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Adaptive Dimension Reduction for 
Clustered Data

• Linear Discriminant Analysis (LDA)  and its 
Generalizations for undersampled problems, 
LDA/GSVD 

• Extension to kernel-based nonlinear method 
KDA/GSVD 

• Relationship to Classifier design by MSE

• Adaptive feature subspace tracking method

• Test results: Facial recognition, efficient 
cross-validation by downdating, etc.



 

•400 frontal images = 40 
person x 1o images each,  
variations in pose, facial 
expression

• image size :92 x 112

• Severely Undersampled:

10304 x 400

AT&T (ORL ) 
Face  Database

The 1st sample

The 35th sample

Clustered Data: Facial Recognition
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Classification + update transf. / classifier

Dimension 
Reducing 

Transformation

Data 
preprocessing

Adaptive Dimension Reduction 
of Clustered Data

Want: Adaptive Dimension Reducing Transformation that can 
be effectively applied  across many application areas
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A = [a1 ...an]  :mxn, clustered data                                                        
Ni = items in class i, | Ni | = ni , total r classes
ci = average of data items in class i, centroid
c = global average, global centroid

(2) Between-class scatter matrix
Sb =  ∑ 1≤  i≤  r ∑  j ∈Ni (ci – c) (ci – c)T

(1)Within-class scatter matrix
Sw = ∑ 1≤  i≤  r ∑  j∈Ni  (aj – ci ) (aj – ci )T

(3)Total scatter matrix
St = ∑ 1≤  i≤  n (ai – c ) (ai – c )T

Measure for Cluster Quality

NOTE: Sw + Sb = St



trace (Sw )

Dimension
Reducing
Transformationtrace (Sb )

trace (Sw ) =    ∑ 1≤  i≤  r ∑  j ∈ Ni  ||aj – ci ||22

trace (Sb ) =    ∑ 1≤  i≤  r ∑  j ∈ Ni  ||ci  - c ||22

trace (St ) =    ∑ 1≤  i≤  r ∑  j ∈ Ni  ||aj – c ||22

Trace of Scatter Matrix



Optimal Dimension Reducing 
Transformation

High quality clusters have                                                  
small trace(Sw) & large trace(Sb)

Want: G
s.t. min trace(GT SwG) & max trace(GT Sb G)

• max trace ((GT SwG)-1 (GT Sb G))  LDA (Fisher  36, Rao 48)

• max trace (GT Sb G)  Orthogonal Centroid (Park et al. 
03)

• max trace (GT (Sw+Sb )G)  PCA (Hotelling 33)

• max trace (GT A AT G)  LSI (Deerwester et al. 90)

GTy :  qx1,    q << mGT: qxmy :mx1

GTG=I

GTG=I

GTG=I



Classical LDA
(Fisher ’36, R ao ‘48)

max trace ((GT SwG)-1 (GT Sb G))

• G : leading  (r-1) e.vectors of Sw
-1Sb  

Fails when m>n (undersampled), Sw singular

Sw Hw
Hw

T
=

x

• Sb=Hb Hb
T,  Hb=[1/  n1(c1 -c), … ,1/  nr (cr - c)] : mxr

• Sw=Hw Hw
T,   Hw=[a1-c1, a2-c1, … , a n-cr ] : mxn



LDA based on GSVD (LDA/GSVD)
(Howland, Jeon, Park, SIMAX03,  Howland and Park, IEEE TPAMI 04)

• Works regardless of singularity of scatter matrices

• Sw
-1Sb x = l x  Sbx=lSwx   2Hb Hb

Tx = g 2Hw Hw
Tx

• G comes from leading (r-1)                                      
generalized singular vectors of  Hb

T and Hw
T

UT Hb
T X

VT Hw
T X

=  (Sb 0) =

=  (Sw 0) = 0

0

XT HbHb
TX = XT Sb X and  XTHwHw

TX = XT Sw X
Classical LDA is a special case of LDA/GSVD



Generalized SVD
(Paige and Saunders ’81)

Sbx=lSwx    2Hb Hb
Tx = g 2Hw Hw

Tx

XTSb X =

I
Db

0

0
XTSw X =

0
Dw

I

0

X = [ X1  X2 X3   X4  ] g δ xi belongs to
X1 1 0 null(Sb )c ∩ null(Sw )
X2 1 > β >0 0 < δ <1 null(Sb )c ∩ null(Sw )c

