MMDS Workshop, Stanford, June 24, 2006

Independent Component Analysis (ICA)
 viewed as
 a Tensor Decomposition

Pierre COMON

Lab. I3S
CNRS \mathcal{G} University of Nice
Sophia-Antipolis, France

Observation model

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{H} s+\boldsymbol{v} \tag{1}
\end{equation*}
$$

- \boldsymbol{x} : observed, $\operatorname{dim} K$
- P : source vector, $\operatorname{dim} P$
- $\boldsymbol{H}: K \times P$ mixing matrix
- \boldsymbol{v} : additive noise

Taxonomy

One additional assumption is required on sources s_{i} :

- mutually independent sources

■ discrete sources

- colored sources

■ nonstationary sources
\qquad

General Concepts

Principal component Analysis (PCA)

Goal

Given a K-dimensional r.v., \boldsymbol{x}, find \boldsymbol{U} and \boldsymbol{z} such that
■ Observation

$$
\boldsymbol{x}=\boldsymbol{U} \boldsymbol{z}
$$

■ \boldsymbol{z} has uncorrelated components z_{i}

NB: Because of lack of uniqueness, \boldsymbol{U} is often assumed to be unitary.
\qquad

General Concepts

Independent Component Analysis (ICA)

Goal

Given a K-dimensional r.v., \boldsymbol{x}, find \boldsymbol{H} and \boldsymbol{s} such that
■ Observation

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{H} \boldsymbol{s} \tag{2}
\end{equation*}
$$

■ \boldsymbol{s} has mutually statistically independent components s_{i}
"Blind" Source Separation: only outputs x_{i} are observed.
\qquad
\qquad

General Concepts

Uniqueness

Inherent indeterminations

if \boldsymbol{s} has independent components s_{i}, so has $\boldsymbol{\Lambda} \boldsymbol{P} \boldsymbol{s}$
where $\boldsymbol{\Lambda}$ is invertible diagonal and \boldsymbol{P} permutation

Solutions

If $(\boldsymbol{A}, \boldsymbol{s})$ solution, then $\left(\boldsymbol{A} \boldsymbol{\Lambda} \boldsymbol{P}, \boldsymbol{P}^{\boldsymbol{\top}} \boldsymbol{\Lambda}^{-1} \boldsymbol{s}\right)$ also is.

- "Essential uniqueness": unique up to a trivial filter, i.e. a scale-permutation
- Whole equivalence class of solutions \Rightarrow Look for one representative.
\qquad

General Concepts

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources

Consider the mixture of two independent sources

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\binom{s_{1}}{s_{2}}
$$

where $\mathrm{E}\left\{s_{i}^{2}\right\}=1$ and $\mathrm{E}\left\{s_{i}\right\}=0$. Then x_{i} are uncorrelated:

$$
\mathrm{E}\left\{x_{1} x_{2}\right\}=\mathrm{E}\left\{s_{1}^{2}\right\}-\mathrm{E}\left\{s_{2}^{2}\right\}=0
$$

But x_{i} are not independent since, for instance:

$$
\mathrm{E}\left\{x_{1}^{2} x_{2}^{2}\right\}-\mathrm{E}\left\{x_{1}^{2}\right\} \mathrm{E}\left\{x_{2}^{2}\right\}=\mathrm{E}\left\{s_{1}^{4}\right\}+\mathrm{E}\left\{s_{2}^{4}\right\}-6 \neq 0
$$

\qquad
\qquad

General Concepts

PCA vs ICA

Example 2: 2 sources and 2 sensors

Application Areas (1)

- Sensor Array Processing
- Speech
- Localization with ill calibrated antennas
- Detection and/or extraction with unknown antennas (eg. sonar buoys, biomedical, audio, nuclear plants...)
- Blind extraction (eg. ComInt: interception, surveillance)
- Localization with reduced diversity (eg. Air traffic control)
\qquad
\qquad

Application Areas (2)

■ Factor Analysis

- Chemometrics
- Econometrics
- Psychology

■ Compression

- Arithmetic Complexity

■ Machine Learning
■ Exploratory Analysis

Introduction

General bibliography

- Books on HOS, ICA, or Multi-Way:

Lacoume-Amblard-Comon'97 (but in French)
Hyvarinen-Karhunen-Oja’01 (but dedicated only to FastICA)
Smilde-Bro-Geladi'04 (but dedicated only to Factor Analysis)
Comon-DeLathauwer (will cover more topics, but you have to wait!)

