### Text Mining Approaches for Email Surveillance Massive Data Sets Workshop, Stanford/Yahoo!

Michael W. Berry and Murray Browne

Department of Computer Science, UTK

June 22, 2006



#### Collaborators

- ▶ Pau'l Pauca, Bob Plemmons (Wake Forest)
- Amy Langville (College of Charleston)
- David Skillicorn, Parambir Keila (Queens U.)
- Stratis Gallopoulos, Ioannis Antonellis (U. Patras)



Enron Background

Non-Negative Matrix Factorization (NMF)

Electronic Mail Surveillance

Surveillance Tool Prototype

Conclusions and References



Enron Background

#### **Email Collection**

- ▶ By-product of the FERC investigation of Enron (originally contained 15 million email messages).
- ► This study used the improved corpus known as the Enron Email set, which was edited by Dr. William Cohen at CMU.
- ► This set had over 500,000 email messages. The majority were sent in the 1999 to 2001 timeframe.

#### Enron Historical 1999-2001

- Ongoing, problematic, development of the Dabhol Power Company (DPC) in the Indian state of Maharashtra.
- Deregulation of the Calif. energy industry, which led to rolling electricity blackouts in the summer of 2000 (and subsequent investigations).
- Revelation of Enron's deceptive business and accounting practices that led to an abrupt collapse of the energy colossus in October, 2001; Enron filed for bankruptcy in December, 2001.

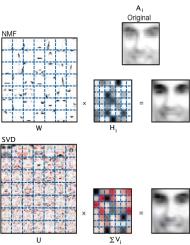
Motivation

### **NMF** Origins

- NMF (Nonnegative Matrix Factorization) can be used to approximate high-dimensional data having nonnegative components.
- ▶ Lee and Seung (1999) demonstrated its use as a *sum-by-parts* representation of image data in order to both identify and classify image *features*.
- ► [Xu et al., 2003] demonstrated how NMF-based indexing could outperform SVD-based Latent Semantic Indexing (LSI) for some information retrieval tasks.



## NMF for Image Processing



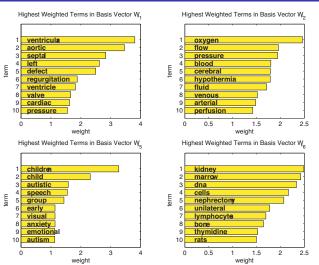
Sparse NMF verses Dense SVD Bases; Lee and Seung (1999)



Non-Negative Matrix Factorization (NMF)

└ Motivation

### NMF for Text Mining (Medlars)





Interpretable NMF feature vectors; Langville et al. (2006)

#### Derivation

- ▶ Given an  $m \times n$  term-by-message (sparse) matrix X.
- ▶ Compute two reduced-dim. matrices W,H so that  $X \simeq WH$ ; W is  $m \times r$  and H is  $r \times n$ , with  $r \ll n$ .
- **▶** Optimization problem:

$$\min_{W,H} \|X - WH\|_F^2,$$

subject to  $W_{ij} \ge 0$  and  $H_{ij} \ge 0$ ,  $\forall i, j$ .

► **General approach**: construct initial estimates for *W* and *H* and then improve them via alternating iterations.



# Multiplicative Method (MM)

- ► Multiplicative update rules for *W* and *H* (Lee and Seung, 1999):
  - Initialize W and H with non-negative values, and scale the columns of W to unit norm.
  - 2. Iterate for each *c*, *j*, and *i* until convergence or after *k* iterations:

2.1 
$$H_{cj} \leftarrow H_{cj} \frac{(W^T X)_{cj}}{(W^T WH)_{cj} + \epsilon}$$
  
2.2  $W_{ic} \leftarrow W_{ic} \frac{(XH^T)_{ic}}{(WHH^T)_{ic} + \epsilon}$ 

- 2.3 Scale the columns of W to unit norm.
- ▶ Setting  $\epsilon = 10^{-9}$  will suffice [Shahnaz et al., 2006].



