Contents and Aim

Computing the best rank- $\left(r_{1}, r_{2}, r_{3}\right)$ approximation of a tensor

Lars Eldén
Department of Mathematics, Linköping University Joint work with Berkant Savas

- A very brief introduction to tensor algebra, HOSVD, best rank $-r_{1}, r_{2}, r_{3}$ approximation of a 3 -tensor, and an "alternating least squares algorithm"

Tensor problems often involve heavy index-wrestling or matrization that obscure the structure. Is it possible to "algebraize" this tensor problem?

- Optimization on the Grassmann manifold
- The Newton equation for the best rank $-r_{1}, r_{2}, r_{3}$ optimization problem

A talk of questions and only a few answers
AIM: Develop the machinery that is needed(?) to answer the questions

- June 2006 -

1

Contravariant mode $-I$ multiplication of a tensor by a matrix ${ }^{1}$

$$
\mathbf{R}^{n \times n \times n} \ni \mathcal{B}=(W)_{\{1\}} \mathcal{A}, \quad \mathcal{B}(i, j, k)=\sum_{\nu=1}^{n} a_{\nu j k} w_{i \nu}
$$

All column vectors in the 3-tensor are multiplied by the matrix W.
When tensor-matrix multiplication is performed in all modes in the same expression, omit the subscripts:

$$
(X, Y, Z) \mathcal{A}, \quad\left(X_{1}, Y_{1}, Z_{1}\right)\left(X_{2}, Y_{2}, Z_{2}\right) \mathcal{A}=\left(X_{1} X_{2}, Y_{1} Y_{2}, Z_{1} Z_{2}\right) \mathcal{A}
$$

Standard matrix multiplication of three matrices:

$$
\begin{equation*}
X A Y^{T}=(X, Y) A \tag{1}
\end{equation*}
$$

Covariant mode $-I$ multiplication of a tensor by a matrix

$$
\left(\mathcal{A}(W)_{\{1\}}\right)(i, j, k)=\sum_{\nu=1}^{n} a_{\nu j k} w_{\nu i}
$$

and

$$
\mathcal{A}(X, Y, Z)
$$

Matrix case: $A(X, Y)=X^{T} A Y$

Inner Product

Two tensors \mathcal{A} and \mathcal{B} of the same dimensions:

$$
\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i, j, k} a_{i j k} b_{i j k}, \quad\|\mathcal{A}\|=\langle\mathcal{A}, \mathcal{A}\rangle^{1 / 2}
$$

Special case of contracted product of two tensors: ${ }^{2}$
The linear system $\sum_{j, k} k_{i j k} f_{j k}=g_{i}, \quad 1 \leq i, j \leq n$,

$$
\langle\mathcal{K} \otimes F\rangle_{\{2,3 ; 1,2\}}=g
$$

The matrix F and and the vector g are identified with tensors \mathcal{F} and \mathcal{G}. ${ }^{2}$ Variant of the notation of Bader \& Kolda [1].

Tensor SVD (HOSVD) ${ }^{3}$

An SVD-like of a 3-tensor

$$
\mathcal{A}=(X, Y, Z) \mathcal{S},
$$

where $X, Y, Z \in \mathbf{R}^{n \times n}$ are orthogonal matrices.
Core tensor \mathcal{S} has the same dimensions as \mathcal{A}.
All-orthogonality: slices along any mode are orthogonal. Let $\nu \neq \mu$; then

$$
\begin{aligned}
\langle\mathcal{S}(\nu,:,:), \mathcal{S}(\mu,:,:)\rangle & =\langle\mathcal{S}(:, \nu,:), \mathcal{S}(:, \mu,:)\rangle \\
=\langle\mathcal{S}(:,:, \nu), \mathcal{S}(:,:, \mu)\rangle & =0
\end{aligned}
$$

[^0]
Singular Values

Mode-1 singular values

$$
\sigma_{i}^{(1)}=\|\mathcal{S}(i,:,:)\|, \quad i=1, \ldots, n .
$$

The singular values are ordered,

$$
\sigma_{1}^{(\nu)} \geq \sigma_{2}^{(\nu)} \geq \cdots \geq \sigma_{n}^{(\nu)} \geq 0, \quad \nu=1,2,3
$$

Truncated HOSVD

Does not give the best rank- $\left(r_{1}, r_{2}, r_{3}\right)$ approximation!