- Other related books:

Kagan-Linnik-Rao'73
McCullagh'87
Nikias-Petropulu'93
Haykin'2000
\qquad

Spatial whitening

Standardization via PCA

Definition

PCA is based on second order statistics

■ Observed random variable \boldsymbol{x} of dimension K. Then $\exists(\boldsymbol{U}, \boldsymbol{z})$:

$$
\boldsymbol{x}=\boldsymbol{U} \boldsymbol{z}, \boldsymbol{U} \text { unitary }
$$

where Principal Components z_{i} are uncorrelated
i th column \boldsymbol{u}_{i} of \boldsymbol{U} is called i th PC Loading vector
■ Two possible calculations:

- EVD of Covariance $\boldsymbol{R}_{x}: \boldsymbol{R}_{x}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{\mathrm{H}}$
- Sample estimate by SVD: $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{H}}$
\qquad
\qquad

Spatial whitening

Summary

Find a linear transform \boldsymbol{L} such that vector $\tilde{\boldsymbol{x}} \stackrel{\text { def }}{=} \boldsymbol{L} \boldsymbol{x}$ has unit covariance. Many possibilities, including:
$■$ PCA yields $\tilde{\boldsymbol{x}}=\boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{H}} \boldsymbol{x}$
■ Cholesky $\boldsymbol{R}_{x}=\boldsymbol{L} \boldsymbol{L}^{\mathrm{H}}$ yields $\tilde{\boldsymbol{x}}=\boldsymbol{L}^{-1} \boldsymbol{x}$

Remarks

$■$ Infinitely many possibilities: \boldsymbol{L} is as good as $\boldsymbol{L} \boldsymbol{Q}$, for any unitary \boldsymbol{Q}.
$■$ If \boldsymbol{R}_{x} not invertible, then \boldsymbol{L} not invertible (ill-posed). One may use pseudo-inverse of $\boldsymbol{\Sigma}$ in PCA to compute \boldsymbol{L}, or regularize \boldsymbol{R}_{x}.
\qquad
\qquad

PCA by pair sweeping

Plane rotations

Application of a Givens rotation on both sides of a matrix allows to set a pair of zeros in a symmetric matrix:

$$
\left(\begin{array}{cccc}
c & \cdot & s & \cdot \\
\cdot & 1 & \cdot & \cdot \\
-s & \cdot & c & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right) \boldsymbol{A}\left(\begin{array}{cccc}
c & \cdot & -s & \cdot \\
\cdot & 1 & \cdot & \cdot \\
s & \cdot & c & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)=\left(\begin{array}{cccc}
X & x & 0 & x \\
x & \cdot & x & \cdot \\
0 & x & X & x \\
x & \cdot & x & \cdot
\end{array}\right)
$$

Same result obtained:

- either by setting 0
- or by maximizing X's
\qquad

PCA by pair sweeping

Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4×4 real symmetric matrix

$$
\begin{aligned}
& \left(\begin{array}{c}
\ldots \\
\cdots \\
\cdots \\
\ldots
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
X & 0 & x & x \\
0 & X & x & x \\
x & x & . & . \\
x & x & . & .
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
X & x & 0 & x \\
x & . & x & . \\
0 & x & X & x \\
x & . & x & .
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
X & x & x & 0 \\
x & . & . & x \\
x & . & . & x \\
0 & x & x & X
\end{array}\right) \rightarrow \\
& \left(\begin{array}{cccc}
\cdot & x & x & 0 \\
x & X & 0 & x \\
x & 0 & X & x \\
0 & x & x & .
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
. & x & \cdot & x \\
x & X & x & 0 \\
\cdot & x & \cdot & x \\
x & 0 & x & X
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\cdot & x & x \\
\cdot & \cdot & x & x \\
x & x & X & 0 \\
x & x & 0 & X
\end{array}\right)
\end{aligned}
$$

X : maximized, x : minimized, 0 : canceled,.$:$ unchanged
\qquad

Statistical Independence

Definition

Components s_{k} of a K-dimensional r.v. s are mutually independent

$$
\Uparrow
$$

The joint pdf equals the product of marginal pdf's:

$$
\begin{equation*}
p_{s}(\boldsymbol{u})=\prod_{k} p_{s_{k}}\left(u_{k}\right) \tag{3}
\end{equation*}
$$

