Latent Semantic Analysis and Fiedler Retrieval

Bruce Hendrickson

Discrete Algorithms & Math Dept. Sandia National Labs Albuquerque, New Mexico Also, CS Department, UNM

Informatics & Linear Algebra

- Eigenvectors of graphs (convergence of iterative process)
 - » **Bibliometrics**
 - » PageRank, HITS and descendents
 - » TrustRank, etc.
- Singular vectors of data matrix (Rank reduction techniques)
 - » Latent semantic analysis (LSA/LSI)
 - » Text retrieval, image recognition, etc.
 - » Tensor techniques, etc.

Yet Another Matrix

Discrete Algorithms & Math Department

- Laplacian matrix of a graph
 - » Widely used in spectral graph theory
 - » Less common in informatics
 - Some usage in clustering (e.g. Dhillon'01)

Goal of this talk:

- » Identify connection between LSA and eigenvectors of Laplacian matrices
- » Suggest new applications enabled by this connection

- e.g. unified link and textual analysis

Outline

- Review of Latent Semantic Analysis (LSA)
- New Problem Embedding a graph
 "Fiedler embedding"
- Essential equivalence to LSA
- New generalizations of LSA

Vector Space Model of Information

- Developed by Gerald Salton
- Start with Term-Document matrix A
 A R^{t × d} » Scaled version B=D_t A D_d
- Document similarities = B^TB
- Query is a vector q of term values
 - » Answer is *similar* documents, i.e. large entries in $B^{T}q$
 - Angular similarity common, normalize appropriately

Latent Semantic Analysis

- LSA uses truncated SVD for dimension reduction
 - » $\boldsymbol{B} \approx \boldsymbol{B}_k = \boldsymbol{U}_k \boldsymbol{\Sigma}_k \boldsymbol{V}_k^T$
 - » Best rank-k approximation to B in the Frobenius norm
 - Eckart-Young theorem
- Document similarities
 - $\gg \boldsymbol{B}_k^T \boldsymbol{B}_k = \boldsymbol{V}_k \boldsymbol{\Sigma}_k^2 \boldsymbol{V}_k^T$
- Query: large entries in
 - » $\Sigma_k^{1/2} U_k^T q$

(Seemingly) Different Problem

Discrete Algorithms & Math Department

Embedding a Graph in k-Space

- Given graph G=(V,E), with edge weights w_{i,j}
 Weights encode similarity of two vertices
- Place vertices in k-space to keep similar vertices near each other
 - » That is, keep edge-lengths short
 - » Let p_r be the location of vertex r in k-space
 - » Minimize $\Sigma_{(r,s)\in E} w_{r,s} |p_r p_s|^2$

Matrix Interpretation

Discrete Algorithms & Math Department

- Minimize $\Sigma_{(r,s)\in E} w_{r,s} |p_r p_s|^2$
- Laplacian matrix

 $L(i,j) = \begin{cases} -w_{i,j} & \text{If } (i,j) \text{ is an edge} \\ \sum_{k} w_{i,k} & \text{For diagonal entry } (i,i) \\ 0 & \text{Otherwise} \end{cases}$

- After some algebra:
 - » Minimize_P Trace ($P^T L P$)
 - » Where $P \in \mathbb{R}^{n \times k}$ is matrix of *n* positions

Need Constraints

- Minimize Trace (P^T L P)
- Solution invariant under translations
 - » Place center of mass at origin
 - » (Constraint 1) $P^T \mathbf{1}_n = \mathbf{0}_k$
- Trivial solution of all points at origin
 - » (Constraint 2) for i=1,...,k $P_i^T P_i = \gamma_i$
- Coordinates should be distinct
 - » (Constraint 3) for $i \neq j$ $P_i^T P_j = 0$

Fiedler Embedding

Discrete Algorithms & Math Department

- Minimize Trace $(P^T L P)$
 - » Such that:

$$- P^{T} \mathbf{1}_{n} = \mathbf{0}_{k}$$
$$- P^{T} P = \Gamma \quad \text{(diagonal)}$$

Laplacian Eigenvectors

» 1_n is eigenvector with smallest eigenvalue (zero)

• Solution:

- » Columns of *P* are eigenvectors 2 through k+1 of *L*.
- » Scaled by $\sqrt{\Gamma_{i,i}}$

