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DNA Microarrays Record Genomic Signals

DNA microarrays rely
on hybridization t o
record the complete
genomic signals that
guide the progression of
cellular processes, such
as abundance levels of
DNA, RNA and  DNA-
bound proteins on a
genomic scale.



Matrix Models for Genomic Data
Mathematical frameworks for the description of the data, in which the
mathematical variables and operations might represent biological reality.
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Alter, Brown & Botstein,
 PNAS 2000;

Alter, Brown & Botstein,
PNAS 2003;

Alter & Golub,
PNAS 2004.
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Matrix and Tensor Models for
Networks of Correlations

Computed from Genomic Data
Alter & Golub, PNAS 102, 17559 (2005);

http://www.bme.utexas.edu/research/orly/network_decomposition/.
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Networks are Tensors of “Subnetworks”

Æ =

+ +...

The relations among the activities of genes, not only the activities of the
genes alone, are known to be pathway-dependent, i.e., conditioned by
the biological and experimental settings in which they are observed.



Eigenvalue Decomposition (EVD)
EVD formulates a genes ¥ genes nondirectional network as a linear
superposition of genes ¥ genes decorrelated and decoupled rank-1
subnetworks, which can be associated with functionally independent
pathways.

Yeast Cell Cycle: Alpha Factor Spellman et al., MBC 1998.



Math Variables Æ Biology
Significant EVD subnetworks Æ

functionally independent pathways:
Pheromone Signaling Pathway
KAR4 || CIK1

Pheromone Arrest Exit & G1 Entry

Cell Cycle  S ´ M
KAR4 || -CIK1

Cell Cycle  G1 ´ G2



 Interpretation of the Subnetworks:
Probabilistic Associations by Annotations



Math Operations Æ Biology
Boolean functions of subnetworks Æ

pathway-dependent relations among genes:

Pheromone Arrest Exit & G1 Entry
AND

Cell Cycle  G1 ´ G2

CLB2 || -CLN2

Pheromone Arrest Exit & G1 Entry
AND NOT

Cell Cycle  G1 ´ G2

KAR4 || ±CLN2



Integrative Pseudoinverse Projection
Pseudoinverse projection of a network computed from a “data” signal
onto a designated “basis” signal approximates the network as a linear
superposition of only the subnetworks that are common to both signals,
and simulates observation of only the pathways that are manifest in both
experiments.

Yeast Cell Cycle: Alpha Factor
Transcription Factors: Cycle & Development

Spellman et al., MBC 1998;
Lee et al., Science 2002.



Math Operations & Variables Æ Biology
Pseudoinverse-projected network Æ  observation of
only the pathways manifest in both the data and basis:



Cycle-Projected Development-Projected



Comparative Higher-Order EVD (HOEVD)
… formulates a series of networks as linear superpositions of
decorrelated rank-1 subnetworks and the rank-2 couplings among them.



De Lathauwer, De Moor & Vandewalle, SIAM J. Matrix Anal. Appl. 2000;
Kolda, SIAM J. Matrix Anal. Appl. 2001;
Zhang & Golub, SIAM J. Matrix Anal. Appl. 2001.



Math Operations & Variables Æ Biology
HOEVD subnetworks and their couplings Æ pathways and transitions
among them common to the series or exclusive to a subset of networks:

Known Relations:
Pheromone Response AND G1 ´ G2

AND Transition Between These
CLN2 || -CIK1

Novel Relations:
Pheromone Response AND G1 ´ G2

AND NOT Transition Between These
CLB2 || ±TIP1



Uncovering Subnetworks of Conditions
and the Transitions Among Them
From Networks of Correlations

Alter & Golub, PNAS 102, 17559 (2005);
http://www.bme.utexas.edu/research/orly/network_decomposition/.
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SVD Modeling of Genome-Wide
mRNA Lengths Distribution
Predicts a Physical Principle

Alter & Golub, PNAS 103, 11828 (2006);
http://www.bme.utexas.edu/research/orly/harmonic_oscillator/.

Hurowitz & Brown, Genome Biology 2003.
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