Definition

Components s_{k} of \boldsymbol{s} are pairwise independent \Leftrightarrow Any pair of components $\left(s_{k}, s_{\ell}\right)$ are mutually independent.
\qquad

Mutual vs Pairwise independence (1)

Example 3: Pairwise but not Mutual independence

■ 3 mutually independent BPSK sources, $x_{i} \in\{-1,1\}, 1 \leq i \leq 3$
$■$ Define $x_{4}=x_{1} x_{2} x_{3}$. Then x_{4} is also BPSK, dependent on x_{i}

- x_{k} are pairwise independent:

$$
\begin{aligned}
& p\left(x_{1}=a, x_{4}=b\right)=p\left(x_{4}=b \mid x_{1}=a\right) \cdot p\left(x_{1}=a\right)= \\
& p\left(x_{2} x_{3}=b / a\right) \cdot p\left(x_{1}=a\right)
\end{aligned}
$$

But x_{1} and $x_{2} x_{3}$ are BPSK \Rightarrow
$p\left(x_{2} x_{3}=b / a\right) \cdot p\left(x_{1}=a\right)=\frac{1}{2} \cdot \frac{1}{2}$

- But x_{k} obviously not mutually independent, $1 \leq k \leq 4$

In particular, $\operatorname{Cum}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=1 \neq 0$

Mutual vs Pairwise independence (2)

Darmois's Theorem (1953)

Let two random variables be defined as linear combinations of independent random variables x_{i} :

$$
X_{1}=\sum_{i=1}^{N} a_{i} x_{i}, \quad X_{2}=\sum_{i=1}^{N} b_{i} x_{i}
$$

Then, if X_{1} and X_{2} are independent, those x_{j} for which $a_{j} b_{j} \neq 0$ are Gaussian.
\qquad

Mutual vs Pairwise independence (3)

Corollary

If $\boldsymbol{z}=\boldsymbol{C} \boldsymbol{s}$, where s_{i} are independent r.v., with at most one of them being Gaussian, then the following properties are equivalent:

1. Components z_{i} are pairwise independent
2. Components z_{i} are mutually independent
3. $\boldsymbol{C}=\boldsymbol{\Lambda} \boldsymbol{P}$, with $\boldsymbol{\Lambda}$ diagonal and \boldsymbol{P} permutation
\qquad
\qquad

Properties of Cumulants

■ Multi-linearity (also enjoyed by moments):

$$
\begin{align*}
\operatorname{Cum}\{\alpha X, Y, . ., Z\} & =\alpha \operatorname{Cum}\{X, Y, . ., Z\} \tag{4}\\
\operatorname{Cum}\left\{X_{1}+X_{2}, Y, . ., Z\right\} & =\operatorname{Cum}\left\{X_{1}, Y, . ., Z\right\}+\operatorname{Cum}\left\{X_{2}, Y, . ., Z\right\}
\end{align*}
$$

■ Cancellation: If $\left\{X_{i}\right\}$ can be partitioned into 2 groups of independent r.v., then

$$
\begin{equation*}
\operatorname{Cum}\left\{X_{1}, X_{2}, . ., X_{r}\right\}=0 \tag{5}
\end{equation*}
$$

■ Additivity: If \boldsymbol{X} and \boldsymbol{Y} are independent, then

$$
\begin{aligned}
\operatorname{Cum}\left\{X_{1}+Y_{1}, X_{2}+Y_{2}, . ., X_{r}+Y_{r}\right\} & =\operatorname{Cum}\left\{X_{1}, X_{2}, . ., X_{r}\right\} \\
& +\operatorname{Cum}\left\{Y_{1}, Y_{2}, . ., Y_{r}\right\}
\end{aligned}
$$

■ Inequalities, e.g.:

$$
\mathcal{K}_{(3)}^{2} \leq \mathcal{K}_{(4)}+2
$$

\qquad
\qquad

Optimization Criteria

Contrast criteria: definition

Axiomatic definition

A Contrast optimization criterion Υ should enjoy 3 properties:

- Invariance: Υ should not change under the action of trivial filters (Permutation-Scale)
- Domination: If sources are already separated, any filter should decrease (or leave unchanged) Υ
- Discrimination: The maximum achievable value should be reached only when sources are separated (i.e. all absolute maxima are related to each other by trivial filters)

