Fast Dimension Reduction

MMDS 2008

Nir Ailon

Google Research NY

•"Fast Dimension Reduction Using Rademacher Series on

Dual BCH Codes" (with Edo Liberty)

•The Fast Johnson Lindenstrauss Transform (with Bernard Chazelle)

Original Motivation: Nearest Neighbor Searching

- Wanted to improve algorithm by Indyk, Motwani for approx. NN searching in Euclidean space.
- Evidence for possibility to do so came from improvement on algorithm by Kushilevitz, Ostrovsky, Rabani for approx NN searching over GF(2).
- If we were to do the same for Euclidean space, it was evident that improving *run time* of *Johnson-Lindenstrauss* was key.

Later Motivation

- Provide more elegant proof, use modern techniques.
- Improvement obtained as bonus.
- Exciting use of
 - Talagrand concentration bounds
 - Error correcting codes

Random Dimension Reduction

- Sketching [Woodruff, Jayram, Li]
- (Existential) metric embedding
 - Distance preserving
 - Sets of points, subspaces, manifolds [Clarkson]
 - Volume preserving [Magen, Zouzias]
- Fast approximate linear algebra
 - SVD, linear regression (Muthukrishnan, Mahoney, Drineas, Sarlos)
- Computational aspects:
 - Time [A, Chazelle, Liberty] + {Sketching Community} + {Fast Approximate Linear Algebra Community}
 - randomness {Functional Analysis community}

Theoretical Challenge

Find random projection Φ from R^d to R^k (d big, k small) such that for every $x \in R^d$, $||x||_2=1$, $0<\epsilon<1$ with probability 1-exp{-k ϵ^2 } $||\Phi x||_2 = 1 \pm O(\epsilon)$

Usage

If you have n vectors $x_1..x_n \in \mathbb{R}^d$: set k=O($\varepsilon^{-2}\log n$) by union bound: for all i,j || Φx_i - Φx_j || \approx_{ε} || x_i - x_j ||

low-distortion metric embedding

"tight"

Solution: Johnson-Lindenstrauss (JL)

"dense random matrix"

So what's the problem?

- running time $\Omega(kd)$
- number of random bits $\Omega(kd)$
- can we do better?

Fast JL

time = O(k³ + dlog d) beats JL Ω (kd) bound for: log d < k < d^{1/3}

Improvement on FJLT

- O(d logk) for $k < d^{1/2}$
- beats JL up to $k < d^{1/2}$
- O(d) random bits

Algorithm (k=d^{1/2})

Error Correcting Codes

Fact (easily from properties of dual BCH): $||B^t||_{2\rightarrow 4} = O(1)$

for
$$y^t \in \mathbb{R}^k$$
 with $||y||_2 = 1$:
 $||yB||_4 = O(1)$

$\begin{array}{l} \mbox{Rademacher Series} \\ \mbox{on Error Correcting Codes} \\ \mbox{look at r.v. BDx} \in (\mathbb{R}^k, \mathbb{I}_2) \\ \mbox{BDx} = \Sigma D_{ii} \overbrace{x_i B_{\cdot i}} D_{ii} \in_{\mathbb{R}} \{\pm 1\} \quad i=1...d \\ = \Sigma D_{ii} M_{\cdot i} \end{array}$

Talagrand's Concentration Bound for Rademacher Series

 $Z = ||\Sigma D_{ii}M_{i}||_{p}$ (in our case p=2)

 $\Pr[|Z-EZ| > \epsilon] = O(\exp\{-\epsilon^2/4 ||M||_{2\to p}^2\})$

Rademacher Series on Error Correcting Codes look at r.v. BDx \in (R^k, I₂) $Z = ||BDx||_2 = ||\Sigma D_{ii}M_{i}||_2$ $||M||_{2\rightarrow 2} \leq ||x||_4 ||B^t||_{2\rightarrow 4}$ (Cauchy-Schwartz) by ECC properties: $||M||_{2\to 2} \le ||x||_4 O(1)^{\perp}$ trivial: $EZ = ||x||_2 = 1$ Х

Rademacher Series on Error Correcting Codes look at r.v. BDx \in (R^k, I₂) $Z = ||BDx||_2 = ||\Sigma D_{ii}M_{i}||_2$ $||M||_{2\to 2} = O(||x||_4)$ $F_{7} = 1$ $\Pr[|Z-EZ| > \varepsilon] = O(\exp\{-\varepsilon^2/4||M||_{2\rightarrow 2}^2\})$ $\Rightarrow \Pr[|Z-1| > \varepsilon] = O(\exp\{-\varepsilon^2/||x||_{\lambda}^2\})$ how to get $||x||_4^2 = O(k^{-1}=d^{-1/2})$? Φχ Х Challenge: w. prob. exp{-k ϵ^2 } deviation of more than ε Rd

Controlling $||x||_4^2$

how to get $||x||_4^2 = O(k^{-1}=d^{-1/2})$?

