Multilinear Algebra for Analyzing Data with Multiple Linkages

Tamara G. Kolda
In collaboration with:
Brett Bader, Danny Dunlavy, Philip Kegelmeyer
Sandia National Labs

Linear Algebra plays an important role in Graph Analysis

- PageRank
- Brin \& Page (1998)
- Page, Brin, Motwani, Winograd (1999)
- HITS (hubs and authorities)
- Kleinberg (1998/99)
- Latent Semantic Indexing (LSI)

$$
\mathbf{A} \approx \mathbf{T} \Sigma \mathbf{D}^{\top}=\sum_{r} \sigma_{r} \text { tor }^{\top} \circ \mathrm{d}_{\bullet r}
$$

- Dumais, Furnas, Landauer, Deerwester, and Harshman (1988)
- Deerwester, Dumais, Landauer, Furnas, and Harshman (1990)

One Use of LSI: Maps terms and documents to the "same" k-dimensional space.

Multi-Linear Algebra can be used in more complex graph analyses

- Nodes (one type) connected by multiple types of links
- Node x Node x Connection
- Two types of nodes connected by multiple types of links
- Node A x Node B x Connection
- Multiple types of nodes connected by a single link
- Node A x Node B x Node C
- Multiple types of nodes connected by multiple types of links
- Node A x Node B x Node C x Connection
- Etc...

Analyzing Publication Data: Term x Doc x Author

6928 terms
4411 documents 6099 authors
464645 nonzeros

A $=$ term-document matrix
$a_{i j}=\frac{\left(1+\log _{2} f_{i j}\right) \log _{2}\left(N / n_{i}\right)}{d_{j}}$
$\mathrm{B}=$ author-document matrix

Terms must appear in at least 3 documents and no more than 10% of all documents. Moreover, it must have at least 2 characters and no more than 30.

$$
b_{k j}=\left\{\begin{array}{l}
1 / \sqrt{m_{j}} \\
o
\end{array}\right.
$$

if author k wrote document j otherwise

Form tensor \mathcal{X} as: $\quad x_{i j k}=a_{i j} b_{j k}$
Element (i,j,k) is nonzero only if author k wrote document j using term i.

A tensor is a multidimensional array

Thion
 s scalar
 a vector
 B matrix
 X tensor

- Other names for tensors...
- Multi-way array
- N-way array
- The "order" of a tensor is the number of dimensions
- Other names for dimension...
- Mode
- Way
- Example
- The matrix A (at left) has order 2.
- The tensor $\mathcal{X}_{\text {(at left) }}$ has order 3 and its $3^{\text {rd }}$ mode is of size K.

Tensor "fibers" generalize the concept of rows and columns

There's no naming scheme past 3 dimensions; instead, we just say, e.g., the $4^{\text {th-mode fibers. }}$

Tucker Decomposition

$$
X=\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} g_{r s t} \mathrm{a}_{\bullet r} \circ \mathrm{~b}_{\bullet s} \circ \mathbf{c}_{\bullet} t
$$

- Proposed by Tucker (1966)
- Also known as: Three-mode factor analysis, three-mode PCA, orthogonal array decomposition
- A, B, and C may be orthonormal (generally assume they have full column rank)
- \mathcal{G} is not diagonal

$$
\mathcal{G}=\llbracket \mathcal{X} ; \mathrm{A}^{\dagger}, \mathrm{B}^{\dagger}, \mathrm{C}^{\dagger} \rrbracket
$$

- Not unique

CANDECOMP/PARAFAC

- CANDECOMP = Canonical Decomposition (Carroll and Chang, 1970)
 (Harshman, 1970)
- Columns of \mathbf{A}, \mathbf{B}, and \mathbf{C} are not orthonormal
$\boldsymbol{C}=\mathrm{C}]$ - If R is minimal, then R is called the rank of the tensor (Kruskal 1977)

National
Laboratories

Combining Tucker and PARAFAC

Have:Tensor \mathcal{X} of size $M \times N \times P \quad$ Want: $\mathcal{X} \approx \lambda \llbracket \mathbf{T}, \mathbf{D}, \mathbf{A} \rrbracket$

Step 1: Choose orthonormal compression matrices for each dimension:

$$
\begin{aligned}
& \mathrm{U} \text { of size } M \times I \\
& \mathrm{~V} \text { of size } N \times J \\
& \mathrm{~W} \text { of size } P \times K
\end{aligned}
$$

Step 2: Form reduced tensor (implicitly)

$$
\hat{X}=\llbracket \mathcal{X} ; \mathrm{U}^{\top}, \mathrm{V}^{\top}, \mathbf{W}^{\top} \rrbracket \quad \Rightarrow \hat{X} \approx \llbracket \hat{\mathbb{X}} ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket
$$

