
Iterative Methods
for Sparse

Linear Systems

Yousef Saad

1

2 3

4 5

6

7

8

9

10

11

12

13

14

15

Copyright c
�

2000 by Yousef Saad.

SECOND EDITION WITH CORRECTIONS. JANUARY 3RD, 2000.

���������	����

PREFACE xiii

Acknowledgments . xiv
Suggestions for Teaching . xv

1 BACKGROUND IN LINEAR ALGEBRA 1

1.1 Matrices . 1
1.2 Square Matrices and Eigenvalues . 3
1.3 Types of Matrices . 4
1.4 Vector Inner Products and Norms . 6
1.5 Matrix Norms . 8
1.6 Subspaces, Range, and Kernel . 9
1.7 Orthogonal Vectors and Subspaces . 10
1.8 Canonical Forms of Matrices . 15

1.8.1 Reduction to the Diagonal Form 15
1.8.2 The Jordan Canonical Form . 16
1.8.3 The Schur Canonical Form . 17
1.8.4 Application to Powers of Matrices 19

1.9 Normal and Hermitian Matrices . 21
1.9.1 Normal Matrices . 21
1.9.2 Hermitian Matrices . 24

1.10 Nonnegative Matrices, M-Matrices . 26
1.11 Positive-Definite Matrices . 30
1.12 Projection Operators . 33

1.12.1 Range and Null Space of a Projector 33
1.12.2 Matrix Representations . 35
1.12.3 Orthogonal and Oblique Projectors 35
1.12.4 Properties of Orthogonal Projectors 37

1.13 Basic Concepts in Linear Systems . 38
1.13.1 Existence of a Solution . 38
1.13.2 Perturbation Analysis . 39

Exercises and Notes . 41

2 DISCRETIZATION OF PDES 44

2.1 Partial Differential Equations . 44
2.1.1 Elliptic Operators . 45
2.1.2 The Convection Diffusion Equation 47

�

��� �������
	����
�

2.2 Finite Difference Methods . 47
2.2.1 Basic Approximations . 48
2.2.2 Difference Schemes for the Laplacean Operator 49
2.2.3 Finite Differences for 1-D Problems 51
2.2.4 Upwind Schemes . 51
2.2.5 Finite Differences for 2-D Problems 54

2.3 The Finite Element Method . 55
2.4 Mesh Generation and Refinement . 61
2.5 Finite Volume Method . 63
Exercises and Notes . 66

3 SPARSE MATRICES 68

3.1 Introduction . 68
3.2 Graph Representations . 70

3.2.1 Graphs and Adjacency Graphs 70
3.2.2 Graphs of PDE Matrices . 72

3.3 Permutations and Reorderings . 72
3.3.1 Basic Concepts . 72
3.3.2 Relations with the Adjacency Graph 75
3.3.3 Common Reorderings . 75
3.3.4 Irreducibility . 83

3.4 Storage Schemes . 84
3.5 Basic Sparse Matrix Operations . 87
3.6 Sparse Direct Solution Methods . 88
3.7 Test Problems . 88
Exercises and Notes . 91

4 BASIC ITERATIVE METHODS 95

4.1 Jacobi, Gauss-Seidel, and SOR . 95
4.1.1 Block Relaxation Schemes . 98
4.1.2 Iteration Matrices and Preconditioning 102

4.2 Convergence . 104
4.2.1 General Convergence Result 104
4.2.2 Regular Splittings . 107
4.2.3 Diagonally Dominant Matrices 108
4.2.4 Symmetric Positive Definite Matrices 112
4.2.5 Property A and Consistent Orderings 112

4.3 Alternating Direction Methods . 116
Exercises and Notes . 119

5 PROJECTION METHODS 122

5.1 Basic Definitions and Algorithms . 122
5.1.1 General Projection Methods 123
5.1.2 Matrix Representation . 124

5.2 General Theory . 126
5.2.1 Two Optimality Results . 126

� � ��� 	����
� � � �

5.2.2 Interpretation in Terms of Projectors 127
5.2.3 General Error Bound . 129

5.3 One-Dimensional Projection Processes 131
5.3.1 Steepest Descent . 132
5.3.2 Minimal Residual (MR) Iteration 134
5.3.3 Residual Norm Steepest Descent 136

5.4 Additive and Multiplicative Processes 136
Exercises and Notes . 139

6 KRYLOV SUBSPACE METHODS – PART I 144

6.1 Introduction . 144
6.2 Krylov Subspaces . 145
6.3 Arnoldi’s Method . 147

6.3.1 The Basic Algorithm . 147
6.3.2 Practical Implementations . 149

6.4 Arnoldi’s Method for Linear Systems (FOM) 152
6.4.1 Variation 1: Restarted FOM . 154
6.4.2 Variation 2: IOM and DIOM 155

6.5 GMRES . 158
6.5.1 The Basic GMRES Algorithm 158
6.5.2 The Householder Version . 159
6.5.3 Practical Implementation Issues 161
6.5.4 Breakdown of GMRES . 165
6.5.5 Relations between FOM and GMRES 165
6.5.6 Variation 1: Restarting . 168
6.5.7 Variation 2: Truncated GMRES Versions 169

6.6 The Symmetric Lanczos Algorithm . 174
6.6.1 The Algorithm . 174
6.6.2 Relation with Orthogonal Polynomials 175

6.7 The Conjugate Gradient Algorithm . 176
6.7.1 Derivation and Theory . 176
6.7.2 Alternative Formulations . 180
6.7.3 Eigenvalue Estimates from the CG Coefficients 181

6.8 The Conjugate Residual Method . 183
6.9 GCR, ORTHOMIN, and ORTHODIR 183
6.10 The Faber-Manteuffel Theorem . 186
6.11 Convergence Analysis . 188

6.11.1 Real Chebyshev Polynomials 188
6.11.2 Complex Chebyshev Polynomials 189
6.11.3 Convergence of the CG Algorithm 193
6.11.4 Convergence of GMRES . 194

6.12 Block Krylov Methods . 197
Exercises and Notes . 202

7 KRYLOV SUBSPACE METHODS – PART II 205

7.1 Lanczos Biorthogonalization . 205

��� � � � � ��� 	����
�

7.1.1 The Algorithm . 205
7.1.2 Practical Implementations . 208

7.2 The Lanczos Algorithm for Linear Systems 210
7.3 The BCG and QMR Algorithms . 210

7.3.1 The Biconjugate Gradient Algorithm 211
7.3.2 Quasi-Minimal Residual Algorithm 212

7.4 Transpose-Free Variants . 214
7.4.1 Conjugate Gradient Squared 215
7.4.2 BICGSTAB . 217
7.4.3 Transpose-Free QMR (TFQMR) 221

Exercises and Notes . 227

8 METHODS RELATED TO THE NORMAL EQUATIONS 230

8.1 The Normal Equations . 230
8.2 Row Projection Methods . 232

8.2.1 Gauss-Seidel on the Normal Equations 232
8.2.2 Cimmino’s Method . 234

8.3 Conjugate Gradient and Normal Equations 237
8.3.1 CGNR . 237
8.3.2 CGNE . 238

8.4 Saddle-Point Problems . 240
Exercises and Notes . 243

9 PRECONDITIONED ITERATIONS 245

9.1 Introduction . 245
9.2 Preconditioned Conjugate Gradient . 246

9.2.1 Preserving Symmetry . 246
9.2.2 Efficient Implementations . 249

9.3 Preconditioned GMRES . 251
9.3.1 Left-Preconditioned GMRES 251
9.3.2 Right-Preconditioned GMRES 253
9.3.3 Split Preconditioning . 254
9.3.4 Comparison of Right and Left Preconditioning 255

9.4 Flexible Variants . 256
9.4.1 Flexible GMRES . 256
9.4.2 DQGMRES . 259

9.5 Preconditioned CG for the Normal Equations 260
9.6 The CGW Algorithm . 261
Exercises and Notes . 263

10 PRECONDITIONING TECHNIQUES 265

10.1 Introduction . 265
10.2 Jacobi, SOR, and SSOR Preconditioners 266
10.3 ILU Factorization Preconditioners . 269

10.3.1 Incomplete LU Factorizations 270
10.3.2 Zero Fill-in ILU (ILU(0)) . 275

� � ��� 	����
� � �

10.3.3 Level of Fill and ILU(�) . 278
10.3.4 Matrices with Regular Structure 281
10.3.5 Modified ILU (MILU) . 286

10.4 Threshold Strategies and ILUT . 287
10.4.1 The ILUT Approach . 288
10.4.2 Analysis . 289
10.4.3 Implementation Details . 292
10.4.4 The ILUTP Approach . 294
10.4.5 The ILUS Approach . 296

10.5 Approximate Inverse Preconditioners 298
10.5.1 Approximating the Inverse of a Sparse Matrix 299
10.5.2 Global Iteration . 299
10.5.3 Column-Oriented Algorithms 301
10.5.4 Theoretical Considerations . 303
10.5.5 Convergence of Self Preconditioned MR 305
10.5.6 Factored Approximate Inverses 307
10.5.7 Improving a Preconditioner . 310

10.6 Block Preconditioners . 310
10.6.1 Block-Tridiagonal Matrices . 311
10.6.2 General Matrices . 312

10.7 Preconditioners for the Normal Equations 313
10.7.1 Jacobi, SOR, and Variants . 313
10.7.2 IC(0) for the Normal Equations 314
10.7.3 Incomplete Gram-Schmidt and ILQ 316

Exercises and Notes . 319

11 PARALLEL IMPLEMENTATIONS 324

11.1 Introduction . 324
11.2 Forms of Parallelism . 325

11.2.1 Multiple Functional Units . 325
11.2.2 Pipelining . 326
11.2.3 Vector Processors . 326
11.2.4 Multiprocessing and Distributed Computing 326

11.3 Types of Parallel Architectures . 327
11.3.1 Shared Memory Computers . 327
11.3.2 Distributed Memory Architectures 329

11.4 Types of Operations . 331
11.4.1 Preconditioned CG . 332
11.4.2 GMRES . 332
11.4.3 Vector Operations . 333
11.4.4 Reverse Communication . 334

11.5 Matrix-by-Vector Products . 335
11.5.1 The Case of Dense Matrices 335
11.5.2 The CSR and CSC Formats . 336
11.5.3 Matvecs in the Diagonal Format 339
11.5.4 The Ellpack-Itpack Format . 340

� ������� 	���� �

11.5.5 The Jagged Diagonal Format 341
11.5.6 The Case of Distributed Sparse Matrices 342

11.6 Standard Preconditioning Operations 345
11.6.1 Parallelism in Forward Sweeps 346
11.6.2 Level Scheduling: the Case of 5-Point Matrices 346
11.6.3 Level Scheduling for Irregular Graphs 347

Exercises and Notes . 350

12 PARALLEL PRECONDITIONERS 353

12.1 Introduction . 353
12.2 Block-Jacobi Preconditioners . 354
12.3 Polynomial Preconditioners . 356

12.3.1 Neumann Polynomials . 356
12.3.2 Chebyshev Polynomials . 357
12.3.3 Least-Squares Polynomials . 360
12.3.4 The Nonsymmetric Case . 363

12.4 Multicoloring . 365
12.4.1 Red-Black Ordering . 366
12.4.2 Solution of Red-Black Systems 367
12.4.3 Multicoloring for General Sparse Matrices 368

12.5 Multi-Elimination ILU . 369
12.5.1 Multi-Elimination . 370
12.5.2 ILUM . 371

12.6 Distributed ILU and SSOR . 374
12.6.1 Distributed Sparse Matrices . 374

12.7 Other Techniques . 376
12.7.1 Approximate Inverses . 377
12.7.2 Element-by-Element Techniques 377
12.7.3 Parallel Row Projection Preconditioners 379

Exercises and Notes . 380

13 DOMAIN DECOMPOSITION METHODS 383

13.1 Introduction . 383
13.1.1 Notation . 384
13.1.2 Types of Partitionings . 385
13.1.3 Types of Techniques . 386

13.2 Direct Solution and the Schur Complement 388
13.2.1 Block Gaussian Elimination 388
13.2.2 Properties of the Schur Complement 389
13.2.3 Schur Complement for Vertex-Based Partitionings 390
13.2.4 Schur Complement for Finite-Element Partitionings 393

13.3 Schwarz Alternating Procedures . 395
13.3.1 Multiplicative Schwarz Procedure 395
13.3.2 Multiplicative Schwarz Preconditioning 400
13.3.3 Additive Schwarz Procedure 402
13.3.4 Convergence . 404

� � ��� 	����
� ���

13.4 Schur Complement Approaches . 408
13.4.1 Induced Preconditioners . 408
13.4.2 Probing . 410
13.4.3 Preconditioning Vertex-Based Schur Complements 411

13.5 Full Matrix Methods . 412
13.6 Graph Partitioning . 414

13.6.1 Basic Definitions . 414
13.6.2 Geometric Approach . 415
13.6.3 Spectral Techniques . 417
13.6.4 Graph Theory Techniques . 418

Exercises and Notes . 422

REFERENCES 425

INDEX 439

xii

��� ����� � �

Iterative methods for solving general, large sparse linear systems have been gaining
popularity in many areas of scientific computing. Until recently, direct solution methods
were often preferred to iterative methods in real applications because of their robustness
and predictable behavior. However, a number of efficient iterative solvers were discovered
and the increased need for solving very large linear systems triggered a noticeable and
rapid shift toward iterative techniques in many applications.

This trend can be traced back to the 1960s and 1970s when two important develop-
ments revolutionized solution methods for large linear systems. First was the realization
that one can take advantage of “sparsity” to design special direct methods that can be
quite economical. Initiated by electrical engineers, these “direct sparse solution methods”
led to the development of reliable and efficient general-purpose direct solution software
codes over the next three decades. Second was the emergence of preconditioned conjugate
gradient-like methods for solving linear systems. It was found that the combination of pre-
conditioning and Krylov subspace iterations could provide efficient and simple “general-
purpose” procedures that could compete with direct solvers. Preconditioning involves ex-
ploiting ideas from sparse direct solvers. Gradually, iterative methods started to approach
the quality of direct solvers. In earlier times, iterative methods were often special-purpose
in nature. They were developed with certain applications in mind, and their efficiency relied
on many problem-dependent parameters.