- if you think about it for a second...
- "random" x has ||x||₄²=O(d^{-1/2})
- but "random" x easy to reduce: just output first k dimensions
- are we asking for too much?
- no: truly random x has strong bound on ||x||_p for all p>2

Controlling ||x||₄²

how to get $||x||_4^2 = O(k^{-1}=d^{-1/2})$?

- can multiply x by orthogonal matrix
- try matrix HD

• Z =
$$||HDx||_4$$

= $||\Sigma D_{ii}x_iH_{\cdot i}||_4$
= $||\Sigma D_{ii}M_{\cdot i}||_4$

• by Talagrand: $Pr[|Z-EZ| > t] = O(exp\{-t^2/4||M||_{2\rightarrow 4}^2\})$

$$\begin{split} \mathsf{E} Z &= \mathsf{O}(\mathsf{d}^{-1/4}) \text{ (trivial)} \\ ||\mathsf{M}||_{2 \to 4} \leq ||\mathsf{H}||_{4/3 \to 4} ||\mathsf{x}||_4 \\ & \text{(Cauchy Schwartz)} \end{split}$$

(HD used in [AC06] to control $||HDx||_{\infty}$)

Controlling ||x||₄²

how to get $||x||_4^2 = O(k^{-1}=d^{-1/2})$?

- $Z = ||\Sigma D_{ii}M_{i}||_{4} \qquad M_{i} = x_{i}H_{i}$
- $$\label{eq:pressure} \begin{split} & \text{Pr}[~|Z\text{-}EZ| > t~] = O(exp\{\text{-}t^2/4||M||_{2\to 4}{}^2\}) \text{ (Talagrand)} \\ & \text{EZ} = O(d^{-1/4}) \text{ (trivial)} \end{split}$$

Χ 🔨

Φχ

×

 $||\mathbf{M}||_{2\to 4} \leq ||\mathbf{H}||_{4/3\to 4} ||\mathbf{X}||_4 \text{ (Cauchy Schwartz)}$

 $||H||_{4/3\rightarrow4} \le d^{-1/4}$ (Hausdorff-Young)

 $\Rightarrow ||M||_{2 \rightarrow 4} \le d^{-1/4} ||x||_4$

 $\Rightarrow \Pr[||HDx||_4 > d^{-1/4} + t] = \exp\{-t^2/d^{-1/2}||x||_4^2\}$

Controlling $||x||_4^2$

how to get $||x||_4^2 = O(d^{-1/2})$? Pr[||HDx||_4 > d^{-1/4}+ t] = exp{-t²/d^{-1/2}||x||_4²}

need some slack k=d^{1/2- δ} max error probability for challenge: exp{-k} k = t²/d^{-1/2}||x||₄² \Rightarrow t = k^{1/2}d^{-1/4}||x||₄ = ||x||₄d^{- $\delta/2$}

X

Φх

$$r=O(1/\delta)'th round:$$

$$||HD^{(r)}...HD'x||_{4} < O(r)d^{-1/4}$$

$$... with probability 1-O(exp{-k})'by union bound R^{k=\sqrt{d}}$$

 $||HD''HD'x||_4 < d^{-1/4} + d^{-1/4-\delta/2} + ||x||_4 d^{-\delta}$

second round:

first round:

how to get $||x||_4^2 = O(d^{-1/2})$?

 $||HDx||_4 < d^{-1/4} + ||x||_4 d^{-\delta/2}$

Controlling ||x||₄²

Algorithm for $k=d^{1/2-\delta}$

running time O(d logd) randomness O(d)

Open Problems

- Go beyond k=d^{1/2}
 Conjecture: can do O(d log d) for k=d^{1-δ}
- Approximate linear I₂-regression minimize ||Ax-b||₂ given A,b (overdetermined)
 - State of the art for *general inputs*:
 Õ(linear time) for #{variables} < #{equations}^{1/3}
 Conjecture: can do Õ(linear time) "always"
- What is the best you can do in linear time? [A, Liberty, Singer 08]

Open Problem Worthy of Own Slide

- Prove that JL onto k=d^{1/3} (say) with distortion ε=1/4 (say) requires
 Ω(dlog(d)) time
- This would establish similar lower bound for FFT

- Long standing dormant open problem