Workshop on Modern Massive Data Matrices, Palo Alto 2006.

General Thoughts : Bad historical accident that Numerical and Scientific Computation and Algorithms and Complexity do not have more to do with each other.

NA has a couple of centuries work to offer Alg.'s.

Alg.'s (once you get beyond our seeming obsession with poly time) has a lot to offer. Randomization is certainly one of them....

Simple Starting Question: How does one pick a good random sample of rows of a matrix A quickly ?

Good : Want R to represent A. Many possible measures of what is good.

Basis Rows of R span row space of A (and independent)...

Modify to : Row span of R contains a vector "close" to each/most rows of A. Interpolative approximation.

Here simpler notion of good :

$$
A^{T} A \approx R^{T} R
$$

Notation A is $m \times n$.

Number of rows in sample $=s .(s \ll m, n$.

Quickly : Could mean polynomial time.

Here : Massive Matrices. Perhaps cannot be stored in full in RAM. [More generally, models of computation for handling massive data - eg. the streaming model.....

Quickly : In one or two passes thro' A.

Randomization will help.

Uniform random sample won't do : All but one row zero !!

Sample with probabilities depending on size of entries in row.

The Length-squared distribution : Pick rows with probabilities proportional to their squared lengths: Make s i.i.d. trials. In each trial, pick a row $A_{(i)}$ (the i th row of A) with

Probability of picking row $i=\frac{\left|A_{(i)}\right|^{2}}{\|A\|_{F}^{2}}$. If $A_{(i)}$ is picked, include a scaled version : $A_{(i)} / \sqrt{s P_{i}}$ as the next row of R.

If all row lengths are equal, uniform sampling will do and no scaling is necessary.
[In fact, same if all row lengths are within $O(1)$ of each other.]

Two Properties of the sampling

$$
\text { Unbiased } E\left(R^{T} R\right)=A^{T} A
$$

This distribution minimizes the total variance

$$
E\left\|A^{T} A-R^{T} R\right\|_{F}^{2} .
$$

[Measuring $E\left\|A^{T} A-R^{T} R\right\|_{F}^{2}$ greatly simplifies the expression.]

For most results, approx length-squared distribution, where probability of picking row i is at least $\frac{c\left|A_{(i)}\right|^{2}}{\|A\|_{F}^{2}}$ suffices.

- Frieze, K., Vempala (1998)

Many other properties of the distribution - fast SVD.....

How good is this sample ?
s is the number of sampled rows.

Lemma For every matrix A,

$$
E\left\|R^{T} R-A^{T} A\right\|_{F}^{2} \leq \frac{1}{s}\|A\|_{F}^{4} .
$$

Only interesting if

$$
\frac{\|A\|_{F}^{4}}{\left\|A^{T} A\right\|_{F}^{2}}
$$

is small.

Condition equivalent to

The top $O(1)$ singular values form $\Omega(1)$ part of the "spectrum" of A.

Above for $A^{T} A$ can be generalized to multiplying any two matrices. - Drineas, K.
$R^{T} R \approx A^{T} A$ implies the singular values of $R \approx$ the singular values of A. Can be quantified by Hoffman-Wielandt inequality.

More difficult questions Can one also say the same about the singular vectors of A, R ? Is there a sense in which

$$
R \approx A ?
$$

No free lunch
We cannot hope to pick from any general $m \times n$ matrix, a set of $s \ll m, n$ rows to form an R with $R^{T} R$ close to $A^{T} A$. Call a matrix A a PCA matrix if for $k \in O(1)$:

$$
\lambda_{1}\left(A^{T} A\right)+\lambda_{2}\left(A^{T} A\right)+\ldots \lambda_{k}\left(A^{T} A\right) \geq c\|A\|_{F}^{2} .
$$

Then, above says : $E\left\|R^{T} R-A^{T} A\right\|_{F}^{2} \leq \epsilon\left\|A^{T} A\right\|_{F}^{2}$ for $s \in O(1)$. Myriad applications of Principal Component Analysis(assume matrix is a PCA matrix or more strongly that they are numerically low-rank) include :

Consumer-Product matrices

Document-term matrices
Test scores- Students matrices....
TCS contribution : Low-rank approximations to matrices and their extensions to tensors can also help solve combinatorial optimization problems.

