Fast Clustering leads to Fast SVM Training and More

Daniel Boley

University of Minnesota

Supported in part by NSF

2006 Stanford Workshop on Massive Datasets. 662482

Goals and Outline

- Existence of Fast Clustering methods makes possible several applications.
 - Compare deterministic and non-determ. clusterers.
- Fast training of Support Vector Machines.
- Low Memory Factored Representation, for data too big to fit in memory.
 - Fast clustering of datasets too big to fit in memory.
 - Fast generalization of LSI for document retrieval.
 - Representation of Streaming Data.

2006 Stanford Workshop on Massive Datasets.662482

Hierarchical Clustering

- Clustering at all levels of resolution.
- Bottom-up clustering is $O(n^2)$.
- Top-down clustering can be made O(n).
- Leads to PDDP. [basis of this talk].

Hierarchical Clustering: Get a Tree

K-means: Popular Fast Clustering

- Quality of final result depends on initialization
- Random initialization \Rightarrow results hard to repeat.
- Deterministic initialization no universal strategy
- Cost: $O(\#iters \cdot m \cdot n) \Rightarrow$ linear in n. where n = number of data samples m = number of attributes per sample.

Modelling K-means Convergence

[Savaresi]

Simple Model

- Reduce to 1 parameter: angle α .
- Major axis = 1, Minor axis = a < 1.
- Non-linear dynamic system: $\alpha_{t+1} = \operatorname{atan}[a^2 \tan \alpha_t].$
- # iterations to converge: $\approx -1/\log a^2$.

Infinitely Many Points

Finite Number of Points

Finite Number of Points

- Many equilibrium points \implies many local minima.
- As # points grows, local minima tend to vanish.
- As minor axis $\rightarrow 1$, more local minina tend to appear.

PDDP vs K-means on Model Problem

• In the limit, PDDP & K-means yield same split here. [Savaresi]

Starting K-means

• Empirically, PDDP is a good seed for K-means.

Cost of K-means vs PDDP

- Both are linear in the number of samples.
- K-means often cheapest, but cost can vary a lot.

SVM via Clustering

- Motivation: Reduce training cost by clustering and use one representative per cluster instead of all the original data.
- Empirically provides good SVMs with comparable error rates on test sets.
- Theoretically generalization error satisfies "same" bound as the SVM obtained using all the data.
- Can be made adaptable by quickly running a sequence of SVMs, each with new data points added, to adjust and improve SVM adaptively.

SVM via Clustering

- Cluster Training Set into partitions
- Train SVM using 1 representative per partition.

Support Vector Machine

• Minimize $R(d; \mathcal{D}, \lambda) = \underbrace{R_{emp}(d; \mathcal{D})}_{+} + \underbrace{\lambda \cdot \Omega(d)}_{-}$

Error

Empirical Regularization/ Complexity Term

- \mathbf{x}_i : datum w/ label $y_i = \pm 1$. λ : regularization coefficient
- $\phi(\mathbf{x})$: non-linear lifting.
- $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^n$: training set. $d(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle$: discriminant fcn.

•
$$\Omega(d) = \|\mathbf{w}\|^2$$

•
$$R_{\text{emp}}(d; \mathcal{D}) = \frac{1}{n} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \ell_{\text{hinge}}(d, (\mathbf{x}, y)) = \max\{0, 1 - y \cdot d(\mathbf{x})\}$$

Questions to be Resolved

- How to select representatives?
- If selection cost is O(n²)
 then one gains little by using representatives.
- How to adjust representatives to improve classifier quality?

Approximate SVM Methods

Choices of Clustering Method

- Use fast clustering method.
- Intuition: want to minimize distance sample point \Leftrightarrow representative in lifted space.
- \implies kernel K-means.
- But expensive, so approximate it with
 data K-means (natural choice)
 data PDDP (to make deterministic or to init K-means)
- Option: add potential support vectors, and repeat.

