List Decoding of Noisy Reed-Muller-like Codes

Martin J. Strauss
University of Michigan

Joint work with
A. Robert Calderbank (Princeton)

Anna C. Gilbert (Michigan)
Joel Lepak (Michigan)

Euclidean List Decoding

- Fix
\diamond structured spanning codebook $\mathcal{C}=\left\{\varphi_{\lambda}\right\}$ of vectors in \mathbf{C}^{N}
\diamond Parameter k.
- Given vector ("signal") $s \in \mathbf{C}^{N}$.
\diamond Accessed by sampling: query y, learn $s(y)$.
- Goal:

$$
\text { Quickly find list of } \lambda \text { such that }\left|\left\langle\varphi_{\lambda}, s\right\rangle\right|^{2} \geq(1 / k)\|s\|^{2}
$$

- For some codebooks, leads to sparse approximation:
\diamond Small Λ with $\tilde{s}=\sum_{\lambda \in \Lambda} c_{\lambda} \varphi_{\lambda} \approx s$.

Definitions of Reed-Muller (-like) Codes

For $y, \ell \in \mathbf{Z}_{2}^{n} ; P$ a binary symmetric matrix:

- Second-order Reed-Muller, $\operatorname{RM}(2)$:

$$
\varphi_{P, \ell}(y)=i^{y^{T} P y+2 \ell^{T} y}
$$

- Hankel, Kerdock codes: limited allowable P's.
\diamond Hankel: P is constant along reverse diagonals.
- First-order Reed-Muller, RM(1):

$$
\varphi_{0, \ell}(y)=i^{2 \ell^{T} y}=(-1)^{\ell^{T} y}
$$

Sometimes omit normalization factor $1 / \sqrt{N} ;$ makes $\|\varphi\|_{2}=1$.

Our Results

- Theorem: There's a Kerdock code that is a subcode of Hankel.
- Theorem: We give a list-decoding algorithm for length- N

Hankel.
\diamond Return list Λ of Hankel λ such that $\left|\left\langle\varphi_{\lambda}, s\right\rangle\right|^{2} \geq(1 / k)\|s\|^{2}$ $\diamond \ldots$ in time poly $(k \log (N))$.

- Corollary: We give a fast list-decoding algorithm for Kerdock.
- Corollary: We give a fast sparse recovery algorithm for Kerdock.

Overview

- Motivation
- New construction of Kerdock
- List decoding for Hankel
- Alternatives and conclusion

Significance

- First "simple" construction of a Kerdock code, as Hankel subcode. (Isomorphic to an existing "complicated" construction [Calderbank-Cameron-Kantor-Seidel].)
- To our knowledge, first extension of RM(1) list decoding to large codebook with small alphabet.
- Sparse recovery for the important Kerdock code.
\diamond Wireless communication—Multi-User Detection (Joel Lepak)
\diamond Quantum information
- Hankel and Kerdock compromise between $\mathrm{RM}(1)$ and $\mathrm{RM}(2)$
\diamond Code parameters
\diamond Learning

Related Work

- List decoding over a single ONB [Kushilevitz-Mansour] doesn't (directly) give a result for the union of many ONBs (Kerdock, Hankel)
- Test for $\mathrm{RM}(2)$ [Alon-Kaufman-Krivelevich-Litsyn-Ron] is not a test for Kerdock and doesn't do list decoding.
- Decoding $\mathrm{RM}(2)$ with low noise [AKKLR] doesn't help with high noise.
- Work over large alphabets [Sudan, ...] doesn't help over \mathbf{Z}_{2}. (Restrict multi-variate polynomial to random line, getting univariate polynomial. But low-degree univariate polys over \mathbf{Z}_{2} are not interesting.)
- General sparse recovery [Gilbert-Muthukrishnan-S-Tropp, ...] requires time $\operatorname{poly}\left(2^{n}\right) \gg \operatorname{poly}(k, n)$ and/or space $\operatorname{poly}\left(2^{n}\right)$