"Energy"

The singular values are measures of the "energy" of the tensor

Proposition 1.

$$
\|\mathcal{A}\|^{2}=\|\mathcal{S}\|^{2}=\sum_{i=1}^{n}\left(\sigma_{i}^{(1)}\right)^{2}=\sum_{i=1}^{n}\left(\sigma_{i}^{(2)}\right)^{2}=\sum_{i=1}^{n}\left(\sigma_{i}^{(3)}\right)^{2} .
$$

The "energy" (mass) is concentrated at the $(1,1,1)$ corner of the tensor

We can truncate the HOSVD (in analogy to TSVD)

Questions

- How close is the truncated HOSVD to the best rank- $\left(r_{1}, r_{2}, r_{3}\right)$ approximation?

Experimentally: often very close

- What mathematical structure determines the closeness?
- Given a tensor one can define linear operators. Are there any tensors/linear operators with SVD=HOSVD?

Answer: Yes, if the tensor is product-separable (Kronecker structure)

Best rank- $\left(r_{1}, r_{2}, r_{3}\right)$ approximation ${ }^{4}$

$$
\begin{equation*}
\min _{\mathcal{B} \in S}\|\mathcal{A}-\mathcal{B}\|_{F}, \quad S=\left\{\mathcal{B} \| \operatorname{rank}(\mathcal{B}) \leq\left(r_{1}, r_{2}, r_{3}\right)\right\} \tag{2}
\end{equation*}
$$

The rank constraint is to be understood: $\mathcal{B}=\left(X_{1}, Y_{1}, Z_{1}\right) \widehat{\mathcal{B}}$

- June 2006 -

Define three orthogonal matrices, arbitrary for now:

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right), \quad Y=\left(\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right), \quad Z=\left(\begin{array}{ll}
Z_{1} & Z_{2}
\end{array}\right) .
$$

In transformed coordinates, i.e., with $\widehat{\mathcal{A}}=\left(X^{T}, Y^{T}, Z^{T}\right) \mathcal{A}$:

$$
\begin{aligned}
\min _{\mathcal{B}} \| \widehat{\mathcal{A}} & -\widehat{\mathcal{B}} \|_{F}^{2}= \\
& =\min \sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}} \sum_{k=1}^{r_{3}}\left(\hat{a}_{i j k}-\hat{b}_{i j k}\right)^{2}+\sum_{i=r_{1}+1}^{n} \sum_{j=r_{2}+1}^{n} \sum_{k=r_{3}+1}^{n}\left(\hat{a}_{i j k}-\hat{b}_{i j k}\right)^{2} \\
& =\min \sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}} \sum_{k=1}^{r_{3}}\left(\hat{a}_{i j k}-\hat{b}_{i j k}\right)^{2}+\sum_{i=r_{1}+1}^{n} \sum_{j=r_{2}+1}^{n} \sum_{k=r_{3}+1}^{n} \hat{a}_{i j k}^{2}
\end{aligned}
$$

- June 2006 -

Optimization Problem

Determine X_{1}, Y_{1}, and Z_{1} so that

$$
\left\|\left(X_{1}^{T}, Y_{1}^{T}, Z_{1}^{T}\right) \mathcal{A}\right\|_{F}=\left\|\mathcal{A}\left(X_{1}, Y_{1}, Z_{1}\right)\right\|_{F}
$$

is maximized
Drop subscripts, and remember that the matrices are rectangular with orthonormal columns.