Approximating A itself

Suppose C is a random subset of s columns of A picked according to the length-squared distribution (and scaled as above) and R is a subset of s rows of A " "". From just C, R, we can find an $s \times s$ matrix U such that

$$
\begin{aligned}
& E\|A-C U R\|_{F} \leq\left\|A-A_{s^{1 / 5}}\right\|_{F}+\frac{4}{s^{1 / 5}}\|A\|_{F}, \\
& E\|A-C U R\|_{2} \leq\left\|A-A_{s^{1 / 5}}\right\|_{2}+\frac{4}{s^{1 / 5}}\|A\|_{F},
\end{aligned}
$$

[where, A_{k} is the best rank k approximation to A and $\|A\|_{2}$ denotes the spectral norm.] Drineas, K., also Drineas, K., Mahoney.

Sparsity preserved

Further matrix-vector products $A x$ can be approximated by $C(U(R x))$.

Matrix Reconstruction

m users and n products. $A_{i j}$ measures the preference of user i for product j.

Suppose we have observed some entries of the matrix. Can we infer the other entries ? [So, having observed some market behaviour, we want to recommend to users what they would like.]
[Recommendations Systems / Collaborative filtering]

Azar, Fiat, Karlin, McSherry and Saia

Achlioptas and McSherry

Drineas, Kerenidis and Raghavan

Achlioptas and McSherry's algorithm :
p probability. Independently for each entry $A_{i j}$ of matrix, replace it with $A_{i j} / p$ with probability (w.p) p and 0 with probability $1-p$. So, number of non-zero entries reduced by a factor of p.

$$
\begin{gather*}
\hat{A}_{i j}=\left\{\begin{array}{ccc}
0 & \text { w.p. } 1-p \\
A_{i j} / p & \text { w.p.p. }
\end{array}\right. \\
\left(\begin{array}{ccccccc}
5 & 3 & 3 & -2 & -7 & 8 & 9 \\
1 & 2 & 2 & -17 & 1 & -8 & 9 \\
21 & 41 & 22 & -2 & 0 & 0 & 0
\end{array}\right) \rightarrow \tag{4}\\
\left(\begin{array}{ccccccc}
10 & 6 & 0 & 0 & -14 & 16 & 0 \\
2 & 4 & 0 & 0 & 0 & -16 & 18 \\
0 & 0 & 44 & 0 & 0 & 0 & 0
\end{array}\right) \tag{5}
\end{gather*}
$$

If $\left|A_{i j}\right| \leq 1, \mathrm{WHP},\|A-\widehat{A}\|_{2}$ is small.
*** Coming Attractions See Achlioptas's talk. ****
"Exponential convergence" of Kaczmarz equation solver :

$$
A x=b
$$

At iteration k : have x_{k}. Get x_{k+1} by adding to x_{k} the I.h.s. of any violated equation suitably scaled :

$$
x_{k+1}=x_{k}+\frac{b_{i}-\left(A_{(i)} \cdot x_{k}\right)}{\left|A_{(i)}\right|} A_{(i)}
$$

Strohmer and Vershynin (2006): A is $m \times n$ with rank n. If at each step, i is chosen according to the length-squared distribution, then for x^{*} with $A x^{*}=b$,

$$
E\left|x_{k}-x^{*}\right|^{2} \leq\left(1-\frac{1}{R^{2}}\right)^{k}\left|x^{*}-x_{0}\right|^{2}
$$

where $R=\|A\|_{F} / \sigma_{\min }(A)$.

What is wrong with the length-squared distribution ?

An Example : A has the first $m-1$ rows all equal and the last row orthogonal to them; all rows are of length 1. [Drineas, Vempala]

Best rank 2 approximation : A itself. Error=0.

Repeated sampling only yields the first vector. Error $\nless O$ (best error) !!

Two Issues : Relative Error Get a low-rank approximation \widehat{A} to A so that

$$
\|A-\widehat{A}\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}
$$

(Recall : A_{k} best rank k approx to A.)
"Interpolative" approximation Get an \widehat{A} which is in the span of at most s (s small) rows of A.

