Workshop on Algorithms for Modern Massive Data Sets Stanford University and Yahoo! Research, June 21–24, 2006

TENSOR COMPRESSION FOR PETABYTE-SIZE DATA

Eugene Tyrtyshnikov

(joint work with Ivan Oseledets and Dmitry Savostyanov)

Institute of Numerical Mathematics

Russian Academy of Sciences

NONLOCAL DEPENDENCIES IN DATA

$$\int\limits_D G(x,y)\phi(y)dy=f(x),\qquad x,y\in D\subset R^d$$

$$egin{array}{lll} d=1 & x=(x_i) & \mathcal{A}=[g(x_i,y_j)]=[a_{ij}] \ d=2 & x=(x_{i_1,i_2}) & \mathcal{A}=[g(x_{i_1i_2},y_{j_1j_2})]=[a_{i_1i_2j_1j_2}]=[a_{(i_1j_1)(i_2j_2)}] \ d=2 & x=(x_{i_1,i_2,i_3}) & \mathcal{A}=[g(x_{i_1i_2i_3},y_{j_1j_2j_3})]=[a_{i_1i_2j_1j_2i_3j_3}]=[a_{(i_1j_1)(i_2j_2)(i_3j_3)}] \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline d = 1 & \mathcal{A} = [a_{ij}] & \text{matrix} \\ \hline d = 2 & \mathcal{A} = [a_{(i_1j_1)(i_2j_2)}] & 4-\text{tensor} \ / \ \text{matrix} \\ \hline d = 2 & \mathcal{A} = [a_{(i_1j_1)(i_2j_2)(i_3j_3)}] & 6-\text{tensor} \ / \ 3-\text{tensor} \end{array}$$

LARGE-SCALE ARRAYS

DIMENSION	GRID SIZE	MATRIX SIZE	n for mem = 1Gb	mem for $n=128$
2D BEM, $d = 1$	n	$\mathtt{mem}=n^2$	11000	125 Kb
3D BEM, $d = 2$	n^2	$\mathtt{mem}=n^4$	100	${f 2}~{ m Gb}$
3D VEM, $d = 3$	n^3	$\mathtt{mem}=n^6$	23	32 Tb

IDEA FOR TENSOR COMPRESSION

SEPARATE VARIABLES!

USE ONLY SMALL PORTION OF DATA!

RANK STRUCTURED APPROXIMATIONS

0 Initialization: $p=1,\,j_1=1.$

1 Compute column j_p , subtract current approximation values $ilde{A}_p$. Find pivot i_p .

2 Compute row i_p , subtract current approximation values \tilde{A}_p . Find pivot $j_{p+1} \neq j_p$.

3 Using the cross (i_p, j_p) , construct a new skeleton annihilating this cross.

4 Check stopping criterion, set p := p + 1, return to 1.

MAXIMAL VOLUME PRINCIPLE

Assume that

 $||A - [MATRIX \text{ OF RANK} \leq k]||_2 \leq \varepsilon$,

and let \boldsymbol{A} be a block matrix of the form

$$egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix},$$

where A_{11} is nonsingular, $k \times k$, and of maximal volume among all $k \times k$ submatrices. Then

$$||A_{22}-A_{21}A_{11}^{-1}A_{12}||_C \leq (k+1) \ arepsilon.$$

- S.A.Goreinov, E.E.Tyrtyshnikov, N.L.Zamarashkin, A theory of pseudo-skeleton approximations, *Linear Algebra Appl.* 261: 1–21 (1997).
- S.A.Goreinov, E.E.Tyrtyshnikov, The maximal-volume concept in approximation by low-rank matrices, *Contemporary Mathematics*, Vol. 208 (2001), 47–51.

