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Genomics of aging
In work with the Kim lab, which genes change expression:

1. as we age?

2. as worms, mice, flies, · · · age?

3. as kidney, muscle, brain, · · · age?

Microarray data

Yij expression of gene j sample i

Ai age of sample i

i = 1, . . . , n j = 1, . . . , p n � p

NB: Here we’re consumers of matrix algorithms
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Many regressions
For gene j

Yij = β0j + β1jAi + εij , or,

Yij = β0j + β1jAi + β2jSiεij , or,

Yij = β0j + β1jAi + β2jSi + β3jTi + εij ,

where

Ai = age, Si = sex, Ti = tissue type etc.

Mainly interested in

β̂1j , j = 1, . . . , p
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Multivariate regression
Y

.= Xβ

Y n × p expression

X n × r per tissue predictors (1, age, sex, . . . )

β r × p coefficients (2nd row for age coefs)

β̂ = (X ′X)−1X ′Y r × p

Common questions:

• which genes are age related?

• how to adjust p values for multiple tests?

• how to adjust for correlated tests?

• which gene groups are age related?
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Kidney data

Patient 95 is 81 years old . . . but looks younger

Rodwell et al. (2005) P.L.O.S.
Stanford CA, June 2006
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Mouse data
Courtesy of Kevin Becker, National Institute on Aging

p = 8932 genes

n = 40 mice:

5 male and 5 female

ages 1, 6, 16, 24 months

16 tissues:

Adrenal, Bone marrow, Cerebellum, . . . , Spleen, Striatum, Thymus
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“Genetic” age
Minimize

SS =
n∑

i=1

p∑
j=1

(Yij − β0j − β1jAi − β2jSi)2

over β and A1, . . . , An

Every mouse picks it’s own ‘age’ Ai

Uses it for all 8932 genes

Stanford CA, June 2006
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Results
Good news: p > 1 so model does not give SS = 0

Medium news: Ai need to be normalized Aiβ1j = Ai

2 (β1j × 2)

Bad news: fitted Ai seem unrelated to age

Interpretation

Ai pick out some dominant latent structure

this need not be age

Therefore

Try

β0j + β1jAi + β2jSi + β3jZi

for actual age Ai, latent Zi
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Model

Y
.= Xβ + Zγ

Y n × p Response n obs in R
p

X n × r Measured predictors n obs in R
r

β r × p Coefficients

Z n × s Latent predictors n values in R
s

γ s × p Coefficients

Minimize ‖Y − Xβ − Zγ‖F over β, γ, Z

Stanford CA, June 2006
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Rorschach model
Minimize

β γ Z
‖Y − Xβ − Zγ‖F

Looks like:

Regression ‖Y − Xβ‖F

Factor analysis ‖Y − Zγ‖F

Golub Hoffman & Stewart (1987)

Tukey’s 1 df for interaction

Structural equation models

Extends to:

‖Y − Xβ − Zγ − δW‖F

t × p matrix W with t ’per gene’ measurements

Published in:

Gabriel (1978) JRSS-B linear bi-linear

Special case: additive main effects plus multiplicative interaction

Fisher and Mackenzie (1923) J Ag Sci

popular in crop science to this day
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Solution for β
Min ‖Y − Xβ − Zγ‖F

X full rank, soln still not unique

As Z → Z + Xθ θ ∈ R
r×s

and β → β − θγ

Xβ + Zγ unchanged

WLOG Z ′X = 0

or else Z → Z − X(X ′X)−1X ′Z

Given Zγ

β̂ = (X ′X)−1X ′(Y − Zγ) = (X ′X)−1X ′Y
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Solution for Zγ
Minimize

min ‖Y − Xβ̂ − Zγ‖F

over Z ∈ R
n×s γ ∈ R

s×p

subject to Z ′X = 0

The unconstrained solution . . .

Let Y − Xβ̂ = UΣV ′ (SVD)

Z = first s columns of U

γ̂ = first s rows of ΣV ′

. . . satisfies the constraint

0 = (Y − Xβ̂)′X =⇒ U ′X = 0 =⇒ Z ′X = 0

Solution is not unique

γ → Aγ cancels Z → ZA−1

Stanford CA, June 2006



Modern Massive Data Sets 13

Power iterations
WLOG Z ′Z = I then Z unique up to rotation Z → ZQ

Given Z :

γ̂ = (Z ′Z)−1Z ′(Y − Xβ̂) = (Z ′Z)−1Z ′Y

Given γ:

Z̃ = (Y − Xβ̂)γ′(γγ′)−1

Z̃ = QR (QR decomp)

Ẑ = Q

Notes

Iteration preserves Z ′X = 0
Often faster than svd function

Stanford CA, June 2006
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Some latent variables

Histograms of up to 40 mice Stanford CA, June 2006
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Latent variables

Stanford CA, June 2006
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Three kinds of mice?

Stanford CA, June 2006
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Outliers: not the same mouse

Stanford CA, June 2006
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Latent var strongly influences some genes in Cerebellum

But not in Cerebrum Stanford CA, June 2006
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Inference
Regression on Const, Age and Sex

3 × 8932 parameters

Regression on Const, Age, Sex and 1 Latent

4 × 8932 + 40 parameters

Is it like adding 1 + 40
8932

.= 1.0045 parameters per regression?

(no) mice are nearly independent but genes are strongly correlated

Stanford CA, June 2006
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Permutation
Repeat many times:

Randomly permute ages of

20 male mice

20 female mice

Recompute the model

Count significant genes

Tabulate

rationale:

The permutation world has no age related genes

yet preserves all the correlation structure among genes

Find that:

including a latent variable increases (true and) false discoveries

Stanford CA, June 2006
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More aging genes

at nominal p = 0.001
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Results at nominal p = 0.001
Raw Latent Perm ≥ Raw Perm ≥ Latent

Adrenal 20 200 0.075 0.048

Cerebellum 17 54 0.111 0.273

BoneMarrow 3 4 0.444 0.704

Cerebrum 8 330 0.190 0.219

Eye 256 356 0.000 0.001

Gonad 45 105 0.012 0.341

Heart 23 113 0.064 0.137

Hippocampus 2 9 0.576 0.554

Kidney 14 22 0.140 0.282

Liver 0 641 1.000 0.073

Lung 89 462 0.010 0.012

Muscle 8 143 0.179 0.232

Spleen 28 81 0.068 0.261

SpinalCord 82 231 0.007 0.127

Striatum 0 197 1.000 0.296

Thymus 346 1310 0.004 0.003
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Number of genes picked
Blue = under permutation Red = original
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Next steps
Calibrate significance when latent variables present

Build in false discovery estimates

Stanford CA, June 2006
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