

Incorporating Query Difference for Learning Retrieval Functions in Web Search

Hongyuan Zha, Zhaohui Zheng, Haoying Fu, Gordon Sun

The Pennsylvania State University/Yahoo! Inc.

MMDS, Stanford, June 21-24, 2006

Outline

- Web search
- A Risk Minimization Framework/Multi-task Learning
- aTVT: Incorporating Query Difference
- Experiments

Introduction

- Retrieval functions: rank documents in response to user queries
- Retrieval models and methods (research done in IR/WWW/NA):
 - vector space model
 - probabilistic model
 - many more ...

[Algorithms and methods from machine learning]

4/29

Search Engine Ranking Problems

Input: user queries Output: ranked lists of documents

Basic procedure (Multi-stage ranking)

- 1) Intial stages: select a list of documents potentially relevant to the query using cheaper features
- 2) Later stages: use more expensive features to generate ranked list of documents

Examples

- 1) select documents that contain all the required query words: intersecting inverted word lists (basic IR methods)
- 2) ranking based on simple linear combinations of features
- 3) (cluster of machines) parallel execution of the above

6/29

Examples (Cont'd)

Extracting other features:

. . .

- Query-document feastures
 title
 url path
 abstract/description (from the metatags)
 keyphrases (comma separated list of phrases)
 body (rest of document)
 anchortext (anchortext pointing to document)
- 2. Document features (link, spam, etc.)
- 3. Query features (length, language, category, etc.)

Designing Ranking Functions

The feature vector $x = [x_1, \ldots, x_n]$ is extracted for each querydocument pair, the goal is to construct a function h(x) such that

h(x) > h(x')

implies that x is more relevant than x', i.e., list of documents can be sorted according to $\{h(x)\}.$

- 1) Manual Tuning (function form and/or parameter values)
- 2) Using machine learning methods: collect training set with labeled data, learn ranking functions either as a problem of

classification/regression/ranking

Generate Training Set

- 1. Sample queries from query logs
- 2. Obtain query-url pairs
- 3. Judges score query-url pairs by assigning grades: perfect, good, ...

 \Rightarrow training data in the form of labeled feature vectors for query-document pairs $\{(x^i,y^i)\}_{i=1}^N.$

Need to find a function h to match judges' grades, i.e.,

$$h(x^i) \approx y^i, \quad i = 1, \dots, N.$$

Outline

- Web search
- A Risk Minimization Framework/Multi-task Learning

PENNSTATE

- aTVT: Incorporating Query Difference
- Experiments

10/29

A Risk Minimization Framework

- \mathcal{D} , the set of all the documents
- \mathcal{L} , the set of labels (perfect, good, ...)
- \mathcal{Q} , the set of all potential user queries

Model each query $q \in \mathcal{Q}$ as a probabilistic distribution P_q over $\mathcal{D} \times \mathcal{L}$,

 $P_q(d,\ell), \quad d \in \mathcal{D}, \ \ell \in \mathcal{L}$

i.e., the probability of document d being labeled as ℓ w.r.t. query q.

A loss function L over the set $\mathcal{L} \times \mathcal{L}$,

 $L: \mathcal{L} \times \mathcal{L} \mapsto \mathcal{R}^1_+.$

A class of functions ${\cal H}$ to select the retrieval function,

 $h: \mathcal{D} \mapsto \mathcal{L}.$

For a specific query q, the learning problem (classification or regression problem): find $h_q^* \in \mathcal{H}$

 $h_q^* = \arg \min_{h \in \mathcal{H}} \mathcal{E}_{P_q(d,l)} L(\ell, h(d)).$

Minimizing expected loss!

Many Queries

1) Web search is not about learning h_q^* for some particular q

2) Learn a retrieval function h^* that will be good for all $q \in \mathcal{Q}$

3) Conceptually, need to deal with potentially *infinite* number of *related* learning problems, each for one of the query $q \in Q$.

A multi-task learning problem

Specify a distribution over Q: $P_Q(q)$ indicate the probability that a specific query q is issued, approximated by frequency in the query logs.

Risk Minimization

 $h^* = \arg \min_{h \in \mathcal{H}} \mathcal{E}_{P_Q} \mathcal{E}_{P_q} L(\ell, h(q, d))$

Empirically ...

1) Sample a set of queries $\{q_i\}_{i=1}^Q$ from the distribution P_Q , for each q, and sample a set of documents from \mathcal{D} for labeling \Rightarrow training data,

$$\{d_{qj}, l_{qj}\}, \quad q = 1, \dots, Q, \ j = 1, \dots, n_q$$

2) Empirical risk minimization with regularization,

$$h^* = \arg\min_{h \in \mathcal{H}} \sum_{q=1}^{Q} \sum_{j=1}^{n_q} L(\ell_{qj}, h(q, d_{qj})) + \lambda \underbrace{\Omega(h)}_{\text{reg. term}}$$

14/29

An Oversimplified Example

 q_1 : "harvard university", 13 million search results on Yahoo q_2 : "college of san mateo", two orders of magnitude less results

A retrieval function h(x) using x = # inbound links to a document.