Fundamental Properties of Kerdock

Used in our recovery algorithm and of independent interest. [Calderbank-Cameron-Kantor-Seidel]

- Geometry. Union of N ONB's, each of the form $\varphi_{P, 0} \cdot \mathrm{RM}(1)$ for Kerdock P. ("Mutually-Unbiased Bases.")

$$
\left|\left\langle\varphi_{P, \ell}, \varphi_{P^{\prime}, \ell^{\prime}}\right\rangle\right|= \begin{cases}1, & P=P^{\prime}, \ell=\ell^{\prime} \\ 0, & P=P^{\prime}, \ell \neq \ell^{\prime} \\ 1 / \sqrt{N} & P \neq P^{\prime}\end{cases}
$$

- Algebra. Add'n and invertible mult' n of Kerdock matrices P.
\diamond Map one ONB to another and permute elements of one ONB.
- Multiscale Similarity. Some structure is preserved on some restrictions to subspaces.

Multi-User Detection

- Each subscriber gets a set of codewords.
- To speak, a user picks a codeword φ_{λ} from her set.
\diamond Message is encoded in choice of codeword and/or coefficient c_{λ}.
- Receiver gets $\sum_{\lambda} c_{\lambda} \varphi_{\lambda}$.
- Decoder recovers all $\left(\lambda, c_{\lambda}\right)$'s.
$R M(2)$ and Hankel won't work. Kerdock supports more users than $\mathrm{RM}(1)$ for fixed blocklength.

Quantum Key Distribution

Four polarization directions:

- vertical $|v\rangle=\binom{1}{0}$, horizontal $|h\rangle=\binom{0}{1}$, and two diagonals

$$
|v\rangle+|h\rangle=\binom{+1}{+1} \text { and }|v\rangle-|h\rangle=\binom{+1}{-1}
$$

arranged in two mutually unbiased bases,

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), H=\left(\begin{array}{ll}
+1 & +1 \\
+1 & -1
\end{array}\right) / \sqrt{2}
$$

Punchline: Diagonal particle measured in I comes out $|v\rangle$ or $|h\rangle$.

- Kerdock gives optimal construction of larger MUBs.

Compromise between $\mathrm{RM}(1)$ and $\mathrm{RM}(2)$

- Code parameters.
- Learning. $\mathrm{RM}(1)$ is linear functions; $\mathrm{RM}(2)$ is quadratics.

Kerdock and Hankel are some quadratics, namely, $f\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots\right)$ has term $2 y_{0} y_{4}$ iff it has $2 y_{1} y_{3}$ and $y_{2}^{2}=y_{2}$, etc. E.g.:

$$
\left(\begin{array}{lllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right)\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)
$$

Overview

- Motivation \checkmark
- New construction of Kerdock
- List decoding for Hankel
- Alternatives and conclusion

Definition of Hankel

A matrix is Hankel if it is constant on reverse diagonals,

$$
P=\left(\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3} \\
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{2} & p_{3} & p_{4} & p_{5} \\
p_{3} & p_{4} & p_{5} & p_{6}
\end{array}\right)
$$

The Hankel code is the subcode of $\operatorname{RM}(2)=\left\{\varphi_{P, \ell}\right\}$ in which P is Hankel. [Calderbank-Gilbert-Levchenko-Muthukrinshnan-S]

Definition of Kerdock

A set of matrices is a Kerdock set if the sum of any two is non-singular or zero.

Each Kerdock set of matrices leads to some Kerdock code.

- Kerdock matrix P and vector $\ell: \varphi_{P, \ell}$.

Note:

- There are at most $N=2^{n}$ matrices in a Kerdock set, since each matrix in the set has a distinct top row.
- We'll construct a maximum-sized set.

