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Goals and Outline

• Existence of Fast Clustering methods makes possible several
applications.

◦ Compare deterministic and non-determ. clusterers.

• Fast training of Support Vector Machines.

• Low Memory Factored Representation,
for data too big to fit in memory.

◦ Fast clustering of datasets too big to fit in memory.

◦ Fast generalization of LSI for document retrieval.

◦ Representation of Streaming Data.
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Hierarchical Clustering

• Clustering at all levels of resolution.

• Bottom-up clustering is O(n2).

• Top-down clustering can be made O(n).

• Leads to PDDP. [basis of this talk].
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Hierarchical Clustering: Get a Tree
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K-means: Popular Fast Clustering

• Quality of final result depends on initialization

• Random initialization ⇒ results hard to repeat.

• Deterministic initialization - no universal strategy

• Cost: O(#iters ·m · n) ⇒ linear in n.

where n = number of data samples

m = number of attributes per sample.
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Modelling K-means Convergence

[Savaresi]
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• Reduce to 1 parameter:
angle α.

• Major axis = 1,
Minor axis = a < 1.

• Non-linear dynamic system:
αt+1 = atan[a2 tan αt].

• # iterations to converge:
≈ −1/ log a2.

2006 Stanford Workshop on Massive Datasets. 662482 p6 of 39



Infinitely Many Points

-0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

alpha(t)

alpha(t+1)

α 0

line
α t+1=α t

function
α t+1=f(α t)

K-means
modelled
as a
fixed
point
iteration

2006 Stanford Workshop on Massive Datasets. 662482 p7 of 39



Finite Number of Points
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Finite Number of Points

• Many equilibrium points =⇒ many local minima.

• As # points grows, local minima tend to vanish.

• As minor axis → 1, more local minina tend to appear.
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PDDP vs K-means on Model Problem

• In the limit, PDDP & K-means yield same split here.
[Savaresi]
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Starting K-means

• Empirically, PDDP is a good seed for K-means.
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Cost of K-means vs PDDP

• Both are linear in the number of samples.

• K-means often cheapest, but cost can vary a lot.

Floating  points operations required to bisect a 100x1000 matrix
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SVM via Clustering

• Motivation: Reduce trainging cost by clustering and use
one representative per cluster instead of all the original
data.

• Empirically provides good SVMs with comparable error
rates on test sets.

• Theoretically generalization error satisfies “same” bound
as the SVM obtained using all the data.

• Can be made adaptable by quickly running a sequence of
SVMs, each with new data points added, to adjust and
improve SVM adaptively.
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SVM via Clustering
• Cluster Training Set into partitions
• Train SVM using 1 representative per partition.
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Support Vector Machine

• Minimize R (d;D, λ) = Remp(d;D)︸ ︷︷ ︸
Empirical

Error

+ λ · Ω(d)︸ ︷︷ ︸
Regularization/

Complexity Term

• D = {xi, yi}
n

i=1
: training set.

• xi: datum w/ label yi = ±1.

• φ(x): non-linear lifting.

• d(x) = 〈w, φ(x)〉: discriminant fcn.

• λ: regularization coefficient

• Ω(d) = ‖w‖2

• Remp(d;D) = 1
n

∑

(x,y)∈D

ℓhinge(d, (x, y)) = max{0, 1− y · d(x)}
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Questions to be Resolved

• How to select representatives?

• If selection cost is O(n2)
then one gains little by using representatives.

• How to adjust representatives to improve classifier quality?
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Approximate SVM Methods

Choices of Clustering Method

• Use fast clustering method.

• Intuition: want to minimize distance
sample point ⇔ representative in lifted space.

• =⇒ kernel K-means.

• But expensive, so approximate it with
◦ data K-means (natural choice)
◦ data PDDP (to make deterministic or to init K-means)

• Option: add potential support vectors, and repeat.
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Quality of SVM – Theory

• Could apply VC dimension bounds,
but we want something tighter.

• Extend Algorithmic-Stability bounds to this case.
These apply specifically to learning algorithms minimizing some convex

functional, whose change is bounded when a datum is substituted.

• Assume only that representatives are centers of partitions.

• Partitions are arbitrary, so result applies even when using
data K-means, data space PDDP, random partitioning, or
even a sub-optimal soln from kernel K-means.
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Stability Bound Theorem
Get theorem much like one for Exact SVM.

• For any n ≥ 1 and δ ∈ (0, 1), with confidence at least 1−δ

over the random draw of a training data set D of size n:

E(Ih̃(x) 6=y)

︸ ︷︷ ︸
expected error

≤ 1
n

∑

(x,y)∈D

ℓhinge(h̃,x, y)

︸ ︷︷ ︸
empirical error

+ χ2

λn +
(

2χ2

λ + 1
) √

ln 1/δ
2n

︸ ︷︷ ︸
complexity/sensitivity term

.

where

◦ h̃(x)
def

= sign {d̃(x)} is the approximate SVM.

◦ χ2 = maxi K(xi,xi) = max〈φ(xi), φ(xi)〉 (1 for RBF kernel).

◦ λ corresponds to soft-margin weighting.
trade-off of training error ←→ sensitivity.
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Experimental Setup

• Illustrate performance of SVM with clustering on some
examples.

