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Contents and Aim

• A very brief introduction to tensor algebra, HOSVD, best rank−r1, r2, r3

approximation of a 3−tensor, and an “alternating least squares
algorithm”

Tensor problems often involve heavy index-wrestling or matrization that
obscure the structure. Is it possible to “algebraize” this tensor problem?

• Optimization on the Grassmann manifold

• The Newton equation for the best rank−r1, r2, r3 optimization problem

A talk of questions and only a few answers

AIM: Develop the machinery that is needed(?) to answer the questions
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Contravariant mode−I multiplication of a tensor by a

matrix1

R
n×n×n ∋ B = (W ){1}A, B(i, j, k) =

n∑

ν=1

aνjkwiν.

All column vectors in the 3-tensor are multiplied by the matrix W .

When tensor-matrix multiplication is performed in all modes in the same
expression, omit the subscripts:

(X,Y,Z)A, (X1, Y1, Z1)(X2, Y2, Z2)A = (X1X2, Y1Y2, Z1Z2)A,

Standard matrix multiplication of three matrices:

XAY T = (X,Y )A (1)
1(Lim’s notation)
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Covariant mode−I multiplication of a tensor by a matrix

(A(W ){1})(i, j, k) =
n∑

ν=1

aνjkwνi

and

A(X,Y,Z)

Matrix case: A(X,Y ) = XTAY
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Inner Product

Two tensors A and B of the same dimensions:

〈A,B 〉 =
∑

i,j,k

aijkbijk, ‖A‖ = 〈A,A〉1/2.

Special case of contracted product of two tensors:2

The linear system
∑

j,k kijkfjk = gi, 1 ≤ i, j ≤ n,

〈K ⊗ F 〉{2,3;1,2} = g,

The matrix F and and the vector g are identified with tensors F and G.
2Variant of the notation of Bader & Kolda [1].
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Notation: outer and inner product

A and B are 3−tensors of conforming dimensions

Outer product followed by a contraction: (C is a 4−tensor)

C = 〈A ⊗ B 〉{1;1}, cijkl =
∑

µ

aµijbµkl

Matrix multiplication: XY = 〈X ⊗ Y 〉{2;1}

Inner product:
〈A,B 〉 = 〈A ⊗ B 〉{1:3,1:3} = scalar
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Tensor SVD (HOSVD)3

An SVD-like of a 3−tensor

A = (X,Y,Z)S,

where X,Y,Z ∈ R
n×n are orthogonal matrices.

Core tensor S has the same dimensions as A.

All-orthogonality: slices along any mode are orthogonal. Let ν 6= µ; then

〈 S(ν, :, :),S(µ, :, :) 〉 = 〈 S(:, ν, :),S(:, µ, :) 〉

= 〈 S(:, :, ν),S(:, :, µ) 〉 = 0.

3De Lathauwer et al. [4]. Related to the Tucker-3 decomposition in psychometrics and chemometrics.
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HOSVD

A = (X,Y,Z)S,

A
=

X S Y

Z
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Singular Values

Mode−1 singular values

σ
(1)
i = ‖S(i, :, :)‖, i = 1, . . . , n.

The singular values are ordered,

σ
(ν)
1 ≥ σ

(ν)
2 ≥ · · · ≥ σ(ν)

n ≥ 0, ν = 1, 2, 3.

– June 2006 – 8

“Energy”

The singular values are measures of the “energy” of the tensor

Proposition 1.

‖A‖2 = ‖S‖2 =

n∑

i=1

(
σ

(1)
i

)2

=

n∑

i=1

(
σ

(2)
i

)2

=

n∑

i=1

(
σ

(3)
i

)2

.

The “energy” (mass) is concentrated at the (1, 1, 1) corner of the tensor

We can truncate the HOSVD (in analogy to TSVD)
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Truncated HOSVD

A
≈

Xr

Sr

Yr

Zr

Does not give the best rank−(r1, r2, r3) approximation!
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Questions

• How close is the truncated HOSVD to the best rank−(r1, r2, r3)
approximation?

Experimentally: often very close

• What mathematical structure determines the closeness?

• Given a tensor one can define linear operators. Are there any
tensors/linear operators with SVD=HOSVD?

Answer: Yes, if the tensor is product-separable (Kronecker structure)
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Best rank−(r1, r2, r3) approximation4

min
B∈S

‖A − B‖F , S = {B ‖ rank(B) ≤ (r1, r2, r3)}. (2)

The rank constraint is to be understood: B = (X1, Y1, Z1)B̂

B
=

X1

B̂

Y1

Z1

4De Lathauwer et al [5]
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Define three orthogonal matrices, arbitrary for now:

X =
(
X1 X2

)
, Y =

(
Y1 Y2

)
, Z =

(
Z1 Z2

)
.