NB: idea first developed by Donoho for blind (scalar) equalization [DON81]
\qquad

Optimization Criteria

Mutual Information

$\Upsilon \xlongequal{\text { def }}-I\left(p_{z}\right)$ is a contrast

- Invariant by scale change and permutation
- Always negative

■ Null if and only if components are independent
\qquad
\qquad

Optimization Criteria

CoM Family of contrasts

When observations are standardized, and when only unitary transforms are considered, then the following are contrast functions:

■ If at most 1 source has a null skewness [COM94b]:

$$
\Upsilon_{2,3}=\sum_{i=1}^{P}\left(\kappa_{i i i}\right)^{2}, \quad \kappa_{i i i} \stackrel{\text { def }}{=} \mathcal{C}_{z i i i}
$$

- If at most 1 source has a null kurtosis [COM94a]:

$$
\Upsilon_{2,4}=\sum_{i=1}^{P}\left(\kappa_{i i}^{i i}\right)^{2}, \quad \kappa_{i i}^{i i} \stackrel{\text { def }}{=} \mathcal{C}_{z_{i i}}
$$

- If at most 1 source has a null standardized Cumulant of order $r \xlongequal{\text { def }} p+q>2$, and for any $\alpha \geq 1$:

$$
\Upsilon_{\alpha, r}=\sum_{i=1}^{P}\left|\kappa_{i(p)}^{(q)}\right|^{\alpha}, \quad \kappa_{i(p)}^{(q)} \stackrel{\text { def }}{=} \operatorname{Cum}\{\underbrace{z_{i}, \ldots, z_{i}}_{p \text { times }}, \underbrace{z_{i}^{*}, \ldots, z_{i}^{*}}_{q \text { times }}\}
$$

\qquad

Optimization Criteria

General Family of contrasts

■ Theorem All CoM contrasts belong to the larger family :

$$
\begin{equation*}
\Upsilon_{g}(\boldsymbol{z})=\sum_{i} g\left(\left|\kappa_{i(p)}^{(q)}\right|\right) \tag{6}
\end{equation*}
$$

where $g(\cdot)$ is convex strictly increasing, and $p+q>2$.

Numerical Algorithms

What problem are they supposed to solve?
■ Find Absolute maximum of a rational function in several variables

What kind of algorithms?

■ Gradient ascent: the simplest

■ Gradient-based ascents (Newton, quasi-Newton, conjugate gradient..)
■ Quasi-algebraic algorithms: try to avoid local maxima
■ Algebraic algorithms: find all absolute maxima in closed-form
\qquad

Algebraic algorithms

The 2-dimensional problem

- Assume data x have been standardized into $\tilde{\boldsymbol{x}}$.

■ Then one looks for an estimate \boldsymbol{z} of the source vector \boldsymbol{s} as:

$$
z=\boldsymbol{Q} \tilde{x}
$$

where \boldsymbol{Q} is unitary, and may be assumed of the form:

$$
\boldsymbol{Q}=\left(\begin{array}{cc}
\cos \beta & \sin \beta e^{\jmath \varphi} \tag{7}\\
-\sin \beta e^{-\jmath \varphi} & \cos \beta
\end{array}\right)=\frac{1}{\sqrt{1+\theta \theta^{*}}}\left(\begin{array}{cc}
1 & \theta \\
-\theta^{*} & 1
\end{array}\right)
$$

where $\theta \stackrel{\text { def }}{=} \tan \beta e^{\jmath \varphi}$ denotes the complex tangent, and $\left.\left.\beta \in\right]-\pi / 2, \pi / 2\right]$.
\qquad

Algebraic algorithms

Solution of the 2-dimensional problem (1)

Closed-form solution for absolute maximum of:
■ $\Upsilon_{1,4}$ in \mathbb{R}

- $\Upsilon_{2,3}$ in $\mathbb{R} \quad$ [COM94b]

■ $\Upsilon_{2,4}$ in \mathbb{R} [COM94a]

- $\Upsilon_{2,3}$ in \mathbb{C} [dLdMV01]

■ $\Upsilon_{1,4}$ in $\mathbb{C} \quad[\mathrm{COM} 01]$
\qquad

Algebraic algorithms

Invariance \& Indeterminacy (1)

■ There is a whole class of equivalent absolute maxima, which can be deduced from each other by trivial filtering
$■$ In the 2×2 real case, there are 8 equivalent absolute maxima, generated by two $\boldsymbol{P} \boldsymbol{\Lambda}$ transformations:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$■$ In the complex case, there are infinitely many, when $\varphi \in \mathbb{R}$.
■ Expression (7) fixes this indeterminacy, so that only 2 solutions remain
\qquad

Algebraic algorithms

What is the problem in dimension 2 ?

