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Contravariant mode—/ multiplication of a tensor by a
matrix!

RV 5 B=(W)ypA,  B(i,j, k) = avjxwi.
v=1
All column vectors in the 3-tensor are multiplied by the matrix W.

When tensor-matrix multiplication is performed in all modes in the same
expression, omit the subscripts:

(X,Y,2)A, (X1, Y1, 21) (X2, Yo, Z3) A = (X1 X2, Y1Y2, Z1Z5) A,

Standard matrix multiplication of three matrices:

XAYT = (X,V)A (1)

}(Lim's notation)
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Contents and Aim

e A very brief introduction to tensor algebra, HOSVD, best rank—ry, 7o, 73
approximation of a 3—tensor, and an ‘alternating least squares
algorithm”

Tensor problems often involve heavy index-wrestling or matrization that
obscure the structure. Is it possible to “algebraize” this tensor problem?

e Optimization on the Grassmann manifold

e The Newton equation for the best rank—ry, ro, 73 optimization problem

A talk of questions and only a few answers

AIM: Develop the machinery that is needed(?) to answer the questions
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Covariant mode—/ multiplication of a tensor by a matrix

n

(A(W){l})(% 7 k) = Z Ay jkWyi

v=1
and
AX,Y, Z)
Matrix case: A(X,Y) = XTAY
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Inner Product Notation: outer and inner product

Two tensors A and B of the same dimensions: A and B are 3—tensors of conforming dimensions

Outer product followed by a contraction: (C is a 4—tensor)

(AB) = aibin, Al = (A A2
(R C=(A®B)uy Cijkl = Zam’jbukl
o

Special case of contracted product of two tensors:?

The linear system 3, kijifyr = gir 1< 4,5 <n, Matrix multiplication: XY = (X ® Y )(2.1}

Inner product:
(K®F)231,2) =9, (A,B) =(A®B){1.3,1.3)y = scalar

The matrix F' and and the vector g are identified with tensors F and G.

2Variant of the notation of Bader & Kolda [1].
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Tensor SVD (HOSVD)? HOSVD
An SVD-like of a 3—tensor
A= (X,Y,2)S,

A= (X,Y,2)S,
where XY, Z € R"*"™ are orthogonal matrices.
Core tensor S has the same dimensions as A.
All-orthogonality: slices along any mode are orthogonal. Let v # pu; then

(S50, 8(k,30)) = (8(:,,2),8C, ) A - X s
= (S(,,v),S(C,:Hp))=0.

3De Lathauwer et al. [4]. Related to the Tucker-3 decomposition in psychometrics and chemometrics.
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Singular Values

Mode—1 singular values
1 . .
oM =86, i=1,...,n

The singular values are ordered,
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Truncated HOSVD

2.
- 7
Sr

X, Y

Does not give the best rank—(ry, 2, 73) approximation!
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‘lEnergyll

The singular values are measures of the “energy” of the tensor

Proposition 1.
41 = 1517 = 32 (6) = 32 () = 32 (o).

The “energy” (mass) is concentrated at the (1,1,1) corner of the tensor

We can truncate the HOSVD (in analogy to TSVD)
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Questions

e How close is the truncated HOSVD to the best rank—(rq,72,73)
approximation?

Experimentally: often very close
e \What mathematical structure determines the closeness?

e Given a tensor one can define linear operators. Are there any
tensors/linear operators with SVD=HOSVD?

Answer: Yes, if the tensor is product-separable (Kronecker structure)
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Best rank—(r, ro,r3) approximation*

min||A—Blr,  §={B| rank(B) < (r1,r2,73)}. (2)

~

The rank constraint is to be understood: B = (X1,Y3, Z1)B

VAl

X1 Y1

“De Lathauwer et al [5]
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Optimization Problem
Determine X1, Y7, and Z; so that

IXT, YT, Z0) Allr = A1, Y1, Z) | p

is maximized.

Drop subscripts, and remember that the matrices are rectangular with
orthonormal columns.