 $q_1: x = 100000 (P), 80000(G), 50000(B)$ $q_2: x = 1000 (P), 800 (P), 500 (B)$ $0 \Leftrightarrow \text{perfect}, 1 \Leftrightarrow \text{good}, 2 \Leftrightarrow \text{bad}.$

Need to find a monotonically decreasing function h such that for q_1

 $h(100000) \approx 0, \ h(80000) \approx 1, \ h(50000) \approx 2$

and for q_2 ,

 $h(1000) \approx 0, \ h(800) \approx 1, \ h(500) \approx 2.$

Query Classes

Training set, $[d_{qj}, q] \Leftrightarrow x_{qj}$, $l_{qj} \Leftrightarrow y_{qj}$,

$$\{x_{qj}, y_{qj}\}, \quad q = 1, \dots, Q, \ j = 1, \dots, n_q,$$

 x_{qj} denotes the feature vector for the query-document pair $\{q, d_{qj}\}$. Split x_{qj} into three parts,

$$x_{qj} = [x_{qj}^Q, \; x_{qj}^D, \; x_{qj}^{QD}]$$

Two extremes:

1) Only use $[x_{qj}^D, x_{qj}^{QD}]$, ignoring query difference 2) Have one $h_q([x_{qj}^D, x_{qj}^{QD}])$ for each query $q \in Q$. Better:

A single function $h_q([x_{qj}^D, x_{qj}^D, x_{qj}^{QD}])$. But it is hard to figure out the right (granularity of) x_{qj}^D .

16/29

Nuisance Parameters/Latent Variables

Basic idea: let the data implicitly capture this set of adequate query-features and bypass its explicit construction.

[Introduction of nuisance parameters (functions)/latent variables]

Incorporating Query Difference

We use regression with squared-error loss function,

$$L(h) = \sum_{q=1}^{Q} \sum_{j=1}^{n_q} (y_{qj} - h(x_{qj}))^2.$$

To incorporate query-dependent effects, we seek to find h and $g_q, q = 1, \ldots, Q$, to minimize

$$L(h,g) = \sum_{q=1}^{Q} \sum_{j=1}^{n_q} [y_{qj} - g_q(h(x_{qj}))]^2, \qquad (1)$$

where $g_q(\cdot)$ is a general monotonically increasing function, and $g = [g_1, \ldots, g_Q]$.

- g_q captures the difference of queries
- related to response transformation in regression
- \bullet for a new query $q^* \Rightarrow g_{q^*},$ but rankings based on $g_{q^*}(h)$ and h are exactly the same

For simplicity, we focus on the linear case,

$$g_q(x) = \beta_q + \alpha_q x, \quad q = 1, \dots, Q$$

with $\alpha_q \ge 0$.

Optimization on the regularized empirical risk

$$L(h,\beta,\alpha) = \sum_{q=1}^{Q} \sum_{j=1}^{n_q} [y_{qj} - \beta_q - \alpha_q h(x_{qj})]^2 + \lambda_\beta \|\beta\|_p^p + \lambda_\alpha \|\alpha\|_p^p + \lambda_h \Omega(h),$$

where $\beta = [\beta_1, \ldots, \beta_Q]$ and $\alpha = [\alpha_1, \ldots, \alpha_Q]$, and $\lambda_\beta, \lambda_\alpha$ and λ_h are regularization parameters.

Coordinate Descent

Basic idea: alternate between optimizing against h and optimizing against β and $\alpha.$

Nonlinear regression

For fixed β and $\alpha,$ define the modified residuals

$$\hat{y}_{qj} = (y_{qj} - \beta_q) / \alpha_q, \quad q = 1, \dots, Q, \ j = 1, \dots, n_q.$$

Then find h to solve the following weighted nonlinear regression problem

$$\sum_{q=1}^{Q} \sum_{j=1}^{n_q} \alpha_q^2 [\hat{y}_{qj} - h(x_{qj})]^2 + \lambda_h \Omega(h).$$

We use gradient boosting to estimate h.