Step 3: Compute PARAFAC on reduced tensor

$$
\begin{aligned}
& \qquad \hat{\boldsymbol{X}} \approx \hat{\lambda} \llbracket \hat{\mathbf{T}}, \hat{\mathbf{D}}, \hat{\mathbf{A}} \rrbracket \\
& \text { Step 4: Convert to PARAFAC of full tensor }
\end{aligned}
$$

$$
\mathcal{X} \approx \hat{\lambda} \llbracket \mathbf{U} \hat{\mathbf{T}}, \mathbf{V} \hat{\mathbf{D}}, \mathbf{W} \hat{\mathbf{A}} \rrbracket \equiv \lambda \llbracket \mathbf{T}, \mathbf{D}, \mathbf{A} \rrbracket
$$

Matricize: $\mathbf{X}_{(n)}$

The nth-made fibefs are rearranged to be the columns of a matrix

x

$\mathrm{X}_{\text {(3) }}$

$$
\mathrm{X}_{(2)}=\left[\begin{array}{llll}
1 & 2 & 5 & 6 \\
3 & 4 & 7 & 8
\end{array}\right]
$$

Tucker and PARAFAC Matrix Representations

Fact 1:

$$
(\llbracket \mathcal{G} ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket)_{(1)}=\mathbf{A G}_{(1)}(\mathbf{C} \otimes \mathbf{B})^{\top}
$$

Fact 2:

$$
(\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket)_{(1)}=\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\top}
$$

Khatri-Rao Matrix Product (Columnwise Kronecker Product):

$$
\mathbf{C} \odot \mathbf{B}=\left[\begin{array}{llll}
\mathbf{c}_{\bullet 1} \otimes \mathbf{b}_{\bullet 1} & \mathbf{c}_{\bullet 2} \otimes \mathbf{b}_{\bullet 2} & \cdots & \mathbf{c}_{\bullet R} \otimes \mathbf{b}_{\bullet R}
\end{array}\right]
$$

Special pseudu-inverse structure:

$$
\left((\mathbf{C} \odot \mathbf{B})^{\top}\right)^{\dagger}=(\mathbf{C} \odot \mathbf{B})\left(\mathbf{C}^{\top} \mathbf{C} * \mathbf{B}^{\top} \mathbf{B}\right)^{-1}
$$

Implicit Compressed PARAFAC ALS

Have: $\hat{X}=\llbracket \mathcal{X} ; \mathrm{U}^{\top}, \mathrm{V}^{\top}, \mathrm{W}^{\top} \rrbracket \quad$ Want: $\hat{X} \approx \llbracket \hat{\mathrm{~T}}, \hat{\mathrm{D}}, \hat{\mathrm{A}} \rrbracket$
Consider the problem of fixing the $2^{\text {nd }}$ and $3^{r d}$ factors and solving just for the $1^{\text {stt }}$.

$$
\begin{aligned}
& \min _{\hat{\mathbf{T}}}\|\hat{X}-\llbracket \hat{\mathbf{T}}, \hat{\mathbf{D}}, \hat{\mathbf{A}} \rrbracket\| \quad \min _{\hat{\mathbf{T}}}\left\|\hat{\mathbf{X}}_{(1)}-\hat{\mathbf{T}}(\hat{\mathbf{A}} \odot \hat{\mathbf{D}})^{\top}\right\| \\
& \hat{\mathbf{T}}=\hat{\mathbf{X}}_{(1)}\left((\hat{\mathbf{A}} \odot \hat{\mathbf{D}})^{\top}\right)^{\dagger} \\
& \hat{\mathrm{T}}=\hat{\mathbf{X}}_{(1)}(\hat{\mathbf{A}} \odot \hat{\mathrm{D}}) \mathrm{Z}^{-1} \quad \text { with } \quad \mathrm{Z}=\hat{\mathbf{A}}^{\top} \hat{\mathbf{A}} * \hat{\mathrm{D}}^{\top} \hat{\mathrm{D}} \\
& \hat{\mathbf{T}}=\mathrm{U}^{\top} \mathbf{X}_{(1)}(\mathbf{W} \otimes \mathbf{V})(\hat{\mathbf{A}} \odot \hat{\mathbf{D}}) \mathbf{Z}^{-1} \\
& \hat{\mathbf{T}}=\mathbf{U}^{\top} \mathbf{X}_{(1)}(\mathbf{W} \hat{\mathbf{A}} \odot \mathbf{V} \hat{\mathbf{D}}) \mathbf{Z}^{-1} \\
& (\hat{\mathbf{T}} \mathbf{Z})_{\bullet r}=\mathbf{U}^{\top} \mathbf{X}_{(1)}\left[(\mathbf{W} \hat{\mathbf{A}})_{\bullet r} \otimes(\mathbf{V} \hat{\mathrm{D}})_{\bullet r}\right] \quad \text { Update columnwise }
\end{aligned}
$$