MM Method (Lee and Seung)

### Normalization, Complexity, and Convergence

- ▶ Important to normalize *X* initially and the basis matrix *W* at each iteration.
- Nhen optimizing on a unit hypersphere, the column (or feature) vectors of W, denoted by  $W_k$ , are effectively mapped to the surface of the hypersphere by repeated normalization.
- ▶ MM implementation of NMF requires  $\mathcal{O}(rmn)$  operations per iteration; Lee and Seung (1999) proved that  $\|X WH\|_F^2$  is monotonically non-increasing with MM.
- From a nonlinear optimization perspective, MM/NMF can be considered a diagonally-scaled gradient descent method.



## Hoyer's Method

- ▶ From neural network applications, Hoyer (2002) enforced statistical sparsity for the weight matrix *H* in order to enhance the parts-based data representations in the matrix *W*.
- Mu et al. (2003) suggested a regularization approach to achieve statistical sparsity in the matrix H: **point count regularization**; penalize the *number* of nonzeros in H rather than  $\sum_{ij} H_{ij}$ .
- ▶ Goal of increased sparsity better representation of *parts* or *features* spanned by the corpus (X) [Shahnaz et al., 2006].



### GD-CLS - Hybrid Approach

- ► First use MM to compute an approximation to W for each iteration – a gradient descent (GD) optimization step.
- ► Then, compute the weight matrix H using a constrained least squares (CLS) model to penalize non-smoothness (i.e., non-sparsity) in H – common Tikohonov regularization technique used in image processing (Prasad et al., 2003).
- Convergence to a non-stationary point evidenced (but no formal proof given to date).

## GD-CLS Algorithm

Hybrid NMF Approach

- 1. Initialize W and H with non-negative values, and scale the columns of W to unit norm.
- 2. Iterate until convergence or after k iterations:

2.1 
$$W_{ic} \leftarrow W_{ic} \frac{(XH^T)_{ic}}{(WHH^T)_{ic} + \epsilon}$$
, for  $c$  and  $i$ 

- 2.2 Rescale the columns of W to unit norm.
- 2.3 Solve the constrained least squares problem:

$$\min_{H_i} \{ \|X_j - WH_j\|_2^2 + \frac{\lambda}{\lambda} \|H_j\|_2^2 \},$$

where the subscript j denotes the  $j^{th}$  column, for j = 1, ..., m.

Any negative values in  $H_j$  are set to zero. The parameter  $\lambda$  is a regularization value that is used to balance the reduction of the metric  $||X_j - WH_j||_2^2$  with enforcement of smoothness and sparsity in H [Shahnaz et al., 2006].



Electronic Mail Survei

#### INBOX Collection

Parsed inbox folder of all 150 accounts (users) via GTP (General Text Parser); 495-term stoplist used and extracted terms must appear in more than 1 email and more than once globally.



#### PRIVATE Collection

- ▶ Parsed all mail directories (of all 150 accounts) with the exception of all\_documents, calendar, contacts, deleted\_items, discussion\_threads, inbox, notes\_inbox, sent, sent\_items, and \_sent\_mail; 495-term stoplist used and extracted terms must appear in more than 1 email and more than once globally.
- Distribution of messages sent in the year 2001:

| Month | Msgs  | Terms  | Month | Msgs  | Terms  |
|-------|-------|--------|-------|-------|--------|
| Jan   | 3,621 | 17,888 | Jul   | 3,077 | 17,617 |
| Feb   | 2,804 | 16,958 | Aug   | 2,828 | 16,417 |
| Mar   | 3,525 | 20,305 | Sep   | 2,330 | 15,405 |
| Apr   | 4,273 | 24,010 | Oct   | 2,821 | 20,995 |
| May   | 4,261 | 24,335 | Nov   | 2,204 | 18,693 |
| Jun   | 4,324 | 18,599 | Dec   | 1,489 | 8,097  |



☐ Term Weighting

## Term Weighting Schemes

▶ For  $m \times n$  term-by-message matrix  $X = [x_{ij}]$ , define

$$x_{ij} = I_{ij}g_id_j,$$

where  $l_{ij}$  is the local weight for term i occurring in message j,  $g_i$  is the global weight for term i in the subcollection, and  $d_j$  is a document normalization factor (set  $d_i = 1$ ).