Matrix case:

$$
\begin{aligned}
\|A(X, Y)\|_{F}^{2} & =\left\|X^{T} A Y\right\|_{F}^{2}=\operatorname{tr}\left(Y^{T} A^{T} X X^{T} A Y\right) \\
& =\operatorname{tr}\left(W^{T} Y^{T} A^{T} X V V^{T} X^{T} A Y W\right)
\end{aligned}
$$

The optimization problem

$$
\max \|\mathcal{A}(X, Y, Z)\|_{F}, \quad X^{T} X=I, \quad Y^{T} Y=I, \quad Z^{T} Z=I
$$

is not completely well-defined: Indeterminate because we may exchange

$$
X \longrightarrow X V, \quad Y \longrightarrow Y W, \quad Z \longrightarrow Z U
$$

where V, W, and U are orthogonal

[^1]
Standard method: "Alternating least squares"

Example

Iterate until convergence

1. Fix Y, Z, solve $\max _{X^{T} X=I}\left\|\mathcal{A}(I, Y, Z)(X)_{\{1\}}\right\|_{F}$
2. Fix X, Z, solve $\max _{Y^{T} Y=I}\left\|\mathcal{A}(X, I, Z)(Y)_{\{2\}}\right\|_{F}$
3. Fix X, Y, solve $\max _{Z^{T} Z=I}\left\|\mathcal{A}(X, Y, I)(Z)_{\{3\}}\right\|_{F}$
end iterations
$\mathcal{A}(I, Y, Z)$ is a linear operator acting on X in mode 1 , etc.
Solution of each subproblem given by SVD.
"Power method (alternating subspace iteration)"
Convergence may be very slow.

Approximation error

rk=[$\left.\begin{array}{lll}4 & 4 & 4\end{array}\right]$;
a=rand (50,50,50);
maxit=100;
a=tensor (a) ;
[Lam,U,err]=hopm(a,rk,maxit); \% Alternating subspace iteration
\% initialized by HOSVD
plot(err)
\% Approximation error
err (end-1)-err (end)
Difference in approximation error after 100 iterations:
$5.3517 e-08$

Questions

- What determines the rate of convergence of the alternating subspace iteration?
- How accurately can the subspaces be computed?
- Eigenspace sensitivity depends on separation of eigenvalues. What are the corresponding quantities here?

Grassmann Manifold ${ }^{5}$

We want to determine subspaces rather than matrices
The Grassmann manifold of dimension r is a set of equivalence classes:

$$
\mathbb{G}(n, r)=[Y], \quad Y \in \mathbb{R}^{n \times r}, \quad Y^{T} Y=I
$$

under the equivalence

$$
\left[Y_{1}\right]=\left[Y_{2}\right] \quad \text { iff } \quad Y_{1}=Y_{2} V
$$

for some orthogonal matrix $V \in \mathbb{R}^{r \times r}$.
${ }^{5}$ See Edelman et al. [2].

- June 2006 -

Optimization on the Grassmann manifold

- June 2006 -

Tangent space

Newton's method operates in a vector space \mathbb{T}_{Y} : the tangent space at Y

$$
\mathbb{R}^{n \times r} \ni \Delta \in \mathbb{T}_{Y} \quad \Longleftrightarrow \quad \Delta^{T} Y=0
$$

Projection onto \mathbb{T}_{Y} :

$$
\Pi=I-Y Y^{T}
$$

Gradient of a function $F(Y)$

The gradient ∇F is a vector in \mathbb{T}_{Y} such that

$$
\langle\Delta, \nabla F\rangle_{\mathbb{T}_{Y}}=\left\langle\Delta, F_{Y}\right\rangle_{\mathbb{R}^{n \times r}}, \quad \forall \Delta \in \mathbb{T}_{Y}
$$