■ $\Upsilon_{\alpha, r}$ is a homogeneous trigonometric polynomial in $(\cos \beta, \sin \beta)$ of degree αr.
■ And we want a closed-form (algebraic) solution
■ But only polynomials of a single variable of degree at most 4 can generally be rooted algebraically

■ Our problem: check out whether $\Upsilon_{\alpha, r}$ could be transformed into a particular function that can be algebraically maximized
\qquad

Algebraic algorithms

Example (1): maximization of : $\Upsilon_{2,3}$ in \mathbb{R}

$\Upsilon_{2,3}=\kappa_{111}^{2}+\kappa_{222}^{2}$ can be proved to be a quadratic form $\boldsymbol{u}^{\top} \boldsymbol{B} \boldsymbol{u}$ where

$$
\begin{equation*}
\boldsymbol{u} \stackrel{\text { def }}{=}[\cos 2 \beta, \sin 2 \beta]^{\top} \tag{8}
\end{equation*}
$$

and

$$
\boldsymbol{B} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
a_{1} & 3 a_{4} / 2 \\
3 a_{4} / 2 & 9 a_{2} / 4+3 a_{3} / 2+a_{1} / 4
\end{array}\right)
$$

with [dLdMV01]:

$$
\begin{aligned}
& a_{1}=\gamma_{111}^{2}+\gamma_{222}^{2} \\
& a_{2}=\gamma_{112}^{2}+\gamma_{122}^{2} \\
& a_{3}=\gamma_{111} \gamma_{122}+\gamma_{112} \gamma_{222} \\
& a_{4}=\gamma_{122} \gamma_{222}-\gamma_{111} \gamma_{112}
\end{aligned}
$$

\qquad

Algebraic algorithms

Example (2): maximization of contrast $\Upsilon_{1,4}$ in IR

■ Input-Output relations

$$
\begin{aligned}
\kappa_{1} & =\gamma_{1} \cos ^{4} \beta+4 \gamma_{1112} \cos ^{3} \beta \sin \beta+6 \gamma_{1122} \cos ^{2} \beta \sin ^{2} \beta \\
& +4 \gamma_{1222} \cos \beta \sin ^{3} \beta+\gamma_{2} \sin ^{4} \beta \\
\kappa_{2} & =\gamma_{1} \sin ^{4} \beta-4 \gamma_{1112} \cos \beta \sin ^{3} \beta+6 \gamma_{1122} \cos ^{2} \beta \sin ^{2} \beta \\
& -4 \gamma_{1222} \cos ^{3} \beta \sin \beta+\gamma_{2} \cos ^{4} \beta
\end{aligned}
$$

\square Then $\varepsilon \Upsilon_{1,4}=\kappa_{1}+\kappa_{2}=$

$$
[\cos 2 \beta \sin 2 \beta]\left(\begin{array}{cc}
\gamma_{1}+\gamma_{2} & \gamma_{1112}-\gamma_{1222} \\
\gamma_{1112}-\gamma_{1222} & \frac{\gamma_{1}+\gamma_{2}}{2}+3 \gamma_{1122}
\end{array}\right)\left[\begin{array}{c}
\cos 2 \beta \\
\sin 2 \beta
\end{array}\right]
$$

■ Conclusion: again entirely algebraic since dominant eigenvector of a matrix of size <4.
\qquad

