
with probability 1-exp\{-k $\left.\varepsilon^{2}\right\}$

$$
\|\Phi x\|_{2}=1 \pm \mathrm{O}(\varepsilon)
$$

Usage

If you have n vectors $x_{1} . . x_{n} \in R^{d}$.
set $k=O\left(\varepsilon^{-2} \log n\right)$
by union bound:
for all $\mathrm{i}, \mathrm{j}\left\|\Phi \mathrm{x}_{\mathrm{i}}-\Phi \mathrm{x}_{\mathrm{j}}\right\| \approx_{\varepsilon}\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right\|$
low-distortion metric embedding
"tight"

Solution:

Johnson-Lindenstrauss (JL)

"dense random matrix"

So what's the problem?

- running time $\Omega(\mathrm{kd})$
- number of random bits $\Omega(\mathrm{kd})$
- can we do better?

Fast JL

A, Chazelle 2006
$\Phi=$ Sparse
Hadamard
Diagonal

Fourier

time $=\mathrm{O}\left(\mathrm{k}^{3}+\mathrm{dlog} \mathrm{d}\right)$ beats $\mathrm{JL} \Omega(\mathrm{kd})$ bound for: $\log \mathrm{d}<\mathrm{k}<\mathrm{d}^{1 / 3}$

Improvement on FJLT

- O(d logk) for $k<d^{1 / 2}$
- beats JL up to $k<d^{1 / 2}$
- O(d) random bits

Algorithm ($k=d^{1 / 2}$)

A, Liberty 2007
$\Phi=$
Всн

Diagonal

Error Correcting Codes

\in binary "dual-BCH code of designed distance 4"
$0 \rightarrow k^{-1 / 2}$
$1 \rightarrow-k^{-1 / 2}$
4 -wise
independence
columns closed under addition
row set subset of dx d Hadamard

Error Correcting Codes

Fact (easily from properties of dual BCH): $\left\|B^{t}\right\|_{2 \rightarrow 4}=O(1)$
for $y^{t} \in R^{k}$ with $\|y\|_{2}=1$: $\|y B\|_{4}=O(1)$

Rademacher Series on Error Correcting Codes

look at r.v. $B D x \in\left(R^{k}, I_{2}\right)$
$\begin{aligned} B D x & =\sum D_{\mathrm{ii}} \mathrm{X}_{\mathrm{i}} \mathrm{B}_{\cdot i} D_{\mathrm{ii}} \in_{\mathrm{R}}\{ \pm 1\} \quad \mathrm{i}=1 \ldots \mathrm{~d} \\ & =\sum D_{\mathrm{ii}} M_{\cdot i}\end{aligned}$

Talagrand's Concentration Bound for Rademacher Series

$$
\mathrm{Z}=\left\|\sum \mathrm{D}_{\mathrm{ij}} \mathrm{M} \cdot \mathrm{i}\right\|_{\mathrm{p}} \text { (in our case } \mathrm{p}=2 \text {) }
$$

$$
\operatorname{Pr}[|Z-E Z|>\varepsilon]=O\left(\exp \left\{-\varepsilon^{2} / 4| | M \|_{2 \rightarrow p}^{2}\right\}\right)
$$

Rademacher Series on Error Correcting Codes

look at riv. $B D x \in\left(R^{k}, I_{2}\right)$
$Z=\|B D x\|_{2}=\left\|\Sigma D_{i j} M_{\cdot i}\right\|_{2}$
$\|\mathrm{M}\|_{2 \rightarrow 2} \leq\|\mathrm{x}\|_{4}\left\|\mathrm{~B}^{\mathrm{t}}\right\|_{2 \rightarrow 4}$ (Cauchy-Schwartz)
by ECC properties:
$\|\mathrm{M}\|_{2 \rightarrow 2} \leq\|x\|_{4} \mathrm{O}(1)^{\mathrm{L}}$
trivial: $\mathrm{EZ}=\|\mathrm{x}\|_{2}=1$

Rademacher Series on Error Correcting Codes

 look at r.v. $B D x \in\left(R^{k}, I_{2}\right)$$$
Z=\|B D x\|_{2}=\left\|\Sigma D_{\mathrm{ii}} \mathrm{M}_{\cdot}\right\|_{2}
$$

$$
\begin{aligned}
& \|\mathrm{M}\|_{2 \rightarrow 2}=\mathrm{O}\left(\|\mathrm{x}\|_{4}\right) \\
& \mathrm{EZ}=1 \\
& \operatorname{Pr}[|Z-\mathrm{EZ}|>\varepsilon]=O\left(\exp \left\{-\varepsilon^{2} / 4\|\mathrm{M}\|_{2 \rightarrow 2^{2}}\right\}\right)
\end{aligned}
$$

$$
\Rightarrow \operatorname{Pr}[|Z-1|>\varepsilon]=\mathrm{O}\left(\exp \left\{-\varepsilon^{2} /\|x\|_{4}^{2}\right\}\right)
$$

how to get $\|x\|_{4}{ }^{2}=O\left(k^{-1}=d^{-1 / 2}\right)$?

Challenge: w. prob. $\exp \left\{-k \varepsilon^{2}\right\}$ deviation of more than ε

Controlling $\|x\|_{4}{ }^{2}$

how to get $\|\mathrm{x}\|_{4}{ }^{2}=\mathrm{O}\left(\mathrm{k}^{-1}=\mathrm{d}^{-1 / 2}\right)$?

- if you think about it for a second...
- "random" x has $\|x\|_{4}{ }^{2}=O\left(d^{-1 / 2}\right)$
- but "random" x easy to reduce: just output first k dimensions
- are we asking for too much?
- no: truly random x has strong bound. on $\|x\|_{p}$ for all $p>2$

Controlling $\|x\|_{4}{ }^{2}$

how to get $\|x\|_{4}{ }^{2}=O\left(k^{-1}=d^{-1 / 2}\right)$?