▶ Schemes used in parsing INBOX and PRIVATE subcollections:

| Name | Local                                   | Global    |                     |                        |
|------|-----------------------------------------|-----------|---------------------|------------------------|
| txx  | Term Frequency                          | None      |                     |                        |
|      | $I_{ij}=f_{ij}$                         | $g_i = 1$ |                     |                        |
| lex  | Logarithmic $I_{ii} = \log(1 + f_{ii})$ |           | (Define: $p_{ij} =$ | $f_{ij}/\sum_j f_{ij}$ |
|      | nj 198(1   nj)                          | _         | $(p_{ij}))/\log n$  | U                      |

### Computational Complexity

▶ Rank-50 NMF ( $X \simeq WH$ ) computed on a 450MHz (Dual) UltraSPARC-II processor using 100 iterations:

|            | Mail     | Dictionary |           | Time   |
|------------|----------|------------|-----------|--------|
| Collection | Messages | Terms      | $\lambda$ | (sec.) |
| INBOX      | 44, 872  | 80,683     | 0.1       | 1,471  |
|            |          |            | 0.01      | 1,451  |
|            |          |            | 0.001     | 1,521  |
| PRIVATE    | 65,031   | 92, 133    | 0.1       | 51,489 |
|            |          |            | 0.01      | 51,393 |
|            |          |            | 0.001     | 51,562 |

### PRIVATE with Log-Entropy Weighting

▶ Identify rows of H from  $X \simeq WH$  or  $H^k$  with  $\lambda = 0.1$ ; r = 50 feature vectors  $(W_k)$  generated by GD-CLS:

| Feature Index $(k)$ | Cluster<br>Size | Topic<br>Description                               | Dominant<br>Terms                                                                               |
|---------------------|-----------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 10                  | 497             | California                                         | ca, <b>cpuc, gov,</b><br><b>socalgas</b> , sempra,<br>org, sce, gmssr,<br>aelaw, ci             |
| 23                  | 43              | Louise Kitchen<br>named top<br>woman by<br>Fortune | evp, <b>fortune,</b><br>britain, woman,<br><b>ceo</b> , avon, fiorina,<br>cfo, hewlett, packard |
| 26                  | 231             | Fantasy<br>football                                | game, wr, qb, play,<br>rb, season, injury,<br>updated, fantasy, image                           |

└ Clustering and Topic Extraction

### PRIVATE with Log-Entropy Weighting

▶ Additional topic clusters of significant size:

| Feature Index $(k)$ | Cluster<br>Size | Topic<br>Description                        | Dominant<br>Terms                                                                            |
|---------------------|-----------------|---------------------------------------------|----------------------------------------------------------------------------------------------|
| 33                  | 233             | Texas<br>longhorn<br>football<br>newsletter | UT, orange,<br>longhorn[s], texas,<br>true, truorange,<br>recruiting, oklahoma,<br>defensive |
| 34                  | 65              | Enron<br>collapse                           | <pre>partnership[s], fastow, shares, sec, stock, shareholder, investors, equity, lay</pre>   |
| 39                  | 235             | Emails<br>about India                       | dabhol, dpc, india,<br>mseb, maharashtra,<br>indian, lenders, delhi,<br>foreign, minister    |



Electronic Mail Surveillance

└─ Topic Tracking (Through Time)