Now, three-dimensional models are commonplace and iterative methods are al-
most mandatory. The memory and the computational requirements for solving three-
dimensional Partial Differential Equations, or two-dimensional ones involving many
degrees of freedom per point, may seriously challenge the most efficient direct solvers
available today. Also, iterative methods are gaining ground because they are easier to
implement efficiently on high-performance computers than direct methods.

My intention in writing this volume is to provide up-to-date coverage of iterative meth-
ods for solving large sparse linear systems. I focused the book on practical methods that
work for general sparse matrices rather than for any specific class of problems. It is indeed
becoming important to embrace applications not necessarily governed by Partial Differ-
ential Equations, as these applications are on the rise. Apart from two recent volumes by
Axelsson [15] and Hackbusch [116], few books on iterative methods have appeared since
the excellent ones by Varga [213]. and later Young [232]. Since then, researchers and prac-
titioners have achieved remarkable progress in the development and use of effective iter-
ative methods. Unfortunately, fewer elegant results have been discovered since the 1950s
and 1960s. The field has moved in other directions. Methods have gained not only in effi-
ciency but also in robustness and in generality. The traditional techniques which required

��� � �

��� � ����	����
�
	

rather complicated procedures to determine optimal acceleration parameters have yielded
to the parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the best techniques available today,
from both preconditioners and accelerators. One of the aims of the book is to provide a
good mix of theory and practice. It also addresses some of the current research issues
such as parallel implementations and robust preconditioners. The emphasis is on Krylov
subspace methods, currently the most practical and common group of techniques used in
applications. Although there is a tutorial chapter that covers the discretization of Partial
Differential Equations, the book is not biased toward any specific application area. Instead,
the matrices are assumed to be general sparse, possibly irregularly structured.

The book has been structured in four distinct parts. The first part, Chapters 1 to 4,
presents the basic tools. The second part, Chapters 5 to 8, presents projection methods and
Krylov subspace techniques. The third part, Chapters 9 and 10, discusses precondition-
ing. The fourth part, Chapters 11 to 13, discusses parallel implementations and parallel
algorithms.

�	��

�	�����������
�������
�

I am grateful to a number of colleagues who proofread or reviewed different versions of
the manuscript. Among them are Randy Bramley (University of Indiana at Bloomingtin),
Xiao-Chuan Cai (University of Colorado at Boulder), Tony Chan (University of California
at Los Angeles), Jane Cullum (IBM, Yorktown Heights), Alan Edelman (Massachussett
Institute of Technology), Paul Fischer (Brown University), David Keyes (Old Dominion
University), Beresford Parlett (University of California at Berkeley) and Shang-Hua Teng
(University of Minnesota). Their numerous comments, corrections, and encouragements
were a highly appreciated contribution. In particular, they helped improve the presenta-
tion considerably and prompted the addition of a number of topics missing from earlier
versions.

This book evolved from several successive improvements of a set of lecture notes for
the course “Iterative Methods for Linear Systems” which I taught at the University of Min-
nesota in the last few years. I apologize to those students who used the earlier error-laden
and incomplete manuscripts. Their input and criticism contributed significantly to improv-
ing the manuscript. I also wish to thank those students at MIT (with Alan Edelman) and
UCLA (with Tony Chan) who used this book in manuscript form and provided helpful
feedback. My colleagues at the university of Minnesota, staff and faculty members, have
helped in different ways. I wish to thank in particular Ahmed Sameh for his encourage-
ments and for fostering a productive environment in the department. Finally, I am grateful
to the National Science Foundation for their continued financial support of my research,
part of which is represented in this work.

Yousef Saad

� ��	 � �
�
	 � �

���	� � � � ��� � �	��� ��� � � �	�
	�� ���

This book can be used as a text to teach a graduate-level course on iterative methods for
linear systems. Selecting topics to teach depends on whether the course is taught in a
mathematics department or a computer science (or engineering) department, and whether
the course is over a semester or a quarter. Here are a few comments on the relevance of the
topics in each chapter.

For a graduate course in a mathematics department, much of the material in Chapter 1
should be known already. For non-mathematics majors most of the chapter must be covered
or reviewed to acquire a good background for later chapters. The important topics for
the rest of the book are in Sections: 1.8.1, 1.8.3, 1.8.4, 1.9, 1.11. Section 1.12 is best
treated at the beginning of Chapter 5. Chapter 2 is essentially independent from the rest
and could be skipped altogether in a quarter course. One lecture on finite differences and
the resulting matrices would be enough for a non-math course. Chapter 3 should make
the student familiar with some implementation issues associated with iterative solution
procedures for general sparse matrices. In a computer science or engineering department,
this can be very relevant. For mathematicians, a mention of the graph theory aspects of
sparse matrices and a few storage schemes may be sufficient. Most students at this level
should be familiar with a few of the elementary relaxation techniques covered in Chapter
4. The convergence theory can be skipped for non-math majors. These methods are now
often used as preconditioners and this may be the only motive for covering them.

Chapter 5 introduces key concepts and presents projection techniques in general terms.
Non-mathematicians may wish to skip Section 5.2.3. Otherwise, it is recommended to
start the theory section by going back to Section 1.12 on general definitions on projectors.
Chapters 6 and 7 represent the heart of the matter. It is recommended to describe the first
algorithms carefully and put emphasis on the fact that they generalize the one-dimensional
methods covered in Chapter 5. It is also important to stress the optimality properties of
those methods in Chapter 6 and the fact that these follow immediately from the properties
of projectors seen in Section 1.12. When covering the algorithms in Chapter 7, it is crucial
to point out the main differences between them and those seen in Chapter 6. The variants
such as CGS, BICGSTAB, and TFQMR can be covered in a short time, omitting details of
the algebraic derivations or covering only one of the three. The class of methods based on
the normal equation approach, i.e., Chapter 8, can be skipped in a math-oriented course,
especially in the case of a quarter system. For a semester course, selected topics may be
Sections 8.1, 8.2, and 8.4.

Currently, preconditioning is known to be the critical ingredient in the success of it-
erative methods in solving real-life problems. Therefore, at least some parts of Chapter 9
and Chapter 10 should be covered. Section 9.2 and (very briefly) 9.3 are recommended.
From Chapter 10, discuss the basic ideas in Sections 10.1 through 10.3. The rest could be
skipped in a quarter course.

Chapter 11 may be useful to present to computer science majors, but may be skimmed
or skipped in a mathematics or an engineering course. Parts of Chapter 12 could be taught
primarily to make the students aware of the importance of “alternative” preconditioners.
Suggested selections are: 12.2, 12.4, and 12.7.2 (for engineers). Chapter 13 presents an im-

� � � ����	����
�
	

portant research area and is primilarily geared to mathematics majors. Computer scientists
or engineers may prefer to cover this material in less detail.

To make these suggestions more specific, the following two tables are offered as sam-
ple course outlines. Numbers refer to sections in the text. A semester course represents
approximately 30 lectures of 75 minutes each whereas a quarter course is approximately
20 lectures of 75 minutes each. Different topics are selected for a mathematics course and
a non-mathematics course.

Semester course

Weeks Mathematics Computer Science / Eng.
1.9 –1.13 1.1 – 1.6 (Read)

1 – 3 2.1 – 2.5 1.7 – 1.13, 2.1 – 2.2
3.1 – 3.3, 3.7 3.1 – 3.7
4.1 – 4.3 4.1 – 4.2

4 – 6 5. 1 – 5.4 5.1 – 5.2.1
6.1 – 6.3 6.1 – 6.3
6.4 – 6.7 (Except 6.5.2) 6.4 – 6.5 (Except 6.5.5)

7 – 9 6.9 – 6.11 6.7.1, 6.8–6.9, 6.11.3.
7.1 – 7.3 7.1 – 7.3
7.4.1; 7.4.2 – 7.4.3 (Read) 7.4.1; 7.4.2 – 7.4.3 (Read)

10 – 12 8.1, 8.2, 8.4; 9.1 – 9.3 8.1 – 8.3; 9.1 – 9.3
10.1 – 10.3 10.1 – 10.4
10.5.1 – 10.5.6 10.5.1 – 10.5.4

13 – 15 10.6 ; 12.2 – 12.4 11.1 – 11.4 (Read); 11.5 – 11.6
13.1 – 13.6 12.1 – 12.2; 12.4 – 12.7

Quarter course

Weeks Mathematics Computer Science / Eng.
1 – 2 1.9 – 1.13, 3.1 – 3.2 1.1 – 1.6 (Read); 3.1 – 3.7

4.1 – 4.3 4.1
3 – 4 5.1 – 5.4 5.1 – 5.2.1

6.1 – 6.4 6.1 – 6.3
5 – 6 6.4 – 6.7 (Except 6.5.2) 6.4 – 6.5 (Except 6.5.5)

6.11, 7.1 – 7.3 6.7.1, 6.11.3, 7.1 – 7.3
7 – 8 7.4.1; 7.4.2 – 7.4.3 (Read) 7.4.1; 7.4.2 – 7.4.3 (Read)

9.1 – 9.3; 10.1 – 10.3 9.1 – 9.3; 10.1 – 10.3
9 – 10 10.6 ; 12.2 – 12.4 11.1 – 11.4 (Read); 11.5 – 11.6

13.1 – 13.4 12.1 – 12.2; 12.4 – 12.7

� � � � � � �

�

� � �
	�� � ��
 ��� � � ��� � � � �
����� � � � �

����� �������! #"%$�&(')� *�$+�,�)-/.�*�$�&0*�� $213.�45"6��$7&8$�9 $6*��)-#":�6.;-��<$� #"=�>�0-?9 �0-�$+��&@�!9 'A$�B�&8�15��� ���?��&8$DCE�%$64=C!9(�F-G9 �E"H$�&5�����! #"%$�&I�<JLK "MBA$6')�0-E�N1�� "+�?�G&8$6*�� $61O.�4PB��E�2� �RQ5�#S"+&T� U?"+��$6.)&0VD�)-�WX�F-#"+&I.)WYC��<$+�,"6��$Z$�9 $�Q5$�-#"H��&0VX-E.�"%�#"2� .[-\CE�%$<W\"6�!&8.[CE';�E.[C#"N"+��$B�.!.[]AJ ����$:�+.;-#*�$�&I'�$�-��<$,�!-��!9 VE�2� �^.�4�� "H$�&8�E"_� *�$,Q5$6"+�E.)WA�`&8$<aYC��0&8$+�L�,'�.!.)W?9 $6*�$�9.�4L]�-E.#1L9 $<WA'A$,�0-bQ5�E"6��$�Q5�E"_� �<�!9[�)-��!9 VE�2� �L�!-�WZ�0-b9 �0-�$+��&c�!9 'A$�B�&8�[J �d&8��W[� "2� .;-��!9 9 V#eQ5�)-#V/.�4^"+��$>�+.[-��<$� #"H�> �&8$+�H$�-#"%$<W7�+ �$<�E� f;�<�!9 9 Vb4T.!&�"6��$+�%$>�)-��!9 VE�%$6�b���#*�$7B�$<$�-'A$<��&8$<W`"H.#1g��&8W>Q5�#"+&T� �<$6�h��&i� �2�0-E'j4k&8.[Ql"+��$�W[� �H��&8$6"2� m+�E"_� .;-^.�4 �Y��&0"2� �)9!n(� op$�&q$�-#"2� �!9
	[aYC��E"_� .;-E�^�!-�WMB����2� �,&q$�9 �#U��#"2� .;-#Sr"rV! A$�Q5$6"6�E.)WA�<J ����$+�%$:�+.[-��<$� #"H�L��&8$N-E.#1sBA$2S�+.;Qt�0-E'�9 $+�H�(�0Q` �.)&0"H�)-#"gBA$+�<�)CE�H$@.�4u"+��$g"+&8$�-�Wt"H.#1g��&8WN �&I.6vw$<�2"2� .[-#Sw"rV! �$5Q5$6"+�E.)WA�15��� ���,���#*�$`QL.!&8$:&I.;B!CE�k"(�6.;-#*�$�&I'A$�-��<$: �&8.[A$�&I"_� $+�x�)-�WP&8$<aYC��0&8$LW[� op$�&8$�-#"g�!-��)9 V#S�2� �h"H.!.[9 �<J ����$`Q5�#"%$�&T� �!9��+.�*�$�&q$+W>�0-L"+��� �g�����! #"%$�&;1^�F9 9)BA$t��$�9 #4kC!9A�0-5$+�="%�!B!9 � �6���0-E'�H.;Q5$`"+��$+.!&0V,4q.)&y"+��$`�)9 '�.!&T� "+�!QL�L�)-�WbW!$6fz-��0-E',"6��$N-E.�"%�#"2� .;->CE�%$<W>"+�!&I.;CE'[�E.;C#""+��$,B�.!.;]�J

� � ��� � ��� �

{}|E{

For the sake of generality, all vector spaces considered in this chapter are complex, unless
otherwise stated. A complex ~��D� matrix � is an ~��R� array of complex numbers

���F�;�D�@���[��������� ~ �d�}���[�������E� � �
The set of all ~���� matrices is a complex vector space denoted by �`���z� . The main
operations with matrices are the following:� Addition: � � ����� , where � � � , and � are matrices of size ~��D� and

� �0� ��� �0� ��� �0� � �@���[�<�u������� ~ ���/�O�;�+�u������� � �
�

� ����� � �
	���� � � ���	� � ��
 �(n�K �
�[K � 	 � � ����� 	�� � �
� Multiplication by a scalar: � ��� � , where

� �F� ���G� �0� � �(���[�<�u������� ~ ���/���;�+�z������� � �
� Multiplication by another matrix:

� � ��� �
where �����j���z� � �����j�>��� � �����j����� , and

� �0� � ������� � � � � � � �
Sometimes, a notation with column vectors and row vectors is used. The column vector�� � is the vector consisting of the � -th column of � ,

�� � �
!""
#
� � ��%$ �

...� � �

&(''
) �

Similarly, the notation � � will denote the � -th row of the matrix �
� � `��*w� � � �+� � $[���������+� � �,+ �

For example, the following could be written

� ��*w� � �6� -$ ���������6� � + �
or

� �
!"""
#
� � �%$. ��� �

& '''
) �

The transpose of a matrix � in � ���z� is a matrix � in �t�>�u� whose elements are
defined by � �F� � � �6� �2��� �;�������E� � �@�X� �;�������E� ~ . It is denoted by �0/ . It is often more
relevant to use the transpose conjugate matrix denoted by �21 and defined by

� 1 �43� / � � / �
in which the bar denotes the (element-wise) complex conjugation.