Deshpande, Rademacher, Vempala, Wong; Drineas, Mahoney, Muthukrishnan; Sarlos; Har-Peled; Martinson, Rokhlin and Tygert all address these questions.
***COMING ATTRACTIONS $* * * * * *$

Sarlos: Take s random (i.i.d.) linear combinations of the rows of A. Find best approximation \hat{A} to A in their span. Then with high probability :

$$
\|A-\widehat{A}\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F},
$$

provided $s \geq c k^{2} \log m / \epsilon$.

One intuition : If one performs a random rotation of A on the left, one gets vectors all of roughly the same length. So
length-squared distribution \approx picking first $s \ldots$.

More direct proof using classic and recent results on random projections in Sarlos. One issue : Random vectors are dense. But sparse random vectors with same properties recently developed....

Also tackles l_{2} linear regression.

Martinson, Rokhlin, Tygert : Independent development on similar lines. But $s \approx k+20$. (No oversampling !). But weaker error bounds of the form (for $m=n$):

Error in spectral norm at most $O(k n) \sigma_{k+1}(A)$. Much better Empirical results.

Tensors

Max-3-SAT : Given a Boolean CNF formula with 3 literals per clause, find an assignment to the variables satisfying as many clauses as possible. $x_{1}, x_{2}, \ldots x_{n}$ 0-1 variables. Let $S=$ $\left\{\left(x_{1}, x_{2}, \ldots x_{n}, 1-x_{1}, 1-x_{2}, \ldots 1-x_{n}\right): x_{i} \in\right.$ $\{0,1\}\}$. Max-3-SAT can be formulated as :

$$
\operatorname{Max}_{y \in S}: \sum_{i, j, k} A_{i, j, k} y_{i} y_{j} y_{k} .
$$

Rank 1 3-tensor: Outer product of 3 vectors $: u \otimes v \otimes w=\left(u_{i} v_{j} w_{k}\right)$.

Low Rank Approximation (LRA) of tensors : Approximate by a sum of a small number of rank 1 tensors. If we can find a LRA B, replace A by B; solve exploiting the low rank of B.

Existence, Computation ??? - Golub and Lim; SATURDAY

Existence Lemma For any r - tensor $A, \epsilon>0$, there exist $k \leq 1 / \epsilon^{2}$ rank-1 tensors, $B_{1}, B_{2}, \ldots B_{k}$ such that

$$
\left\|A-\left(B_{1}+B_{2}+\ldots B_{k}\right)\right\|_{2} \leq \epsilon\|A\|_{F} .
$$

ComputationTheorem For any r-tensor (r fixed) $A, \epsilon>0$, we can find k rank 1 tensors $B_{1}, B_{2}, \ldots B_{k}$, where $k \leq 100 / \epsilon^{2}$, in time $(n / \epsilon)^{O\left(1 / \epsilon^{4}\right)}$ such that with high probability we have

$$
\left\|A-\left(B_{1}+B_{2}+\ldots B_{k}\right)\right\|_{2} \leq \epsilon\|A\|_{F} .
$$

—- de la Vega, K., Karpinski and Vempala

Notation: $\|A\|_{2}$ is the spectral norm $=$
$\operatorname{Max}_{u, v, w} A(u, v, w)=\sum_{i j k} A_{i j k} u_{i} v_{j} w_{k}$ over all unit length vectors.

Finding LRA for 3-tensors Enough to find u, v, w to maximize

$$
A(u, v, w)=\sum_{i j k} A_{i j k} u_{i} v_{j} w_{k} .
$$

Point 1 If u, v are known,

$$
\begin{equation*}
w=A(u, v, \cdot)=\sum_{i j} A_{i j} \cdot u_{i} v_{j} \tag{6}
\end{equation*}
$$

suffices.

Point 2 We can estimate the sum in the r.h.s. of (6) if we have just $O(1)$ terms picked according to the length-squared distribution. For this, need only $O(1) u_{i}, v_{j}!!$

Point 3 We can enumerate all possible values of these $O(1) u_{i}, v_{j}$ and find all candidate w.

Point 4 We can check which candidate w is best by finding maximum eigenvalue of each matrix $A(\cdot, \cdot, w)$!!