#### 2001 Topics Tracked by GD-CLS

| JAN    |          | MAR     |        | MAY    |     | JUL |     | SEP |     | NOV |     |
|--------|----------|---------|--------|--------|-----|-----|-----|-----|-----|-----|-----|
|        | FEB      |         | APR    |        | JUN |     | AUG |     | OCT |     | DEC |
| Califo | rnia Eı  | nergy   | Crisis |        |     |     |     |     |     |     |     |
| •      |          | 0       |        |        | 0   | 0   | •   |     | •   |     | •   |
| Dyne   | gy Mer   | ger/B   | ankru  | otcy   |     |     |     |     |     |     |     |
|        |          |         |        |        |     | •   |     | •   | :   | 0   | 0   |
|        |          |         |        |        |     |     |     |     | 1   | 2   |     |
| Footb  | all (Te  | xas / F | antas  | ()     |     |     |     |     |     |     | •   |
| Footk  | all (Te  | xas / F | antasy | )<br>* |     | •   |     | 0   |     | •   | •   |
|        | ol / Ind |         | antasy |        |     | •   | •   | 0   | 0   | •   | •   |

r=50 features, **lex** term weighting,  $\lambda=0.1$ 



#### Two Penalty Term Formulation

Introduce smoothing on  $W_k$  (feature vectors) in addition to  $H^k$ :

$$\min_{W,H} \{ \|X - WH\|_F^2 + \frac{\alpha}{\alpha} \|W\|_F^2 + \frac{\beta}{\beta} \|H\|_F^2 \},$$

where  $\|\cdot\|_F$  is the Frobenius norm.

Constrained NMF (CNMF) iteration [Piper et al., 2004]:

$$H_{cj} \leftarrow H_{cj} \frac{(W^T X)_{cj} - \beta H_{cj}}{(W^T W H)_{cj} + \epsilon}$$

$$W_{ic} \leftarrow W_{ic} \frac{(XH^T)_{ic} - \alpha W_{ic}}{(WHH^T)_{ic} + \epsilon}$$



└ Electronic Mail Surveillance

☐ Smoothing Effects Comparison

#### Term Distribution in Feature Vectors

| Terms        | Wt    | Lambda<br>0.1 0.01 0.001 | 0.1 | Alpha<br>0.01 |   | Topics    |
|--------------|-------|--------------------------|-----|---------------|---|-----------|
| Blackouts    | 0.508 |                          | 4   | 6             | 4 | Cal       |
| Stocks       | 0.511 |                          | 2   |               |   | Collapse  |
| UT           | 0.517 |                          | 2   |               |   | Texasfoot |
| Chronicle    | 0.523 |                          | 3   | 2             | 3 |           |
| Indian       | 0.527 |                          | 2   |               |   | India     |
| Fastow       | 0.531 |                          | 5   | 3             | 4 | Collapse  |
| Gas          | 0.531 |                          |     | 2             | 2 |           |
| CFO          | 0.556 |                          | 2   |               | 2 | Kitchen   |
| Californians | 0.557 |                          |     | 3             |   | Cal       |
| Solar        | 0.570 |                          | 2   |               |   |           |
| Partnerships | 0.576 |                          | 6   | 2             | 5 | Collapse  |
| Workers      | 0.577 |                          |     | 3             | 2 |           |
| Maharashtra  | 0.591 |                          | 2   |               | 2 | India     |
| Mseb         | 0.605 |                          | 2   |               |   | India     |
| Beach        | 0.611 | 2                        |     |               |   |           |
| Ljm          | 0.621 |                          | 3   |               | 3 | Collapse  |
| Tues         | 0.626 | 2 2                      |     |               |   |           |
| IPPS         | 0.644 | 2                        |     | 2             |   | Cal       |
| Rebates      | 0.647 |                          |     | 2             |   |           |
| Ljm2         | 0.688 |                          | 2   |               | 2 | Collapse  |



### British National Corpus (BNC) Noun Conservation

- ▶ In collaboration with P. Keila and D. Skillicorn (Queens Univ.)
- ▶ 289,695 email subset (all mail folders not just private)
- ► Smoothing solely applied to NMF *W* matrix  $(\alpha = 0.001, 0.01, 0.1, 0.25, 0.50, 0.75, 1.00 with <math>\beta = 0)$
- ► Log-entropy term weighting applied to the term-by-message matrix *X*
- Monitor top ten nouns for each feature vector (ranked by descending component values) and extract those appearing in two or more features; topics assigned manually.