Matrices are strongly related to linear mappings between vector spaces of finite di-
mension. This is because they represent these mappings with respect to two given bases:
one for the initial vector space and the other for the image vector space, or range of � .

��� � ����
 � ��	�� ��� �dK �
	 ��� �@n 	zK � 	���������
 	 � 	

��
 � � � � � � ��� � �	� � � ��� � � � ���
� � � ��� �
{}|��

A matrix is square if it has the same number of columns and rows, i.e., if � � ~ . An
important square matrix is the identity matrix� ����� �0������� � ��� ������� � � �
where � �F� is the Kronecker symbol. The identity matrix satisfies the equality � � � � � � �
for every matrix � of size ~ . The inverse of a matrix, when it exists, is a matrix � such that

�N� � ��� � � �
The inverse of � is denoted by ��� � .

The determinant of a matrix may be defined in several ways. For simplicity, the fol-
lowing recursive definition is used here. The determinant of a � � � matrix *w� + is defined
as the scalar � . Then the determinant of an ~��D~ matrix is given by

��� � * � + � ��� ��� *�!P� + �#" � � � � �$� � * � � � + �
where � � � is an * ~ !�� + � * ~ !�� + matrix obtained by deleting the first row and the � -th
column of � . A matrix is said to be singular when

��� � * � + �&% and nonsingular otherwise.
We have the following simple properties:� ���'� * ��� + � ���'� * �}� + .� ���'� * � / + � ���'� * � + .� ���'� * � � + � � � ���'� * � + .� ���'� *�3� + � ��� � * � + .� ���'� * � + ��� .

From the above definition of determinants it can be shown by induction that the func-
tion that maps a given complex value (to the value �*) * (+ � �$� � * � ! (� + is a polynomial
of degree ~ ; see Exercise 8. This is known as the characteristic polynomial of the matrix� .

+ �-,/.�01.q�2.4350 �76T�
A complex scalar (is called an eigenvalue of the square matrix � if

a nonzero vector 8 of �t� exists such that �98 � (78 . The vector 8 is called an eigenvector
of � associated with (. The set of all the eigenvalues of � is called the spectrum of � and
is denoted by : * � + .

A scalar (is an eigenvalue of � if and only if
��� � * � ! (� +<; �*) * (+ �=% . That is true

if and only if (iff thereafter) (is a root of the characteristic polynomial. In particular, there
are at most ~ distinct eigenvalues.

It is clear that a matrix is singular if and only if it admits zero as an eigenvalue. A well
known result in linear algebra is stated in the following proposition.

�5�<3/�<32>?.8�1.4350 �76T�
A matrix � is nonsingular if and only if it admits an inverse.

� ����� � �
	���� � � ���	� � ��
 �(n�K �
�[K � 	 � � ����� 	�� � �
Thus, the determinant of a matrix determines whether or not the matrix admits an inverse.

The maximum modulus of the eigenvalues is called spectral radius and is denoted by�	* � + �	* � + ��������
	
�
�)��
� (� �

The trace of a matrix is equal to the sum of all its diagonal elements

��� * � + � �� � ��� � �q� �
It can be easily shown that the trace of � is also equal to the sum of the eigenvalues of �
counted with their multiplicities as roots of the characteristic polynomial.

�5�<3/�<32>?.q�2.4350 �76 �
If (is an eigenvalue of � , then 3(is an eigenvalue of �01 . An

eigenvector � of �01 associated with the eigenvalue 3(is called a left eigenvector of � .

When a distinction is necessary, an eigenvector of � is often called a right eigenvector.
Therefore, the eigenvalue (as well as the right and left eigenvectors, 8 and � , satisfy the
relations

� 8 � (78 � � 1 � � (�� 1 �
or, equivalently,

8 1 � 1 � 3(78 1 � � 1 � � 3(�� �
����� � � � � � � � � � ��� �

{b|��

The choice of a method for solving linear systems will often depend on the structure of
the matrix � . One of the most important properties of matrices is symmetry, because of
its impact on the eigenstructure of � . A number of other classes of matrices also have
particular eigenstructures. The most important ones are listed below:

� Symmetric matrices: �0/ � � .� Hermitian matrices: �01 � � .� Skew-symmetric matrices: �0/ � ! � .� Skew-Hermitian matrices: �01 ��! � .� Normal matrices: �01�� � �:� 1 .� Nonnegative matrices: � �0��� %p�g�<�=�/���;�������E� ~ (similar definition for nonpositive,
positive, and negative matrices).� Unitary matrices: � 1�� � �

.

��� � ��� � 	 � � � � ��� �dK �
	 � �

It is worth noting that a unitary matrix � is a matrix whose inverse is its transpose conjugate
�21 , since

� 1 � � � � � � � � � 1 � ��� J �	�
A matrix � such that � 1�� is diagonal is often called orthogonal.

Some matrices have particular structures that are often convenient for computational
purposes. The following list, though incomplete, gives an idea of these special matrices
which play an important role in numerical analysis and scientific computing applications.

� Diagonal matrices: � �0� �&% for ��
��� . Notation:

� � �
� ��� *k� � � �+�%$-$[���������+� �[��+ �� Upper triangular matrices: � �F� � % for ����� .� Lower triangular matrices: � �F� � % for ���l� .� Upper bidiagonal matrices: � �0� �=% for ��
�s� or ��
�s� � � .� Lower bidiagonal matrices: �z�0�:�=% for ��
�s� or ��
�s�/! � .� Tridiagonal matrices: �z�0���&% for any pair �<�=� such that
� �2!�� � �3� . Notation:

� � � ��� �
� ��� *k�Y��� � � � �6���8�6�6����� � " � + �� Banded matrices: � �0�
�&% only if �*! ����� � � � ����� , where ��� and ��� are two
nonnegative integers. The number ���p� ���,� � is called the bandwidth of � .� Upper Hessenberg matrices: � �0� � % for any pair �<�=� such that ��� � � � . Lower
Hessenberg matrices can be defined similarly.� Outer product matrices: � � 8 ��1 , where both 8 and � are vectors.� Permutation matrices: the columns of � are a permutation of the columns of the
identity matrix.� Block diagonal matrices: generalizes the diagonal matrix by replacing each diago-
nal entry by a matrix. Notation:

� � ��� ����* � � � � � $ $ �������E� � �)� + �� Block tridiagonal matrices: generalizes the tridiagonal matrix by replacing each
nonzero entry by a square matrix. Notation:

� � �����4��� ��� * � � � � � � � � �8� � � � � � " � + �
The above properties emphasize structure, i.e., positions of the nonzero elements with

respect to the zeros. Also, they assume that there are many zero elements or that the matrix
is of low rank. This is in contrast with the classifications listed earlier, such as symmetry
or normality.

� ����� � �
	���� � � ���	� � ��
 �(n�K �
�[K � 	 � � ����� 	�� � �
� � ��� � � � �
��� � � � � � �	� �
� ����� �	��� � �

{b|��

An inner product on a (complex) vector space � is any mapping � from � ��� into � ,

� ��� �	� ��� � � *
�g��� + ��� �
which satisfies the following conditions:

��
 � *
�x�	� + is linear with respect to � , i.e.,

� * (� � � � ($�� $;�	� + � (� � *
� � �	� + � ($ � *
�	$[��� + ����� � ��� $ ��� ��� (� � ($ � � �
��
 � *
�x�	� + is Hermitian, i.e.,

� *
�c��� + � � *��g��� + �����x�	� ��� �
��
 � *
�x�	� + is positive definite, i.e.,

� *
�g��� + � %p�����
� %z�
Note that (2) implies that � *
�x�	� + is real and therefore, (3) adds the constraint that � *��g�	� +must also be positive for any nonzero � . For any � and � ,

� *
�g� % + � � *
�g� %z� � + �&%p� � *
�x�	� + �=%z�
Similarly, � *�%p�	� + � % for any � . Hence, � * %z�	� + � � *��g� % + �&% for any � and � . In particular
the condition (3) can be rewritten as

� *
�x�	� + � % and � *��g��� + �=% iff �R�=%z�
as can be readily shown. A useful relation satisfied by any inner product is the so-called
Cauchy-Schwartz inequality:

� � *
�x�	� + � $ ��� *��g�	� + � *
�c�	� + � ��� J � �
The proof of this inequality begins by expanding � *
�2! (�c�	�2! (� + using the properties of
� ,

� *
� ! (�c�	� ! (� + � � *
�g��� + ! 3(�� *
�g��� + ! (�� *
�c�	� + � � (� $ � *
�c�	� + �
If � � % then the inequality is trivially satisfied. Assume that �
� % and take (�
� *
�g��� + � � *��y��� + . Then � *
� ! (�y��� ! (� + � % shows the above equality

% ��� *�� ! (�c�	��! (� + � � *
�x�	� + !l�
� � *��g��� + � $� *��c�	� + �

� � *
�g��� + � $� *
�c�	� +� � *
�x�	� + !
� � *
�x�	� + � $� *
�c��� + �

which yields the result (1.2).
In the particular case of the vector space � � � � , a “canonical” inner product is the

Euclidean inner product. The Euclidean inner product of two vectors �R��*
�g� + � ��� ��������� � and

��� � � 	�� � � �XK � � 	 � ��� � n�
 � �
� � �@n � � � � � �
�/� *�� � + � ��� ������� � � of �j� is defined by

*
�x�	� + � �� � ��� �y� 3�;�2� ��� J � �
which is often rewritten in matrix notation as*��g��� + � � 1 �x� ��� J � �
It is easy to verify that this mapping does indeed satisfy the three conditions required for
inner products, listed above. A fundamental property of the Euclidean inner product in
matrix computations is the simple relation* � �x�	� + ��*
�g� � 1 � + � ���x�	� ���5� � ��� J � �
The proof of this is straightforward. The adjoint of � with respect to an arbitrary inner
product is a matrix � such that * � �g�	� + � *
�x� � � + for all pairs of vectors � and � . A matrix
is self-adjoint, or Hermitian with respect to this inner product, if it is equal to its adjoint.

The following proposition is a consequence of the equality (1.5).

�5�<3/�<32>?.8�1.4350 �76 	 Unitary matrices preserve the Euclidean inner product, i.e.,* � �x� � � + ��*
�g��� +
for any unitary matrix � and any vectors � and � .

�����	��
 6
Indeed, * � �g� � � + � *��g� � 1�� � + � *��g�	� + .

A vector norm on a vector space � is a real-valued function � �
� � � on � , which
satisfies the following three conditions:

�
 � � � � %z� � � � � � and
� � � �=% iff �D�=% .�
 � � � � � � � � � � � ����� ��� ��� � ��� .��
 � � � � � � � � � � � � � � ���x�	� ��� .

For the particular case when � � �t� , we can associate with the inner product (1.3)
the Euclidean norm of a complex vector defined by� � � $:� *
�x�	� + ��� $ �
It follows from Proposition 1.3 that a unitary matrix preserves the Euclidean norm metric,
i.e., � � � � $:� � � � $!� ���g�
The linear transformation associated with a unitary matrix � is therefore an isometry.

The most commonly used vector norms in numerical linear algebra are special cases
of the Hölder norms � � � � � � �� � ��� � � � � ���

��� � � ��� J � �

� ����� � �
	���� � � ���	� � ��
 �(n�K �
�[K � 	 � � ����� 	�� � �
Note that the limit of

� � � � when � tends to infinity exists and is equal to the maximum
modulus of the � � ’s. This defines a norm denoted by

� � ��� . The cases � � � , � � � , and
� ��� lead to the most important norms in practice,� � � � � � � � � � � � $ � �������A� � � �

� �� � � $:�	� � � � � $ � � �	$ � $ �
������� � � �
� $
� ��� $ �� � ��� � � � �� ��� ������� � � � � � � �

The Cauchy-Schwartz inequality of (1.2) becomes
� *
�x�	� + � � � � � $ � � � $!�

� � ��� ��� � � ��� �

{b|��

For a general matrix � in � ���u� , we define the following special set of norms� � � ��� � �����
� 	���� � ������ � � � � �� � �

�
� ��� J � �

The norm
� � � ��� is induced by the two norms

� � � � and
� � �

� . These norms satisfy the usual
properties of norms, i.e.,� � � � %p� � � � �5���z� � and

� � � �&% iff � � %� � � � � � � � � � � � � � ���j�y�z� ��� � ���� ��� � � � � � � � � � � � � � � � ��� ���u� �
The most important cases are again those associated with � ���l� �;�+�u�
� . The case�N� � is of particular interest and the associated norm

� � � ��� is simply denoted by
� � � � and

called a “� -norm.” A fundamental property of a � -norm is that� ��� � � � � � � � � � � � �
an immediate consequence of the definition (1.7). Matrix norms that satisfy the above
property are sometimes called consistent. A result of consistency is that for any square
matrix � , � � � � � � � � � �� �
In particular the matrix � � converges to zero if any of its � -norms is less than 1.