Our Construction of a Kerdock Set

Fix primitive polynomial $h(t)=h_{0}+h_{1} t+\cdots+h_{n} t^{n}$ over $\mathbf{Z}_{2}[t]$, e.g., $n=4$. A matrix P is $l f$-Kerdock if

- P is Hankel,

$$
P=\left(\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3} \\
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{2} & p_{3} & p_{4} & p_{5} \\
p_{3} & p_{4} & p_{5} & p_{6}
\end{array}\right)
$$

- (Top row $p_{0}, p_{1}, p_{2}, p_{3}$ unconstrained)
- Each other paramter is a linear combination of top-row parameters, using linear-feedback rule with coefficients in h.

Example

Primitive polynomial $h(t)=t^{3}+t+1=t^{3}+0 t^{2}+1 t+1$.

$$
P=\left(\begin{array}{lll}
p_{0} & p_{1} & p_{2} \\
& &
\end{array}\right)
$$

Top row unconstrained.

Example

Primitive polynomial $h(t)=t^{3}+t+1=t^{3}+0 t^{2}+1 t+1$.

$$
P=\left(\right)
$$

Top row unconstrained.
Extend to Hankel.

Example

Primitive polynomial $h(t)=t^{3}+t+1=t^{3}+0 t^{2}+1 t+1$.

$$
P=\left(\begin{array}{ccc}
p_{0} & p_{1} & p_{2} \\
p_{1} & p_{2} & p_{3}=p_{0}+p_{1} \\
p_{2} & p_{3}=p_{0}+p_{1} & p_{4}=p_{1}+p_{2}
\end{array}\right)
$$

Top row unconstrained.
Extend to Hankel.
Use feedback rule for lower half.

Proof of Correctness

Theorem: A set of lf-Kerdock matrices is a Kerdock set.
Sufficient to show that lf-Kerdocks are non-singular. Definitions:

- Additive $\operatorname{Tr}: \mathbf{F}\left(2^{n}\right) \rightarrow \mathbf{F}(2)$ is given by

$$
\operatorname{Tr}(x)=x+x^{2}+x^{4}+x^{8}+\cdots+x^{2^{n-1}}
$$

- Recall h is primitive polynomial; $h(\xi)=0$.
- $\left(K_{\alpha}\right)_{j, k}:=\operatorname{Tr}\left(\alpha \xi^{j+k}\right)$ ("trace-Kerdock" matrix, for $\alpha \in \mathbf{F}\left(2^{n}\right)$)

Three lemmas, one-line proofs:

- Trace-Kerdocks are non-singular.
- Trace-Kerdocks are lf-Kerdock.
- lf-Kerdocks are trace-Kerdock.

Facts about Trace

Recall $\operatorname{Tr}(x)=x+x^{2}+x^{4}+x^{8}+\cdots+x^{2^{n-1}}$. Squaring is linear in characteristic 2 , so

- $\operatorname{Tr}(x+y)=\operatorname{Tr}(x)+\operatorname{Tr}(y)$.
- $\operatorname{Tr}(x)^{2}=\operatorname{Tr}\left(x^{2}\right)=\operatorname{Tr}(x)$.
$\diamond \operatorname{Tr}(x)$ satisfies $y^{2}+y=0$.
$\diamond \operatorname{Tr}(x) \in\{0,1\}$.

Trace-Kerdocks are non-Singular

Lemma: Trace-Kerdocks are non-Singular
$K_{\alpha}=V^{T} D_{\alpha} V$ over $\mathbf{F}\left(2^{n}\right)$, where
$D_{\alpha}=\operatorname{diag}\left(\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}, \ldots, \alpha^{2^{n-1}}\right)$ and vandermonde V is given by

$$
V=\left(\begin{array}{cccccc}
1 & \xi & \xi^{2} & \xi^{3} & \xi^{4} & \ldots \\
1 & \xi^{2} & \xi^{4} & \xi^{6} & \xi^{8} & \ldots \\
1 & \xi^{4} & \xi^{8} & \xi^{12} & \xi^{16} & \ldots \\
1 & \xi^{8} & \xi^{16} & \xi^{24} & \xi^{32} & \ldots \\
\vdots & & & & &
\end{array}\right)
$$

K_{α} is over $\mathbf{F}(2)$, so $\operatorname{det}\left(K_{\alpha}\right) \in \mathbf{F}(2)$ over big field.