☐ Electronic Mail Surveillance

☐ Smoothing Effects Comparison

#### BNC Noun Distribution in Feature Vectors

| Noun       | GF  | Entropy |       |      |     | Alpha |      |      |      |                     |
|------------|-----|---------|-------|------|-----|-------|------|------|------|---------------------|
|            |     |         | 0.001 | 0.01 | 0.1 | 0.25  | 0.50 | 0.75 | 1.00 | Topic               |
| Waxman     | 680 | 0.424   | 2     |      | 2   | 2     | 2    | 2    |      | Downfall            |
| Lieberman  | 915 | 0.426   | 2     | 2    | 2   | 2     |      |      | 2    | Downfall            |
| Scandal    | 679 | 0.428   | 2     |      |     |       | 2    |      | 2    | Downfall            |
| Nominee(s) | 544 | 0.436   |       | 4    | 3   | 2     |      | 2    | 2    |                     |
| Barone     | 470 | 0.437   | 2     | 2    | 2   |       |      |      | 2    | Downfall            |
| MEADE      | 456 | 0.437   |       |      |     |       |      |      | 2    | Downfall            |
| Fichera    | 558 | 0.438   | 2     |      |     | 2     |      |      |      | California blackout |
| Prabhu     | 824 | 0.445   | 2     | 2    | 2   | 2     |      | 2    | 2    | India-strong        |
| Tata       | 778 | 0.448   |       |      |     |       |      |      | 2    | India-weak          |
| Rupee(s)   | 323 | 0.452   | 3     | 4    | 4   | 4     | 3    | 4    | 2    | India-strong        |
| Soybean(s) | 499 | 0.455   | 2     | 2    | 2   | 2     | 2    | 2    | 2    |                     |
| Rushing    | 891 | 0.486   | 2     | 2    | 2   |       |      |      |      | Football - college  |
| Dirs       | 596 | 0.487   |       |      |     |       |      |      | 2    |                     |
| Janus      | 580 | 0.488   | 2     | 3    |     |       |      | 2    | 3    | India-weak          |
| BSES       | 451 | 0.498   | 2     | 2    |     |       |      |      | 2    | India-weak          |
| Caracas    | 698 | 0.498   |       |      |     |       |      | 2    |      |                     |
| Escondido  | 326 | 0.504   | 2     |      |     | 2     |      |      |      | California/Blackout |
| Promoters  | 180 | 0.509   | 2     |      |     |       |      |      |      | Energy/Scottish     |
| Aramco     | 188 | 0.550   | 2     |      |     |       |      |      |      | India-weak          |
| DOORMAN    | 231 | 0.598   |       | 2    |     |       |      |      |      | Bawdy/Real Estate   |



### Hoyer Sparsity Constraint

- ▶ sparseness(x) =  $\frac{\sqrt{n} \|\mathbf{x}\|_1/\|\mathbf{x}\|_2}{\sqrt{n} 1}$ , [Hoyer, 2004]
- Imposed as a penalty term of the form

$$J_2(\mathbf{W}) = (\omega \| \text{vec}(\mathbf{W}) \|_2 - \| \text{vec}(\mathbf{W}) \|_1)^2,$$

where  $\omega = \sqrt{mk} - (\sqrt{mk} - 1)\gamma$  and  $\text{vec}(\cdot)$  transforms a matrix into a vector by column stacking.

▶ Desired sparseness in **W** is specified by setting  $\gamma \in [0,1]$ ; sparseness is zero iff all vector components are equal (up to signs) and is one iff the vector has a single nonzero.

## Sample Benchmarks

- ► Elapsed CPU times for CNMF on a 3.2GHz Intel Xeon 3.2GHz (1024KB cache, 4.1GB RAM)
- ▶ k=50 feature vectors generated, log-entropy noun-weighting used on  $7,424\times289,695$  noun-by-message matrix, random  $\mathbf{W_0},\mathbf{H_0}$

| <b>W</b> -Constraint | Iterations | Parameters                                | CPU time |
|----------------------|------------|-------------------------------------------|----------|
| $L_2$ norm           | 100        | $\alpha = 0.1, \beta = 0$                 | 19.6m    |
| $L_2$ norm           | 100        | $\alpha = 0.01, \beta = 0$                | 20.1m    |
| $L_2$ norm           | 100        | $\alpha = 0.001, \beta = 0$               | 19.6m    |
| Hoyer                | 30         | $\alpha = 0.01, \beta = 0, \gamma = 0.8$  | 2.8m     |
| Hoyer                | 30         | $\alpha = 0.001, \beta = 0, \gamma = 0.8$ | 2.9m     |