Quality of SVM – Theory

- Could apply VC dimension bounds, but we want something tighter.
- Extend Algorithmic-Stability bounds to this case.
 These apply specifically to learning algorithms minimizing some convex functional, whose change is bounded when a datum is substituted.
- Assume only that representatives are centers of partitions.
- Partitions are arbitrary, so result applies even when using data K-means, data space PDDP, random partitioning, or even a sub-optimal soln from kernel K-means.

Stability Bound Theorem

Get theorem much like one for Exact SVM.

• For any $n \ge 1$ and $\delta \in (0, 1)$, with confidence at least $1-\delta$ over the random draw of a training data set \mathcal{D} of size n:

$$\mathbb{E}(\mathbb{I}_{\widetilde{h}(\mathbf{x})\neq y}) \leq \frac{1}{n} \sum_{\substack{(\mathbf{x},y)\in\mathcal{D}\\ \text{empirical error}}} \ell_{\text{hinge}}(\widetilde{h},\mathbf{x},y) + \frac{\chi^2}{\lambda n} + \left(\frac{2\chi^2}{\lambda} + 1\right)\sqrt{\frac{\ln 1/\delta}{2n}}$$

$$\underbrace{(\mathbf{x},y)\in\mathcal{D}}_{\text{empirical error}} \quad \underbrace{(\mathbf{x},y)\in\mathcal{D}}_{\text{complexity/sensitivity term}}$$

• $\widetilde{h}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \text{sign } \{\widetilde{d}(\mathbf{x})\} \text{ is the approximate SVM.}$

•
$$\chi^2 = \max_i K(\mathbf{x}_i, \mathbf{x}_i) = \max(\phi(\mathbf{x}_i), \phi(\mathbf{x}_i))$$
 (1 for RBF kernel).

• λ corresponds to soft-margin weighting. trade-off of training error \longleftrightarrow sensitivity.

Experimental Setup

- Illustrate performance of SVM with clustering on some examples.
- We cluster in data space with PDDP;
- We compare the proposed algorithm against the standard training algorithm SMO [Platt, 1999], implemented in LibSVM [Chang+Lin 2001] [Fan 2005];

Experimental Performance

Data set	Exact SVM		Approximate SVM	
(Size)	$T_{\rm train}$ (sec.)	Accuracy	T_{train} (sec.)	Accuracy
UCI-Adult	1,877	95.7%	246	93.9%
(32,561)				
UCI-Web	2,908	99.8%	487	98.7%
(49,749)	2,000	00.070	101	50.170
MNIST	6 718	08.8%	2 026	05 1%
(60,000)	0,110	90.070	2,920	30.470
Yahoo	18 /137	83.8%	1 052	80.1%
(100,000)	10,401	09.070	1,302	00.170

Low Memory Factored Representation

- Use clustering to contruct a representation of a full massively large data sets in much less space.
- Representation is not exact, but every individual sample has its own unique representative in the approximate represent
- In principle, would still allow detection and analysis of outliers and other unusual individual samples.
- Next slide has basic idea.

Low Memory Factored Representation

Fast factored representation: LMFR

[Littau]

- $\mathbf{M} = \mathbf{CZ}$ by fast clustering of each section
- $\mathbf{C} = \text{matrix of representatives}$
- $\bullet~$ Still have ${\bf Z}$ to individualize representation of each sample
- Make **Z** sparse to save space.
- linear clustering cost \rightarrow linear cost to construct LMFR
- In principle, could use any fast clusterer.
- We use PDDP to make it more deterministic.

$\mathbf{LMFR} \Rightarrow \mathbf{Clustering} \Rightarrow \mathbf{PMPDDP}$

Using PDDP on an LMFR yields Piece-Meal PDDP.

- Factored Representation \Rightarrow to reconstruct data
- Expensive to compute similarities between individual data.
- Want to avoid accessing individual data.
- Ideal for clusterer that depends on $\mathbf{M}\times\mathbf{v}$'s
- A spectral clustering method like PDDP is a good fit.
- Experimentally, cluster quality \approx plain PDDP.

