Latent Semantic Analysis and Fiedler Retrieval

Bruce Hendrickson

Discrete Algorithms \& Math Dept. Sandia National Labs
Albuquerque, New Mexico Also, CS Department, UNM

Informatics \& Linear Algebra

- Eigenvectors of graphs (convergence of iterative process)
" Bibliometrics
" PageRank, HITS and descendents
" TrustRank, etc.
- Singular vectors of data matrix (Rank reduction techniques)
" Latent semantic analysis (LSA/LSI)
" Text retrieval, image recognition, etc.
» Tensor techniques, etc.
Sandia
National
Laboratories

Yet Another Matrix

- Laplacian matrix of a graph
" Widely used in spectral graph theory
" Less common in informatics
- Some usage in clustering (e.g. Dhillon'01)
- Goal of this talk:
» Identify connection between LSA and eigenvectors of Laplacian matrices
" Suggest new applications enabled by this connection
- e.g. unified link and textual analysis

Sandia
National
Laboratories

Outline

- Review of Latent Semantic Analysis (LSA)
- New Problem - Embedding a graph
" "Fiedler embedding"
- Essential equivalence to LSA
- New generalizations of LSA

Sandia
National
Laboratories

Vector Space Model of Information

- Developed by Gerald Salton
- Start with Term-Document matrix $A \in \boldsymbol{R}^{t \times d}$
" Scaled version $B=D_{t} A D_{d}$
- Document similarities $=B^{\top} B$
- Query is a vector q of term values
"Answer is similar documents, i.e. large entries in $B^{\top} q$
- Angular similarity common, normalize appropriately

Sandia
National
Laboratories

Latent Semantic Analysis

- LSA uses truncated SVD for dimension reduction
$\geqslant B \approx B_{k}=U_{k} \Sigma_{k} V_{k}{ }^{\top}$
» Best rank-k approximation to B in the Frobenius norm
- Eckart-Young theorem
- Document similarities
" $B_{k}{ }^{\top} B_{k}=V_{k} \Sigma_{k}{ }^{2} V_{k}{ }^{\top}$
- Query: large entries in
» $\Sigma_{k}{ }^{1 / 2} \boldsymbol{U}_{\mathrm{k}}{ }^{\top} \boldsymbol{q}$

Sandia
National
Laboratories

(Seemingly) Different Problem

- Embedding a Graph in k-Space
- Given graph $G=(V, E)$, with edge weights $w_{i, j}$
" Weights encode similarity of two vertices
- Place vertices in k-space to keep similar vertices near each other
" That is, keep edge-lengths short
» Let p_{r} be the location of vertex r in k-space
"Minimize $\Sigma_{(r, s) \in E} W_{r, s}\left|p_{r}-p_{s}\right|^{2}$

Matrix Interpretation

Discrete Algorithms \& Math Department

- Minimize $\Sigma_{(r, s) \in E} w_{r, s}\left|p_{r}-p_{s}\right|^{2}$
- Laplacian matrix
$" \boldsymbol{L}(\boldsymbol{i}, \boldsymbol{j})=\left\{\begin{array}{cl}-\boldsymbol{w}_{i, j} & \text { If }(\mathrm{i}, \mathrm{j}) \text { is an edge } \\ \sum_{\boldsymbol{k}}^{\boldsymbol{w _ { i , k }}} & \text { For diagonal entry }(\mathrm{i}, \mathrm{i}) \\ \boldsymbol{0} & \text { Otherwise }\end{array}\right.$
- After some algebra:
" Minimize ${ }_{P}$ Trace ($P^{T} L P$)
" Where $P \in R^{n \times k}$ is matrix of n positions

Sandia
National
Laboratories

Need Constraints

- Minimize Trace ($P^{T} L P$)
- Solution invariant under translations
" Place center of mass at origin
" (Constraint 1) $\mathrm{P}^{\top} \mathbf{1}_{n}=\mathbf{0}_{k}$
- Trivial solution of all points at origin

》 (Constraint 2) for $i=1, \ldots, k \quad P_{i}^{T} P_{i}=\gamma_{i}$

- Coordinates should be distinct
" (Constraint 3) for $\boldsymbol{i} \neq \boldsymbol{j} \quad \boldsymbol{P}_{\boldsymbol{i}}^{\top} \boldsymbol{P}_{\boldsymbol{j}}=\mathbf{0}$

Sandia
National
Laboratories

Fiedler Embedding

Discrete Algorithms \& Math Department

- Minimize Trace ($P^{T} L P$)
" Such that:
$-P^{T} 1_{n}=0_{k}$
$-P^{\top} P=\Gamma$ (diagonal)
- Laplacian Eigenvectors
" $\mathbf{1}_{n}$ is eigenvector with smallest eigenvalue (zero)
- Solution:
» Columns of P are eigenvectors 2 through $k+1$ of L.
" Scaled by $\sqrt{\Gamma_{i, i}}$

$$
» \boldsymbol{P}=\Gamma^{\frac{1}{2}} \boldsymbol{W}_{\hat{\boldsymbol{k}}}
$$