Electronic Mail Surveillance

Sparsity Effects

#### BNC Noun Distribution in Sparsified Feature Vectors

| Noun         | GF  | Entropy |       |      |      | Alpha |      |      |      |                     |
|--------------|-----|---------|-------|------|------|-------|------|------|------|---------------------|
|              |     |         | 0.001 | 0.01 | 0.01 | 0.25  | 0.50 | 0.75 | 1.00 | Topic               |
| Fleischer    | 903 | 0.409   |       |      | 3    |       |      |      |      | Downfall            |
| Coale        | 836 | 0.414   |       |      | 2    |       |      |      |      | Downfall            |
| Waxman       | 680 | 0.424   | 2     |      | 2    | 2     | 2    | 2    |      | Downfall            |
| Businessweek | 485 | 0.424   |       |      | 2    |       |      |      |      |                     |
| Lieberman    | 915 | 0.426   | 2     | 2    |      | 2     |      |      | 2    | Downfall            |
| Scandal      | 679 | 0.428   | 2     |      | 2    |       | 2    |      | 2    | Downfall            |
| Nominee(s)   | 544 | 0.436   |       | 4    | 2    | 2     |      | 2    | 2    |                     |
| Barone       | 470 | 0.437   | 2     | 2    | 2    |       |      |      | 2    | Downfall            |
| MEADE        | 456 | 0.437   |       |      |      |       |      |      | 2    | Downfall            |
| Fichera      | 558 | 0.438   | 2     |      | 2    | 2     |      |      |      | California blackout |
| Prabhu       | 824 | 0.445   | 2     | 2    | 3    | 2     |      | 2    | 2    | India-strong        |
| Tata         | 778 | 0.448   |       |      |      |       |      |      | 2    | India-weak          |
| Rupee(s)     | 323 | 0.452   | 3     | 4    | 3    | 4     | 3    | 4    | 2    | India-strong        |
| Soybean(s)   | 499 | 0.455   | 2     | 2    | 3    | 2     | 2    | 2    | 2    |                     |
| Rushing      | 891 | 0.486   | 2     | 2    |      |       |      |      |      | Football - college  |
| Dirs         | 596 | 0.487   |       |      | 2    |       |      |      | 2    |                     |
| Janus        | 580 | 0.488   | 2     | 3    | 2    |       |      | 2    | 3    | India-weak          |
| BSES         | 451 | 0.498   | 2     | 2    | 2    |       |      |      | 2    | India-weak          |
| Caracas      | 698 | 0.498   |       |      |      |       |      | 2    |      |                     |
| Escondido    | 326 | 0.504   | 2     |      |      | 2     |      |      |      | California/Blackout |
| Promoters    | 180 | 0.509   | 2     |      |      |       |      |      |      | Energy/Scottish     |
| Aramco       | 188 | 0.550   | 2     |      |      |       |      |      |      | India-weak          |
| DOORMAN      | 231 | 0.598   |       | 2    |      |       |      |      |      | Bawdy/Real Estate   |