Trace-Kerdocks are lf-Kerdock

Lemma: Trace-Kerdocks are lf-Kerdock.
A trace-Kerdock $\left(K_{\alpha}\right)_{j, k}:=\operatorname{Tr}\left(\alpha \xi^{j+k}\right)$ is Hankel by inspection.
Feedback rule:

$$
\begin{aligned}
\operatorname{Tr}\left(\alpha \xi^{j+k+n}\right) & =\operatorname{Tr}\left(\alpha \xi^{j+k} \sum_{\ell<n} h_{\ell} \xi^{\ell}\right) \\
& =\sum_{\ell<n} h_{\ell} \operatorname{Tr}\left(\alpha \xi^{j+k} \xi^{\ell}\right)
\end{aligned}
$$

so feedback rule is satisfied.

lf-Kerdocks are Trace-Kerdock

Lemma: lf-Kerdocks are Trace-Kerdock.
There are 2^{n} distinct matrices of each type. Above we showed that all trace-Kerdocks are lf-Kerdock.

Overview

- Motivation \checkmark
- New construction of Kerdock \checkmark
- List decoding for Hankel
\diamond Review of list decoding for $\mathrm{RM}(1)$.
\diamond (Simple) extension of algorithm to Hankel.
\diamond Hankel structure keeps intermediate and final lists small.
- Alternatives and conclusion

Tensor-Product View of RM(1)

$\phi_{1011}=\varphi_{1000} \cdot \varphi_{0010} \cdot \varphi_{0001}$ is signal of length $2^{4}=16$.
Start with $\phi_{0000} \cong 1$ and flip bits, in dyadic blocks.

| φ_{0000} | | ++++ | ++++ | ++++ | ++++ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Flip | V V | V V | V V | V V |
| φ_{1000} | | +-+- | +-+- | +-+- | +-+- |
| | Flip | | vVVV | | VVVV |
| φ_{1010} | | +-+- | -+-+ | +-+- | -+-+ |
| | Flip | | | VVVV | VVVV |
| φ_{1011} | | +-+- | -+-+ | -+-+ | +-+- |

RM(1) Recovery

E.g., [Kushilevitz-Mansour]

Want ℓ such that $\left|\left\langle s, \varphi_{\ell}\right\rangle\right|^{2} \geq(1 / k)\|s\|^{2}$.
For $j \leq n$, maintain candidate list L_{j} for first j bits of ℓ.
Extend candidates one bit at a time - j to $(j+1)$-and test.
Need to show, with high probability:

- No false negatives
\diamond True candidates are found
- Few (false) positives
\diamond List remains small; algorithm is efficient.
\diamond Can remove false positives at the end.

RM(1) Recovery, No False Negatives

Signal $s \in \mathbf{C}^{16}$; candidate φ_{ℓ} with $\ell=01 * *$.

Signal s	++--	++--	++-3	i-++
φ_{0100}	++--	++--	++--	++--
$\varphi_{01 * *}$	++--	$\pm 1 \cdot++--$	$\pm 1 \cdot++--$	$\pm 1 \cdot++--$

- $\left|\left\langle\varphi_{0100}, s\right\rangle\right|^{2}$ is high compared with $\|s\|^{2}$.
- $\left|\left\langle\varphi_{0100}, s\right\rangle\right|^{2}$ consists of contributions from dyadic blocks, many of which are high.
- Each dyadic block's contribution is sum of small contributions.
- Keep candidate $\varphi_{01 * *}$ since $\geq 1 / O(k)$ blocks have square dot product $\geq 1 / O(k)$, as estimated by sampling.
- Alternative view of dot product: $|\langle s, \varphi\rangle|^{2}=\left|\left\langle s \varphi^{*}, \pm \mathbf{1}\right\rangle\right|^{2}$.