Algebraic algorithms

Example (3): maximization of of contrast $\Upsilon_{1,4}$ in \mathbb{C}

■ Define $\kappa_{i}=\operatorname{Cum}\left\{z_{i}, z_{i}, z_{i}^{*}, z_{i}^{*}\right\}, \gamma_{i j}^{k \ell}=\operatorname{Cum}\left\{\tilde{x}_{i}, \tilde{x}_{j}, \tilde{x}_{k}^{*}, \tilde{x}_{\ell}^{*}\right\}$
■ Then... again a quadratic form

$$
\varepsilon \Upsilon_{1,4}=\kappa_{1}+\kappa_{2}=\boldsymbol{u}^{\top} \boldsymbol{B} \boldsymbol{u}
$$

with

$$
\boldsymbol{u}^{\top}=\left[\begin{array}{lll}
\cos 2 \beta & \sin 2 \beta \cos \varphi & \sin 2 \beta \sin \varphi
\end{array}\right]
$$

and

$$
\begin{aligned}
\boldsymbol{B} & =\left(\begin{array}{ccc}
\gamma_{1111}+\gamma_{2222} & \Re\{\delta\} & -\Im\{\delta\} \\
\Re\{\delta\} & 2 \gamma_{12}^{12}+\Re\left\{\gamma_{22}^{11}\right\} & \Im\left\{\gamma_{22}^{11}\right\} \\
-\Im\{\delta\} & \Im\left\{\gamma_{22}^{11}\right\} & 2 \gamma_{12}^{12}-\Re\left\{\gamma_{22}^{11}\right\}
\end{array}\right) ; \\
\delta & =\gamma_{12}^{11}-\gamma_{22}^{12}
\end{aligned}
$$

Conclusion: unexpectedly entirely algebraic! [COM01]
\qquad

Quasi-algebraic algorithms

Jacobi Sweeping

Cyclic sweeping with fixed ordering
Example in dimension $P=3$:

Carl Jacobi, 1804-1851
\qquad

Quasi-algebraic algorithms

Jacobi Sweeping for tensors

Question: Why not select another ordering, e.g. process pairs having cross cumulants of largest magnitude?

Response: the computational complexity would be dominated by the computation of the tensor entries themselves!
\qquad

Quasi-algebraic algorithms

Jacobi Sweeping for tensors

Joint Block Algorithm: Sweeping a $3 \times 3 \times 3$ tensor

$$
\begin{aligned}
& \left(\begin{array}{ccc}
X & x & x \\
x & x & x \\
x & x & .
\end{array}\right) \quad\left(\begin{array}{ccc}
X & x & x \\
x & \cdot & x \\
x & x & x
\end{array}\right) \quad\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right) \\
& \left(\begin{array}{lll}
x & x & x \\
x & X & x \\
x & x & \cdot
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
x & x & x \\
x & \cdot & x \\
x & x & x
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\cdot & x & x \\
x & X & x \\
x & x & x
\end{array}\right) \\
& \left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & .
\end{array}\right) \quad\left(\begin{array}{ccc}
x & x & x \\
x & \cdot & x \\
x & x & X
\end{array}\right) \quad\left(\begin{array}{ccc}
\cdot & x & x \\
x & x & x \\
x & x & X
\end{array}\right)
\end{aligned}
$$

$\left.\begin{array}{rl}X & : \text { maximized } \\ x & : \text { minimized } \\ . & : \text { unchanged }\end{array}\right\}$ by the last Givens rotation [COM89]

\qquad
\qquad

Quasi-algebraic algorithms

Influence of ordering

With update based on multilinearity.

\qquad

Quasi-algebraic algorithms

Interpretation in terms of pairwise independence

■ Pairs are processed in turns, so as to make outputs as independent as possible
■ Ultimately: a set of pairwise independent outputs
■ Legitimate because of corollary of Darmois's theorem (cf., slide 19)
\qquad
\qquad

Quasi-algebraic algorithms

Interpretation in terms of tensor diagonalization

Explanation for order 3 tensors

- Given a tensor $g_{i j k}$, find a matrix \boldsymbol{Q} transforming g into $G_{p q r}=$ $\sum_{i j k} Q_{p i} Q_{q j} Q_{r k} g_{i j k}$ such as to maximize:

$$
\Psi_{3}(\boldsymbol{Q}) \stackrel{\text { def }}{=} \sum_{i}\left|G_{i i i}\right|^{2}
$$

- Theorem: if \boldsymbol{Q} is unitary, then $\Omega \stackrel{\text { def }}{=} \sum_{i j k}\left|G_{i j k}\right|^{2}$ is constant independent of Q

Proof: uses $\sum_{p} Q_{i p} Q_{j p}=\delta_{i j}$

- Corollary: Maximize $\Upsilon_{3,2} \Leftrightarrow$ minimize all non diagonal entries

Hence: Approximate "Tensor Diagonalization"
\qquad
\qquad

Quasi-algebraic algorithms

Tensor diagonalization

Warning: Tensors cannot in general be diagonalized by congruent transforms, even non unitary!