»
$$P = \Gamma^{\frac{1}{2}} W_{\hat{k}}$$

Adding New Items to *k*-Space

- Given new item with some similarities to current items, place it in k-space
 - » This is the heart of an LSA query *q*
- Find p_x to Minimize $\sum_{(r,x)\in E} w_{r,x} |p_r p_x|^2$
- Solution

$$p_{x} = \frac{\sum w_{s,x} p_{s}}{\sum w_{s,x}} = \frac{Z^{T} q}{\|q\|_{I}} = \frac{\Gamma^{\frac{1}{2}} W_{\hat{k}}^{T} q}{\|q\|_{I}}$$

Term-Document Embedding

- Apply Laplacian embedding to information analysis
 - » Start with canonical term-document example
- Let objects be terms and documents
 - » $L \in R^{(t+d) \times (t+d)}$
- Graph is bipartite:
 - » No term-term or document-document edges
- Think of entries *B* as term-document similarities
- Embedding involves eigenvectors of

$$L = \begin{pmatrix} D_1 & -B^T \\ -B & D_2 \end{pmatrix}$$

Eigenvectors & Singular Vectors

- LSA works with largest singular vectors of *B*
- Equivalent to largest eigenvectors of

$$M = \begin{pmatrix} 0 & B^T \\ B & 0 \end{pmatrix}$$

- That is
 - » if (*u*, σ , *v*) comprises a singular triplet of *B*,
 - » Then (σ , *v*:*u*) is an eigenpair of *M*.

Scaling

Discrete Algorithms & Math Department

- Recall, $B = D_t A D_d$
- Choose D_t and D_d to make B doubly stochastic
 - » (row/column sums equal 1)
 - » E.g. Sinkhorn algorithm

• LSA Matrix:
$$M = \begin{pmatrix} 0 & B^T \\ B & 0 \end{pmatrix}$$

• Laplacian: $L = \begin{pmatrix} I & -B^T \\ -B & I \end{pmatrix} = I - M$

• Leading eigenvectors of *M* = trailing eigenvectors of *L*.

Essential Equivalence

Discrete Algorithms & Math Department

• Theorem:

- » If B is doubly stochastic and $\Gamma = \Sigma$, then LSA embedding is identical to Laplacian embedding
- » Caveat: Laplacian discards trivial first vector
- Theorem:
 - » If query vector has 1-norm of one, geometry of LSA queries are identical to Laplacian queries
 - Caveat: LSA typically uses angular distance, whereas Laplacian approach most naturally uses Euclidean

Advantages I

Discrete Algorithms & Math Department

• New way of thinking about LSA

- » Optimal placement to minimize distances
- » Alternative intuition

• Terms & Documents live in same space

- » Principled method for adding document-document similarities or term-term similarities to embedding
 - E.g. former from dictionary, latter from co-citation analysis or hyperlinks
 - Unified text and link analysis

$$L = \begin{pmatrix} G_{1} & -B^{T} \\ -B & G_{2} \end{pmatrix}$$

Advantages II

- Supports more complex queries
 - » "similar to these documents and these terms"
- Supports extensions to more classes of objects.
 - » E.g., instead of just term-document, could do termdocument-author.

$$L = \begin{pmatrix} d & t & a \\ D_{1} & -B^{T} & -C^{T} \\ -B & D_{2} & -E^{T} \\ -C & -E & D_{3} \end{pmatrix}$$

Alternative to Tensors

- Tensors are higher dimensional generalizations of matrices
 - » E.g. terms-by-document-by-author
 - » Active area for informatics research
- Drawbacks
 - » No factorization with all the SVD properties
 - » Lack of efficient algorithms
- Current approach has some of the advantages of tensors, without the limitations

- New algebraic/geometric approach for information retrieval
- Closely related to LSA
- Supports novel enhancements and extensions in a principled way
 - » Unified text and link analysis
 - » More complex types of queries

Acknowledgements

- Thanks to Erik Boman, Brett Bader, Tammy Kolda, Liz Jessup, Inderjit Dhillon, and Petros Drineas.
- bah@sandia.gov
- www.cs.sandia.gov/~bahendr
- Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US DOE under contract DE-AC-94AL85000. This work was funded by Sandia's LDRD Program.

