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Agenda

• Some massive data analysis problems on the internet.

• Earlier work on ranking.

• Web-search ranking: some theoretical issues.

– relation to matrix reconstruction.
– relating reconstruction error to ranking error.
– statistical error: derive bounds independent of massive web-size.
– learning method: importance weighted regression.
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Some Massive Data Analysis Problems at Yahoo

• Straight forward applications of basic classification.

• Community, social network and user behavior analysis.

• Advertizing.

• Ranking problems and applications.
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Some Basic Classification Problems

• Classification of text-documents.

– email spam, web-page spam.
– web-page content classification, document type classification, etc.
– adversarial scenario; dynamic nature.

• Basic algorithms: linear classification, kernels, boosting, etc.

• Feature engineering very important: text + structured non-text features.

• Some problems need more complicated modeling:

– methods to use link information (classification with web-graph structure)
– methods to take advantage of community effect.
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Community analysis

• Social network (web 2.0): users help each other.

– tagging, blogging, reviews, user provided content, etc
– methods to encourage users to interact and provide contents.
– methods to help users finding quality information more easily.
– methods to analyze user behavior/intention.

• Classification: determine content quality, user expertise on topics, etc

• Ranking: rank content based on user intention (question answering, ads).

• Social network connectivity graphs with typed (tagged) edges.

– link prediction and tag prediction.
– hidden community discovery.
– Personalized recommender system (ranking).
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Advertizing

• What ads to put on what page:

– click through rate prediction.
– user intention analysis.
– personalization (predict future behavior based on historic behavior).

• Matching:

– closeness between keywords, queries, contents.
– suggest better keywords or summaries for advertisers.

• Predict quality of advertisers.

• Predict quality of user clicks.
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Ranking Problems

• Rank a set of items and display to users in corresponding order.

• Important in web-search:

– web-page ranking
∗ display ranked pages for a query

– query-refinement and spelling correction
∗ display ranked suggestions and candidate corrections

– web-page summary
∗ display ranked sentence segments

– related: select advertisements to display for a query.
– related: crawling/indexing:
∗ which page to crawl first
∗ pages to keep in the index: priority/quality
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Earlier Work on Statistical Ranking

• Statistics: most related is ordinal regression (ordered output)

– in ranking, we want to order inputs.

• Machine learning: pairwise preference learning (local and global)

– learn a local scoring function f for items to preserve preference ≺.
∗ two items x and x′: f(x) < f(x′) when x ≺ x′.
∗ ordering inputs according to x.

– learn a pair-wise decision function f
∗ f(x, x′) → {0, 1}: whether x ≺ x′.
∗ need method to order x using f(x, x′) (related: sorting with noise).

– learn a global rank-list decision function f
∗ two ordered rank-list I = {xi1, . . . , xim} and I ′ = {xi′1

, . . . , xi′m}.
∗ learn a global scoring function for rank-list: f(I) < f(I ′) when I ≺ I ′.
∗ modeling and search issues (related to structured-output prediction)
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Theoretical Results on Ranking

– Global ranking criterion:
∗ number of mis-ordered pairs: ExEx′I(x ≺ x′&f(x) ≥ f(x′)).
∗ related to AUC (area under ROC) in binary classification.
∗ studied by many authors: Agarwal, Graepel, Herbrich, Har-Peled, Roth,

Rudin, Clemencon, Lugosi, Vayatis, Rosset ...
– Practical ranking (e.g. web-search):
∗ require subset ranking model
∗ focus quality on top (not studied except a related paper [Rudin, COLT 06]).

– Our goal:
∗ introduce the sub-set ranking model.
∗ theoretically analyze how to solve a large scale ranking problem
· learnability and error bounds.
· importance sampling/weighting crucial in the analysis.

8



Web-Search Problem

• User types a query, search engine returns a result page:

– selects from billions of pages.
– assign a score for each page, and return pages ranked by the scores.

• Quality of search engine:

– relevance (whether returned pages are on topic and authoritative)
– presentation issues (diversity, perceived relevance, etc)
– personalization (predict user specific intention)
– coverage (size and quality of index).
– freshness (whether contents are timely).
– responsiveness (how quickly search engine responds to the query).
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Relevance Ranking as Matrix Reconstruction

• Massive size matrix

– rows: all possible queries
– columns: all web-pages (Yahoo index size disclosed last year: 20 billion)

• Question: can we reconstruct the whole matrix from a few rows?

– no if treated as matrix reconstruction without additional information
∗ why: singular value decays slowly.

– yes if given additional features characterizing each matrix entry
∗ treat as a statistical learning problem.
∗ require more complicated learning theory analysis.
∗ Frobenius norm (least squares error) not good reconstruction measure.

• Learning theory can give error/concentration bounds for matrix reconstruction.

– some ideas from matrix reconstruction may be applicable in learning.
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Relevance Ranking: Statistical Learning Formulation

• Training:

– randomly select queries q, and web-pages p for each query.
– use editorial judgment to assign relevance grade y(p, q).
– construct a feature x(p, q) for each query/page pair.
– learn scoring function f̂(x(p, q)) to preserve the order of y(p, q) for each q.

• Deployment:

– query q comes in.
– return pages p1, . . . , pm in descending order of f̂(x(p, q)).
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Measuring Ranking Quality

• Given scoring function f̂ , return ordered page-list p1, . . . , pm for a query q.

– only the order information is important.
– should focus on the relevance of returned pages near the top.

• DCG (discounted cumulative gain) with decreasing weight ci

DCG(f̂ , q) =
m∑

j=1

cir(pi, q).