The Frobenius norm of a matrix is defined by� � ��� � !# ��� ��� �� � ��� � ���0� � $
&) ��� $ � ��� J �

This can be viewed as the 2-norm of the column (or row) vector in �:�"! consisting of all the
columns (respectively rows) of � listed from � to � (respectively � to ~ .) It can be shown

��� � �
 � � � �
�
	 �pe � � ��� 	ze � �@n � 	���� 	�� �
that this norm is also consistent, in spite of the fact that it is not induced by a pair of vector
norms, i.e., it is not derived from a formula of the form (1.7); see Exercise 5. However, it
does not satisfy some of the other properties of the � -norms. For example, the Frobenius
norm of the identity matrix is not equal to one. To avoid these difficulties, we will only use
the term matrix norm for a norm that is induced by two norms as in the definition (1.7).
Thus, we will not consider the Frobenius norm to be a proper matrix norm, according to
our conventions, even though it is consistent.

The following equalities satisfied by the matrix norms defined above lead to alternative
definitions that are often easier to work with:� � � � � ������ ��� ��������� � �� � ��� � � �0� � � ��� J � �

� � ��� � ������ ��� ��������� � �
�
� � � � � �0� � � ��� J ��� �

� � � $ � � � * � 1 � + � ��� $ � � �	* �:� 1 + � ��� $ � ��� J � �	�� � � � �	� � � * � 1 � + � ��� $ �	� � � * ��� 1 + � ��� $ � ��� J � � �
As will be shown later, the eigenvalues of �21,� are nonnegative. Their square roots

are called singular values of � and are denoted by : � �2�b� �;�������E� � . Thus, the relation
(1.11) states that

� � � $ is equal to : � , the largest singular value of � .

� �����
	���
 �76T� From the relation (1.11), it is clear that the spectral radius � * � + is equal
to the 2-norm of a matrix when the matrix is Hermitian. However, it is not a matrix norm
in general. For example, the first property of norms is not satisfied, since for

� � � % �
% %�� �

we have � * � + �=% while �
� % . Also, the triangle inequality is not satisfied for the pair � ,
and � � � / where � is defined above. Indeed,

� * ����� + ��� while � * � + � � * � + � %p�

����� � ���	�	� ��� ��� ��� ��� � �
�
 � � �
� �

{}|��
A subspace of � � is a subset of � � that is also a complex vector space. The set of all
linear combinations of a set of vectors � � �A� � �6� $ ���������6� � � of �t� is a vector subspace
called the linear span of � ,��� ��� � � � � ��� ���
�A� � �6� $ �������E�6� � �

��� ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
� ��� � �5������

� � ��
� ��� � � � ��� � � � ��� ��� ������� � � � � �
	 �

If the � � ’s are linearly independent, then each vector of ��� ���*� � � admits a unique expres-
sion as a linear combination of the � � ’s. The set � is then called a basis of the subspace��� ��� � � � .

Given two vector subspaces � � and � $, their sum � is a subspace defined as the set of
all vectors that are equal to the sum of a vector of � � and a vector of � $. The intersection
of two subspaces is also a subspace. If the intersection of � � and � $ is reduced to ��% � , then
the sum of � � and � $ is called their direct sum and is denoted by � � � �
� � $. When �
is equal to � � , then every vector � of � � can be written in a unique way as the sum of
an element � � of � � and an element � $ of � $. The transformation
 that maps � into � �
is a linear transformation that is idempotent, i.e., such that
 $ �
 . It is called a projector
onto � � along � $.

Two important subspaces that are associated with a matrix � of �`���z� are its range,
defined by �

����* � + � � � � � � ��� � � � ��� J � � �
and its kernel or null space � � � * � + � � � � �5� � � �\�&% � �
The range of � is clearly equal to the linear span of its columns. The rank of a matrix
is equal to the dimension of the range of � , i.e., to the number of linearly independent
columns. This column rank is equal to the row rank, the number of linearly independent
rows of � . A matrix in � ���u� is of full rank when its rank is equal to the smallest of �
and ~ .

A subspace � is said to be invariant under a (square) matrix � whenever ������� . In
particular for any eigenvalue (of � the subspace

� � � * � ! (� + is invariant under � . The
subspace

� � � * � ! (� + is called the eigenspace associated with (and consists of all the
eigenvectors of � associated with (, in addition to the zero-vector.

� ��� 	 � ��� ��� � � � � ������� ������� � � � ���	�	� �
{b|��

A set of vectors � � ��� � �6�%$[���������+��� � is said to be orthogonal if*w���6�6�[� + �=%���� � � �
���;�
It is orthonormal if, in addition, every vector of � has a 2-norm equal to unity. A vector
that is orthogonal to all the vectors of a subspace � is said to be orthogonal to this sub-
space. The set of all the vectors that are orthogonal to � is a vector subspace called the
orthogonal complement of � and denoted by ��� . The space � � is the direct sum of � and
its orthogonal complement. Thus, any vector � can be written in a unique fashion as the
sum of a vector in � and a vector in ��� . The operator which maps � into its component in
the subspace � is the orthogonal projector onto � .

��� � � ����� � � �������
�
	�� � � ���
�
�(n �
 � � � �
�
	 � �z�

Every subspace admits an orthonormal basis which is obtained by taking any basis and
“orthonormalizing” it. The orthonormalization can be achieved by an algorithm known as
the Gram-Schmidt process which we now describe. Given a set of linearly independent
vectors � � � �	� $;�������E��� � � , first normalize the vector � � , which means divide it by its 2-
norm, to obtain the scaled vector � � of norm unity. Then � $ is orthogonalized against the
vector � � by subtracting from � $ a multiple of � � to make the resulting vector orthogonal
to � � , i.e.,

� $�� � $! *
� $ ��� � + � � �
The resulting vector is again normalized to yield the second vector � $. The � -th step of
the Gram-Schmidt process consists of orthogonalizing the vector � � against all previous
vectors � � .
����� 3/� .q�P�����76T�
	 ���
����� ���
����� ���

1. Compute � � � 	 � � � � � $. If � � � � % Stop, else compute � � 	 � � � � � � � .
2. For �/���z�������E� � Do:
3. Compute � �0� 	 ��*
� � � � � + , for �(���[�<�u�������E�H�2! �
4. �� 	 ���z� !

� � ��� ��� � �0�����
5. � �%� 	 � � �� � $,
6. If � �%� �=% then Stop, else � � 	 � �� � � �%�
7. EndDo

It is easy to prove that the above algorithm will not break down, i.e., all � steps will
be completed if and only if the set of vectors � � �	� $ ���������	� � is linearly independent. From
lines 4 and 5, it is clear that at every step of the algorithm the following relation holds:

� � �
��
� ��� � �0� � � �

If � � � � � �	� $ ���������	� �"! , � � � � � ��� $ ����������� �"! , and if # denotes the �M�$� upper triangular
matrix whose nonzero elements are the � �0� defined in the algorithm, then the above relation
can be written as

� � ��# � ��� J � � �
This is called the QR decomposition of the ~7�%� matrix � . From what was said above, the
QR decomposition of a matrix exists whenever the column vectors of � form a linearly
independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are alternative for-
mulations of the algorithm which have better numerical properties. The best known of
these is the Modified Gram-Schmidt (MGS) algorithm.

����� 3/� .q�P�����76 ��	 �'&(���)+*,� ���-���.� ���/���0�1���
1. Define � �-� 	 � � � � � $. If � �-� �&% Stop, else � � 	 ��� � � � � � .
2. For �/���z�������E� � Do:

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
3. Define �� 	 ��� �
4. For �(���[�������E�=�1!�� , Do:
5. � �0� 	 ��* ������ � +6. �� 	 � �� ! � �0� � �
7. EndDo
8. Compute � �%� 	 � � �� � $,
9. If � �%�,�=% then Stop, else �#� 	 � �� � � �%�

10. EndDo

Yet another alternative for orthogonalizing a sequence of vectors is the Householder
algorithm. This technique uses Householder reflectors, i.e., matrices of the form
 � � !l����� / � ��� J � � �
in which � is a vector of 2-norm unity. Geometrically, the vector
 � represents a mirror
image of � with respect to the hyperplane ��� ���*��� � � .

To describe the Householder orthogonalization process, the problem can be formulated
as that of finding a QR factorization of a given ~P� � matrix � . For any vector � , the vector
� for the Householder transformation (1.15) is selected in such a way that
 �D����� � �
where � is a scalar. Writing * � !l����� / + �D����� � yields

��� / ���3� � ! ��� � � ��� J � � �
This shows that the desired � is a multiple of the vector � ! ��� � ,

�3�	� � ! ��� �� � ! ��� � � $ �
For (1.16) to be satisfied, we must impose the condition

� *
� ! ��� � + / �D� � � ! ��� � � $$
which gives � * � � � $ � ! ��
 � + � � � � $$!l� ��
 � � � $, where
 � ;

� / � � is the first component
of the vector � . Therefore, it is necessary that� ��� � � � $!�
In order to avoid that the resulting vector � be small, it is customary to take� � ! � � ����*

 � + � � � $)�
which yields

�3� � � � � � ��*

 � + � � � $�� �� � � � � � ��*

 � + � � � $ � � � $ � ��� J � � �
Given an ~}�,� matrix, its first column can be transformed to a multiple of the column

� � , by premultiplying it by a Householder matrix
 � ,
� � ;
 � � � � � � � ����� � �

Assume, inductively, that the matrix � has been transformed in � !X� successive steps into

��� � � ����� � � �������
�
	�� � � ���
�
�(n �
 � � � �
�
	 � � 	

the partially upper triangular form

� � ;
 � � � �����
 � � � �
!""""""""""""
#

� �-� � � $ � ��� ����� ����� ����� � � �� $-$ � $ � ����� ����� ����� � $ �� ��� ����� ����� ����� � � �. . . ����� ����� ...
� � � ����� ...� � " � � � ����� � � " � � �...

...
...� � � � ����� � � � �

&(''''''''''''
)
�

This matrix is upper triangular up to column number � !G� . To advance by one step, it must
be transformed into one which is upper triangular up the � -th column, leaving the previous
columns in the same form. To leave the first � !�� columns unchanged, select a � vector
which has zeros in positions � through � !�� . So the next Householder reflector matrix is
defined as
 � � � !�� � � � /� � ��� J � �
in which the vector � � is defined as

� � � �� � � $ � ��� J � � �
where the components of the vector

�
are given by� �(� �� � % if � � �� � � �q� if �(� �� � � if � � �

��� J � � �
with

� � � � ����*
� � � + �
� �� � ��� � $� � �

��� $
� ��� J � �	�

We note in passing that the premultiplication of a matrix � by a Householder trans-
form requires only a rank-one update since,

* � !�� ��� / + � � � ! � � / where � ��� � / �>�
Therefore, the Householder matrices need not, and should not, be explicitly formed. In
addition, the vectors � need not be explicitly scaled.

Assume now that � ! � Householder transforms have been applied to a certain matrix

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
� of dimension ~��D� , to reduce it into the upper triangular form,

� � ;
 � � �
 � � $������
 � � �

!"""""""""""
#

� � � � � $ � � � ����� � � �� $ $ �	$ � ����� � $ �� � � ����� � � �. . .
...� � � �%
...
...

&('''''''''''
)
� ��� J � � �

Recall that our initial goal was to obtain a QR factorization of � . We now wish to recover
the � and # matrices from the
 � ’s and the above matrix. If we denote by
 the product
of the
 � on the left-side of (1.22), then (1.22) becomes
 � � � #� � � ��� J � � �
in which # is an �
� � upper triangular matrix, and

�
is an * ~ ! � + � � zero block.

Since
 is unitary, its inverse is equal to its transpose and, as a result,

� �
 / � #� � �
 �
 $^�����
 � � � � #� � �
If � � is the matrix of size ~ ��� which consists of the first � columns of the identity
matrix, then the above equality translates into

� �
 / � � # �
The matrix � �
2/�� � represents the � first columns of
 / . Since

� / � � � /�

 / � � � � �
� and # are the matrices sought. In summary,

� � ��# �
in which # is the triangular matrix obtained from the Householder reduction of � (see
(1.22) and (1.23)) and

� � � �
 �
 $������
 � � � � � �
��� �93/� .8�P�����76 	 	 	 &���� */� &�� ��*/���$� � � &
	 &��
��� ��
 � � � &��

1. Define � � � � � �������E�	� � !2. For � ���[��������� � Do:
3. If � � � compute � � 	 �
 � � �
 � � $ �����
 � � �
4. Compute � � using (1.19), (1.20), (1.21)
5. Compute � � 	 �
 � � � with
 � � � !�� � � � /�
6. Compute � � �
 �
 $ �����
 � � �
7. EndDo

��� � � � � � �(K ��� ��� � � � � � � � ��� �dK �
	 � � �

Note that line 6 can be omitted since the � � are not needed in the execution of the
next steps. It must be executed only when the matrix � is needed at the completion of
the algorithm. Also, the operation in line 5 consists only of zeroing the components �/��[�������E� ~ and updating the � -th component of � � . In practice, a work vector can be used for
� � and its nonzero components after this step can be saved into an upper triangular matrix.
Since the components 1 through � of the vector � � are zero, the upper triangular matrix #
can be saved in those zero locations which would otherwise be unused.

� � �	� ��� ��� � ��� ��� � � � � � � � � ��� �

{}|��

This section discusses the reduction of square matrices into matrices that have simpler
forms, such as diagonal, bidiagonal, or triangular. Reduction means a transformation that
preserves the eigenvalues of a matrix.

+ �-,/.�01.q�2.4350 �76 �
Two matrices � and � are said to be similar if there is a nonsingular

matrix � such that

� � �X��� � � �
The mapping � � � is called a similarity transformation.

It is clear that similarity is an equivalence relation. Similarity transformations preserve
the eigenvalues of matrices. An eigenvector 8�� of � is transformed into the eigenvector
8�) � � 8�� of � . In effect, a similarity transformation amounts to representing the matrix� in a different basis.