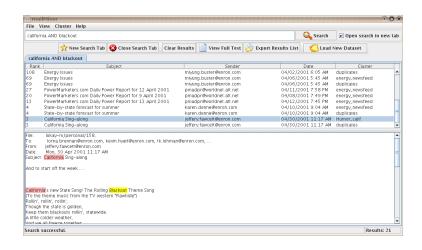


## MailMiner - CS365/Spring 2005

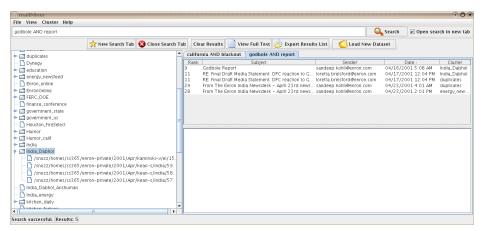
- Course Project in CS365/Programming Languages (Spring 2005)
- ▶ Student authors: C. Mollenhour, J. Russell, R. Warren
- Recent modifications by H. Gonzales and K. Rankin
- Specifications:
  - Rank emails by keyword frequencies (OR based) and highlight keywords in hyperlinked email files; ranked results can be saved to file.
  - 2. Provide additional boolean operators for query (AND/NOT)
  - 3. Accept NMF-generated email clusters and delineate members within the ranked results display.



### Query: california AND blackout; sort by term frequencies



## Query: godbole AND report; sort by timestamp



Annotated Enron Subset (June 2006)

### Annotation Project

▶ Subset of 2001 PRIVATE collection:

| Month   | Total | Classified | Usable |
|---------|-------|------------|--------|
| Jan,Sep | 5591  | 1100       | 699    |
| Feb     | 2804  | 900        | 460    |
| Mar     | 3525  | 1200       | 533    |
| Apr     | 4273  | 1500       | 705    |
| May     | 4261  | 1800       | 894    |
| June    | 4324  | 1025       | 538    |
| Total   | 24778 | 7525       | 3829   |

▶ Approx. 40 topics identified (after NMF initial clustering with k = 50 features) by two MailMiner users.



Annotated Enron Subset (June 2006)

### Annotation Project, contd.,

- Human classfiers: M. Browne (extensive background reading on Enron collapse) and B. Singer (junior Economics major).
- Classify email content versus type (see UC Berkeley Enron Email Analysis Group http://bailando.sims.berkeley,edu/enron\_email.html
- Potential U. Penn LDC (Linguistic Data Consortium) submission (see http://www.ldc.upenn.edu)



Conclusions

#### Conclusions

- ▶ GD-CLS Algorithm can effectively produce a *parts-based* approximation  $X \simeq WH$  of a sparse term-by-message matrix X.
- ▶ Smoothing on the features matrix (W) as opposed to the weight matrix H forces more reuse of higher weighted terms.
- Surveillance systems based on GD-CLS could be used to monitor discussions without the need to isolate or perhaps incriminate individual employees.
- Potential applications include the monitoring/tracking of company morale, employee feedback to policy decisions, and extracurricular activities

Future Work

#### Future Work

- ▶ Further work needed in determining effects of alternative term weighting schemes (for X) and choices of control parameters  $(\alpha, \beta, \lambda)$  on quality of the basis vectors  $W_k$ .
- ▶ How does document (or message) clustering change with different column ranks (r) in the matrix W?
- Use MailMiner and similar text mining software to produce a topic annotated Enron email subset for the public domain.
- Explore use of NMF for automated gene classification;
   Semantic Gene Organizer (K. Heinrich, PhD Thesis 2006)



### For Further Reading

- ► F. Shahnaz, M.W. Berry, V.P. Pauca, and R.J. Plemmons. Document Clustering Using Nonnegative Matrix Factorization. *Info. Proc. & Management* 42(2), 2006, pp. 373-386.
- ▶ J. Piper, P. Pauca, R. Plemmons, and M. Giffin. Object Characterization from Spectral Data using ICA ... Proc. AMOS Technical Conference, Maui, HI, September 2004.
- ▶ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. J. Machine Learning Research 5, 2004, pp. 1457-1469.
- W. Xu, X. Liu, and Y. Gong.
   Document-Clustering based on Non-neg. Matrix Factorization.
   Proceedings of SIGIR'03, Toronto, CA, 2003, pp. 267-273.

## SMD07 Text Mining Workshop



- ► Fifth workshop held since 2001; M.W. Berry and M. Castellanos (Organizers)
- Regular papers and poster papers accepted
- Text mining topics include: information retrieval and extraction, machine learning, natural language processing, mathematical models, software environments, case studies
- ▶ URL: http://www.siam.org/sdm07