Back to the Problem: Term x Doc x Author

Terms must appear in at least 3 documents and no more than 10% of all documents. Moreover, it must have at least 2
characters and no more than 30.
$\mathrm{B}=$ author-document matrix
$b_{k j}= \begin{cases}1 / \sqrt{m_{j}} & \text { if author } k \text { wrote document } \mathrm{j} \\ 0 & \text { otherwise }\end{cases}$
Form tensor \mathcal{X} as: $\quad x_{i j k}=a_{i j} b_{j k}$
Element (i,j,k) is nonzero only if author k wrote document j using term i.
$\mathcal{X} \approx \sum_{r} \lambda_{r}$ ter oder o aer

6928 documents 4411 terms 6099 authors 464645 nonzeros

$$
\begin{aligned}
& \mathbf{A}=\text { term-document matrix } \\
& a_{i j}=\frac{\left(1+\log _{2} f_{i j}\right) \log _{2}\left(N / n_{i}\right)}{d_{j}}
\end{aligned}
$$

Original problem is "overly" sparse

$\mathbf{A}=$ term-document matrix
$a_{i j}=\frac{\left(1+\log _{2} f_{i j}\right) \log _{2}\left(N / n_{i}\right)}{d_{j}}$ $\mathbf{B}=$ author-document matrix

Sandia
National
Laboratories

Result: Resulting tensor has just a few nonzero columns in each lateral slice.

Experimentally, PARAFAC seems to overfit such data and not do a good job of "mixing" different authors.

Compression Matrices \& PARAFAC

$$
x \approx \llbracket \hat{X} ; \mathrm{U}, \mathrm{~V}, \mathrm{~W} \rrbracket
$$

$\mathrm{A}=$ term-document matrix

$$
\begin{gathered}
\mathrm{A} \approx \mathrm{U}_{A} \Sigma_{A} \mathrm{~V}_{A}^{T} \quad(\text { (rank 100 }) \\
\mathrm{U}=\mathrm{U}_{A}^{\top}, \mathrm{V}=\mathrm{V}_{A}^{\top},
\end{gathered}
$$

$\mathbf{C}=$ term-author matrix

$$
\begin{gathered}
c_{i k}=\sum_{j} x_{i j k} \\
\mathrm{C} \approx \mathrm{U}_{C} \Sigma_{C} \mathrm{~V}_{C}^{T} \quad(\text { (rank 100) } \\
\mathrm{W}=\mathrm{V}_{C}^{\top}
\end{gathered}
$$

Run rank-100 PARAFAC on compressed tensor. Reassemble results.

Three-Way Fingerprints

- Each of the Terms, Docs, and Authors has a rank-k (k=100) fingerprint from the PARAFAC approximation
- All items can be directly compared in "concept space"
- Thus, we can compare any of the following
- Term-Term
- Doc-Doc
- Term-Doc
- Author-Author
- Author-Term

- Author-Doc
- The fingerprints can be used as inputs for clustering, classification, etc.