Optimize against β and α

For fixed h,

$$\min_{\beta,\alpha} \sum_{q=1}^{Q} \sum_{j=1}^{n_q} \left[y_{qj} - \beta_q - \alpha_q h(x_{qj}) \right]^2 + \lambda_\beta \|\beta\|_p^p + \lambda_\alpha \|\alpha\|_p^p.$$

Decouple into Q separate optimization problems, for $q=1,\ldots,Q$,

$$\min_{\beta_q,\alpha_q} \sum_{j=1}^{n_q} [y_{qj} - \beta_q - \alpha_q h(x_{qj})]^2 + \lambda_\beta |\beta_q|^p + \lambda_\alpha |\alpha_q|^p.$$

Convergence Analysis

 ${\cal H}$ a reproducing kernel Hilbert space (RKHS) with kernel function K, and $\Omega(h)=\|h\|_K^2.$

Theorem 1. The optimal function h^* for the optimization has the following form,

$$h^*(x) = \sum_{q=1}^{Q} \sum_{j=1}^{n_q} c_{qj} K(x_{qj}, x),$$

where $c_{qj}, q = 1, \ldots, Q, j = 1, \ldots, n_q$, are real numbers.

Theorem 2. Every limit point of $\{c^k, \beta^k, \alpha^k\}_{k=1}^{\infty}$ is a stationary point of $L(c, \beta, \alpha)$.

Data Collection

- randomly sample a certain number of queries from the query logs.
- label documents
- we finally represent each query-url pair with a feature vector.

 $\# \text{ of queries} \sim {\cal O}(10^3)$ and $\# \text{ of query-url pairs} \sim {\cal O}(10^5)$

Feature Engineering

For each query-document pair (q, d) with $q \in Q$ and $d \in D$, a feature vector $x = [x^Q, x^D, x^{QD}]$ is generated,

PENNSTATE

- Query-feature vector x^Q , e.g., the number of terms in the query, whether or not the query is a person name, etc.
- Document-feature vector x^D , e.g., the number of inbound links pointing to the document, the amount of anchor-texts in bytes for the document, and the language identity of the document, etc.
- Query-document feature vector x^{QD} , e.g., the number of times each term in the query q appears in the document d, the number of times each term in the query q appears in the anchor-texts of the document d, etc.

Experiment methodology

$$\min_{\{\alpha_q,\beta_q\}} \sum_{j=1}^{n_q} (\alpha_q y_{qj} + \beta_q - h(x_{qj}))^2 + \lambda_\alpha |(\alpha_q - 1)|_p^p + \lambda_\beta |\beta_q|_p^p$$

- Algorithm. Adaptive Target Value Transformation (aTVT). For each choice of regularization parameters λ_{α} and λ_{β} ,
- 1) initialize y_{qj}^0 to the assigned numerical values for each query-document pair (q, d);
- 2) iterate until the α_q^k and β_q^k do not change much, do the following,
 - a) fit a nonlinear function on $\{y_{qj}^{k-1}\}$ using gradient boosting.
 - b) obtain optimal values for the α_q^k and β_q^k .
 - c) $y_{qj}^k \leftarrow \alpha_q^k y_{qj}^{k-1} + \beta_q^k$.

Then $\alpha_q = \prod_{k=1}^K \alpha_q^k$, and $\beta_q = \sum_{k=1}^K (\beta_q^k \prod_{i=k+1}^K \alpha_q^i)$.

Performance Measures

(K. Järvelin and J. Kekäläinen, 2002)

- 1 . Precision-recall used in $\ensuremath{\mathsf{IR}}$
- 2. DCG (Discounted Cumulative Gain): Gain values G.

List of K ranked documents with gain vector G,

$$DCG = \sum_{i=1}^{K} \frac{G(i)}{\log_2(1+i)}.$$

Cross-validation for Comparison

- Randomly split the set of queries in data set into 10 folds and obtain 10 9-vs-1 combinations.
- For each 9-vs-1 combination, do the following:
 - learn a retrieval function using the data in the 9 folds as training data with and without aTVT, respectively.
 - test the learned retrieval function on the remaining one fold by computing the DCG values for the queries in the one fold.
- concatenate the above lists from the 10 combinations together to obtain a full list of query-dcg pairs for all the queries in the data set.
- Finally, we conduct Wilcoxon signed rank tests on the two lists and obtain the *p*-values.

Table 1: The dcgs and percentage dcg increases of retrieval function with a TVT over without a TVT and p values.

	$\lambda_{eta} = 1$	10
$\lambda_{\alpha}=1$	(+1.6%, p=0.01)	(+1.7%, p=0.006)
10	(+2.00%, p=0.002)	(+1.9%, p=0.002)
50	(+1.8%, p=0.002)	(+1.8%, p=0.008)
100	(+1.8%, p=0.007)	(+1.7%, p=0.003)

Table 2: dcg gains and corresponding *p*-values for queries sorted according to $|\alpha^{0.1} - 1.0| + |\beta/10|$

# top queries	dcg gain of aTVT	p-value
200	5.3%	0.002
300	4.2%	0.002
400	4.0%	0.0004
500	3.4%	0.0006
600	2.8%	0.001
700	2.6%	0.0006
800	2.3%	0.0005
all	2.0%	0.002

Recap

- Web search \Rightarrow multi-task learning \Rightarrow aTVT
- Internet/Web: sources of interesting and challenging problems

PENNSTATE