• We cluster in data space with PDDP;

• We compare the proposed algorithm against the standard
training algorithm SMO [Platt, 1999], implemented in
LibSVM [Chang+Lin 2001] [Fan 2005];
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Experimental Performance

Data set Exact SVM Approximate SVM
(Size) Ttrain (sec.) Accuracy Ttrain (sec.) Accuracy

UCI-Adult

(32,561)
1, 877 95.7% 246 93.9%

UCI-Web

(49,749)
2, 908 99.8% 487 98.7%

MNIST

(60,000)
6, 718 98.8% 2, 926 95.4%

Yahoo

(100,000)
18, 437 83.8% 1, 952 80.1%
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Low Memory Factored Representation

• Use clustering to contruct a representation of a full massively
large data sets in much less space.

• Representation is not exact, but every individual sample
has its own unique representative in the approximate representation.

• In principle, would still allow detection and analysis of
outliers and other unusual individual samples.

• Next slide has basic idea.
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Low Memory Factored Representation
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Fast factored representation: LMFR

[Littau]

• M = CZ by fast clustering of each section

• C = matrix of representatives

• Still have Z to individualize representation of each sample

• Make Z sparse to save space.

• linear clustering cost → linear cost to construct LMFR

• In principle, could use any fast clusterer.

• We use PDDP to make it more deterministic.
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LMFR ⇒ Clustering ⇒ PMPDDP

Using PDDP on an LMFR yields Piece-Meal PDDP.

• Factored Representation ⇒ to reconstruct data

• Expensive to compute similarities between individual data.

• Want to avoid accessing individual data.

• Ideal for clusterer that depends on M× v’s

• A spectral clustering method like PDDP is a good fit.

• Experimentally, cluster quality ≈ plain PDDP.
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⇒ PMPDDP - Piece-Meal PDDP
• Divide original data M up into sections

Extract representatives for each section, fast.
[can be imperfect]

• Matrix of representatives ⇒ C

• Approximate each original sample as a linear combination
of k representatives [selected via least squares].

• Matrix of coefficients ⇒ Z

• k is a small number like 3 or 5.

• Apply PDDP to the product CZ instead of original M.
[never multiply out CZ explicitly]
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PMPDDP – on KDD dataset
• Still Linear in size of data set.
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PMPDDP – on KDD dataset
• First 5 samples: PMPDDP cost ≈ 4 × PDDP.
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PMPDDP – on KDD dataset
• Memory usage small.
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LMFR for Document Retrieval

• Mimic LSI, except we use factored representation CZ.

• Different from finding nearest concepts (ignoring Z)

• Can handle much larger datasets than Concept
Decomposition [full Z]

• Less time needed to achieve similar retrieval accuracy.
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Doc Retrieval Experiments

• Compare methods achieving similar retrieval accuracy.

method kc kz MB sec

M N.A. N.A. 18.34 N.A

rank 100 SVD N.A. N.A. 40.12 438

rank 200 concept
decomposition

200 200 25.88 10294

LMFR 200 5 8.10 185

LMFR 300 5 9.17 188

LMFR 400 5 10.02 187

LMFR 500 5 10.68 189

LMFR 600 5 11.32 187
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Doc Retrieval Experiments
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LMFR for Streaming Data

• Simple idea: collect data into sections as they arrive

• Form CZ section by section as they fill.

• Get LMFR for data, useful for any application (clustering,
IR, aggregate statistics,...]

• No need to decide application in advance
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LMFR for Streaming Data

• Memory for Z grows very slowly

• Memory for C grows more.

• Recursively factor C into its own ĈẐ ⇒ less space.

• Hybrid Approach: once in a while do a completely new
LMFR.
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Streaming Data Results
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Streaming Data Results
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Related Work
• SVM via Clustering
◦ Chunking (Boser+92, Osuna+97, Kaufman+99, Joachims99)

◦ Low Rank Approx (Fine 01, Jordan)

◦ Sampling (Williams+Seeger01, Achlioptas+McSherry+Schölkopf 02)

◦ Squashing (Pavlov+Chudova+Smith 00)

◦ Clustering (Cao+04, Yu+Yang+Han 03)

• Agglomeration on large datasets
◦ gather/scatter (Cutting+ 92)

◦ CURE(Guha+98)

◦ gaussian model (Fraley 99)

◦ Heap (Kurita 91)

◦ refinement (Karypis 99)
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Related Work
• K-means on large datasets
◦ Initialization (Bradley-Fayyad 1998)

◦ kd-tree (Pelleg-Moore 1999)

◦ Sampling (Domingos+01)

◦ CLARANS k-medoid, spatial data (Ng+Han 94)

◦ Birch (more sampling than k=means) (Ramakrishnan+96)

• Matrix Factorization
◦ LSI Berry 95 Deerwester 90

◦ Sparse LowRankApprox Zhang+Zha+Simon 2002

◦ SDD (Kolda+98) – good for outlier detection (Skillikorn+01)

◦ Monte-Carlo sampling (Vempala+98)

◦ Concept Decomp (Dhillon+01)
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Conclusions

• K-means Clustering
◦ Convergence modelled by dynamical system.

◦ Helped by seeding w/ deterministic method.

• Performance of fast SVM via clustering.
◦ Speeded up in practice

◦ Proved theoretical bound.

See poster for details.

• Low Memory Factored Representation.
◦ Cluster w/out computing pairwise distances.

◦ Compact representation, easily updatable.

◦ Ideally, would like clustering to be faster than linear.

◦ Easily used for various applications: clustering, IR, streaming.
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