Semi-Latent Linear Models

Art B. Owen

Department of Statistics
Stanford University

Based on joint work with: Stuart Kim and Jacob Zahn

Genomics of aging

In work with the Kim lab, which genes change expression:

1. as we age?
2. as worms, mice, flies, \cdots age?
3. as kidney, muscle, brain, • • age?

Microarray data
$Y_{i j} \quad$ expression of gene j sample i
$A_{i} \quad$ age of sample i

$$
i=1, \ldots, n \quad j=1, \ldots, p \quad n \ll p
$$

NB: Here we're consumers of matrix algorithms

Many regressions

For gene j

$$
\begin{aligned}
& Y_{i j}=\beta_{0 j}+\beta_{1 j} A_{i}+\varepsilon_{i j}, \quad \text { or, } \\
& Y_{i j}=\beta_{0 j}+\beta_{1 j} A_{i}+\beta_{2 j} S_{i} \varepsilon_{i j}, \quad \text { or, } \\
& Y_{i j}=\beta_{0 j}+\beta_{1 j} A_{i}+\beta_{2 j} S_{i}+\beta_{3 j} T_{i}+\varepsilon_{i j}
\end{aligned}
$$

where

$$
A_{i}=\text { age }, \quad S_{i}=\text { sex, } \quad T_{i}=\text { tissue type } \quad \text { etc. }
$$

Mainly interested in

$$
\hat{\beta}_{1 j}, \quad j=1, \ldots, p
$$

Multivariate regression

\[

\]

- which genes are age related?
- how to adjust p values for multiple tests?
- how to adjust for correlated tests?
- which gene groups are age related?

Kidney data

Patient 95 is 81 years old . . . but looks younger
Rodwell et al. (2005) P.L.O.S.

Mouse data

Courtesy of Kevin Becker, National Institute on Aging
$p=8932$ genes
$n=40$ mice:
5 male and 5 female
ages $1,6,16,24$ months
16 tissues:
Adrenal, Bone marrow, Cerebellum, . . . , Spleen, Striatum, Thymus

"Genetic" age

$$
\begin{gathered}
\text { Minimize } \\
S S=\sum_{i=1}^{n} \sum_{j=1}^{p}\left(Y_{i j}-\beta_{0 j}-\beta_{1 j} A_{i}-\beta_{2 j} S_{i}\right)^{2} \\
\quad \text { over } \beta \text { and } A_{1}, \ldots, A_{n}
\end{gathered}
$$

Every mouse picks it's own 'age' A_{i}
Uses it for all 8932 genes

Results

Good news: $\quad p>1$ so model does not give $S S=0$
Medium news: $\quad A_{i}$ need to be normalized $A_{i} \beta_{1 j}=\frac{A_{i}}{2}\left(\beta_{1 j} \times 2\right)$
Bad news: fitted A_{i} seem unrelated to age

Interpretation

A_{i} pick out some dominant latent structure
this need not be age

Therefore

Try

$$
\beta_{0 j}+\beta_{1 j} A_{i}+\beta_{2 j} S_{i}+\beta_{3 j} Z_{i}
$$

for actual age A_{i}, latent Z_{i}

Model

\[

\]

Minimize $\|Y-X \beta-Z \gamma\|_{F}$ over β, γ, Z

Rorschach model

$$
\underset{\beta \gamma Z}{\stackrel{\text { Minimize }}{ }} \quad\|Y-X \beta-Z \gamma\|_{F}
$$

Looks like:
Regression $\|Y-X \beta\|_{F}$
Factor analysis $\|Y-Z \gamma\|_{F}$
Golub Hoffman \& Stewart (1987)
Tukey's 1 df for interaction
Structural equation models
Extends to:
$\|Y-X \beta-Z \gamma-\delta W\|_{F}$
$t \times p$ matrix W with t 'per gene' measurements
Published in:
Gabriel (1978) JRSS-B linear bi-linear
Special case: additive main effects plus multiplicative interaction
Fisher and Mackenzie (1923) J Ag Sci
popular in crop science to this day