APPROXIMATION OF MATRICES AND 3D ARRAYS

Reshaping (reordering of multi-indices):

$$egin{aligned} a_{ij} &= a_{(i_1,i_2,i_3)(j_1,j_2,j_3)} = a_{(i_1,j_1)(i_2,j_2)(i_3,j_3)} = a_{ ext{ijk}} \ & ext{i} &= (i_1,j_1), \ ext{j} &= (i_2,j_2), \ ext{k} = (i_3,j_3). \end{aligned}$$

Tensor approximation of a matrix:

$$Approx ilde{A}_r = \sum_{t=1}^r U_t imes V_t imes W_t, \qquad U_t = [u_{(i_1,j_1)t}], \ V_t = [v_{(i_2,j_2)t}], \ W_t = [w_{(j_3,j_3)t}].$$

Trilinear approximation of a tensor (3D array):

$$\mathcal{A} = [a_{ ext{ijk}}], \qquad a_{ ext{ijk}} pprox ilde{a}_{ ext{ijk}} = \sum_{t=1}^r u_{ ext{it}} v_{ ext{jt}} w_{ ext{kt}}.$$

Tensor approx. of a matrix \Leftrightarrow Trilinear approx. of a 3D array

3D ARRAYS AND MATRICES

Slices in one mode

Matrices of slices

TRILINEAR DECOMPOSITION

$$a_{ijk} = \sum_{t=1}^r u_{it} v_{jt} w_{kt}.$$

MINIMIZATION ALGORITHMS

$$\min_{u,v,w}\sum_{i,j,k}\left(\sum_{t=1}^r u_{it}v_{jt}w_{kt}-a_{ijk}
ight)^2.$$

[+] standard algorihms: ALS, Gauß-Newton, Damped LM Newton.
[-] costly iteration, slow convergence without a good initial guess.
[-] necessity of a priori knowledge of r.

TRILINEAR DECOMPOSITION

$$a_{ijk} = \sum_{t=1}^r u_{it} v_{jt} w_{kt}.$$

MATRIX-BASED ALGORITHMS

• r = n

Generalized Schur decomposition

$$\mathcal{A} = [A_k], \qquad A_k = U B_k V^ op, \quad Q^ op A_k Z = R B_k L^ op.$$

[+] Fast algorithms fetching a good initial guess [-] Restriction: r = n.

$\bullet r > n$

Matrix methods for overdetermined cases are not discussed in the literature.

TRILINEAR DECOMPOSITION

All methods are too slow for $n \geq 128$.

TUCKER DECOMPOSITION

$$a_{ijk} = \sum_{i'=1}^{r_1} \sum_{j'=1}^{r_2} \sum_{k'=1}^{r_3} g_{i'j'k'} u_{ii'} v_{jj'} w_{kk'},$$

Tucker factors U, V, W are orthogonal matrices, array $\mathcal{G} = [g_{i'j'k'}]$ is much smaller than \mathcal{A} .

TRILINEAR DECOMPOSITION FOR LARGE n

TUCKER DECOMPOSITION

1. Consider matrices of slices

$$egin{aligned} A^{(1)} &= [a^1_{i(jk)}] = [a_{ijk}], \ A^{(2)} &= [a^2_{j(ki)}] = [a_{ijk}], \ A^{(3)} &= [a^3_{k(ij)}] = [a_{ijk}], \end{aligned}$$

2. Compute SVD for each of them.

$$A^{(1)}=U\Sigma_1\Phi_1^ op, \qquad A^{(2)}=V\Sigma_2\Phi_2^ op, \qquad A^{(3)}=W\Sigma_3\Phi_3^ op,$$

3. Find the Tucker core via transformation

$$g_{i'j'k'} = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n a_{ijk} u_{ii'} v_{jj'} w_{kk'}.$$

 $ext{Complexity} = \mathcal{O}(n^4) ext{ plus } n^3 ext{ computations of the entries of } \mathcal{A}.$

We suggest an algorithm with almost linear complexity

Complexity = $\mathcal{O}(nr^3)$ plus $\mathcal{O}(nr^2)$ computations of the entries of \mathcal{A} .

3D CROSS EXISTENCE THEOREM

Suppose we are aware that

$$\mathcal{A} = \mathcal{G} imes_i oldsymbol{U} imes_j oldsymbol{V} imes_k oldsymbol{W} + oldsymbol{\mathcal{E}}, \quad ||oldsymbol{\mathcal{E}}|| = arepsilon$$

holds for some U, V, W and \mathcal{G} . Then there exist matrices U', V' and W' of sizes $n_1 \times r_1$, $n_2 \times r_2$ and $n_3 \times r_3$ and consisting of some r_1 columns, r_2 rows and r_3 fibers, of \mathcal{A} , respectively, and a tensor \mathcal{G}' such that

$$\mathcal{A} = \mathcal{G}' imes_i U' imes_j V' imes_k W' + \mathcal{E}',$$

where

$$||\mathcal{E}'||_C \leq (r_1r_2r_3+2r_1r_2+2r_1+1)arepsilon.$$

I.Oseledets, D.Savostyanov, E.Tyrtyshnikov,

Tucker dimensionality reduction of three-dimensional arrays in linear time, submitted to SIMAX, 2006.