X3 0 1 null(Sb ) ∩ null(Sw )c

X4 any any null(Sb ) ∩ null(Sw )

Want  G s.t. max trace (GT Sb G) and min trace (GT Sw G)



Generalization of LDA  for 
Undersampled Problems

Regularized LDA (Friedm an ’89, Zhao et al. ’99 …  )

LDA/GSVD : Solution G = [ X1 X2  ] (H ow land, Jeon, P ark ’03)

Solutions based on Null(Sw ) and Range(Sb )…              
(C hen et al. ’00, Y u &  Y ang ’01, P ark &  P ark ’03 … )
Two-stage methods:

• Face Recognition: PCA + LDA (S w ets &  W eng ’96 , Zhao et al. 99 )

• Information Retrieval: LSI + LDA (Torkkola ’01)

• Mathematical Equivalence: (H ow land and P ark ’03)

PCA+ LDA/GSVD = LDA/GSVD      
LSI  +LDA/GSVD = LDA/GSVD 
More efficient = QRD + LDA/GSVD



Nonlinear Dimension Reduction by 
Kernel Functions

Ex. Feature mapping F

(a polynomial kernel function)

x = x1
x2

F (x) =
x1

2

2 x1x2
x2

2

k (x, y) = < F (x), F (y) >= < x, y >2

F

,

2D



Nonlinear Dimension Reduction 
by Kernel Functions

If k(x,y) satisfies M ercer’s condition, then there is a 
mapping F to an inner product space,

k(x,y) = < F (x), F (y) >

A 
< x, y >

M ercer’s C ondition for A=[a1,… ,an]: 
kernel matrix K = [ k(ai, aj) ]1≤ i, j≤n
is positive semi-definite.

(A)F F
k(x,y) = < F (x), F (y) >

Ex) RBF Kernel Function: k(ai, aj) =exp(-s||ai – aj ||2)



Nonlinear Discriminant Analysis 
based on Kernel Functions (KDA/GSVD)

(C. Park and H. Park, SIMAX 04)

Assume a feature mapping:  f : a: mx1  f(a): px1, m<<p

and apply LDA/GSVD to Sw and Sb in feature space

G : leading  (r-1) generalized singular vectors of  ( Hw
f

, Hb
f )

Sw
f Hw

f Hw
f T

=
x

• Sb
f=Hb

fHb
f T,  Hb

f=[ a1(c1f -cf), … ,ar (cr
f- cf)] : pxr

• f unknown but problem can be formulated to utilize kernel fcn.

• Sw
f=Hw

fHw
fT,   Hw

f=[a1
f-c1

f, a2
f-c1

f, … , a n
f-cr

f] : pxn



Classifier by MSE and 
Dimension Reduction by LDA/GSVD          
(Binary Case) (Duda et al. 01, C. Park and H. Park 04 )

• MSE
f(a) = aTw + b

n/n1 if a ∈ class 1 
-n/n2 if a ∈ class 2

• LDA/GSVD
d 2Sb x = g 2Sw x

｛

1 a1
T

⋮
1 an

T

b

W

_
n/n1
⋮

-n/n2
⋮

min
wT a +b
= wT(a-c)
= a xT(a-c)

* Extended to (non)linear multi-class relationship

2

=

(C. Park and H. Park , SIMAX, 05)



Relationship between 
Kernelized MSE and KDA/GSVD  
(Binary Case) (Billings and Lee 02, C. Park and H. Park 05 )

• MSE
f(a) = f(a) Tw + b

n/n1 if a ∈ class 1 
-n/n2 if a ∈ class 2

• LDA/GSVD
d 2Sb

f x = g 2Sw
fx

｛

1 f(a1)T

⋮
1 f(an)T

b
W

_
n/n1
⋮

-n/n2
⋮

min
wT f(a) +b
= wT(f(a)-cf)
= a xT(f(a)-cf)

2

=

fHowever,     is not known.

e f(A)T
b
W _ y= min

2



Formulation of Kernelized MSE
f is unknown but nonlinearization is possible using kernel 

functions and the fact that w = f(A) z for some z

e f(A)T b
w

_min
2

• Let     G = [ e   K] : nx(n+1)
• K : symmetric positive semidefinite
• Solution related to KDA/GSVD is