In transformed coordinates, i.e., with Â = (XT , Y T , ZT )A:

min
B

‖Â − B̂‖2
F =

= min

r1∑

i=1

r2∑

j=1

r3∑

k=1

(âijk − b̂ijk)
2 +

n∑

i=r1+1

n∑

j=r2+1

n∑

k=r3+1

(âijk − b̂ijk)
2

= min

r1∑

i=1

r2∑

j=1

r3∑

k=1

(âijk − b̂ijk)
2 +

n∑

i=r1+1

n∑

j=r2+1

n∑

k=r3+1

â2
ijk
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Optimization Problem
Determine X1, Y1, and Z1 so that

‖(XT
1 , Y T

1 , ZT
1 )A‖F = ‖A(X1, Y1, Z1)‖F

is maximized.

Drop subscripts, and remember that the matrices are rectangular with
orthonormal columns.

Matrix case:

‖A(X, Y )‖2
F = ‖XTAY ‖2

F = tr(Y TATXXTAY )

= tr(W TY TATXV V TXTAY W )

where V and W are orthogonal.

– June 2006 – 14

The optimization problem

max ‖A(X, Y,Z)‖F , XTX = I, Y TY = I, ZTZ = I,

is not completely well-defined: Indeterminate because we may exchange

X −→ XV, Y −→ Y W, Z −→ ZU

where V,W , and U are orthogonal

We are looking for subspaces rather than orthogonal matrices!
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Standard method: “Alternating least squares”

Iterate until convergence

1. Fix Y,Z, solve maxXT X=I ‖A(I, Y, Z)(X){1}‖F

2. Fix X,Z, solve maxY T Y =I ‖A(X, I, Z)(Y ){2}‖F

3. Fix X,Y , solve maxZT Z=I ‖A(X, Y, I)(Z){3}‖F

end iterations

A(I, Y, Z) is a linear operator acting on X in mode 1, etc.

Solution of each subproblem given by SVD.

“Power method (alternating subspace iteration)”

Convergence may be very slow.
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Example

rk=[4 4 4];

a=rand(50,50,50);

maxit=100;

a=tensor(a);

[Lam,U,err]=hopm(a,rk,maxit); % Alternating subspace iteration

% initialized by HOSVD

plot(err) % Approximation error

err(end-1)-err(end)

Difference in approximation error after 100 iterations:

5.3517e-08
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Approximation error
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Questions

• What determines the rate of convergence of the alternating subspace
iteration?

• How accurately can the subspaces be computed?

• Eigenspace sensitivity depends on separation of eigenvalues. What are
the corresponding quantities here?
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Grassmann Manifold5

We want to determine subspaces rather than matrices

The Grassmann manifold of dimension r is a set of equivalence classes:

G(n, r) = [Y ], Y ∈ R
n×r, Y TY = I,

under the equivalence

[Y1] = [Y2] iff Y1 = Y2V,

for some orthogonal matrix V ∈ R
r×r.

5See Edelman et al. [2].
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Optimization on the Grassmann manifold

Y

geodesic curve

∆
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Tangent space

Newton’s method operates in a vector space TY : the tangent space at Y

R
n×r ∋ ∆ ∈ TY ⇐⇒ ∆TY = 0.

Projection onto TY :
Π = I − Y Y T
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Gradient of a function F (Y )

The gradient ∇F is a vector in TY such that

〈∆,∇F 〉TY
= 〈∆, FY 〉Rn×r, ∀∆ ∈ TY

It follows that
∇F = ΠFY , Π = I − Y Y T

where FY is the usual Euclidean derivative
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Hessian of a function F (Y )

The Hessian H is a vector in TY :

H = ΠFY Y (∆) − ∆Y TFY , ∆ ∈ TY

FY Y is the usual Euclidean derivative
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Grassmann Geodesic Curves

Let ∆ ∈ TY with thin SVD ∆ = UΣV T .

The geodesic curve starting from Y in the direction ∆ is given by

Y (t) = Y V cos(Σt)V T + U sin(Σt)V T

By definition:

dY (t)

dt

∣∣∣∣
t=0

= −Y V sin(Σt)V T + U cos(Σt)V T
∣∣
t=0

= ∆
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Newton-Grassmann method for max F (Y )

Starting approximation Y

Iterate until convergence

1. Find the vector ∆ ∈ TY such that

H(∆) = −∇F,

Thin SVD: ∆ = UΣV T

2. Take a step along the geodesic curve of direction ∆:

Y := Y (1) = Y V cos(Σ)V T + U sin(Σ)V T

end iterations
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Newton’s method on the Grassmann manifold

Y

geodesic curve

∆

Find the direction ∆ ∈ TY and take a geodesic step (or Y:=qr(Y+∆))

Well-defined optimization (correct # d.o.f.) and quadratic convergence
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Newton’s method

F (t) ≈ F (0) + t
dF

dt

∣∣∣∣
t=0

+
t2

2

d2F

dt2

∣∣∣∣
t=0

With TY inner product 〈 ·, · 〉:

F (Y (1)) ≈ F (Y ) + 〈∆,∇F 〉 +
1

2
〈∆, H(∆) 〉

we get a Newton equation on TY :

H(∆) = −∇F
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Best rank−(r, r, r) approximation.