$3\mathrm{D}\ \mathrm{CROSS}\ \mathrm{APPROXIMATION}\ \mathrm{Complexity} = \mathcal{O}(n^2)$

Find
$$\mathcal{A} \approx \tilde{\mathcal{A}} = \sum_{q=1}^{r} A_q \times w_q$$
.

- 1 Compute the slice A_{k_p} , subtract approx. values $\tilde{\mathcal{A}}$. Find pivot A_{k_p} .
- 2 Compute a fiber w_p , subtract approx. values $\tilde{\mathcal{A}}$. Find pivot $k_{p+1} \neq k_p$.
- 3 Skeleton $A_{k_p} imes w_p$ nullifies the slice-by-fiber cross.
- 4 Check stopping criterion, set p := p + 1, return to 1.

$3\mathrm{D}\ \mathrm{CROSS}\ \mathrm{APPROXIMATION}\ \mathrm{Complexity} = \mathcal{O}(nr^4)$

Find
$$\mathcal{A} \approx \tilde{\mathcal{A}} = \sum_{q=1}^{r^2} u_q \times v_q \times w_q.$$

1 Compute a cross approximation of the slice $A_{k_p} = \sum_{q=1}^{\prime} u_{pq} v_{pq}^{\top}$, subtract approx. values $\tilde{\mathcal{A}}$. Find pivot A_{k_p} (HOW CAN WE DO THIS?)

2 Compute a fiber w_p , subtract approx. values $\tilde{\mathcal{A}}$. Find pivot $k_{p+1} \neq k_p$.

3 Skeleton $\sum_{pq}^{r} u_{pq} \times v_{pq} \times w_{p}$ nullifies the slice-by-fiber cross.

4 Check stopping criterion, set p := p + 1, return to 1.

$$a_{ijk}=1/\sqrt{i^2+j^2+k^2}, \qquad 1\leq i,j,k\leq n$$

Ranks and approximation accuracy

	1 .10 -3		1 .10 -5			1 .10 -7	1 .10 -9	
n	r	err	r	err	r	err	r	err
64	7	3.77 ₁₀ -4	11	3.91 ₁₀ -6	14	5.7 ₁₀ —8	18	2.21 ₁₀ -10
128	8	5.19 ₁₀ -4	12	5.92 ₁₀ -6	17	2.00 ₁₀ -8	20	5.63 ₁₀ -10
256	9	4.11 ₁₀ -4	14	6.4 ₁₀ -6	19	3.46 ₁₀ -8	23	4.5 ₁₀ -10
512	9	4.93 ₁₀ -4	15	6.67 ₁₀ -6	21	2 . 92 ₁₀ -8	26	3.27 ₁₀ -10
1024	10	5 . 47 ₁₀ -4	17	3 . 21 ₁₀ -6	23	3.95 ₁₀ -8	29	4.73 ₁₀ -10
2048	11	4.98 ₁₀ -4	18	5 . 26 ₁₀ -6	25	6.83 ₁₀ -8	31	5.94 ₁₀ -10
4096	11	8.4 ₁₀ -4	19	4.25 ₁₀ -6	27	3.56 ₁₀ -8	34	3.38 ₁₀ -10
8192	12	6.8 ₁₀ -4	20	6.00 ₁₀ -6	28	5.8 ₁₀ -8	36	3.66 ₁₀ -10
16384	13	2.69 ₁₀ -4	22	4.78 ₁₀ -6	30	5.65 ₁₀ -8	39	2.67 ₁₀ -10
32768	13	8.52 ₁₀ -4	23	6.09 ₁₀ -6	32	7 . 16 ₁₀ -8	41	5.51 ₁₀ -10
65536	14	6.27 ₁₀ -4	24	6.52 ₁₀ -6	34	7.89 ₁₀ -8	43	1.41 ₁₀ -9