Sandia
National
Laboratories

Adding New Items to k-Space

- Given new item with some similarities to current items, place it in k-space
" This is the heart of an LSA query q
- Find p_{x} to Minimize $\Sigma_{(r, x) \in E} w_{r, x} / p_{r}-\left.p_{x}\right|^{2}$
- Solution

$$
\boldsymbol{p}_{x}=\frac{\sum \boldsymbol{w}_{s, x} \boldsymbol{p}_{s}}{\sum \boldsymbol{w}_{s, x}}=\frac{\boldsymbol{Z}^{T} \boldsymbol{q}}{\|\boldsymbol{q}\|_{I}}=\frac{\Gamma^{\frac{1}{2}} \boldsymbol{W}_{\hat{k}}^{T} \boldsymbol{q}}{\|\boldsymbol{q}\|_{I}}
$$

Recall LSA query: $\Sigma_{k}{ }^{1 / 2} \boldsymbol{U}_{\mathbf{k}}{ }^{\top} \boldsymbol{q}$

Term-Document Embedding

- Apply Laplacian embedding to information analysis
" Start with canonical term-document example
- Let objects be terms and documents
" $L \in \boldsymbol{R}^{(t+d) \times(t+d)}$
- Graph is bipartite:
" No term-term or document-document edges
- Think of entries B as term-document similarities
- Embedding involves eigenvectors of

$$
L=\left(\begin{array}{cc}
D_{1} & -B^{T} \\
-B & D_{2}
\end{array}\right)
$$

Sandia
National
Laboratories

Eigenvectors \& Singular Vectors

Discrete Algorithms \& Math Department

- LSA works with largest singular vectors of B
- Equivalent to largest eigenvectors of

$$
M=\left(\begin{array}{cc}
d & t \\
0 & B^{T} \\
B & 0
\end{array}\right)
$$

- That is
" if (u, σ, v) comprises a singular triplet of B,
" Then ($\sigma, v: u$) is an eigenpair of M.

Sandia
National
Laboratories

Scaling

- Recall, $B=D_{t} A D_{d}$
- Choose D_{t} and D_{d} to make B doubly stochastic
" (row/column sums equal 1)
" E.g. Sinkhorn algorithm
- LSA Matrix: $\quad M=\left(\begin{array}{cc}0 & B^{T} \\ B & 0\end{array}\right)$
- Laplacian: $L=\left(\begin{array}{cc}I & -B^{T} \\ -B & I\end{array}\right)=I-M$
- Leading eigenvectors of $M=$ trailing eigenvectors of L.

Sandia
National
Laboratories

Essential Equivalence

Discrete Algorithms \& Math Department

- Theorem:
» If B is doubly stochastic and $\Gamma=\Sigma$, then LSA embedding is identical to Laplacian embedding
" Caveat: Laplacian discards trivial first vector
- Theorem:
" If query vector has 1-norm of one, geometry of LSA queries are identical to Laplacian queries
" Caveat: LSA typically uses angular distance, whereas Laplacian approach most naturally uses Euclidean

Sandia
National
Laboratories

Advantages I

- New way of thinking about LSA
" Optimal placement to minimize distances
" Alternative intuition
- Terms \& Documents live in same space
» Principled method for adding document-document similarities or term-term similarities to embedding
- E.g. former from dictionary, latter from co-citation analysis or hyperlinks
- Unified text and link analysis

$$
L=\left(\begin{array}{cc}
G_{1} & -B^{T} \\
-B & G_{2}
\end{array}\right)
$$

Sandia
National
Laboratories

Advantages II

- Supports more complex queries
" "similar to these documents and these terms"
- Supports extensions to more classes of objects.
" E.g., instead of just term-document, could do term-document-author.

$$
L=\left(\begin{array}{ccc}
d & t & a \\
D_{1} & -B^{T} & -C^{T} \\
-B & D_{2} & -E^{T} \\
-C & -E & D_{3}
\end{array}\right)
$$

Sandia
National
Laboratories

Alternative to Tensors

- Tensors are higher dimensional generalizations of matrices
" E.g. terms-by-document-by-author
» Active area for informatics research
- Drawbacks
" No factorization with all the SVD properties
» Lack of efficient algorithms
- Current approach has some of the advantages of tensors, without the limitations

Sandia
National
Laboratories

Conclusions

- New algebraic/geometric approach for information retrieval
- Closely related to LSA
- Supports novel enhancements and extensions in a principled way
" Unified text and link analysis
» More complex types of queries

Sandia
National
Laboratories

Acknowledgements

- Thanks to Erik Boman, Brett Bader, Tammy Kolda, Liz Jessup, Inderjit Dhillon, and Petros Drineas.
- bah@sandia.gov
- www.cs.sandia.gov/~bahendr
- Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US DOE under contract DE-AC94AL85000. This work was funded by Sandia's LDRD Program.