MATLAB Results

- Go to MATLAB

```
Weight = 0.649794
```

0.22917723474 Vortex motion law for the Schrodinger-Ginzburg-Landua equations
0.22803381633 Vortex state of d-wave superconductors in the Ginzburg-Landau energy
0.2233726320 Studies of a Ginzburg-Landau model for d-wave superconductors
0.21839143340 Vortices in p-wave superconductivity
0.2056138485 Numerical solution of the three-dimensional Ginzburg-Landau models using artificial boundary
-0.0130460 463 Layer stripping for a transversely isotropic elastic medium
-0.0132632 1151 Scattering of time-harmonic electromagnetic waves by anisotropic inhomogeneous scatterers or impenetral
-0.0133375 1206 Phase equations for relaxation oscillators I
-0.0135059 2592 On the two-dimensional gas expansion for compressible Euler equations
-0.01418433091 A thermomechanical model for energetic materials with phase transformations
0.48286543387 landau
$0.4489465 \quad 2614$ ginzburg
0.26887776130 superconductivity
0.26112516771 vortex
$0.2227376 \quad 6772$ vortices
-0.0120339 1964 elastic
-0.0120368 1620 design
-0.0120543 3767 mesh
-0.0144529 2554 gas
-0.0153897 5462 scattering
$0.7300468 \quad 1322 \mathrm{du} \mathrm{q}$
0.31124973142 lin tc
0.2275581814 chapman sj
0.13821644991 spirn d
0.10486533133 lin fg
-0.0182970 5898 yao pf
-0.0188236 2045 han wm
-0.0244190 2947 laurencot p
-0.0281511 2393 izhikevich em
-0.0318239 3369 manservisi s
Return to continue, jump to rank, or ' 0 ' (zero) to quit:
\leqslant
Match 1: tensor (6261)
No. docs in which the term appears: 61
No. authors that use the term: 118
Norm of matching item: $1.934519 \mathrm{e}-001$
-- Top 10 matches for PARAFAC --
Score 2.73e-001: tensor (6261)
Score 2.35e-001: multilinear (3955)
Score 2.15e-001: tensors (6262)
Score 2.06e-001: svds (6182)
Tscore 2.04e-001: deficient (1520)
Score 2.00e-001: valuable (6660)
Score 1.97e-001: confirms (1160)
Score 1.94e-001: hyper (2860)
Score 1.93e-001: displacement (1787)
Score 1.92e-001: div (1814)
-- Top 10 matches for SVD --
Score 1.17e-001: decomposition (1498)
Score 1.13e-001: squares (5891)
Score 1.07e-001: rank (4980)
Score 9.75e-002: least (3437)
Score 9.20e-002: singular (5724)
Score 7.89e-002: tensor (6261)
Score 7.21e-002: elasticity (1965)
Score 6.22e-002: orthogonal (4327)
Score 6.19e-002: mixed (3837)
Score 5.71e-002: elastic (1964)

Match 1: tensor (6261)
No. docs in which the term appears: 61
No. authors that use the term: 118
Norm of matching item: $1.934519 \mathrm{e}-001$
-- Top 10 matches for PARAFAC --
Score 2.21e-001: On the best rank-1 and rank-(R1R2...R-N) approximation of higher-order tensors (1224)
Score 2.01e-001: Efficient solution of the rank-deficient linear least squares problem (148)
Score 1.87e-001: On the best rank-1 approximation of higher-order supersymuetric tensors (2570)
Score 1.86e-001: Orthogonal tensor decompositions (2180)
Score 1.82e-001: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theor
Score 1.78e-001: Least squares solution of matrix equation AXB(*)+CYD*=E-* (3192)
Score 1.74e-001: Least-squares methods for incompressible Newtonian fluid flow Linear stationary problems (4244)
Score 1.74e-001: Least-squares methods for linear elasticity (4243)
Score 1.73e-001: Tensor methods for large sparse nonlinear least squares problems (1119)
Score 1.69e-001: Multilevel boundary functionals for least-squares mixed finite element methods (396)
-- Top 10 matches for SVD --
Score 5.78e-002: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theor
Score 5.77e-002: On the best rank-1 and rank-(R1R2...R-N) approximation of higher-order tensors (1224)
Score 5.59e-002: Least-squares methods for linear elasticity (4243)
Score 5.35e-002: First-order system least squares for the stress-displacement formulation Linear elasticity (3431)
Score 4.98e-002: Rank-one approximation to high order tensors (2369)
Score 4.72e-002: Least-squares methods for incompressible Newtonian fluid flow Linear stationary problems (4244)
Score 4.51e-002: First-order system least squares for linear elasticity Numerical results (1178)
Score 4.43e-002: Orthogonal tensor decompositions (2180)
Score 4.39e-002: Layer stripping for a transversely isotropic elastic medium (463)
Score 3.91e-002: First-order system least squares for the Stokes and linear elasticity equations Further results (117

H: Command Window
Match 1: tensor (6261)
No. docs in which the term appears: 61
No. authors that use the term: 118
Norm of matching item: $1.934519 \mathrm{e}-001$
-- Top 10 matches for PARAFAC --
Score 1.91e-001: vandewalle j (5451)
Score 1.84e-001: delathawwer 1 (1181)
Score 1.83e-001: quintanaorti g (4293)
Score 1.83e-001: quintanaorti es (4292)
Score 1.83e-001: petitet a (4109)
L Score 1.76e-001: chen y (873)
Score 1.76e-001: shim sy (4846)
Score 1.73e-001: demoor b (1199)
Score 1.68e-001: barlow jl (288)
Score 1.66e-001: cai z a (693)
d Command Window

```
Match 1: dhillon is (1239)
```