It follows that

$$
\nabla F=\Pi F_{Y}, \quad \Pi=I-Y Y^{T}
$$

where F_{Y} is the usual Euclidean derivative

Hessian of a function $F(Y)$

The Hessian H is a vector in \mathbb{T}_{Y} :

$$
H=\Pi F_{Y Y}(\Delta)-\Delta Y^{T} F_{Y}, \quad \Delta \in \mathbb{T}_{Y}
$$

$F_{Y Y}$ is the usual Euclidean derivative

Newton-Grassmann method for max $F(Y)$

Starting approximation Y

Iterate until convergence

1. Find the vector $\Delta \in \mathbb{T}_{Y}$ such that

$$
H(\Delta)=-\nabla F
$$

Thin SVD: $\Delta=U \Sigma V^{T}$
2. Take a step along the geodesic curve of direction Δ

$$
Y:=Y(1)=Y V \cos (\Sigma) V^{T}+U \sin (\Sigma) V^{T}
$$

end iterations

Grassmann Geodesic Curves

Let $\Delta \in \mathbb{T}_{Y}$ with thin SVD $\Delta=U \Sigma V^{T}$.

The geodesic curve starting from Y in the direction Δ is given by

$$
Y(t)=Y V \cos (\Sigma t) V^{T}+U \sin (\Sigma t) V^{T}
$$

By definition

$$
\left.\frac{d Y(t)}{d t}\right|_{t=0}=-Y V \sin (\Sigma t) V^{T}+\left.U \cos (\Sigma t) V^{T}\right|_{t=0}=\Delta
$$

Find the direction $\Delta \in \mathbb{T}_{Y}$ and take a geodesic step (or $\mathrm{Y}:=\mathrm{qr}(\mathrm{Y}+\Delta)$)

[^2]
Newton's method

$$
F(t) \approx F(0)+\left.t \frac{d F}{d t}\right|_{t=0}+\left.\frac{t^{2}}{2} \frac{d^{2} F}{d t^{2}}\right|_{t=0}
$$

With \mathbb{T}_{Y} inner product $\langle\cdot, \cdot\rangle$:

$$
F(Y(1)) \approx F(Y)+\langle\Delta, \nabla F\rangle+\frac{1}{2}\langle\Delta, H(\Delta)\rangle
$$

we get a Newton equation on \mathbb{T}_{Y} :

$$
H(\Delta)=-\nabla F
$$

Can we avoid index-wrestling? Yes, almost all of it.

Differentiate along three tangent directions $\Delta_{x}, \Delta_{y}, \Delta_{z}$
Since

$$
\frac{d X}{d t}=\Delta_{x}, \quad \frac{d Y}{d t}=\Delta_{y}, \quad \frac{d Z}{d t}=\Delta_{z}
$$

and

$$
\mathcal{A}(X, Y, Z)(i, j, k)=\sum_{\lambda, \mu, \nu} a_{\lambda \mu \nu} x_{i \lambda} y_{j \mu} z_{k \nu}
$$

every $x_{i j}$ etc. will be replaced by $\left(\Delta_{x}\right)_{i j}$ etc. in the differentiation.
Therefore

$$
\frac{d \mathcal{A}(X, Y, Z)}{d t}=\mathcal{A}\left(\Delta_{x}, Y, Z\right)+\mathcal{A}\left(X, \Delta_{y}, Z\right)+\mathcal{A}\left(X, Y, \Delta_{z}\right)
$$