We now introduce some terminology.
�

An eigenvalue (of � has algebraic multiplicity � , if it is a root of multiplicity �
of the characteristic polynomial.�

If an eigenvalue is of algebraic multiplicity one, it is said to be simple. A nonsimple
eigenvalue is multiple.��

The geometric multiplicity � of an eigenvalue (of � is the maximum number of
independent eigenvectors associated with it. In other words, the geometric multi-
plicity � is the dimension of the eigenspace

� � � * � ! (� + .�

A matrix is derogatory if the geometric multiplicity of at least one of its eigenvalues
is larger than one.

	�

An eigenvalue is semisimple if its algebraic multiplicity is equal to its geometric
multiplicity. An eigenvalue that is not semisimple is called defective.

Often, (� � ($)��������� (� (� � ~) are used to denote the distinct eigenvalues of � . It is
easy to show that the characteristic polynomials of two similar matrices are identical; see
Exercise 9. Therefore, the eigenvalues of two similar matrices are equal and so are their
algebraic multiplicities. Moreover, if � is an eigenvector of � , then � � is an eigenvector

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
of � and, conversely, if � is an eigenvector of � then � � � � is an eigenvector of � . As
a result the number of independent eigenvectors associated with a given eigenvalue is the
same for two similar matrices, i.e., their geometric multiplicity is also the same.

��������� ���
	���
�������������������	�� ��������� �"!#����$

The simplest form in which a matrix can be reduced is undoubtedly the diagonal form.
Unfortunately, this reduction is not always possible. A matrix that can be reduced to the
diagonal form is called diagonalizable. The following theorem characterizes such matrices.

�P�>� 3/�j�+���76T�
A matrix of dimension ~ is diagonalizable if and only if it has ~ line-

arly independent eigenvectors.

��� � �
 6
A matrix � is diagonalizable if and only if there exists a nonsingular matrix �

and a diagonal matrix % such that � � �&% � � � , or equivalently � � � ��% , where % is
a diagonal matrix. This is equivalent to saying that ~ linearly independent vectors exist —
the ~ column-vectors of � — such that � � � �(' � � � . Each of these column-vectors is an
eigenvector of � .

A matrix that is diagonalizable has only semisimple eigenvalues. Conversely, if all the
eigenvalues of a matrix � are semisimple, then � has ~ eigenvectors. It can be easily
shown that these eigenvectors are linearly independent; see Exercise 2. As a result, we
have the following proposition.

�5�<3/�<32>?.q�2.4350 �76 �
A matrix is diagonalizable if and only if all its eigenvalues are

semisimple.

Since every simple eigenvalue is semisimple, an immediate corollary of the above result
is: When � has ~ distinct eigenvalues, then it is diagonalizable.

�������*) �����,+-����	.�/�0

�/�1�����2

� �"!#����$

From the theoretical viewpoint, one of the most important canonical forms of matrices is
the well known Jordan form. A full development of the steps leading to the Jordan form
is beyond the scope of this book. Only the main theorem is stated. Details, including the
proof, can be found in standard books of linear algebra such as [117]. In the following, � �
refers to the algebraic multiplicity of the individual eigenvalue (� and 3 � is the index of the
eigenvalue, i.e., the smallest integer for which

� � � * � ! (� � + �54 " � �
� � � * � ! (� � + �64 .�P�>� 3/�j�+���76 �

Any matrix � can be reduced to a block diagonal matrix consisting of
� diagonal blocks, each associated with a distinct eigenvalue (� . Each of these diagonal
blocks has itself a block diagonal structure consisting of � � sub-blocks, where � � is the
geometric multiplicity of the eigenvalue (� . Each of the sub-blocks, referred to as a Jordan

��� � � � � � �(K ��� ��� � � � � � � � ��� �dK �
	 � � �
block, is an upper bidiagonal matrix of size not exceeding 3 � � � � , with the constant (�
on the diagonal and the constant one on the super diagonal.

The � -th diagonal block, �:� �[��������� � , is known as the � -th Jordan submatrix (sometimes
“Jordan Box”). The Jordan submatrix number � starts in column �[� ; � � � � $ � �����;�� � � � � � . Thus,

� � � � � ��� �
!"""""""
#

� � ��$
. . . �;�

. . . � �

&('''''''
)
�

where each � � is associated with (� and is of size � � the algebraic multiplicity of (� . It has
itself the following structure,

� � � !""
#
� � � � � $

. . . �;��� 4
&(''
) with � � � �

!""
#
(� �

. . .
. . .
(� �

(�

&(''
) �

Each of the blocks � � � corresponds to a different eigenvector associated with the eigenvalue
(� . Its size 3 � is the index of (� .

���*����� �������
1�����&

�/�1�����2

� �"!#����$
Here, it will be shown that any matrix is unitarily similar to an upper triangular matrix. The
only result needed to prove the following theorem is that any vector of 2-norm one can be
completed by ~ ! � additional vectors to form an orthonormal basis of � � .

�P�>� 3/�5��� � 6 	 For any square matrix � , there exists a unitary matrix � such that

� 1 � � � #
is upper triangular.

�����	��
 6
The proof is by induction over the dimension ~ . The result is trivial for ~ � � .

Assume that it is true for ~ ! � and consider any matrix � of size ~ . The matrix admits
at least one eigenvector 8 that is associated with an eigenvalue (. Also assume without
loss of generality that

� 8 � $�� � . First, complete the vector 8 into an orthonormal set, i.e.,
find an ~s� * ~ !O� + matrix � such that the ~s��~ matrix 	 � � 8 � � ! is unitary. Then�
	 � � ($8 � �
� ! and hence,	 1 �
	 ��� 8 1� 1�
 � (78 � ��� ! � � (8 1 ���% � 1,��� � � ��� J � � �
Now use the induction hypothesis for the * ~ !�� + � * ~ !�� + matrix � � � 1��
� : There
exists an * ~ ! � + � * ~ !�� + unitary matrix � � such that � 1 � � � � � # � is upper triangular.

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
Define the ~��R~ matrix

�� � � � � %
% � � �

and multiply both members of (1.24) by ��21� from the left and �� � from the right. The
resulting matrix is clearly upper triangular and this shows that the result is true for � , with
� � �� � 	 which is a unitary ~��D~ matrix.

A simpler proof that uses the Jordan canonical form and the QR decomposition is the sub-
ject of Exercise 7. Since the matrix # is triangular and similar to � , its diagonal elements
are equal to the eigenvalues of � ordered in a certain manner. In fact, it is easy to extend
the proof of the theorem to show that this factorization can be obtained with any order for
the eigenvalues. Despite its simplicity, the above theorem has far-reaching consequences,
some of which will be examined in the next section.

It is important to note that for any � � ~ , the subspace spanned by the first � columns
of � is invariant under � . Indeed, the relation � � � ��# implies that for � � � ��� , we
have

� �<���
� � ��
� ��� � �F�����_�

If we let � � � � � � ��� $ ��������� � � ! and if # � is the principal leading submatrix of dimension �
of # , the above relation can be rewritten as

� � � � � � # � �
which is known as the partial Schur decomposition of � . The simplest case of this decom-
position is when � ��� , in which case � � is an eigenvector. The vectors � � are usually called
Schur vectors. Schur vectors are not unique and depend, in particular, on the order chosen
for the eigenvalues.

A slight variation on the Schur canonical form is the quasi-Schur form, also called the
real Schur form. Here, diagonal blocks of size � � � are allowed in the upper triangular
matrix # . The reason for this is to avoid complex arithmetic when the original matrix is
real. A � � � block is associated with each complex conjugate pair of eigenvalues of the
matrix.

� ����� 	 �
 �76 � Consider the �M��� matrix

� �
!# � � % %

!P� � �
!P� % �

&) �

The matrix � has the pair of complex conjugate eigenvalues

�z� � %����`����� � � ��� �F�u�;� % �����

��� � � � � � �(K ��� ��� � � � � � � � ��� �dK �
	 � � �
and the real eigenvalue %z�q��� � � ����� . The standard (complex) Schur form is given by the pair
of matrices

� �
!# %p� � � �z� ! %z� � � �;�!� %z� ����� � ! %p�8� % � ��� %z�q� � � �%p� � � � � ! %z� %z� % � � !9%p� �;� � � ! %p� � � � �)� !9%z� �;�z� �

%p�8���;� � � %z�q��� � �!� !9%p� ��� � � ! %p� � � ��� � %z� � � ���
&)

and � � !# �u� � % ��� � � � �z�[� %[� �p� � % � � ! ��� � % � %[� !:�u� � �p��� ! � �F� � � %[�% �u� � % ���
! � � �z�[� %[� !:�u� %;� � � ! �[�F��%p� �[�
% % %z�q����� �

&) �

It is possible to avoid complex arithmetic by using the quasi-Schur form which consists of
the pair of matrices

	 �
!# !9%p� � � ��� %z�q��� � � %z�q� � � �!9%p� %p���z� %z� � � � � !9%z� �;�u� �

%p� �z� � � %z� � % �z� %z� � � ���
&)

and

�
!# �;� � ����� ! � � � % ��� �z� % � % ��;� � � � � � � � % %�� !P�[� � � � %% % %z�q��� � �

&) �

We conclude this section by pointing out that the Schur and the quasi-Schur forms
of a given matrix are in no way unique. In addition to the dependence on the ordering
of the eigenvalues, any column of � can be multiplied by a complex sign �

�
	
and a new

corresponding # can be found. For the quasi-Schur form, there are infinitely many ways
to select the � � � blocks, corresponding to applying arbitrary rotations to the columns of
� associated with these blocks.

��������� ��
�
�� �2
�� ������� ����
���� �
� �"��! $ � ��� �2
1� �
The analysis of many numerical techniques is based on understanding the behavior of the
successive powers � � of a given matrix � . In this regard, the following theorem plays a
fundamental role in numerical linear algebra, more particularly in the analysis of iterative
methods.

�P�>� 3/�5��� � 6 �
The sequence � � , � � %z���[�������#� converges to zero if and only if�	* � + � � .

�����	��
 6
To prove the necessary condition, assume that � � � % and consider 8 � a unit

eigenvector associated with an eigenvalue (� of maximum modulus. We have

� � 8 � � (� � 8 � �
which implies, by taking the 2-norms of both sides,

� (� � � � � � � 8 � � $ � %p�

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
This shows that �	* � + � � (� � �3� .

The Jordan canonical form must be used to show the sufficient condition. Assume that�	* � + �3� . Start with the equality

� � � � � � � � � �
To prove that � � converges to zero, it is sufficient to show that � � converges to zero. An
important observation is that � � preserves its block form. Therefore, it is sufficient to prove
that each of the Jordan blocks converges to zero. Each block is of the form�;�(� (� � � � �
where � � is a nilpotent matrix of index 3 � , i.e., � ���� �&% . Therefore, for � � 3 � ,� �� � ��� � ��

� ��� �
�

� � * � !G� + � (
� � �� �

�� �
Using the triangle inequality for any norm and taking � � 3 � yields� � �� � � ��� � ��

� ��� �
�

� � * � !\� + �
� (� � � � � � � �� � �

Since
� (� � � � , each of the terms in this finite sum converges to zero as � � � . Therefore,

the matrix � �� converges to zero.

An equally important result is stated in the following theorem.

�P�>� 3/�j�+���76 � The series ������� � �
converges if and only if � * � + � � . Under this condition,

� ! � is nonsingular and the limit
of the series is equal to * � ! � + � � .��� � �
 6

The first part of the theorem is an immediate consequence of Theorem 1.4. In-
deed, if the series converges, then

� � � � � % . By the previous theorem, this implies that�	* � + �3� . To show that the converse is also true, use the equality
� ! � � " � � * � ! � + * � ������� $ � ����� � � � +

and exploit the fact that since �	* � + �3� , then
� ! � is nonsingular, and therefore,* � ! � + � � * � ! � � " � + � � ������� $ � ����� � � � �

This shows that the series converges since the left-hand side will converge to * � ! � + � � .In addition, it also shows the second part of the theorem.

Another important consequence of the Jordan canonical form is a result that relates
the spectral radius of a matrix to its matrix norm.

��� � � � � � ����� �@n � 	�� �bK �^K �
� � ��� �dK �
	 � �y�
�P�>� 3/�5��� � 6 �

For any matrix norm
� � � , we have

� � ���� � � � � � ���.� � �	* � + ������	��
 6
The proof is a direct application of the Jordan canonical form and is the subject

of Exercise 10.

� � ��� � � � �
� 	������ � � � � � � � ��� � �	� �

{}|��

This section examines specific properties of normal matrices and Hermitian matrices, in-
cluding some optimality properties related to their spectra. The most common normal ma-
trices that arise in practice are Hermitian or skew-Hermitian.

��������� ����� $ � � $ � ��� ��
 � �
By definition, a matrix is said to be normal if it commutes with its transpose conjugate,
i.e., if it satisfies the relation

� 1 � � ��� 1 � ��� J � � �
An immediate property of normal matrices is stated in the following lemma.

����� �X� �76T�
If a normal matrix is triangular, then it is a diagonal matrix.

�����	��
 6
Assume, for example, that � is upper triangular and normal. Compare the first

diagonal element of the left-hand side matrix of (1.25) with the corresponding element of
the matrix on the right-hand side. We obtain that

� � �-� � $ � ��� � � � � � � � $ �
which shows that the elements of the first row are zeros except for the diagonal one. The
same argument can now be used for the second row, the third row, and so on to the last row,
to show that � �0� �=% for �
� � .

A consequence of this lemma is the following important result.

�P�>� 3/�5��� � 6 � A matrix is normal if and only if it is unitarily similar to a diagonal
matrix.

�����	��
 6
It is straightforward to verify that a matrix which is unitarily similar to a diagonal

matrix is normal. We now prove that any normal matrix � is unitarily similar to a diagonal

��� ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
matrix. Let � � ��#�� 1 be the Schur canonical form of � where � is unitary and # is
upper triangular. By the normality of � ,

��# 1 � 1 ��#�� 1 � ��#�� 1 ��# 1 � 1
or,

��# 1 #�� 1 � ��# # 1 � 1 �
Upon multiplication by � 1 on the left and � on the right, this leads to the equality # 1 # �
#01 which means that # is normal, and according to the previous lemma this is only
possible if # is diagonal.