RM(1) Recovery, Few (False) Positives

- Markov: Most blocks get not much more than $E[]$ share of $\|s\|^{2}$.
- Parseval: In each of B dyadic blocks, $\leq k$ large dot products.
- So total number of \checkmark 's is $\leq k B$.
- Thus: number $\varphi_{P, \ell}$'s with $\geq B / k \checkmark$'s is $\leq k^{2}$.
dyadic blocks $\longrightarrow B$

Hankel Recovery

Want P, ℓ such that $\left|\left\langle s, \varphi_{\ell}\right\rangle\right|^{2} \geq(1 / k)\|s\|^{2}$.
Find P, then use KM to find ℓ with large
$\left|\left\langle s, \varphi_{P, \ell}\right\rangle\right|^{2}=\left|\left\langle s \varphi_{P, 0}^{*}, \varphi_{0, \ell}\right\rangle\right|^{2}$.
For $j \leq n$, maintain candidate list for upper-left j-by- j submatrix P^{\prime} of P.

Extend Hankel P^{\prime} one row/column at a time-four possibilities-and test.

$$
P=\left(\begin{array}{c|c}
P^{\prime} & a \\
\hline a & b \\
&
\end{array}\right)
$$

Hankel Recovery, cont'd

Keep candidate P^{\prime} if, on many dyadic blocks, for restricted signal s^{\prime}, there is some $\operatorname{RM}(1)$ vector $\varphi_{\ell^{\prime}}$ with $\left|\left\langle s^{\prime} \varphi_{P^{\prime}, 0}^{*}, \varphi_{0, \ell^{\prime}}\right\rangle\right|^{2}$ large.

- Divide out $\mathrm{RM}(2)$ part, $\varphi_{P^{\prime}, 0}^{\prime}$.
- See if result is well-approximated by $\mathrm{RM}(1)$.
- Use KM to determine this.

With high probability, no false negatives:

- Algorithm works for all $\mathrm{RM}(2)$ just like for RM(1).

Need to show few (false) positives. Sufficient to show:

- few positives within each dyadic block.
- few large Hankel coefficients to any signal, s.

There are Few Large Hankel Coefficients

Want: Approximate Parseval for the Hankel codebook.

- Dickson: $\operatorname{rank}\left(P+P^{\prime}\right)$ high $\Rightarrow\left\langle\varphi_{P, \ell}, \varphi_{P^{\prime}, \ell^{\prime}}\right\rangle$ small.
- Incoherence: All dot products small \Rightarrow appropriate approximate Parseval.
- For each P, there are few P^{\prime} with $\operatorname{rank}\left(P+P^{\prime}\right)$ low.
- Put it all together:
\diamond Theorem: Given signal s and parameter k, there are at most $\operatorname{poly}(k)$ Hankel vectors $\varphi_{P, \ell}$ with $\left|\left\langle\varphi_{P, \ell}, s\right\rangle\right|^{2} \geq(1 / k)\|s\|^{2}$.

Dickson's Theorem

If $(P, \ell) \neq\left(P^{\prime}, \ell^{\prime}\right)$, then

$$
\left|\left\langle\varphi_{P, \ell,}, \varphi_{P^{\prime}, \ell^{\prime}}\right\rangle\right| \leq 2^{-\operatorname{rank}\left(P+P^{\prime}\right) / 2} .
$$

Relates dot products to the rank of P-matrix sums mod 2 .
Bigger rank \Rightarrow vectors are closer to orthogonal.