 No. terms used by author: 68
 No. documents written by author: 1
 Norm of matching item: 5.289941e-002
 -- Top 10 matches for PARAFAC --
 Score 2.27e-001: bidiagonal (575)
 Score 2.26e-001: qr (4907)
 Score 2.11e-001: ldlt (3424)
 Score 2.08e-001: lapack (3391)
 Score 2.07e-001: columns (1000)
 Iscore 2.04e-001: column (999)
Score 2.03e-001: revealing (5308)
Score 2.03e-001: pivoting (4579)
Score 2.02e-001: rank (4980)
Score 1.98e-001: bjorck (610)
Find authors similar to Dhillon
Match 1: dhillon is (1239)
No. terms used by author: 68
No. documents written by author: 1
Norm of matching item: 5.289941e-002
-- Top 10 matches for PARAFAC --
Score 3.11e-001: dhillon is (1239)
Score 3.11e-001: parlett bn (4024)
Score 2.28e-001: drmac z (1315)
Score 2.19e-001: molera jm (3625)
Score 2.16e-001: jessup er (2437)
Score 2.04e-001: dopico fm (1292)
Score 2.04e-001: moro j (3661)
Score 2.02e-001: jubete f (2495)
Score 2.02e-001: pruneda re (4253)
Score 2.02e-001: castillo e (761)

A Command Window

Match 1: oleary dp (3913)
No. terms used by author: 114
No. documents written by author: 2
Norm of matching item: $2.567276 \mathrm{e}-001$
-- Top 10 matches for PARAFAC --
Score 2.35e-001: ill (2906)
Score 2.15e-001: tikhonov (6334)
Score 2.12e-001: posed (4667)
Score 2.07e-001: regularization (5142)
Tscore 2.05e-001: conditioned (1138)
Score 2.02e-001: clustered (940)
Score 2.01e-001: unmixed (6601)
Score 2.01e-001: regularizing (5145)
Score 1.95e-001: regularisation (5140)
Score 1.95e-001: regularized (5144)
Find authors similar to OLeary DP
Match 1: oleary dp (3913)
No. terms used by author: 114
No. documents written by author: 2
Norm of matching item: $2.567276 \mathrm{e}-001$
-- Top 10 matches for PARAFAC --
Score 2.55e-001: oleary dp (3913)
Score 2.37e-001: kilmer me (2645)
Score 2.30e-001: hansen pc (2056)
Score 2.18e-001: o'leary dp (3889)
Score 2.10e-001: gulliksson m (1956)
Score 2.10e-001: wedin pa (5695)
Score 2.09e-001: maass p (3306)
Score 2.08e-001: mante c (3372)
Score 2.07e-001: jin qn (2458)
Score 2.05e-001: johnston pr (2470)

Hommand Window
Match 1: zha hy (5990)
No. terms used by author: 164
No. documents written by author: 5
Norm of matching item: 3.795614e-001
-- Top 10 matches for PARAFAC --
Score 3.55e-001: zha hy (5990)
Score 3.46e-001: simon hd (4890)
Score $3.36 \mathrm{e}-001$: zhang $2 y$ (6025)
Score $3.28 \mathrm{e}-001$: simon h (4889)
Score 3.19e-001: fundelic re (1645)
I Score 3.09e-001: zha h (5989)
Score 2.94e-001: zhang t (6013)
Score 2.81e-001: vandooren p (5453)
Score 2.77e-001: golub g (1820)
Score 2.75e-001: dopico fm (1292)

H: Command Window
No. authors that use the term: 36
Norm of matching item: 1.789480e-001
-- Top 10 matches for PARAFAC --
Score 3.28e-001: delathauwer 1 (1181)
Score $3.23 \mathrm{e}-001$: golub g (1820)
Score 3.23e-001: vandooren p (5453)
Score 3.21e-001: dopico fm (1292)
TScore 3.21e-001: moro j (3661)
Score 3.20e-001: fundelic re (1645)
Score 3.13e-001: jessup er (2437)
Score 3.12e-001: zha h (5989)
Score 3.12e-001: dermel j (1197)
Score 3.12e-001: vandewalle j (5451)
>>

Wrap-Up

- Higher-order LSI for term-doc-author tensor
- Tucker-PARAFAC combination for sparse tensors
- Spasre Tensor Toolbox (release summer 2006)
- Mathematical manipulations
- Kolda, Tech. Rep. SAND2006-2081
- Thanks to Kevin Boyack for journal data
- For more info: Tammy

Dunlavy, Kolda, Kegelmeyer, Tech. Rep. SAND2006-2079

Kolda, Bader, Kenny, ICDM05