• ci: reflects effort (or likelihood) of user clicking on the i-th position.
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Subset Ranking Model

• x ∈ X : feature (x(p, q) ∈ X )

• S ∈ S: subset of X ({x1, . . . , xm} = {x(p, q) : p} ∈ S)

– each subset corresponds to a fixed query q.
– assume each subset of size m for convenience: m is large.

• y: quality grade of each x ∈ X (y(p, q)).

• scoring function f : X × S → R.

– ranking function rf(S) = {ji}: ordering of S ∈ S based on scoring function
f .

• quality: DCG(f, S) =
∑m

i=1 ciEyji
|(xji

,S) yji
.
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Some Theoretical Questions

• Learnability:

– subset size m is huge: do we need many samples (rows) to learn.
– focusing quality on top.

• Learning method:

– regression.
– pair-wise learning? other methods?

• Limited goal to address here:

– can we learn ranking by using regression when m is large.
∗ massive data size (more than 20 billion)
∗ want to derive: error bounds independent of m.

– what are some feasible algorithms and statistical implications.
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Bayes Optimal Scoring

• Given a set S ∈ S, for each xj ∈ S, we define the Bayes-scoring function as

fB(xj, S) = Eyj|(xj,S) yj

• The optimal Bayes ranking function rfB
that maximizes DCG

– induced by fB

– returns a rank list J = [j1, . . . , jm] in descending order of fB(xji
, S).

– not necessarily unique (depending on cj)

• The function is subset dependent: require appropriate result set features.
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Simple Regression

• Given subsets Si = {xi,1, . . . , xi,m} and corresponding relevance score
{yi,1, . . . , yi,m}.

• We can estimate fB(xj, S) using regression in a family F :

f̂ = arg min
f∈F

n∑
i=1

m∑
j=1

(f(xi,j, Si)− yi,j)2

• Problem: m is massive (> 20 billion)

– computationally inefficient
– statistically slow convergence
∗ ranking error bounded by O(

√
m)× root-mean-squared-error.

• Solution: should emphasize estimation quality on top.
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Importance Weighted Regression

• Some samples are more important than other samples (focus on top).

• A revised formulation: f̂ = arg minf∈F
1
n

∑n
i=1L(f, Si, {yi,j}j), with

L(f, S, {yj}j) =
mX

j=1

w(xj, S)(f(xj, S)− yj)
2
+ u sup

j
w
′
(xj, S)(f(xj, S)− δ(xj, S))

2
+

• weight w: importance weighting focusing regression error on top

– zero for irrelevant pages

• weight w′: large for irrelevant pages

– for which f(xj, S) should be less than threshold δ.

• importance weighting can be implemented through importance sampling.
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Relationship of Regression and Ranking

Let Q(f) = ESL(f, S), where

L(f, S) = E{yj}j|SL(f, S, {yj}j)

=
m∑

j=1

w(xj, S)Eyj|(xj,S) (f(xj, S)− yj)2 + u sup
j
w′(xj, S)(f(xj, S)− δ(xj, S))2+.

Theorem 1. Assume that ci = 0 for all i > k. Under appropriate parameter
choices with some constants u and γ, for all f :

DCG(rB)−DCG(rf) ≤ C(γ, u)(Q(f)− inf
f ′
Q(f ′))1/2.
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Appropriate Parameter Choice (for previous Theorem)

• One possible theoretical choice:

– Optimal ranking order: JB = [j∗1 , . . . , j
∗
m], where fB(xj∗i

) is arranged in
non-increasing order.

– Pick δ such that ∃γ ∈ [0, 1) with δ(xj, S) ≤ γfB(xj∗
k
, S).

– Pick w such that for fB(xj, S) > δ(xj, S), we have w(xj, S) ≥ 1.
– Pick w′ such that w′(xj, S) ≥ I(w(xj, S) < 1).

• Key in this analysis:

– focus on relevant documents on top.
–

∑
j w(xj, S) is much smaller than m.
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Generalization Performance with Square Regularization

Consider scoring fβ̂(x, S) = β̂Tψ(x, S), with feature vector ψ(x, S):

β̂ = arg min
β∈H

"
1

n

nX
i=1

L(β, Si, {yi,j}j) + λβ
T
β

#
, (1)

L(β, S, {yj}j) =

mX
j=1

w(xj, S)(fβ(xj, S)− yj)
2
+ u sup

j
w
′
(xj, S)(fβ(xj, S)− δ(xj, S))

2
+.

Theorem 2. Let M = supx,S ‖φ(x, S)‖2 and W = supS[
∑

xj∈S w(xj, S) +
u supxj∈S w

′(xj, S)]. Let fβ̂ be the estimator defined in (1). Then we have

DCG(rB)− E{Si,{yi,j}j}ni=1
DCG(rf

β̂
)

≤C(γ, u)

"„
1 +

WM
√

2λn

«2

inf
β∈H

(Q(fβ) + λβ
T
β)− inf

f
Q(f)

#1/2

.
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Interpretation of Results

• Result does not depend on m, but the much smaller quantity quantity W =
supS[

∑
xj∈S w(xj, S) + u supxj∈S w

′(xj, S)]

– emphasize relevant samples on top.
– a refined analysis can replace sup over S by some p-norm over S.

• Can control generalization for the top portion of the rank-list even with large
m.

– learning complexity does not depend on the majority of items near the
bottom of the rank-list.

– the bottom items are usually easy to estimate.
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Some Conclusions

• Web-search ranking problem can be viewed as a more sophisticated matrix
reconstruction problem with a different error criterion.

• Ranking quality near the top is most important.

• Solving ranking problem using regression:

– small least squares error does not imply good ranking error.
– theoretically solvable using importance weighted regression: can prove

error bounds independent of the massive web-size.

• Subset features are important.
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