- can multiply x by orthogonal matrix
- try matrix HD

(HD used in [AC06] to control ||HDx $\|_{\infty}$)

- $Z=\|H D x\|_{4}$
$=\left\|\Sigma D_{i \mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{H}_{\cdot \mathrm{i}}\right\|_{4}$
$=\left\|\Sigma D_{i i} M_{.}\right\|_{4}$
- by Talagrand:
$\operatorname{Pr}[|Z-E Z|>t]=O\left(\exp \left\{-t^{2} / 4| | M \mid \|_{2 \rightarrow 4}{ }^{2}\right\}\right)$
$\mathrm{EZ}=\mathrm{O}\left(\mathrm{d}^{-1 / 4}\right)$ (trivial)
$\|\mathrm{M}\|_{2 \rightarrow 4} \leq\|\mathrm{H}\|_{4 / 3 \rightarrow 4}\|\mathrm{X}\|_{4}$
(Cauchy Schwartz)

Controlling $\|x\|_{4}{ }^{2}$

how to get $\|x\|_{4}{ }^{2}=O\left(k^{-1}=d^{-1 / 2}\right)$?
$\mathrm{Z}=\left\|\Sigma \mathrm{D}_{\mathrm{if}} \mathrm{M}_{\mathrm{i}}\right\|_{4} \quad \mathrm{M}_{\cdot \mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}$
$\operatorname{Pr}[|Z-E Z|>t]=O\left(\exp \left\{-\mathrm{t}^{2} / 4\|\mathrm{M}\|_{2 \rightarrow 4}{ }^{2}\right\}\right)$ (Talagrand) $\mathrm{EZ}=\mathrm{O}\left(\mathrm{d}^{-1 / 4}\right)$ (trivial) $\|\mathrm{M}\|_{2 \rightarrow 4} \leq\|\mathrm{H}\|_{4 / 3 \rightarrow 4}\|\mathrm{X}\|_{4}$ (Cauchy Schwartz) $\|\mathrm{H}\|_{4 / 3 \rightarrow 4} \leq \mathrm{d}^{-1 / 4}$ (Hausdorff-Young)
$\Rightarrow\|\mathrm{M}\|_{2 \rightarrow 4} \leq \mathrm{d}^{-1 / 4}\|\mathrm{x}\|_{4}$
$\Rightarrow \operatorname{Pr}\left[\|H D x\|_{4}>\mathrm{d}^{-1 / 4}+\mathrm{t}\right]=\exp \left\{-\mathrm{t}^{2} / \mathrm{d}^{-1 / 2} /\|\mathrm{x}\|_{4}^{2}\right\}$

$R^{k=\sqrt{ } d}$

Controlling $\|x\|_{4}{ }^{2}$

> how to get $\|x\|_{4}^{2}=0\left(\mathrm{~d}^{-1 / 2}\right) ?$
> $\operatorname{Pr}\left[\|\mathrm{HDx}\|_{4}>\mathrm{d}^{-1 / 4}+\mathrm{t}\right]=\exp \left\{-\mathrm{t}^{2} / \mathrm{d}^{-1 / 2}\|\mathrm{x}\|_{4}^{2}\right\}$
need some slack $k=d^{1 / 2-\delta}$
max error probability for challenge: $\exp \{-k\}$ $\mathrm{k}=\mathrm{t}^{2} / \mathrm{d}^{-1 / 2}\|\mathrm{x}\|_{4}{ }^{2}$
$\Rightarrow \mathrm{t}=\mathrm{k}^{1 / 2} \mathrm{~d}^{-1 / 4}\|\mathrm{x}\|_{4}=\|\mathrm{x}\|_{4} \mathrm{~d}^{-\delta / 2}$

Controlling $\|x\|_{4}{ }^{2}$

how to get $\|x\|_{4}{ }^{2}=O\left(d^{-1 / 2}\right)$?
first round:

$$
\|\mathrm{HDx}\|_{4}<\mathrm{d}^{-1 / 4}+\|\mathrm{x}\|_{4} \mathrm{~d}^{-\delta / 2}
$$

second round: $\|H D " H D ' x\|_{4}<\mathrm{d}^{-1 / 4}+\mathrm{d}^{-1 / 4-\delta / 2}+\|\mathrm{x}\|_{4} \mathrm{~d}^{-\delta}$
$r=O(1 / \delta)$ 'th round:
$\left\|H D^{(r) \ldots D^{\prime}}\right\|_{4}<\mathrm{O}(r) \mathrm{d}^{-1 / 4} x$

Algorithm for $\mathrm{k}=\mathrm{d}^{1 / 2-\delta}$

running time O (d logd)
randomness O(d)

Open Problems

- Go beyond $k=d^{1 / 2}$

Conjecture: can do $O(d \log d)$ for $k=d^{1-\delta}$

- Approximate linear I_{2}-regression minimize $\|A x-b\|_{2}$ given A, b (overdetermined)
- State of the art for general inputs:

Õ(linear time) for \#\{variables\} < \#\{equations\} ${ }^{1 / 3}$

- Conjecture: can do Õ(linear time) "always"
- What is the best you can do in linear time? [A, Liberty, Singer 08]

Open Problem

Worthy of Own Slide

- Prove that JL onto $k=d^{1 / 3}$ (say) with distortion $\varepsilon=1 / 4$ (say) requires $\Omega(\mathrm{dlog}(\mathrm{d})$) time
- This would establish similar lower bound for FFT
- Long standing dormant open problem