Matrix case:

JAX, V)3 = [XTAY[} = (¥ TATXXTAY)

= tr(WIYTATXVVTXTAYW)
where V' and W are orthogonal.
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Define three orthogonal matrices, arbitrary for now:
X:(X1 XQ), Y:(Y1 Yz), Z:(21 ZQ).
In transformed coordinates, i.e., with 4 = (XT YT ZT)A:

q - . B\ 2 _
min |4 — Bl
L T2 T3

n n n
: - N - SRy
= min E E g (Gir — biji)” + E g g (@ijk — bijk)
i=1 j=1 k=1 i=r1+1 j=ro+1k=r3+1

TL T2 T3

= minZZZ(&ijk—gijk)2+ Z Z Z &zzjk

i=1 j=1 k=1 i=ri4+1j=ro+1 k=rg+1
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The optimization problem
max |A(X,Y, Z)|p, X'X=1I Y'Y=1I 27Z=1I,
is not completely well-defined: Indeterminate because we may exchange
X — XV, Y — YW, Z — ZU

where V, W, and U are orthogonal

We are looking for subspaces rather than orthogonal matrices!
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Standard method: “Alternating least squares” Example

Iterate until convergence rh=[4 4 4];
a=rand (50,50,50) ;
1. Fix Y, Z, solve maxyrx_; AL, Y, Z)(X) 3y F maxit=100;
2. Fix X, Z, solve maxyry_; [|[A(X, I, Z)(Y){2llF a=tensor(a) ;
3. Fix X, Y, solve maxyr,_; [|A(X,Y, I)(Z) 3| F [Lam,U,err]=hopm(a,rk,maxit); % Alternating subspace iteration
% initialized by HOSVD
end iterations plot(err) % Approximation error

err(end-1)-err(end)

A(L X, Z) s a linear operator acting on/ X in mode 1, etc. Difference in approximation error after 100 iterations:

Solution of each subproblem given by SVD.

5.3517e-08
“Power method (alternating subspace iteration)”
Convergence may be very slow.
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Approximation error Questions

0.4995
e What determines the rate of convergence of the alternating subspace
0.499} J iteration?

0.40851 ] e How accurately can the subspaces be computed?

e Eigenspace sensitivity depends on separation of eigenvalues. What are
the corresponding quantities here?

0.498[ b

0.4975F b

0.497 b

0.4965 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
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Grassmann Manifold®

We want to determine subspaces rather than matrices

The Grassmann manifold of dimension 7 is a set of equivalence classes:
G(n,r) = [Y], Y € R"*7, YTy =1,
under the equivalence
V1] =[Yo] iff Y7 =YLV,

for some orthogonal matrix V' € R"*",

5See Edelman et al. [2].
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Tangent space

Newton's method operates in a vector space Ty : the tangent space at Y

R™ 3AeTy «— ATy =0.

Projection onto Ty :
M=I-YYT
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Optimization on the Grassmann manifold

Y

geodesic curve
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Gradient of a function F'(Y')

The gradient VF' is a vector in Ty such that

<A,VF>TY = <A,Fy >]Rn><r, VA € TY

It follows that
VF =1IIFy, O=7-vy"

where Fy is the usual Euclidean derivative
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Hessian of a function F(Y)

The Hessian H is a vector in Ty:

H =TIFyy(A) — AYTFy, A €Ty

Fyy is the usual Euclidean derivative
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Newton-Grassmann method for max F'(Y)

Starting approximation Y’

Iterate until convergence

1. Find the vector A € Ty such that
H(A) = —VF,

Thin SVD: A =UXVT
2. Take a step along the geodesic curve of direction A:

Y :=Y(1) =YVcos()VT + Usin(Z)VT
end iterations
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Grassmann Geodesic Curves
Let A € Ty with thin SVD A = UXVT,

The geodesic curve starting from Y in the direction A is given by

Y(t) = YVcos(Zt)VT 4+ Usin(Zt)VT

By definition:
dY (t
% = —YVsin(Zt)VT + UCOS(Et)VT‘t:O =A
t=0
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Newton’s method on the Grassmann manifold

geodesic curve

Find the direction A € Ty and take a geodesic step (or Y:=qr(Y+A))

Well-defined optimization (correct # d.o.f.) and quadratic convergence
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Newton’s method

N t2 d’F
2 di2

dF
F(t)~ F t—
()~ PO+t

t=0 tr=(0)

With Ty inner product (-,-):

we get a Newton equation on Ty:

H(A) = —VF
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Can we avoid index-wrestling? Yes, almost all of it.