Dickson for Kerdock, proof

$$
\begin{aligned}
N^{2}\left\langle\varphi_{P, \ell}, \varphi_{0,0}\right\rangle^{2} & =\sum_{y, z} i^{y^{T} P y+2 \ell^{t} y+z^{T} P z+2 \ell^{T} z} \\
& =\sum_{y, w} i^{w^{T} P w+2 \ell^{t} w+2 y^{T} P(w+y)}, \quad w=y+z \\
& =\sum_{y, w} i^{w^{T} P w+2 \ell^{t} w+2 y^{T} P w+2 d^{T} y}, \quad d=\operatorname{diag}(P) \\
& =\sum_{w} i^{w^{T} P w+2 \ell^{t} w} \sum_{y} i^{2\left(w^{T} P+d^{T}\right) y} \\
& =N \sum_{w} i^{w^{T} P w+2 \ell^{t} w} \delta\left(w^{T} P, d^{T}\right), \quad P w=d \\
& =N i^{d^{T} P^{-1} d+2 \ell^{t} P^{-1} d}
\end{aligned}
$$

Thus $\left|\left\langle\varphi_{P, \ell}, \varphi_{0,0}\right\rangle\right|^{2}=1 / \sqrt{N}$.

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r. Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{lll}
a & b & c \\
b & c & \\
c & & \\
& & \\
& & \\
& &
\end{array}\right.
$$

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r.
Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{llll}
a & b & c & d \\
b & c & & \\
c & & & \\
& & & \\
& & &
\end{array}\right)
$$

Learn d from linear combination.

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r.
Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{llll}
a & b & c & d \\
b & c & d & \\
c & d & & \\
d & & & \\
& & &
\end{array}\right)
$$

Fill in by Hanklicity.

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r.
Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{llll}
a & b & c & d \\
b & c & d & e \\
c & d & & \\
d & & & \\
& & & \\
& & &
\end{array}\right)
$$

Learn e from linear combination

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r.
Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{lllll}
a & b & c & d & e \\
b & c & d & e & \\
c & d & e & & \\
d & e & & & \\
e & & & & \\
& & & &
\end{array}\right)
$$

Fill in by Hanklicity.

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r.
Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{lllll}
a & b & c & d & e \\
b & c & d & e & \\
c & d & e & f & \\
d & e & & & \\
e & & & &
\end{array}\right)
$$

Learn f by linear combination.

Few Low-Rank Hankels

Theorem: At most $2^{O(r)}$ Hankel matrices have rank at most r.
Proof: Suppose column 3 is a linear combination C of columns $0,1,2$. Then C and positions $0,1,2$ in top row determine the top half of the matrix:

$$
\left(\begin{array}{llllll}
a & b & c & d & e & f \\
b & c & d & e & f & \\
c & d & e & f & & \\
d & e & f & & & \\
e & f & & & & \\
f & & & & &
\end{array}\right)
$$

Fill in by Hanklicity.

Hankel Vectors

Space of Hankel Vectors:

Dot: vector $\varphi_{P, 0}$.
Ball: $\varphi_{P^{\prime}, 0}$ with $\operatorname{rank}\left(P+P^{\prime}\right) \leq 2 \log (k)$
Stick: vectors $\varphi_{P, \ell}$, as ℓ varies.

Few Large Hankel Coefficients

Claim: Few lollipops with heavy vector $\varphi_{P, \ell}\left(\left|\left\langle\varphi_{P, \ell}, s\right\rangle\right|^{2}\right.$ large $)$.

- Each dot \& stick meets few lollipops. -Few low-rank Hankels.

Few Large Hankel Coefficients

Claim: Few lollipops with heavy vector $\varphi_{P, \ell}\left(\left|\left\langle\varphi_{P, \ell}, s\right\rangle\right|^{2}\right.$ large $)$.

- Each dot \& stick meets few lollipops. -Few low-rank Hankels.
- Disjoint lollipops are nearly orthogonal. -Dickson
- No large sets of heavy vectors in nearly-orthogonal subset. -Incoherence (approximate Parseval)

Sparse Recovery of Kerdock

Corollary: There is an algorithm to recover a near-best k-term Kerdock reprentation to length- N vector in time poly $(k \log (N))$.

Uses incoherence of Kerdock: for Kerdock $\varphi \neq \psi$, we have $|\langle\varphi, \psi\rangle| \leq 1 / \sqrt{N}$.