Why?

because they have too many degrees of freedom ...
\qquad
\qquad

Quasi-algebraic algorithms

Stationary points

Example of diagonalization of real symmetric matrices

■ Given a matrix g with components $g_{i j}$, it is sought for an orthogonal matrix Q such that ψ_{2} is maximized:

$$
\psi_{2}(G)=\sum_{i} G_{i i}^{2} ; \quad G_{i j}=\sum_{p, q} Q_{i p} Q_{j q} g_{p q} .
$$

■ Stationary points of ψ_{2} satisfy for any pair of indices $(q, r), q \neq r$:

$$
G_{q q} G_{q r}=G_{r r} G_{q r}
$$

■ Next, $d^{2} \psi_{2}<0 \Leftrightarrow G_{q r}^{2}<\left(G_{q q}-G_{r r}\right)^{2}$, which proves that

- $G_{q r}=0, \forall q \neq r$ yields a maximum
- $G_{q q}=G_{r r}, \forall q, r$ yields a minimum
- Other stationary points are saddle points
\qquad

Quasi-algebraic algorithms

Stationary points

Procedure applied to real 3rd or 4th order tensors

■ Similarly, one can look at relations characterizing local maxima of criteria Ψ_{3} and Ψ_{4} [COM94b]:

$$
\begin{aligned}
G_{q q q} G_{q q r}-G_{r r r} G_{q r r} & =0 \\
4 G_{q q r}^{2}+4 G_{q r r}^{2}-\left(G_{q q q}-G_{q r r}\right)^{2}-\left(G_{r r r}-G_{q q r}\right)^{2} & <0 ; \\
G_{q q q q} G_{q q q r}-G_{r r r r} G_{q r r r} & =0 \\
4 G_{q q q r}^{2}+4 G_{q r r r}^{2}-\left(G_{q q q q}-\frac{3}{2} G_{q q r r}\right)^{2} & \\
-\left(G_{r r r r}-\frac{3}{2} G_{q q r r}\right)^{2} & <0 .
\end{aligned}
$$

for any pair of indices $(p, q), p \neq q$. As a conclusion, contrary to Ψ_{2} in the matrix case, Ψ_{r} might have theoretically spurious local maxima in the tensor case, $r>2$
\qquad

Quasi-algebraic algorithms

Tensors as Linear Operators

Overview

■ Linear Operator Ω acting on square matrices:

$$
\boldsymbol{M} \longrightarrow \Omega(\boldsymbol{M})_{i j}=\sum_{k \ell} \mathcal{C}_{i k}^{j \ell} M_{k \ell}
$$

admits eigen-matrices $\boldsymbol{N}(p), 1 \leq p \leq P^{2}$.
■ In the absence of noise, P nonzero eigenvalues
■ In practice, retain P dominant eigen-matrices \Rightarrow (i) reduced complexity P^{2}, and (ii) noise reduction
\qquad

Quasi-algebraic algorithms

Joint Approximate Diagonalization (JAD)

Other idea: jointly diagonalize matrix slices
Example of $4 \times 4 \times 4$ tensors

Matrix slices diagonalization \neq Tensor diagonalization
Performs less well, but computationnally attractive [CS93]
\qquad
\qquad

Quasi-algebraic algorithms

STD (1)

One step forward: Slicing decreases the order
■ Similarly, one can try to diagonalize a 4th order tensor $\boldsymbol{T}=\left[\gamma_{i j k}\right]$ by jointly diagonalizing 3rd order slices $\boldsymbol{T}(\ell)$

- Algorithm: Each Givens rotation is obtained again by maximizing a quadratic form $\boldsymbol{u}^{\top} \boldsymbol{B} \boldsymbol{u}$
- Noise reduction possibility: replace slices by a family of 3rd order tensors forming a basis of the map $\mathbb{C}^{K} \rightarrow \mathbb{C}^{K \times K \times K}$ (consider the 4th order tensor as a linear map; basis obtained by SVD)
\qquad

Quasi-algebraic algorithms

STD (2)