For simplicity: r1 = r2 = r3 = r. Put G := G(n, r) and G
3 = G × G × G

max
(X,Y,Z)∈G3

F (X,Y,Z) = max
(X,Y,Z)∈G3

1

2
〈A(X,Y, Z),A(X,Y, Z) 〉

where

A(X,Y,Z)(i, j, k) =
∑

λ,µ,ν

aλµνxiλyjµzkν
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Can we avoid index-wrestling? Yes, almost all of it.

Differentiate along three tangent directions ∆x, ∆y, ∆z

Since
dX

dt
= ∆x,

dY

dt
= ∆y,

dZ

dt
= ∆z,

and
A(X,Y,Z)(i, j, k) =

∑

λ,µ,ν

aλµνxiλyjµzkν,

every xij etc. will be replaced by (∆x)ij etc. in the differentiation.

Therefore

dA(X,Y,Z)

dt
= A(∆x, Y, Z) + A(X,∆y, Z) + A(X,Y,∆z)
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Derivatives

dF

dt
= 〈A(∆x, Y, Z),A(X, Y,Z) 〉 + 〈A(X, ∆y, Z),A(X,Y,Z) 〉

+ 〈A(X, Y,∆z),A(X,Y,Z) 〉

d2F

dt2
= 〈A(∆x, Y, Z),A(∆x, Y, Z) 〉 − 〈A(∆x∆T

x X,Y,Z),A(X,Y,Z) 〉

+ 〈A(∆x,∆y, Z),A(X,Y,Z) 〉 + 〈A(X, ∆y, Z),A(∆x, Y, Z) 〉

+ 〈A(∆x, Y,∆z),A(X, Y,Z) 〉 + 〈A(X, Y,∆z),A(∆x, Y, Z) 〉

+ Y − and Z−derivatives

Identify gradient and Hessian: 〈∆,∇F 〉 + 1
2〈∆, H(∆) 〉
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Tensor-matrix-products

Matrization and vectorization obcure the structure.

Basic rule: Matricize and vectorize as late as possible!

Lemma 1. Let B and C be 3−tensors of conforming dimensions.

〈 B(X1){1}, C(X2){1} 〉 = 〈X1, 〈 B ⊗ C(X2){1} 〉{2:3} 〉

= 〈X1, 〈 B ⊗ C 〉{2:3}(X2){1} 〉

Matrix factors can be “pulled out” of the inner product.
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Lemma 2.

〈 B(Y ){2} ⊗ C 〉{2:3} = 〈D ⊗ Y 〉{2:4;1:2},

where the 4−tensor D is defined

D = 〈 B ⊗ C 〉{3}

D is a linear operator: matrix −→ matrix
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Grassmann gradient

∇F =





〈A(I, Y, Z) ⊗A(I, Y, Z) 〉{2:3}(X){1} − (X){1}〈A(X, Y,Z) ⊗A(X, Y,Z) 〉{2:3}

〈A(X, I, Z) ⊗A(X, I,Z) 〉{1,3}(Y ){2} − (Y ){2}〈A(X, Y,Z) ⊗A(X, Y,Z) 〉{1,3}

〈A(X, Y, I) ⊗A(X, Y, I) 〉{1:2}(Z){3} − (Z){3}〈A(X,Y,Z) ⊗A(X,Y,Z) 〉{1:2}





The matrix elements are all inner products between slices in each mode

Cf. the subspace equation for the matrix eigenvalue problem:

AX = XL
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Grassmann Hessian

H(∆) =




(Πx){1} 0 0

0 (Πy){2} 0
0 0 (Πz){3}








Hxx(∆x) Hxy(∆y) Hxz(∆z)
Hyx(∆x) Hyy(∆y) Hyz(∆z)
Hzx(∆x) Hzy(∆y) Hzz(∆z)





where the diagonal blocks are Sylvester operators:

Hxx(∆x) = (〈A(I, Y, Z)) ⊗A(I, Y, Z) 〉{2:3}(∆x){1}

−(∆x){1}(〈A(X,Y,Z)) ⊗A(X,Y,Z) 〉{2:3}

and the off-diagonal blocks are tensor-matrix linear operators
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Off-diagonal block: ∂2F
∂X∂Y

〈A(∆x,∆y, Z) ⊗A(X,Y,Z) 〉 = 〈∆x, 〈A(I, ∆y, Z) ⊗A(X, Y,Z) 〉{2:3} 〉

= 〈∆x, 〈H ⊗ ∆y 〉{2,4;1:2} 〉,

where
H = 〈A(I, I, Z) ⊗A(X,Y, Z) 〉{3}

is a 4−tensor.
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Very preliminary numerical experiments
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Small problem

But: the code is in a very elarly stage of development
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Ongoing work

• Implementation of the tensor Newton-Grassmann method using object-
oriented MATLAB:

– tensor toolbox (Bader & Kolda)
– homogeneous manifold optimization toolbox (home-made)

• Investigation of the theoretical properties of the best rank−(r1, r2, r3)
approximation
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