$$a_{ijk}=1/\sqrt{i^2+j^2+k^2}, \qquad 1\leq i,j,k\leq n$$

Ranks and memory savings

		1 .₁₀ -3		1 .10 -5		1.10-7		1 .10 -9	
\boldsymbol{n}	full	r	mem	r	mem	r	mem	r	mem
64	2Mb	7		11		14		18	
128	$16 \mathrm{Mb}$	8		12		17		20	
256	128Mb	9		14		19		23	
512	1Gb	9		15		21		26	
1024	8Gb	10		17		23		29	
2048	64Gb	11		18		25		31	
4096	512Gb	11		19		27		34	
8192	4Tb	12	2.5Mb	20	4Mb	28	5.2Mb	36	7Mb
16384	$32 \mathrm{Tb}$	13	5Mb	22	8Mb	30	11Mb	39	15Mb
32768	$256 \mathrm{Tb}$	13	10Mb	23	17Mb	32	24Mb	41	20Mb
65536	2Pb	14	21Mb	24	36Mb	34	51Mb	43	64Mb

$$a_{ijk} = 1/(i^2+j^2+k^2), \qquad 1 \le i,j,k \le n$$

Ranks and approximation accuracy

	1 .10 -3		1 .10 -5			1 .10 -7	1 .10 -9	
n	r	err	r	err	r	err	r	err
64	8	3.43 ₁₀ -4	12	2.18 ₁₀ -6	15	4.1 ₁₀ -8	18	5.63 ₁₀ -10
128	9	4. 25 ₁₀ −4	13	5.81 ₁₀ -6	18	2.06 ₁₀ -8	21	5.26 ₁₀ -10
256	10	4.4 ₁₀ -4	15	3.89 ₁₀ -6	20	2.86 ₁₀ -8	24	4.78 ₁₀ -10
512	11	4.07 ₁₀ -4	17	3.49 ₁₀ -6	22	3.78 ₁₀ -8	27	4.55 ₁₀ -10
1024	12	4.78 ₁₀ -4	18	6.27 ₁₀ -6	24	5.39 ₁₀ -8	30	3.7 ₁₀ -10
2048	12	4.05 ₁₀ -4	20	3.73 ₁₀ -6	26	6.21 ₁₀ -8	33	3.31 ₁₀ -10
4096	13	3.8 ₁₀ -4	21	5 . 24 ₁₀ -6	28	5.11 ₁₀ -8	36	2.37 ₁₀ -10
8192	14	6.14 ₁₀ -4	22	4.56 ₁₀ -6	31	2.85 ₁₀ -8	38	3.78 ₁₀ -10
16384	15	8.08 ₁₀ -4	24	4.19 ₁₀ -6	32	4 .10 -8	41	5.65 ₁₀ -10
32768	15	8.2 ₁₀ -4	25	4.66 ₁₀ -6	34	5.41 ₁₀ -8	44	2.4 ₁₀ -10
65536	16	2.98 ₁₀ -4	26	5.69 ₁₀ -6	36	6.46 ₁₀ -8	46	4.38 ₁₀ -10

$$a_{ijk} = 1/(i^2+j^2+k^2), \qquad 1 \le i,j,k \le n$$

Ranks and memory savings

		1. ₁₀ -3		1.	1 .₁₀—5		1.10-7		LO-9
\boldsymbol{n}	full	r	mem	r	mem	r	mem	r	mem
64	2Mb	8		12		15		18	
128	$16 \mathrm{Mb}$	9		13		18		21	
256	128Mb	10		15		20		24	
512	1Gb	11		17		22		27	
1024	8Gb	12		18		24		30	
2048	64Gb	12		20		26		33	
4096	512 Gb	13		21		28		36	
8192	4Tb	14		22		31		38	
16384	$32 \mathrm{Tb}$	15	5Mb	24	9Mb	32	12Mb	41	15Mb
32768	$256 \mathrm{Tb}$	15	11Mb	25	19Mb	34	26Mb	44	33Mb
65536	2Pb	16	24Mb	26	40Mb	36	54Mb	46	69Mb