Differentiate along three tangent directions A, A, A,

Since dX 4y a7z
T 85 Y, A ) = AZ7
dt dt g dt

and
A(Xv Y7 Z)(Za]a k) = Z A\ pvTidYjufky,
A v
every x;; etc. will be replaced by (A;);; etc. in the differentiation.

Therefore

dA(X,Y, Z)

b = A(A,,Y, Z) + A(X, A, Z) + AX,Y, A,)
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Best rank—(r,r, ) approximation.

For simplicity: 11 =ro=rs=7. Put G:=G(n,r) and G* =G x G x G
1
max F(X7Y>Z): max _<A(X7KZ)7A(X>KZ)>
(X,Y,2)€G3 (X,Y,Z)€G3 2

where

A(Xv 7 Z) (ia i k) = Z A\ pvTidYjpuky

A,V
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Derivatives
dF
+ (AX,Y,A,),AX,Y,Z))
&PF ,
W = <~A(A17Y> Z)vA(Al>KZ)> - <~A(A1AmX7}/7Z)>~A(X>KZ)>
+ (A(A, Ay, 2),AX,Y,2))+ (A(X, Ay, 2), A(Ag, Y, Z))
+ (AALY,A))AX)Y, Z)) + (AX, Y, A,), A(AL, Y, Z) )

+ Y — and Z—derivatives

Identify gradient and Hessian: (A, VF) + 2(A, H(A))
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Tensor-matrix-products

Matrization and vectorization obcure the structure.
Basic rule: Matricize and vectorize as late as possible!

Lemma 1. Let B and C be 3—tensors of conforming dimensions.

(B(X1)13,C(X2)1y) = (X1, (B®C(X2){1y )q2:3))

= (X1, (B®C)2a(Xa) (1))

Matrix factors can be “pulled out” of the inner product.
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Grassmann gradient

VF =
(ALY, Z2) @ ALY, Z) ) 2:33(X) 1y — (X)) (13 (AX, Y, Z2) @ A(X, Y, Z) ) (2.3}
<A(X7-[7 Z) ® A(Xa-[7 Z) >{1,3}(Y){2} - (Y){2}<A(X7 Y? Z) ® A(X7 Y7 Z) >{1,3}
<A(X7 Y? I) ® A(X7 Y7 I) >{12}(Z){3} - (Z){3}<A(X7K Z) ® A(Xv Y7 Z) >{12}
The matrix elements are all inner products between slices in each mode

Cf. the subspace equation for the matrix eigenvalue problem:

AX = XL
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Lemma 2.
(B(Y)(2y ®C )23 = (DY )i2:41:2)
where the 4—tensor D is defined

D = <B®C>{3}

D is a linear operator: matrix — matrix
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Grassmann Hessian

H(A) = I0y) {23 0 Hy,(Az) Hyy(Ay) Hyz(Ay)
0 (HZ){S} HZZ(AZ) sz(Ay) HZZ(AZ)

where the diagonal blocks are Sylvester operators:
HIZ(AZ) = (< A(Ia 7 Z)) ® A(L jig Z) >{2:3}(ACL’){1}

_(Az){l}(<A(X7 Y, Z)) ® A(X7 Y, Z) >{2:3}

and the off-diagonal blocks are tensor-matrix linear operators
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Off-diagonal block: £(2—6FY

(A(Az, Ay, 2) @ A(X,Y, Z)) = (A (AL Ay, 2) © AX, Y, Z) 231 )

(A2, (H® Ay )i2,41:2} ),
where

H=(AI1,2)® AX,Y,Z)) 3

is a 4—tensor.
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Ongoing work

e Implementation of the tensor Newton-Grassmann method using object-
oriented MATLAB:

— tensor toolbox (Bader & Kolda)
— homogeneous manifold optimization toolbox (home-made)

e Investigation of the theoretical properties of the best rank—(rq,72,73)
approximation
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Very preliminary numerical experiments

10°

10° @
10°
10"

10

ERROR

10"

10

100

107

1 2 3 4 5 6
# of iterations

Small problem

But: the code is in a very elarly stage of development
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