In the real case, \boldsymbol{B} is given as in slide 30 by:

$$
\boldsymbol{B}=\left(\begin{array}{cc}
a_{1} & 3 a_{4} / 2 \\
3 a_{4} / 2 & 9 a_{2} / 4+3 a_{3} / 2+a_{1} / 4
\end{array}\right)
$$

with [dLdMV01]:

$$
\begin{aligned}
& a_{1}=\sum_{\ell} \gamma_{111 \ell}^{2}+\gamma_{222 \ell}^{2} \\
& a_{2}=\sum_{\ell} \gamma_{112 \ell}^{2}+\gamma_{122 \ell}^{2} \\
& a_{3}=\sum_{\ell}^{\ell} \gamma_{111 \ell} \gamma_{122 \ell}+\gamma_{112 \ell} \gamma_{222 \ell} \\
& a_{4}=\sum_{\ell} \gamma_{122 \ell} \gamma_{222 \ell}-\gamma_{111 \ell} \gamma_{112 \ell}
\end{aligned}
$$

\qquad

Criteria

Comparison between CoM, JAD, and STD

$$
\begin{align*}
& \Upsilon_{C o M 2}(\boldsymbol{Q})=\sum_{i=1}^{P}\left|T_{i i i i}\right|^{2}=\Upsilon_{2,4}, \tag{9}\\
& \Upsilon_{S T D}(\boldsymbol{Q})=\sum_{i=1}^{P} \sum_{j=1}^{P}\left|T_{i i i j}\right|^{2}, \tag{10}\\
& \Upsilon_{J A D}(\boldsymbol{Q})=\sum_{i=1}^{P} \sum_{j=1}^{P} \sum_{k=1}^{P}\left|T_{i j j}\right|^{2} \tag{11}
\end{align*}
$$

Different Discrimination powers:

$$
\Upsilon_{C o M 2}(\boldsymbol{Q}) \leq \Upsilon_{S T D}(\boldsymbol{Q}) \leq \Upsilon_{J A D}(\boldsymbol{Q})
$$

i.e. CoM2 is the best (but may be computationnally heavy, e.g. in \mathbb{C})
\qquad

The End

Conclusion

$■$ ICA is widely used, and related to approximate tensor diagonalization
■ But still lack of efficient numerical algorithms

References

[COM89] P. COMON. Separation of stochastic processes. In Proc. Workshop on Higher-Order Spectral Analysis, pages 174-179, Vail, Colorado, June 28-30 1989. IEEE-ONR-NSF.
[COM94a] P. COMON. Independent Component Analysis, a new concept ? Signal Processing, Elsevier, 36(3):287-314, April 1994. Special issue on Higher-Order Statistics.
[COM94b] P. COMON. Tensor diagonalization, a useful tool in signal processing. In M. Blanke and T. Soderstrom, editors, IFAC-SYSID, 10th IFAC Symposium on System Identification, volume 1, pages 77-82, Copenhagen, Denmark, July 4-6 1994. invited session.
[COM01] P. COMON. From source separation to blind equalization, contrast-based approaches. In Int. Conf. on Image and Signal Processing (ICISP'01), Agadir, Morocco, May 3-5, 2001. invited plenary.
[CS93] J. F. CARDOSO and A. SOULOUMIAC. Blind beamforming for non-Gaussian signals. IEE Proceedings - Part F, 140(6):362-370, December 1993. Special issue on Applications of High-Order Statistics.
[dL97] L. de LATHAUWER. Signal Processing based on Multilinear Algebra. Doctorate, Katholieke Universiteit Leuven, September 1997.
[dLdMV01] L. de LATHAUWER, B. de MOOR, and J. VANDEWALLE. Independent Component Analysis and (simultaneous) third-order tensor diagonalization. IEEE Trans. Sig. Proc., pages 2262-2271, October 2001.
[DON81] D. DONOHO. On minimum entropy deconvolution. In Applied time-series analysis II, pages 565-609. Academic Press, 1981.
[LAC97] J. L. LACOUME, P. O. AMBLARD, and P. COMON. Statistiques d'ordre supérieur pour le traitement du signal. Collection Sciences de l'Ingénieur. Masson, 1997.
[MP97] E. MOREAU and J. C. PESQUET. Generalized contrasts for multichannel blind deconvolution of linear systems. IEEE Signal Processing Letters, 4(6):182-183, June 1997.
[SBG04] A. SMILDE, R. BRO, and P. GELADI. Multi-Way Analysis. Wiley, 2004.