Derivatives

$$
\begin{aligned}
\frac{d F}{d t} & =\left\langle\mathcal{A}\left(\Delta_{x}, Y, Z\right), \mathcal{A}(X, Y, Z)\right\rangle+\left\langle\mathcal{A}\left(X, \Delta_{y}, Z\right), \mathcal{A}(X, Y, Z)\right\rangle \\
& +\left\langle\mathcal{A}\left(X, Y, \Delta_{z}\right), \mathcal{A}(X, Y, Z)\right\rangle \\
\frac{d^{2} F}{d t^{2}} & =\left\langle\mathcal{A}\left(\Delta_{x}, Y, Z\right), \mathcal{A}\left(\Delta_{x}, Y, Z\right)\right\rangle-\left\langle\mathcal{A}\left(\Delta_{x} \Delta_{x}^{T} X, Y, Z\right), \mathcal{A}(X, Y, Z)\right\rangle \\
& +\left\langle\mathcal{A}\left(\Delta_{x}, \Delta_{y}, Z\right), \mathcal{A}(X, Y, Z)\right\rangle+\left\langle\mathcal{A}\left(X, \Delta_{y}, Z\right), \mathcal{A}\left(\Delta_{x}, Y, Z\right)\right\rangle \\
& +\left\langle\mathcal{A}\left(\Delta_{x}, Y, \Delta_{z}\right), \mathcal{A}(X, Y, Z)\right\rangle+\left\langle\mathcal{A}\left(X, Y, \Delta_{z}\right), \mathcal{A}\left(\Delta_{x}, Y, Z\right)\right\rangle \\
& +Y-\text { and } Z-\text { derivatives }
\end{aligned}
$$

Identify gradient and Hessian: $\langle\Delta, \nabla F\rangle+\frac{1}{2}\langle\Delta, H(\Delta)\rangle$

Tensor-matrix-products

Matrization and vectorization obcure the structure.

Basic rule: Matricize and vectorize as late as possible!
Lemma 1. Let \mathcal{B} and \mathcal{C} be 3 -tensors of conforming dimensions.

$$
\begin{aligned}
\left\langle\mathcal{B}\left(X_{1}\right)_{\{1\}}, \mathcal{C}\left(X_{2}\right)_{\{1\}}\right\rangle & =\left\langle X_{1},\left\langle\mathcal{B} \otimes \mathcal{C}\left(X_{2}\right)_{\{1\}}\right\rangle_{\{2: 3\}}\right\rangle \\
& =\left\langle X_{1},\langle\mathcal{B} \otimes \mathcal{C}\rangle_{\{2: 3\}}\left(X_{2}\right)_{\{1\}}\right\rangle
\end{aligned}
$$

Matrix factors can be "pulled out" of the inner product.

Lemma 2.

$$
\left\langle\mathcal{B}(Y)_{\{2\}} \otimes \mathcal{C}\right\rangle_{\{2: 3\}}=\langle\mathcal{D} \otimes Y\rangle_{\{2: 4 ; 1: 2\}},
$$

where the 4 -tensor \mathcal{D} is defined

$$
\mathcal{D}=\langle\mathcal{B} \otimes \mathcal{C}\rangle_{\{3\}}
$$

\mathcal{D} is a linear operator: matrix \longrightarrow matrix

$$
\begin{gathered}
\text { Grassmann gradient } \\
\nabla F= \\
\left(\begin{array}{l}
\langle\mathcal{A}(I, Y, Z) \otimes \mathcal{A}(I, Y, Z)\rangle_{\{2: 3\}}(X)_{\{1\}}-(X)_{\{1\}}\langle\mathcal{A}(X, Y, Z) \otimes \mathcal{A}(X, Y, Z)\rangle_{\{2: 3\}} \\
\langle\mathcal{A}(X, I, Z) \otimes \mathcal{A}(X, I, Z)\rangle_{\{1,3\}}(Y)_{\{2\}}-(Y)_{\{2\}}\langle\mathcal{A}(X, Y, Z) \otimes \mathcal{A}(X, Y, Z)\rangle_{\{1,3\}} \\
\langle\mathcal{A}(X, Y, I) \otimes \mathcal{A}(X, Y, I)\rangle_{\{1: 2\}}(Z)_{\{3\}}-(Z)_{\{3\}}\langle\mathcal{A}(X, Y, Z) \otimes \mathcal{A}(X, Y, Z)\rangle_{\{1: 2\}}
\end{array}\right)
\end{gathered}
$$