$$a_{ijk} = 1/(i^2+j^2+k^2)^{3/2}, \qquad 1 \leq i,j,k \leq n$$

Ranks and approximation accuracy

	1 . 10-3		1 .10 -5			1 .10 -7	1 .10 -9	
\boldsymbol{n}	r	err	r	err	r	err	r	err
64	7	3.81 ₁₀ -4	11	3 . 45 ₁₀ -6	15	2.03 ₁₀ -8	18	2.54 ₁₀ -10
128	8	2 . 95 ₁₀ -4	12	5.37 ₁₀ -6	16	5.36 ₁₀ -8	20	5.59 ₁₀ -10
256	8	3.82 ₁₀ -4	13	6.68 ₁₀ -6	18	6.09 ₁₀ -8	23	2.17 ₁₀ -10
512	8	3.56 ₁₀ -4	14	3 . 96 ₁₀ -6	20	3.77 ₁₀ -8	25	4.26 ₁₀ -10
1024	8	3.73 ₁₀ -4	15	3 . 92 ₁₀ -6	21	4.66 ₁₀ -8	27	3.68 ₁₀ -10
2048	8	3.72 ₁₀ -4	16	2 . 21 ₁₀ -6	23	2.58 ₁₀ -8	29	4.81 ₁₀ -10
4096	8	3.74 ₁₀ -4	16	3.84 ₁₀ -6	24	2.5 ₁₀ -8	31	4.53 ₁₀ -10
8192	8	3.74 ₁₀ -4	16	4.14 ₁₀ -6	25	4.92 ₁₀ -8	32	1.02 ₁₀ -9
16384	8	3.76 ₁₀ -4	16	6.16 ₁₀ -6	25	5.14 ₁₀ -8	34	9.38 ₁₀ -10
32768	8	3.75 ₁₀ -4	16	4.82 ₁₀ -6	26	5.46 ₁₀ -8	36	3.45 ₁₀ -10
65536	8	3.75 ₁₀ -4	16	9.00 ₁₀ -6	26	7.78 ₁₀ -8	37	5.28 ₁₀ -10

THEORY: TENSOR RANK ESTIMATES

Asymptotically smooth generating function: $a_{ij} = F(\operatorname{src}_i - \operatorname{obs}_j)$

$$egin{aligned} |D^{\mathrm{p}}F(v)| &\leq cd^{p}p! \|v\|^{g-p}, &orall p \geq 0.\ p &= (p_{1},\ldots,p_{m}), & p = p_{1}+\ldots+p_{m}, & D^{\mathrm{p}} &= rac{\partial^{p_{1}}\ldots\partial^{p_{m}}}{(\partial v_{1})^{p_{1}}\ldots(\partial v_{m})^{p_{m}}}. \end{aligned}$$

Tensor grids:

$$\mathrm{src}_i = (x_1, \ldots, x_d), \hspace{1em} \mathrm{obs}_i = (y_1, \ldots, y_d)$$

THEOREM.

$$r \leq \left(c_0+c_1\log h^{-1}
ight)p^{d-1}+ au, \ |\{A- ilde{A}_r\}_{ij}| \leq c_2\gamma^p \|\mathrm{src}_i-\mathrm{obs}_j\|^g.$$

E.E.Tyrtyshnikov,

Tensor approximations of matrices generated by asymptotically smooth functions, *Sbornik: Mathematics* **194**, No. 5-6 (2003), 941–954 (translated from *Mat. Sb.* **194**, No. 6 (2003), 146–160).

THEORY: TENSOR RANK ESTIMATES

Approximation error (d = 3)

$$arepsilon_{ ext{abs}} = c_2 \gamma^p \|v\|^g, \quad arepsilon = arepsilon_{ ext{rel}} = c_2 \gamma^p$$

 $r \leq (c_0 + c_1 \log h^{-1}) (c_3 \log arepsilon^{-1} + c_4)^2 + \tau.$
On almost uniform grids $h^{-1} \sim n$