Thus, any normal matrix is diagonalizable and admits an orthonormal basis of eigenvectors,
namely, the column vectors of � .

The following result will be used in a later chapter. The question that is asked is:
Assuming that any eigenvector of a matrix � is also an eigenvector of �21 , is � normal?
If � had a full set of eigenvectors, then the result is true and easy to prove. Indeed, if �
is the ~�� ~ matrix of common eigenvectors, then ��� � � % � and � 1
� � � % $, with
% � and % $ diagonal. Then, �:�01
� � � % � % $ and � 1,��� � ��% $ % � and, therefore,�:� 1 � � 1,� . It turns out that the result is true in general, i.e., independently of the
number of eigenvectors that � admits.

����� �X� �76 �
A matrix � is normal if and only if each of its eigenvectors is also an

eigenvector of �01 .

��� � �
 6
If � is normal, then its left and right eigenvectors are identical, so the sufficient

condition is trivial. Assume now that a matrix � is such that each of its eigenvectors � � , �@��[��������� � , with � ��~ is an eigenvector of �01 . For each eigenvector � � of � , � � � � (� � � ,
and since � � is also an eigenvector of �01 , then � 1 � � � ��� � . Observe that * � 1 � � � � � + �� * � � � � � + and because * � 1 � � � � � + � * � � � � � � + � 3(� * � � � � � + , it follows that � � 3(� . Next, it
is proved by contradiction that there are no elementary divisors. Assume that the contrary
is true for (� . Then, the first principal vector 8 � associated with (� is defined by* � ! (� � + 8 �x� � �2�
Taking the inner product of the above relation with � � , we obtain* �98 �6� � � + � (�-* 8 �2� � � + � * � �6� � � + � ��� J � � �
On the other hand, it is also true that* �98 � � � � + � * 8 � � � 1 � � + ��* 8 � � 3(� � � + � (� * 8 � � � � + � ��� J ��� �
A result of (1.26) and (1.27) is that * � � � � � + � % which is a contradiction. Therefore, � has
a full set of eigenvectors. This leads to the situation discussed just before the lemma, from
which it is concluded that � must be normal.

Clearly, Hermitian matrices are a particular case of normal matrices. Since a normal
matrix satisfies the relation � � ��% � 1 , with % diagonal and � unitary, the eigenvalues
of � are the diagonal entries of % . Therefore, if these entries are real it is clear that � 1 �
� . This is restated in the following corollary.

��� � � � � � ����� �@n � 	�� �bK �^K �
� � ��� �dK �
	 � � 	
� 3/�<3 � �Y�>��� �76T�

A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly, the converse is also true, i.e., a Hermitian matrix has real eigenval-
ues.

An eigenvalue (of any matrix satisfies the relation

(� * �98 � 8 +* 8 � 8 + �
where 8 is an associated eigenvector. Generally, one might consider the complex scalars

� *
� + � * � �x�	� +*
�x�	� + � ��� J �� �
defined for any nonzero vector in � � . These ratios are known as Rayleigh quotients and
are important both for theoretical and practical purposes. The set of all possible Rayleigh
quotients as � runs over �t� is called the field of values of � . This set is clearly bounded
since each

�
� *
� + � is bounded by the the 2-norm of � , i.e.,

�
� *
� + � � � � � $ for all � .

If a matrix is normal, then any vector � in � � can be expressed as

�� � ���
 � � � �
where the vectors � � form an orthogonal basis of eigenvectors, and the expression for � *�� +becomes

� *
� + � * � �x�	� +*
�g��� + � � � ����� (� �
 � � $� � ����� �
 � � $;
����� � � � (� � ��� J � � �

where

% � � � � �
 � � $
� � � ��� �
 � � $ � �;� ��� � �� � ��� � � ���[�

From a well known characterization of convex hulls established by Hausdorff (Hausdorff’s
convex hull theorem), this means that the set of all possible Rayleigh quotients as � runs
over all of �t� is equal to the convex hull of the (� ’s. This leads to the following theorem
which is stated without proof.

�P�>� 3/�5��� � 6 �
The field of values of a normal matrix is equal to the convex hull of its

spectrum.

The next question is whether or not this is also true for nonnormal matrices and the
answer is no: The convex hull of the eigenvalues and the field of values of a nonnormal
matrix are different in general. As a generic example, one can take any nonsymmetric real
matrix which has real eigenvalues only. In this case, the convex hull of the spectrum is
a real interval but its field of values will contain imaginary values. See Exercise 12 for
another example. It has been shown (Hausdorff) that the field of values of a matrix is a
convex set. Since the eigenvalues are members of the field of values, their convex hull is
contained in the field of values. This is summarized in the following proposition.

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
�5�<3/�<32>?.q�2.4350 �76 � The field of values of an arbitrary matrix is a convex set which
contains the convex hull of its spectrum. It is equal to the convex hull of the spectrum
when the matrix is normal.

�������*) ���
��$ � �/� �/� $ � � ���2
 � �
A first result on Hermitian matrices is the following.

�P�>� 3/�j�+���76 � The eigenvalues of a Hermitian matrix are real, i.e., : * � + ��� .

��� � �
 6
Let (be an eigenvalue of � and 8 an associated eigenvector or 2-norm unity.

Then

(��* �98 � 8 + � * 8 � �98 + � * �98 � 8 + � (�
which is the stated result.

It is not difficult to see that if, in addition, the matrix is real, then the eigenvectors can be
chosen to be real; see Exercise 21. Since a Hermitian matrix is normal, the following is a
consequence of Theorem 1.7.

�P�>� 3/�j�+���76T���
Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular a Hermitian matrix admits a set of orthonormal eigenvectors that form a basis
of �j� .

In the proof of Theorem 1.8 we used the fact that the inner products * �98 � 8 + are real.
Generally, it is clear that any Hermitian matrix is such that * � �g��� + is real for any vector� ��� � . It turns out that the converse is also true, i.e., it can be shown that if * � � � � + is
real for all vectors

�
in �t� , then the matrix � is Hermitian; see Exercise 15.

Eigenvalues of Hermitian matrices can be characterized by optimality properties of
the Rayleigh quotients (1.28). The best known of these is the min-max principle. We now
label all the eigenvalues of � in descending order:

(� � ($ � ����� � (� �
Here, the eigenvalues are not necessarily distinct and they are repeated, each according to
its multiplicity. In the following theorem, known as the Min-Max Theorem, � represents a
generic subspace of � � .

�P�>� 3/�j�+���76T�z�
The eigenvalues of a Hermitian matrix � are characterized by the

relation

(� � � � �
� � ��� � � � � � � � � " � ������ 	 � � ���� � * � �g�	� +*
�x�	� + � ��� J � � �

��� � � � � � ����� �@n � 	�� �bK �^K �
� � ��� �dK �
	 � � �
�����	��
 6

Let � � � ��� ��� ������� � � be an orthonormal basis of � � consisting of eigenvectors of �
associated with (� ��������� (� respectively. Let � � be the subspace spanned by the first � of
these vectors and denote by � * � + the maximum of * � �x�	� + � *��g�	� + over all nonzero vectors
of a subspace � . Since the dimension of � � is � , a well known theorem of linear algebra
shows that its intersection with any subspace � of dimension ~ ! �b� � is not reduced to� % � , i.e., there is vector � in ����� � . For this �\� � �� ���
 � � � , we have* � �x�	� +*
�x�	� + � � �� ��� (� �
 � � $� �� � � �
 � � $ � (�
so that � * � + � (� .

Consider, on the other hand, the particular subspace � � of dimension ~ ! �`� � which
is spanned by � � ��������� � � . For each vector � in this subspace, we have* � �g��� +*
�g��� + � � �� ��� (� �
 � � $� �� ��� �
 � � $ � (�
so that � * � � + � (� . In other words, as � runs over all the * ~ ! �\� � + -dimensional
subspaces, � * � + is always � (� and there is at least one subspace � � for which � * � � + �(� . This shows the desired result.

The above result is often called the Courant-Fisher min-max principle or theorem. As a
particular case, the largest eigenvalue of � satisfies

(� � ������ ���� * � �g�	� +*
�x�	� + � ��� J � �	�
Actually, there are four different ways of rewriting the above characterization. The

second formulation is

(� � � � �
� � ��� � � � � ��� � � �� 	 � � ���� � * � �g��� +*��g�	� + ��� J � � �

and the two other ones can be obtained from (1.30) and (1.32) by simply relabeling the
eigenvalues increasingly instead of decreasingly. Thus, with our labeling of the eigenvalues
in descending order, (1.32) tells us that the smallest eigenvalue satisfies

(� � � � �� ���� * � �g��� +*��g�	� + � ��� J � � �
with (� replaced by (� if the eigenvalues are relabeled increasingly.

In order for all the eigenvalues of a Hermitian matrix to be positive, it is necessary and
sufficient that * � �x�	� + � %z� ��� ���5� � �
�&%p�
Such a matrix is called positive definite. A matrix which satisfies * � �g�	� + � % for any � is
said to be positive semidefinite. In particular, the matrix � 1�� is semipositive definite for
any rectangular matrix, since* � 1 � �g�	� + � * � �x� � � + � %p�����g�
Similarly, ��� 1 is also a Hermitian semipositive definite matrix. The square roots of the
eigenvalues of � 1,� for a general rectangular matrix � are called the singular values of

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
� and are denoted by : � . In Section 1.5, we have stated without proof that the 2-norm of
any matrix � is equal to the largest singular value : � of � . This is now an obvious fact,
because � � � $$ � ��� ������� � � � � $$� � � $$ � � � ����� � * � �x� � � +*
�x�	� + � ������ ���� * � 1,� �g��� +*
�g��� + � : $�
which results from (1.31).

Another characterization of eigenvalues, known as the Courant characterization, is
stated in the next theorem. In contrast with the min-max theorem, this property is recursive
in nature.

�P�>� 3/�j�+���76T� �
The eigenvalue (� and the corresponding eigenvector ��� of a Hermi-

tian matrix are such that

(� � * � � � � � � +* � � � � � + � �����
� 	 ��� � � ���� * � �g��� +*��g��� +

and for � �3� ,
(� � * � � � ��� � +* � � � � � + � ������ ���� � � �� � � ����� � � ���� � � ��� * � �g�	� +*
�x�	� + � ��� J � � �

In other words, the maximum of the Rayleigh quotient over a subspace that is orthog-
onal to the first � ! � eigenvectors is equal to (� and is achieved for the eigenvector � �
associated with (� . The proof follows easily from the expansion (1.29) of the Rayleigh
quotient.

�	� �
��� � � ����� � � � ��� � �	� ��� � � � � ��� � ��� �
{b|�{��

Nonnegative matrices play a crucial role in the theory of matrices. They are important in
the study of convergence of iterative methods and arise in many applications including
economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More gener-
ally, a partial order relation can be defined on the set of matrices.

+ � , .�01.q�2.43 0 �76 	 Let � and � be two ~��D� matrices. Then

� � �
if by definition, �z�F� ��� �F� for � � � ��~ , � � � � � . If

�
denotes the ~ �D� zero matrix,

then � is nonnegative if � � �
, and positive if � � �

. Similar definitions hold in which
“positive” is replaced by “negative”.

The binary relation “ � ” imposes only a partial order on �`���z� since two arbitrary matrices
in �j���u� are not necessarily comparable by this relation. For the remainder of this section,

��� ��� ��� � � 	%� ���^K � 	 � ��� �dK �
	 ��e � S#� ��� �dK �
	 � � �
we now assume that only square matrices are involved. The next proposition lists a number
of rather trivial properties regarding the partial order relation just defined.

�5�<3/�<32>?.8�1.4350 �76 �
The following properties hold.

�

The relation � for matrices is reflexive (� � �), antisymmetric (if � � � and� � � , then � � �), and transitive (if � ��� and � ��� , then � �s�).�

If � and � are nonnegative, then so is their product ��� and their sum ����� .��

If � is nonnegative, then so is � � .

�

If � � � , then � / ��� / .

	�

If
� �s� �s� , then

� � � � � � � � � and similarly
� � ��� � � � ��� .

The proof of these properties is left as Exercise 23.
A matrix is said to be reducible if there is a permutation matrix
 such that
P�
 /

is block upper triangular. Otherwise, it is irreducible. An important result concerning non-
negative matrices is the following theorem known as the Perron-Frobenius theorem.

�P�>� 3/�5��� � 6T� 	 Let � be a real ~P� ~ nonnegative irreducible matrix. Then (;
� * � + ,the spectral radius of � , is a simple eigenvalue of � . Moreover, there exists an eigenvector

8 with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be reducible but the conclusion is
somewhat weakened in the sense that the elements of the eigenvectors are only guaranteed
to be nonnegative.

Next, a useful property is established.

�5�<3/�<32>?.8�1.4350 �76 � Let � � � � � be nonnegative matrices, with � �s� . Then

�,� �s�}� and �N� �s�N� �
�����	��
 6

Consider the first inequality only, since the proof for the second is identical. The
result that is claimed translates into

������� � � � � � � � ����� � � � � � � � � � � �<�=� ��~ �
which is clearly true by the assumptions.

A consequence of the proposition is the following corollary.

� 3/�<3 � �Y�>��� �76 �
Let � and � be two nonnegative matrices, with � � � . Then

� � ��� � ��� � � %z� ��� J � � �
�����	��
 6

The proof is by induction. The inequality is clearly true for � � % . Assume that
(1.35) is true for � . According to the previous proposition, multiplying (1.35) from the left
by � results in

� � " � � �:� � � ��� J � � �

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
Now, it is clear that if � � % , then also � � � % , by Proposition 1.6. We now multiply both
sides of the inequality � ��� by � � to the right, and obtain

�:� � � � � " � � ��� J ��� �
The inequalities (1.36) and (1.37) show that � � " � �s� � " � , which completes the induction
proof.