The matrix elements are all inner products between slices in each mode Cf. the subspace equation for the matrix eigenvalue problem:

$$
A X=X L
$$

Grassmann Hessian

$H(\Delta)=\left(\begin{array}{ccc}\left(\Pi_{x}\right)_{\{1\}} & 0 & 0 \\ 0 & \left(\Pi_{y}\right)_{\{2\}} & 0 \\ 0 & 0 & \left(\Pi_{z}\right)_{\{3\}}\end{array}\right)\left(\begin{array}{ccc}H_{x x}\left(\Delta_{x}\right) & H_{x y}\left(\Delta_{y}\right) & H_{x z}\left(\Delta_{z}\right) \\ H_{y x}\left(\Delta_{x}\right) & H_{y y}\left(\Delta_{y}\right) & H_{y z}\left(\Delta_{z}\right) \\ H_{z x}\left(\Delta_{x}\right) & H_{z y}\left(\Delta_{y}\right) & H_{z z}\left(\Delta_{z}\right)\end{array}\right)$
where the diagonal blocks are Sylvester operators:

$$
\begin{aligned}
H_{x x}\left(\Delta_{x}\right)= & (\langle\mathcal{A}(I, Y, Z)) \otimes \mathcal{A}(I, Y, Z)\rangle_{\{2: 3\}}\left(\Delta_{x}\right)_{\{1\}} \\
& -\left(\Delta_{x}\right)_{\{1\}}(\langle\mathcal{A}(X, Y, Z)) \otimes \mathcal{A}(X, Y, Z)\rangle_{\{2: 3\}}
\end{aligned}
$$

and the off-diagonal blocks are tensor-matrix linear operators

Off-diagonal block: $\frac{\partial^{2} F}{\partial X \partial Y}$

$$
\begin{aligned}
\left\langle\mathcal{A}\left(\Delta_{x}, \Delta_{y}, Z\right) \otimes \mathcal{A}(X, Y, Z)\right\rangle & =\left\langle\Delta_{x},\left\langle\mathcal{A}\left(I, \Delta_{y}, Z\right) \otimes \mathcal{A}(X, Y, Z)\right\rangle_{\{2: 3\}}\right\rangle \\
& =\left\langle\Delta_{x},\left\langle\mathcal{H} \otimes \Delta_{y}\right\rangle_{\{2,4 ; 1: 2\}}\right\rangle
\end{aligned}
$$

where

$$
\mathcal{H}=\langle\mathcal{A}(I, I, Z) \otimes \mathcal{A}(X, Y, Z)\rangle_{\{3\}}
$$

is a 4 -tensor.

Ongoing work

- Implementation of the tensor Newton-Grassmann method using objectoriented MATLAB:
- tensor toolbox (Bader \& Kolda)
- homogeneous manifold optimization toolbox (home-made)
- Investigation of the theoretical properties of the best rank-($\left.r_{1}, r_{2}, r_{3}\right)$ approximation

Very preliminary numerical experiments

Small problem
But: the code is in a very elarly stage of development

- June 2006 -

References
[1] B. Bader and T. Kolda. Matlab tensor classes for fast algorithm prototyping. Technical Report SAND2004-5187, Sandia National Laboratories, Oct. 2004.
[2] A. Edelman, T. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20:303-353, 1999.
[3] L. De Lathauwer. First-order perturbation analysis of the best rank- $\left(R_{1}, R_{2}, R_{3}\right)$ approximation of a tensor. J. Chemometrics, 18:2-11, 2004.
[4] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21:1253-1278, 2000.
[5] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank- $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ approximation of higher-order tensor. SIAM J. Matrix Anal. Appl., 21:1324-1342, 2000.
[6] T. Zhang and G.H. Golub. Rank-one approximation to higher order tensors. SIAM J. Matrix Anal. Appl., 23:534-550, 2002.

[^0]: ${ }^{3}$ De Lathauwer et al. [4]. Related to the Tucker-3 decomposition in psychometrics and chemometrics

[^1]: We are looking for subspaces rather than orthogonal matrices!

[^2]: Well-defined optimization (correct \# d.o.f.) and quadratic convergence