 $r \leq c \log n \log^2 arepsilon^{-1}.$

$$a_{ijk}=1/\sqrt{i^2+j^2+k^2}, \qquad 1\leq i,j,k\leq n$$

Tensor rank versus array size

 $r \sim \log n$

$$a_{ijk}=1/\sqrt{i^2+j^2+k^2}, \qquad 1\leq i,j,k\leq n$$

Tensor rank versus approximation error

$$a_{ijk} = 1/(i^2+j^2+k^2), \qquad 1 \le i,j,k \le n$$

Tensor rank versus array size

 $r \sim \log n$

$$a_{ijk} = 1/(i^2+j^2+k^2), \qquad 1 \le i,j,k \le n$$

Tensor rank versus approximation error

ASYMPTOTICS OF TENSOR RANK Theory

$$r \lesssim \log n \log^2 arepsilon^{-1}$$

Practice

$r \sim \log n \log \varepsilon^{-1}$

TENSOR SOLVER WITH TENSOR VECTORS

$$\int\limits_D rac{1}{|x-y|} \phi(y) dy = f(x), \qquad x,y \in D = [0:1]^3$$

Au = f, u_{ijk}, f_{ijk} on the grid $n \times n \times n.$

grid size \boldsymbol{n}	16	32	64	128	256	512
full matrix	128 Mb	8 Gb	512Gb	32 Tb	2 Pb	128 Pb
tensor format	50 Kb	200 Kb	$1.1 \mathrm{Mb}$	$5 \mathrm{Mb}$	22Mb	$96\mathrm{Mb}$
time	0.3 sec	1.5sec	12.4 sec	$48 \mathrm{sec}$	2.5 min	16 min

FAST SIMULTANEOUS ORTHOGONAL REDUCTION TO TRIANGULAR MATRICES

Given $n \times n$ real matrices $A_1, ..., A_r$, find orthogonal $n \times n$ matrices Q and Z such that matrices

$$B_k = QA_kZ$$

are as upper triangular as possible.

• I.Oseledets, D.Savostyanov, E.Tyrtyshnikov, Fast simultaneous orthogonal reduction to triangular matrices, submitted to SIMAX, 2006.

SIMULTANEOUS EIGENVALUE PROBLEM

Given real matrices $A_1, ..., A_r$, find orthogonal Q and Z making matrices $QA_1Z, ..., QA_rZ$ as upper triangular as possible.

DEFLATION STEP:

$$QA_kZpprox igg(egin{array}{ccc} \lambda_k & v_k^ot\ 0 & B_k \end{array}igg) \qquad \Leftrightarrow \qquad QA_kZe_1pprox \lambda_ke_1$$

$$A_k x = \lambda_k y, \qquad x = Z e_1, \quad y = Q^ op e_1.$$

ALGORITHM. Given r real matrices A_1, \ldots, A_r of size $n \times n$, find orthogonal matrices Q and Z such that the matrices QA_kZ are as upper triangular as possible:

1. Set
$$m = n$$
, $B_i = A_i$, $i = 1, ..., r$, $Q = Z = I$.

- 2. If m = 1 then stop.
- 3. Solve the simultaneous eigenvalue problem $B_k x = \lambda_k y, \ k = 1, ..., r$.
- 4. Find $m \times m$ Householder matrices Q_m , Z_m such that

$$x=lpha_1 Q_m^ op e_1, \; y=lpha_2 Z_m e_1.$$

5. Calculate C_k as $(m-1) \times (m-1)$ submatrices of matrices \widehat{B}_k defined as follows:

$$\widehat{B}_k = QB_kZ = \left(egin{array}{cc} lpha_k & v_k^+ \ arepsilon_k & C_k \end{array}
ight).$$

6. Set

$$Q \leftarrow egin{pmatrix} I_{(n-m) imes(n-m)} & 0 \ 0 & Q_m \end{pmatrix} Q, \; Z \leftarrow Z egin{pmatrix} I_{(n-m) imes(n-m)} & 0 \ 0 & Z_m \end{pmatrix}.$$

7. Set m = m - 1, $B_k = C_k$ and proceed to the step 2.

Gauss-Newton algorithm for the simultaneous eigenvalue problem

$$\sum_{j=1}^{n} A_{ij}^{k} x_{j} = \lambda_{k} y_{i}.$$
 (1)

Introduce $r \times n$ matrices

$$(a_j)_{ki}=A_{ij}^k, k=1,...,r,\;,i=1,...,n\;,j=1,...,n,$$

and a column vector $\boldsymbol{\lambda} = [\boldsymbol{\lambda}_1, ..., \boldsymbol{\lambda}_r]^{\top}$. Then (1) becomes

$$\sum_{j=1}^{n} x_j a_j = \lambda y^{\top}.$$
 (2)

Gauss-Newton: linearize the system producing an overdetermined linear system and then solve it in the least squares sense.