Solution for β

$$
\operatorname{Min}\|Y-X \beta-Z \gamma\|_{F}
$$

X full rank, soln still not unique

$$
\begin{gathered}
\text { As } Z \rightarrow Z+X \theta \quad \theta \in \mathbb{R}^{r \times s} \\
\text { and } \beta \rightarrow \beta-\theta \gamma \\
X \beta+Z \gamma \quad \text { unchanged } \\
\text { WLOG } Z^{\prime} X=0 \\
\text { or else } Z \rightarrow Z-X\left(X^{\prime} X\right)^{-1} X^{\prime} Z \\
\text { Given } Z \gamma \\
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime}(Y-Z \gamma)=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{gathered}
$$

Solution for $\quad \mathrm{y}$

Minimize

$$
\min \|Y-X \hat{\beta}-Z \gamma\|_{F}
$$

over $Z \in \mathbb{R}^{n \times s} \quad \gamma \in \mathbb{R}^{s \times p}$
subject to $Z^{\prime} X=0$
The unconstrained solution . . .
Let $Y-X \hat{\beta}=U \Sigma V^{\prime}$ (SVD)
$Z=$ first s columns of U
$\hat{\gamma}=$ first s rows of ΣV^{\prime}
.. . satisfies the constraint
$0=(Y-X \hat{\beta})^{\prime} X \Longrightarrow U^{\prime} X=0 \Longrightarrow Z^{\prime} X=0$
Solution is not unique

$$
\gamma \rightarrow A \gamma \quad \text { cancels } \quad Z \rightarrow Z A^{-1}
$$

Power iterations

WLOG $Z^{\prime} Z=I$ then Z unique up to rotation $Z \rightarrow Z Q$

Given Z :

$\hat{\gamma}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime}(Y-X \hat{\beta})=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Y$
Given γ :
$\widetilde{Z}=(Y-X \hat{\beta}) \gamma^{\prime}\left(\gamma \gamma^{\prime}\right)^{-1}$
$\widetilde{Z}=Q R \quad$ (QR decomp)
$\hat{Z}=Q$
Notes
Iteration preserves $Z^{\prime} X=0$
Often faster than svd function

Some latent variables

Latent variable by tissue

Latent variables

Three kinds of mice?

Latent variables of mice

Outliers: not the same mouse

Latent variables of mice

Latent var strongly influences some genes in Cerebellum
Cerebellum

Cerebrum

Inference

Regression on Const, Age and Sex
3×8932 parameters
Regression on Const, Age, Sex and 1 Latent
$4 \times 8932+40$ parameters

Is it like adding $1+\frac{40}{8932} \doteq 1.0045$ parameters per regression?
(no) mice are nearly independent but genes are strongly correlated

Permutation

Repeat many times:
Randomly permute ages of
20 male mice
20 female mice
Recompute the model
Count significant genes
Tabulate

rationale:

The permutation world has no age related genes
yet preserves all the correlation structure among genes
Find that:
including a latent variable increases (true and) false discoveries

More aging genes

at nominal $p=0.001$
Significant aging genes by tissue

Results at nominal $\mathrm{p}=0.001$

	Raw	Latent	Perm \geq Raw	Perm \geq Latent
Adrenal	20	200	0.075	0.048
Cerebellum	17	54	0.111	0.273
BoneMarrow	3	4	0.444	0.704
Cerebrum	8	330	0.190	0.219
Eye	256	356	0.000	0.001
Gonad	45	105	0.012	0.341
Heart	23	113	0.064	0.137
Hippocampus	2	9	0.576	0.554
Kidney	14	22	0.140	0.282
Liver	0	641	1.000	0.073
Lung	89	462	0.010	0.012
Muscle	8	143	0.179	0.232
Spleen	28	81	0.068	0.261
SpinalCord	82	231	0.007	0.127
Striatum	0	197	1.000	0.296
Thymus	346	1310	0.004	0.003

Number of genes picked

Blue = under permutation
 Plain regression

Next steps

Calibrate significance when latent variables present
Build in false discovery estimates

Thanks

Gene Golub and Lek-Heng Lim
Stuart Kim and Jacob Zahn
Patrick Perry, Jerome Friedman, Ingram Olkin, David Rogosa
Kevin Becker