A theorem which has important consequences on the analysis of iterative methods will
now be stated.

�P�>� 3/�j�+���76T� �
Let � and � be two square matrices that satisfy the inequalities

� �s� �s� � ��� J �� �
Then

�	* � + � �	* � + � ��� J � � �
��� � �
 6

The proof is based on the following equality stated in Theorem 1.6
� * � + � � � �� � � � � � � ���.�

for any matrix norm. Choosing the � ! norm, for example, we have from the last property
in Proposition 1.6

� * � + � � � �� � � � � � � ��� �� � � � �� � � � � � � ���.�� � � * � +
which completes the proof.

�P�>� 3/�j�+���76T� � Let � be a nonnegative matrix. Then � * � + ��� if and only if
� ! �

is nonsingular and * � ! � + � � is nonnegative.

��� � �
 6
Define � � � ! � . If it is assumed that � * � + � � , then by Theorem 1.5,� � � ! � is nonsingular and

� � � � * � ! � + � � �
��
� � � � � � ��� J � � �

In addition, since � � % , all the powers of � as well as their sum in (1.40) are also
nonnegative.

To prove the sufficient condition, assume that � is nonsingular and that its inverse
is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigenvector 8
associated with �	* � + , which is an eigenvalue, i.e.,

�18 � � * � + 8
or, equivalently,

� � � 8 � �
� ! �	* � + 8 �

Since 8 and �5� � are nonnegative, and
� ! � is nonsingular, this shows that �?! � * � + � % ,

which is the desired result.

��� ��� ��� � � 	%� ���^K � 	 � ��� �dK �
	 ��e � S#� ��� �dK �
	 � � �
+ �-,/.�01.q�2.4350 �76 �

A matrix is said to be an � -matrix if it satisfies the following four
properties:

�
 � � � � � % for ���O�;�������E� ~ .�
 ��� � � � % for �
���;�x�<�=�}���;�������E� ~ .��
 � is nonsingular.
�
 �2� � � % .

In reality, the four conditions in the above definition are somewhat redundant and
equivalent conditions that are more rigorous will be given later. Let � be any matrix which
satisfies properties (1) and (2) in the above definition and let % be the diagonal of � . Since
% � % ,

� � % ! * % ! � + � %�� � ! * � ! % � � � + � �
Now define

� ;
� ! % � � � �

Using the previous theorem,
� ! � � % � � � is nonsingular and * � ! � + � � � �1� � % � %

if and only if � * � + ��� . It is now easy to see that conditions (3) and (4) of Definition 1.4
can be replaced by the condition � * � + � � .
�P�>� 3/�5��� � 6T� �

Let a matrix � be given such that
�
 ��� � � � % for ���O�;�������E� ~ .�
 ��� � � � % for �
���;�x�<�=�}���;�������E� ~ .

Then � is an � -matrix if and only if
��
 �	* � + � � , where � � � ! % � � � .

�����	��
 6
From the above argument, an immediate application of Theorem 1.15 shows that

properties (3) and (4) of the above definition are equivalent to � * � + � � , where � � � ! �
and � � % � � � . In addition, � is nonsingular iff � is and � � � is nonnegative iff � is.

The next theorem shows that the condition (1) in Definition 1.4 is implied by the other
three.

�P�>� 3/�5��� � 6T� � Let a matrix � be given such that
�
 ��� � � � % for �
���;�x�<�=�}���;�������E� ~ .�
 � is nonsingular.��
 �2� � � % .

Then
�
 � � � � � % for ���O�;�������E� ~ , i.e., � is an � -matrix.
	�
 �	* � + � � where � � � ! % � � � .

	 � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
��� � �
 6

Define � ; �1� � . Writing that * ��� + �8� �O� yields

������� � � � � � � ���
which gives

� �q� � �q� ��� ! ��
��� ����� 4

� � � � � � �
Since � � � � � � � % for all � , the right-hand side is � � and since � �8� � % , then � �8� � % .
The second part of the result now follows immediately from an application of the previous
theorem.

Finally, this useful result follows.

�P�>� 3/�j�+���76T� �
Let � � � be two matrices which satisfy

��
 � �s� .��
 � �0� � % for all �
��� .

Then if � is an � -matrix, so is the matrix � .

��� � �
 6
Assume that � is an � -matrix and let %�� denote the diagonal of a matrix � .

The matrix % � is positive because

% � � %) � %p�
Consider now the matrix

� ! % � �� � . Since � �s� , then

%) ! � � % � ! � � �

which, upon multiplying through by % � �) , yields� ! % � �) � � % � �) * % � ! � + � % � �� * % � ! � + � � ! % � �� � � � �
Since the matrices

� ! % � �� � and
� ! % � �) � are nonnegative, Theorems 1.14 and 1.16

imply that
�	* � ! % � �� � + � �	* � ! % � �) � + �3�[�

This establishes the result by using Theorem 1.16 once again.

��� � � ����� �(� � ��� � � � � � � � ��� � �	� �
{b|�{>{

A real matrix is said to be positive definite or positive real if* � 8 � 8 + � %z� � 8�� �j� � 8
� %p� ��� J � � �

��� � � � �
�pK �^K �
)S2n 	���K �@K �
	 � ��� �dK �
	 � 	 �

It must be emphasized that this definition is only useful when formulated entirely for real
variables. Indeed, if 8 were not restricted to be real, then assuming that * �98 � 8 + is real
for all 8 complex would imply that � is Hermitian; see Exercise 15. If, in addition to
Definition 1.41, � is symmetric (real), then � is said to be Symmetric Positive Definite
(SPD). Similarly, if � is Hermitian, then � is said to be Hermitian Positive Definite (HPD).
Some properties of HPD matrices were seen in Section 1.9, in particular with regards

to their eigenvalues. Now the more general case where � is non-Hermitian and positive
definite is considered.

We begin with the observation that any square matrix (real or complex) can be decom-
posed as

� ��� � � � � ��� J � � �
in which

� � �
� * ����� 1 + ��� J � � �� � �
�)� * � ! � 1 + � ��� J � � �

Note that both � and � are Hermitian while the matrix � � in the decomposition (1.42)
is skew-Hermitian. The matrix � in the decomposition is called the Hermitian part of� , while the matrix � � is the skew-Hermitian part of � . The above decomposition is the
analogue of the decomposition of a complex number

�
into

� � � � � � ,

�R��� �%* � + � �
� * � � 3� + � �/��� � * � + � �

�!� * � ! 3� + �
When � is real and 8 is a real vector then * �98 � 8 + is real and, as a result, the decom-

position (1.42) immediately gives the equality* � 8 � 8 + ��*�� 8 � 8 + � ��� J � � �
This results in the following theorem.

�P�>� 3/�5��� � 6T� � Let � be a real positive definite matrix. Then � is nonsingular. In
addition, there exists a scalar � � % such that* � 8 � 8 + � � � 8 � $$ � ��� J � � �
for any real vector 8 .

�����	��
 6
The first statement is an immediate consequence of the definition of positive defi-

niteness. Indeed, if � were singular, then there would be a nonzero vector such that �98 �=%
and as a result * � 8 � 8 + � % for this vector, which would contradict (1.41). We now prove
the second part of the theorem. From (1.45) and the fact that � is positive definite, we
conclude that � is HPD. Hence, from (1.33) based on the min-max theorem, we get

� � �
� ���� * � 8 � 8 +* 8 � 8 + � � � �

� ���� *�� 8 � 8 +* 8 � 8 + � (� � � *�� + � %z�
Taking � ; (� � � *�� + yields the desired inequality (1.46).

A simple yet important result which locates the eigenvalues of � in terms of the spectra

	 � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
of � and � can now be proved.

�P�>� 3/�j�+���76 � �
Let � be any square (possibly complex) matrix and let �
� �$ * �s�� 1 + and � � �$ � * � ! � 1 + . Then any eigenvalue (� of � is such that

(� � � *�� + � � �%* (� + � (��� � *�� + ��� J � � �
(� � � * � + � � � * (� + � (��� � * � + � ��� J � �

��� � �
 6
When the decomposition (1.42) is applied to the Rayleigh quotient of the eigen-

vector 8 � associated with (� , we obtain

(� � * �98 � � 8 � + � *�� 8 � � 8 � + � ��* �?8 � � 8 � + � ��� J � � �
assuming that

� 8 � � $ ��� . This leads to

� �%* (� + � *�� 8 � � 8 � +� � * (� + � * �?8 �[� 8 � + �
The result follows using properties established in Section 1.9.

Thus, the eigenvalues of a matrix are contained in a rectangle defined by the eigenval-
ues of its Hermitian part and its non-Hermitian part. In the particular case where � is real,
then � � is skew-Hermitian and its eigenvalues form a set that is symmetric with respect to
the real axis in the complex plane. Indeed, in this case, � � is real and its eigenvalues come
in conjugate pairs.

Note that all the arguments herein are based on the field of values and, therefore,
they provide ways to localize the eigenvalues of � from knowledge of the field of values.
However, this approximation can be inaccurate in some cases.

� ����� 	 �
 �76 	 Consider the matrix

� � � � �� %�� � � �
The eigenvalues of � are ! � � and 101. Those of � are � � *_� % � � � + � � and those of � �
are ����*_� %�� ! � + � � .

When a matrix � is Symmetric Positive Definite, the mapping

�x�	� � *
�x�	� + � ;
* � �g��� + ��� J � � �

from �j�l���j� to � is a proper inner product on � � , in the sense defined in Section 1.4.
The associated norm is often referred to as the energy norm. Sometimes, it is possible to
find an appropriate HPD matrix � which makes a given matrix � Hermitian, i.e., such that* � �g��� + � ��*
�x� � � + � ��� �g�	�
although � is a non-Hermitian matrix with respect to the Euclidean inner product. The
simplest examples are � � ��� � � and � � �N� , where � is Hermitian and � is Hermitian
Positive Definite.

��� � � � � ��� 	�� �^K ��� � ��	 � ��� � ��� 	$	

� ����� � ����� � � � � � � � � � ���
{b|E{
�

Projection operators or projectors play an important role in numerical linear algebra, par-
ticularly in iterative methods for solving various matrix problems. This section introduces
these operators from a purely algebraic point of view and gives a few of their important
properties.

�����)���� � �/�1���,�/��	 � � � � �
 ��
 � ��! �
�����+ �
������

A projector
 is any linear mapping from � � to itself which is idempotent, i.e., such that
 $ �
 �
A few simple properties follow from this definition. First, if
 is a projector, then so is* � !
 + , and the following relation holds,� � � *
 + � � ����* � !
 + �
In addition, the two subspaces

� � � *
 + and

�
����*
 + intersect only at the element zero.

Indeed, if a vector � belongs to

�
����*
 + , then
 �G� � , by the idempotence property. If it

is also in

� � � *
 + , then
 � ��% . Hence, �X�
 � ��% which proves the result. Moreover,
every element of �j� can be written as �G�
 � � * � !
 + � . Therefore, the space � � can
be decomposed as the direct sum

�j� �
� � � *
 + � �

����*
 + �
Conversely, every pair of subspaces � and � which forms a direct sum of �,� defines a
unique projector such that

�
����*
 + � � and

� � � *
 + � � . This associated projector

maps an element � of � � into the component � � , where � � is the � -component in the
unique decomposition �R� � � � � $ associated with the direct sum.

In fact, this association is unique, that is, an arbitrary projector
 can be entirely
determined by the given of two subspaces: (1) The range � of
 , and (2) its null space �
which is also the range of

� !
 . For any � , the vector
 � satisfies the conditions,
 � � �
� !
 � � � �

The linear mapping
 is said to project � onto � and along or parallel to the subspace � .
If
 is of rank � , then the range of

� !
 is of dimension ~ ! � . Therefore, it is natural to
define � through its orthogonal complement � � ��� which has dimension � . The above
conditions that define 8 �
 � for any � become

8 � � ��� J � �	�
� ! 8���� � ��� J � � �

These equations define a projector
 onto � and orthogonal to the subspace � . The first
statement, (1.51), establishes the � degrees of freedom, while the second, (1.52), gives

	 � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
the � constraints that define
 � from these degrees of freedom. The general definition of
projectors is illustrated in Figure 1.1.

�

�

�

 �

 � � �� !
 � ���

, � ��� �
 �76T� Projection of � onto � and orthogonal to � .

The question now is: Given two arbitrary subspaces, � and � both of dimension � , is it
always possible to define a projector onto � orthogonal to � through the conditions (1.51)
and (1.52)? The following lemma answers this question.

����� �X� �76 	 Given two subspaces � and � of the same dimension � , the following
two conditions are mathematically equivalent.

�

No nonzero vector of � is orthogonal to � ;

���

For any � in �j� there is a unique vector 8 which satisfies the conditions (1.51)
and (1.52).

��� � �
 6
The first condition states that any vector which is in � and also orthogonal to �

must be the zero vector. It is equivalent to the condition

��� � � ����% � �
Since � is of dimension � , � � is of dimension ~ ! � and the above condition is equivalent
to the condition that

�5� � � � � � � ��� J � � �
This in turn is equivalent to the statement that for any � , there exists a unique pair of vectors
8 � � such that

�\� 8/� �>�
where 8 belongs to � , and �3� � ! 8 belongs to � � , a statement which is identical with
ii.