$$\sum_{j=1}^{n} \widehat{x}_{j} a_{j} = \Delta \lambda y^{\top} + \lambda \Delta y^{\top}, \quad \widehat{x} = x + \Delta, \quad ||\widehat{x}||_{2} = 1.$$
(3)

$$egin{aligned} & ext{Gauss-Newton:} \ &\sum_{j=1}^n \widehat{x}_j a_j = riangle \lambda y^ op + \lambda riangle y^ op, \quad \widehat{x} = x + riangle, \quad ||\widehat{x}||_2 = 1. \end{aligned}$$
 Exclude $riangle y$ and $riangle \lambda_k$:

$Hy = he_1, \ C\lambda = ce_1$

using Housholder matrices \boldsymbol{H} and \boldsymbol{C} (of sizes $\boldsymbol{n} \times \boldsymbol{n}$ and $\boldsymbol{r} \times \boldsymbol{r}$) such that

$$\sum_{j=1}^{n} \widehat{x}_{j} \widehat{a}_{j} = c e_{1} \triangle \widehat{y}^{\top} + h \triangle \widehat{\lambda} e_{1}^{\top}, \qquad (4)$$

$$\widehat{a}_j = C a_j H^ op, \quad riangle \widehat{y} = H riangle y, \quad riangle \widehat{\lambda} = C riangle \lambda.$$

Problem (4) is split into two independent problems:

- To find \hat{x} , minimize $||\sum_{j=1}^{n} b_j x_j||_F^2$, ||x|| = 1, where the matrices b_j are obtained from \hat{a}_j by replacing the elements in the first row and column by zeroes.
- Then, $\triangle \widehat{y}$ and $\triangle \widehat{\lambda}$ can be determined from the equations $(\sum_{j=1}^{n} \widehat{x}_{j} \widehat{a}_{j})_{k1} = h \triangle \widehat{\lambda}_{k}, \ k = 2, ..., r, \quad (\sum_{j=1}^{n} \widehat{x}_{j} \widehat{a}_{j})_{1i} = c \triangle \widehat{y}_{i}, \ i = 2, ..., n.$

For the two unknowns $\Delta \widehat{y}_1$ and $\Delta \widehat{\lambda}_1$, we have only one equation, so one of these unknowns can be chosen arbitrary.

Having obtained the new \widehat{x} , we propose to evaluate y and λ by the power method as follows:

$$\widetilde{\boldsymbol{\lambda}} = \boldsymbol{b}\boldsymbol{y}, \quad \widetilde{\boldsymbol{y}} = \boldsymbol{b}^{\top}\boldsymbol{\lambda},$$
 (5)

where

$$b = \sum_{j=1}^n \widehat{x}_j a_j.$$

Our main problem is one of finding the minimal singular value of a matrix

$$B = [\operatorname{vec}(b_1), ..., \operatorname{vec}(b_n)],$$

where the operator vec transforms a matrix into a vector taking the elements column-by-column.

Therefore, \hat{x} is an eigenvector (normalized to have a unit norm) for the minimal eigenvalue of the $n \times n$ matrix $\Gamma = B^{\top}B$:

$$\Gamma \widehat{x} = \gamma_{\min} \widehat{x}.$$

The elements of Γ are given by

$$\Gamma_{sl}=(b_s,b_l)_F$$

where $(\cdot, \cdot)_F$ is the Frobenius (Euclidian) scalar product of matrices. To calculate the new vector \hat{x} , we need to find the minimal eigenvalue and its eigenvector of Γ .

Solution consists of the two parts:

- 1. Calculation of the matrix Γ .
- 2. Finding the minimal eigenvalue and the corresponding eigenvector of the matrix Γ .

Since only one eigenvector for Γ is to be found, we propose to use the shifted inverse iteration using \boldsymbol{x} from the previous iteration as an initial guess.

COMPLEXITY = $\mathcal{O}(n^3)$.

Straitforward implementation of Step 1 includes $\mathcal{O}(n^2r + nr^2)$ (calculation of b_j) + $\mathcal{O}(n^2rn)$ (calculation of the $B^{\top}B$) arithmetic operations.

The total cost of the step 1 is

$$\mathcal{O}(n^3r+n^2r+nr^2).$$

However, Γ can be computed a way more efficiently without the explicit computation of the Householder matrices.