\Rightarrow PMPDDP - Piece-Meal PDDP

- Divide original data M up into sections
 Extract representatives for each section, fast.
 [can be imperfect]
- Matrix of representatives $\Rightarrow C$
- Approximate each original sample as a linear combination of k representatives [selected via least squares].
- Matrix of coefficients $\Rightarrow \mathbf{Z}$
- k is a small number like 3 or 5.
- Apply PDDP to the product **CZ** instead of original **M**. [never multiply out **CZ** explicitly]

PMPDDP – on KDD dataset

• Still Linear in size of data set.

PMPDDP – on KDD dataset

• First 5 samples: PMPDDP cost $\approx 4 \times$ PDDP.

PMPDDP – on KDD dataset

• Memory usage small.

LMFR for Document Retrieval

- Mimic LSI, except we use factored representation \mathbf{CZ} .
- Different from finding nearest concepts (ignoring \mathbf{Z})
- Can handle much larger datasets than Concept Decomposition [full \mathbf{Z}]
- Less time needed to achieve similar retrieval accuracy.

Doc Retrieval Experiments

• Compare methods achieving similar retrieval accuracy.

method	k_c	k_z	MB	sec
\mathbf{M}	N.A.	N.A.	18.34	N.A
rank 100 SVD	N.A.	N.A.	40.12	438
rank 200 concept decomposition	200	200	25.88	10294
LMFR	200	5	8.10	185
LMFR	300	5	9.17	188
LMFR	400	5	10.02	187
LMFR	500	5	10.68	189
LMFR	600	5	11.32	187

Doc Retrieval Experiments

2006 Stanford Workshop on Massive Datasets. 662482

LMFR for Streaming Data

- Simple idea: collect data into sections as they arrive
- Form CZ section by section as they fill.
- Get LMFR for data, useful for any application (clustering, IR, aggregate statistics,...]
- No need to decide application in advance

LMFR for Streaming Data

- $\bullet\,$ Memory for ${\bf Z}$ grows very slowly
- Memory for **C** grows more.
- Recursively factor C into its own $\widehat{C}\widehat{Z} \Rightarrow$ less space.
- Hybrid Approach: once in a while do a completely new LMFR.

Streaming Data Results

Streaming Data Results

Related Work

- SVM via Clustering
 - Chunking (Boser+92, Osuna+97, Kaufman+99, Joachims99)
 - Low Rank Approx (Fine 01, Jordan)
 - Sampling (Williams+Seeger01, Achlioptas+McSherry+Schölkopf 02)
 - Squashing (Pavlov+Chudova+Smith 00)
 - Clustering (Cao+04, Yu+Yang+Han 03)
- Agglomeration on large datasets
 - \circ gather/scatter (Cutting+ 92)
 - \circ CURE(Guha+98)
 - \circ gaussian model (Fraley 99)
 - \circ Heap (Kurita 91)
 - \circ refinement (Karypis 99)

Related Work

- K-means on large datasets
 - Initialization (Bradley-Fayyad 1998)
 - kd-tree (Pelleg-Moore 1999)
 - Sampling (Domingos+01)
 - CLARANS k-medoid, spatial data (Ng+Han 94)
 - \circ Birch (more sampling than k=means) (Ramakrishnan+96)
- Matrix Factorization
 - LSI Berry 95 Deerwester 90
 - Sparse LowRankApprox Zhang+Zha+Simon 2002
 - \circ SDD (Kolda+98) good for outlier detection (Skillikorn+01)
 - \circ Monte-Carlo sampling (Vempala+98)
 - Concept Decomp (Dhillon+01)

Conclusions

- K-means Clustering
 - Convergence modelled by dynamical system.
 - Helped by seeding w/ deterministic method.
- Performance of fast SVM via clustering.
 - Speeded up in practice
 - $\circ~$ Proved theoretical bound.
 - See poster for details.
- Low Memory Factored Representation.
 - Cluster w/out computing pairwise distances.
 - Compact representation, easily updatable.
 - Ideally, would like clustering to be faster than linear.
 - Easily used for various applications: clustering, IR, streaming.