Overview

- Motivation \checkmark
- New construction of Kerdock \checkmark
- List decoding for Hankel \checkmark
- Alternatives and conclusion

Alternative Algorithms

A faster alternative to KM first permutes the $\mathrm{RM}(1)$ labels $\ell^{T} \rightarrow \ell^{T} R$:

$$
(T s)(y)=s(R y)=i^{2 \ell^{T}(R y)}=i^{2\left(\ell^{T} R\right) y}
$$

for random invertible R. Simulate by substituting $R y$ for y.
Us: Recall $K_{\alpha}=V^{T} D_{\alpha} V$. Use
$R=V^{-1} D_{r} V=\left(V^{T} V\right)^{-1}\left(V^{T} D_{r} V\right)=K_{1}^{-1} K_{r}$.

- Maps K_{α} to $K_{\alpha r^{2}}$ —preserves Kerdock structure.
- For each $\ell, \ell^{T} R$ is uniform over \mathbf{Z}_{2}^{n} for such R.

Can randomize KM in our inner loop while preserving Kerdock structure.

Get faster recovery algorithm, but only for Kerdock.

Mutliscale Similarity

- Restricting Hankel to dyadic block gives Hankel
- Restricting Kerdock to subfield gives Kerdock.
\diamond No large dot products (v. $\leq k^{8}$ for Hankel)
\diamond More efficient algorithm
\diamond Bit-by-bit extension won't work-we have new algorithm.
\diamond Can assume existence of subfields of the correct size.

Subfields

Need subfield of size $2^{f} \geq k^{2}$, to get $(1 / k)$-incoherence.

- So need $f \mid n$.
$\diamond n \rightarrow f n$, so $N \rightarrow N^{f}$.
\diamond Extend signal via trace function.
\diamond Cost factor $\log (N) \rightarrow \log \left(N^{f}\right) \leq \log ^{2}(N)$.

Smaller Subfields

At most $O(k)$ coefs with $|\langle\varphi, s\rangle|^{2} \geq(1 / k)\|s\|^{2}$ in subfield of size $2^{f}=k^{2}$.

Now suppose $s=\sum_{\lambda \in \Lambda} c_{\lambda} \varphi_{\lambda}+\nu$, where

- $|\Lambda|=k$
- $\left|c_{\lambda}\right| \approx 1$
- c_{λ} random with $E\left[c_{\lambda}\right]=0$
\diamond E.g., $c_{\lambda}= \pm 1$ for message 0 and $\pm i$ for message 1 .
- ν Gaussian with $\|\nu\|^{2} \leq k$.
(Plausible in wireless applications.) Then...

Smaller Subfields, cont'd

(...assuming random unit coefficients and noise.)

For subfield size k, there are constants $c_{1}>c_{2}$ with

$$
\begin{cases}\left|\left\langle\varphi_{\lambda}, s\right\rangle\right|^{2}>\left(c_{1} / k\right)\|s\|^{2}, & \lambda \in \Lambda \\ \left|\left\langle\varphi_{\lambda}, s\right\rangle\right|^{2}<\left(c_{2} / k\right)\|s\|^{2}, & \lambda \notin \Lambda\end{cases}
$$

- So list decoding works. (Ongoing work by Lepak.)

Extension: Delsarte-Goethals

- Hierarchy of codes between $\mathrm{RM}(1)$ and $\mathrm{RM}(2)$.
- Sum of two matrices has rank at least $n-g$.
\diamond Dickson: Get incoherent codebook
- Number of codewords between N^{2} (Kerdock) and $N^{\Theta(\log (N))}$ ($\mathrm{RM}(2)$).

Recap

- We construct a Kerdock code as a subcode of Hankel.
- We give a list-decoding algorithm for Hankel.
- (Corollary) We give a list-decoding algorithm for Kerdock.
- (Corollary) Since Kerdock is μ-incoherent for small μ, we get a sparse recovery algorithm for Kerdock.