• If rank(G) = n, then G+ can be obtained from QRD of GT

Let GT = Q         , then G+ = GT(GGT)-1 = Q

y = min e, f(A)T f(A) b
z

_

2

y

= min e K b
z

_

2

y

b
z = G+ y

R 
0  

R-T

0  



Adaptive KDA by Regularized MSE (KDA/RMSE)

e K b
z

_min
2

Replace y

min e K + l I b
z

_

2

yby

•Gl = [ e   K + l I ] : nx(n+1), rank(Gl ) = n for l > 0

• Solution can be obtained by QRD of Gl 
T

• Updated and downdated sol. can be obtained by QRD updating/downdating.

• At least an order of magnitude faster than GSVD updates.



1 k1,1 + l …  k1,n
⋮ ⋮ ⋮
1 kn,1 …  kn,n + l

Adaptive Kernel MSE
• Kernel MSE

1 ka’,a’ + l ka’,1 …  ka’,n
1 k1,a’
⋮ ⋮ K + l I 
1 kn,a’

Appending a data point a’ : apply QRD updating twice

1 k1,1 + l …  k1,k-1 k1,k+1 …  k1,n
⋮ ⋮ ⋮ ⋮ ⋮
1 kk-1,1 …  kk-1,k-1 + l kk-1,k+1 …  kk-1,n
1 kk+1,1     …  kk+1,k-1          kk+1,k+1 + l …  kk+1,n
⋮ ⋮ ⋮ ⋮ ⋮
1 kn,1 …  kn,k-1 kn,k+1    …  kn,n + l

Removing a data point ak    : apply QRD downdating twice

(Kim, Drake, and Park ’05)

Gl = [e   K + l I ] =

Gl
‘=

Gl
‘=



New Decision Boundaries 

after Deletion and Addition of Data Points

• New decision boundaries after deleting the 12th point and inserting (5,6)

• Dash-dotted contour : a decision boundary of the adaptive KDA/RMSE

• Dashed contour : a decision boundary obtained by computing sol. from 
scratch by the RMSE. 



Comparison Between KDA and KDA/RMSE

Average and standard deviation of test set classification 
errors in % for 100 partitions

Method Thyroid Diabetes Heart Titanic
KDA 3.9 +- 2.0 26.3 +- 2.2 16.1 +- 3.5 24.1 +- 2.7

KDA(75%) 
+ adaptive 
KDA(25%)

3.9 +- 2.0 26.3 +- 2.2 16.1 +- 3.5 24.1 +- 2.7



Face Recognition Training Dataset (AT&T)
• 10 persons x 5 images/person = 50 

images total            

• Each image: 46x56

• Five-fold CV using KDA             
SVD of G = (e   K): 40x41 is 
computed for each fold

K(a1, a2) = exp(-g||a1- a2||2)

Errmin = 4.0%

• Five-fold CV using KDA/RMSE

QRD of Gl= (e   K+lI): 50x51, 
and block downdate.

Errmin = 2.0%



Face Recognition Testing

1. Cross validation on training dataset

2. Classification of test dataset using 
optimal parameters obtained from 
CV.



Updated Face Recognition Training Dataset

Target: 
1st image

1. Removed an old image by 
decKDA

2. Appended a new image by 
incKDA

Efficient Computing

Result:



Solid black line :  computation time of ordinary LOOCV

Dashed blue line : computation time of LOOCV using decKDA/RMSE

Computation time for leave-one-out cross 
validation (LOOCV): 2001 KDD cup drug design data, 8000 features



Summary / Future Research
Effective Algorithm for Adaptive Disc. Analysis
• Utilized the relationship between LDA/GSVD and MSE
• Replaced SVD up/down-dating by QRD up/down-dating
• Applicable to a wide range of problems (Facial recognition, 
text classification, faster cross validation algorithm s … )

Current and Future Research
* Development of recursive feature tracking system

based on recursive KDA/RMSE / parallel implementation 
* Utilization of other efficient methods such as

complete orthogonal decomposition
* Establish Mathematical Relationships among                            

D im ension R eduction, C lassifier D esign, D ata R eduction, …

Thank you !