In summary, given two subspaces � and � , satisfying the condition ��� � � ����% � , there
is a projector
 onto � orthogonal to � , which defines the projected vector 8 of any vector

��� � � � � ��� 	�� �^K ��� � ��	 � ��� � ��� 	��

� from equations (1.51) and (1.52). This projector is such that�
����*
 + � � � � � � *
 + � � � �

In particular, the condition
 �\� % translates into � � � � � *
 + which means that � � � � .
The converse is also true. Hence, the following useful property,
 �R�=% iff � � � � ��� J � � �

�����)���) $ � ��� � � ���
�� � ���
� � � �/�2��� �
Two bases are required to obtain a matrix representation of a general projector: a basis� � � � � ��������� � � ! for the subspace � �

�
����*
 + and a second one � � � � � ��������� � � !for the subspace � . These two bases are biorthogonal when* � �+� �L� + �=���0�[� ��� J � � �

In matrix form this means � 1 � � �
. Since
 � belongs to � , let � � be its representation

in the � basis. The constraint � !
 � � � is equivalent to the condition,* *�� ! � � + � �L� + � % for �}���[�������E� � �
In matrix form, this can be rewritten as

� 1 *
� ! � � + �&%z� ��� J � � �
If the two bases are biorthogonal, then it follows that � � � 1 � . Therefore, in this case,
 �R� ��� 1 � , which yields the matrix representation of
 ,
 � ��� 1 � ��� J ��� �
In case the bases � and � are not biorthogonal, then it is easily seen from the condition
(1.56) that
 � � * � 1 � + � � � 1 � ��� J �� �
If we assume that no vector of � is orthogonal to � , then it can be shown that the � �R�
matrix � 1 � is nonsingular.

�����)���� ��� ���1�/������� � �/��	0����� ��� ���
�����+ �
������ �
An important class of projectors is obtained in the case when the subspace � is equal to
� , i.e., when � � � *
 + � � ����*
 + � �
Then, the projector
 is said to be the orthogonal projector onto � . A projector that is
not orthogonal is oblique. Thus, an orthogonal projector is defined through the following
requirements satisfied for any vector � ,
 � � � ��� � * � !
 + � � � ��� J � � �

	 � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
or equivalently,
 � � � ��� � * * � !
 + �x�	� + �&% � � � � �

�
 �

�

�

 � � �� !
 � � �

, � ��� �
 �76 � Orthogonal projection of � onto a subspace � .

It is interesting to consider the mapping
 1 defined as the adjoint of
*
 1 �x�	� + � *��g�
 � + � � �x� ���y� ��� J � � �
First note that
 1 is also a projector because for all � and � ,* *
 1 + $ �x�	� + ��*
 1 �g�
 � + ��*
�x�
 $ � + � *
�x�
 � + ��*
 1 �g�	� + �
A consequence of the relation (1.60) is� � � *
 1 + � � ����*
 + � ��� J � � �� � � *
 + � � ����*
 1 + � � ��� J � � �
The above relations lead to the following proposition.

�5�<3/�<32>?.q�2.4350 �76 �
A projector is orthogonal if and only if it is Hermitian.

��� � �
 6
By definition, an orthogonal projector is one for which

� � � *
 + � �
����*
 + � .

Therefore, by (1.61), if
 is Hermitian, then it is orthogonal. Conversely, if
 is orthogonal,
then (1.61) implies

� � � *
 + � � � � *
 1 + while (1.62) implies

�
����*
 + � � ����*
 1 + . Since
21 is a projector and since projectors are uniquely determined by their range and null

spaces, this implies that
 �
 1 .

Given any unitary ~3� � matrix � whose columns form an orthonormal basis of
� �

�
����*
 + , we can represent
 by the matrix
 � � � 1 . This is a particular case of

the matrix representation of projectors (1.57). In addition to being idempotent, the linear
mapping associated with this matrix satisfies the characterization given above, i.e.,� � 1 � � � and * � ! � � 1 + � � � � �
It is important to note that this representation of the orthogonal projector
 is not unique. In
fact, any orthonormal basis � will give a different representation of
 in the above form. As

��� � � � � ��� 	�� �^K ��� � ��	 � ��� � ��� 	 �
a consequence for any two orthogonal bases � � � � $ of � , we must have � � � 1� � � $ � 1$,
an equality which can also be verified independently; see Exercise 26.

�����)�� �
 ���
��
� �/�*� � � ! ��� � �1�/����� � �
�����+ �
������ �
When
 is an orthogonal projector, then the two vectors
 � and * � !
 + � in the decom-
position �R�
 � � * � !
 + � are orthogonal. The following relation results:� � � $$ � �
 � � $$ � � * � !
 + � � $$ �
A consequence of this is that for any � ,�
 � � $ � � � � $)�
Thus, the maximum of

�
 � � $ � � � � $, for all � in �j� does not exceed one. In addition the
value one is reached for any element in

�
����*
 + . Therefore,�
 � $`���

for any orthogonal projector
 .
An orthogonal projector has only two eigenvalues: zero or one. Any vector of the range

of
 is an eigenvector associated with the eigenvalue one. Any vector of the null-space is
obviously an eigenvector associated with the eigenvalue zero.

Next, an important optimality property of orthogonal projectors is established.

�P�>� 3/�5��� � 6 �y�
Let
 be the orthogonal projector onto a subspace � . Then for any

given vector � in �j� , the following is true:
� � �� 	�� � � ! � � $:� � � !
 � � $)� ��� J � � �

�����	��
 6
Let � be any vector of � and consider the square of its distance from � . Since� !
 � is orthogonal to � to which
 � ! � belongs, then� � ! � � $$ � � � !
 � � *
 � ! � + � $$ � � � !
 � � $$ � � *
 � ! � + � $$ �

Therefore,
� � ! � � $ � � ��!
 � � $ for all � in � . This establishes the result by noticing

that the minimum is reached for �Z�
 � .

By expressing the conditions that define �

;
 � for an orthogonal projector
 onto

a subspace � , it is possible to reformulate the above result in the form of necessary and
sufficient conditions which enable us to determine the best approximation to a given vector� in the least-squares sense.

� 3/�<3 � �Y�>��� �76 	 Let a subspace � , and a vector � in �`� be given. Then
� � �� 	�� � � ! � � $ � � � ! � � $ � ��� J � � �

if and only if the following two conditions are satisfied,� � � �� ! � � � �

	 � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
� �	� � � � � � ��� � ��� � � � � �
� � � � ��� � ��� �
{b|�{ �

Linear systems are among the most important and common problems encountered in scien-
tific computing. From the theoretical point of view, the problem is rather easy and explicit
solutions using determinants exist. In addition, it is well understood when a solution ex-
ists, when it does not, and when there are infinitely many solutions. However, the numerical
viewpoint is far more complex. Approximations may be available but it may be difficult to
estimate how accurate they are. This clearly will depend on the data at hand, i.e., primarily
on the coefficient matrix. This section gives a very brief overview of the existence theory
as well as the sensitivity of the solutions.

����� ��� � � �/� � ���
�1
1�"� ! � � � � ���������
Consider the linear system

� �R� � � ��� J � � �
Here, � is termed the unknown and � the right-hand side. When solving the linear system
(1.65), we distinguish three situations.

Case 1 The matrix � is nonsingular. There is a unique solution given by �R� � � � � .
Case 2 The matrix � is singular and � � � ����* � + . Since � � � ����* � + , there is an � �
such that � � � � � . Then � � � � is also a solution for any � in

� � � * � + . Since

� � � * � + is
at least one-dimensional, there are infinitely many solutions.

Case 3 The matrix � is singular and � �� � ����* � + . There are no solutions.

� ����� 	 �
 �76 � The simplest illustration of the above three cases is with small diagonal
matrices. Let

� � � � %
% � � � �

� �
� � �

Then � is nonsingular and there is a unique � given by

�R� � %p� �� � �
Now let

� � � � %
% % � � � �

� �
%�� �

Then � is singular and, as is easily seen, �2� �
����* � + . For example, a particular element� � such that � � � � � is � � � � � � �� � . The null space of � consists of all vectors whose first

component is zero, i.e., all vectors of the form � �� � . Therefore, there are infinitely many

��� � � ���
��K � �����
�
	�� �
�DK �
�;K � 	 � � ��� ��� 	7� � 	��
solution which are given by

� * � + �
� %p� �� � � �5�

Finally, let � be the same as in the previous case, but define the right-hand side as

� �
� �� � �

In this case there are no solutions because the second equation cannot be satisfied.

����� ����)
��
� ��� � �
� �/�2��� �/� � ��� � � �
Consider the linear system (1.65) where � is an ~��j~ nonsingular matrix. Given any matrix
� , the matrix � *�� + � � � � � is nonsingular for � small enough, i.e., for � � � where � is
some small number; see Exercise 32. Assume that we perturb the data in the above system,
i.e., that we perturb the matrix � by � � and the right-hand side � by � � . The solution ��*�� +of the perturbed system satisfies the equation,* ��� � � + � *�� + � �@� � �Y� ��� J � � �
Let � *�� + ��� *�� + ! � . Then,* ��� � � + � *�� + ��* ��� � � + ! * ��� � � + ���� * �9! � � +� *�� + ��� * ��� � � + � � * �9! � � + �
As an immediate result, the function � *�� + is differentiable at �?� % and its derivative is
given by

��� *�% + � � � �
� � �

� *�� +� � � � � * �9! � � + � ��� J ��� �
The size of the derivative of ��*�� + is an indication of the size of the variation that the solu-
tion ��*�� + undergoes when the data, i.e., the pair � � � � ! is perturbed in the direction � � � � ! .
In absolute terms, a small variation � � � �	� � ! will cause the solution to vary by roughly
��� � * % + ��� � � � * � ! � � + . The relative variation is such that� � *�� + ! � �� � � � � � � � � � � � � �� � �>� � � � � ��
 *�� + �
Using the fact that

� � � � � � � � � � in the above equation yields� ��*�� + ! � �� � � � � � � � � � � � � � � � �� � � � � � �� � � � ��
 *�� + ��� J �� �
which relates the relative variation in the solution to the relative sizes of the perturbations.
The quantity

��* � + � � � � � � � � �

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
is called the condition number of the linear system (1.65) with respect to the norm

� � � . The
condition number is relative to a norm. When using the standard norms

� � � � , � ���;�������E�
� ,
it is customary to label ��* � + with the same label as the associated norm. Thus,

� � * � + � � � � � � � � � � � �
For large matrices, the determinant of a matrix is almost never a good indication of

“near” singularity or degree of sensitivity of the linear system. The reason is that
��� � * � + is

the product of the eigenvalues which depends very much on a scaling of a matrix, whereas
the condition number of a matrix is scaling-invariant. For example, for � � � � the deter-
minant is

��� � * � + ��� � , which can be very small if
� � � �3� , whereas ��* � + ��� for any of

the standard norms.
In addition, small eigenvalues do not always give a good indication of poor condition-

ing. Indeed, a matrix can have all its eigenvalues equal to one yet be poorly conditioned.

� ����� 	 �
 �76 � The simplest example is provided by matrices of the form

� � �
� � ��� � � /�

for large � . The inverse of � � is

� � �� � � ! ��� � � /�
and for the � -norm we have � � � ��� � � � � �� ��� �O� � � � �
so that

� � * � � + ��*_� � � � � + $ �
For a large � , this can give a very large condition number, whereas all the eigenvalues of� � are equal to unity.

When an iterative procedure is used for solving a linear system, we typically face the
problem of choosing a good stopping procedure for the algorithm. Often a residual norm,� � � � � � ! ���� �
is available for some current approximation �� and an estimate of the absolute error

� �9!
�
� �

or the relative error
� �
!

�
� � � � � � is desired. The following simple relation is helpful in this

regard, � � !
�
� �� � � � ��* � + � � �� � � �

It is necessary to have an estimate of the condition number ��* � + in order to exploit the
above relation.

	 � 	�� �gK � 	 �
� �@n � � �
	 � � �

� � ��� �
� ��� �

1 Verify that the Euclidean inner product defined by (1.4) does indeed satisfy the general definition
of inner products on vector spaces.

2 Show that two eigenvectors associated with two distinct eigenvalues are linearly independent.
In a more general sense, show that a family of eigenvectors associated with distinct eigenvalues
forms a linearly independent family.

3 Show that if � is any nonzero eigenvalue of the matrix ��� , then it is also an eigenvalue of the
matrix ��� . Start with the particular case where � and � are square and � is nonsingular, then
consider the more general case where ����� may be singular or even rectangular (but such that��� and �	� are square).

4 Let � be an
��

 orthogonal matrix, i.e., such that ��������� , where � is a diagonal matrix.
Assuming that � is nonsingular, what is the inverse of � ? Assuming that ����� , how can � be
transformed into a unitary matrix (by operations on its rows or columns)?

5 Show that the Frobenius norm is consistent. Can this norm be associated to two vector norms
via (1.7)? What is the Frobenius norm of a diagonal matrix? What is the � -norm of a diagonal
matrix (for any �)?

6 Find the Jordan canonical form of the matrix:

���
�������!
� � �
�"� � �$#

Same question for the matrix obtained by replacing the element %'&(& by 1.

7 Give an alternative proof of Theorem 1.3 on the Schur form by starting from the Jordan canonical
form. [Hint: Write �)��*,+-*/.10 and use the QR decomposition of * .]

8 Show from the definition of determinants used in Section 1.2 that the characteristic polynomial
is a polynomial of degree
 for an
��2
 matrix.

9 Show that the characteristic polynomials of two similar matrices are equal.

10 Show that 35456
798�: ; � 7 ; 0=< 7 �)>@?A�CBD�

for any matrix norm. [Hint: Use the Jordan canonical form.]

11 Let * be a nonsingular matrix and, for any matrix norm
; # ; , define

; � ;FE � ; ��* ; . Show
that this is indeed a matrix norm. Is this matrix norm consistent? Show the same for

; *G� ; and;IH ��* ; where
H

is also a nonsingular matrix. These norms are not, in general, associated with
any vector norms, i.e., they can’t be defined by a formula of the form (1.7). Why? What about
the particular case

; � ;DJ � ; *K��*�.10 ; ?
12 Find the field of values of the matrix

���
� � �
�L� �

and verify that it is not equal to the convex hull of its eigenvalues.

� � ��� � � �
	���� ���
��� � � ��
 �@n K � �;K � 	 � � ����� 	�� � �
13 Show that for a skew-Hermitian matrix � ,

��� ?���� ���@B ��� for any �	��

� #
14 Given an arbitrary matrix � , show that if ?����1���@B ��� for all � in
 � , then it is true that

?���� ��� B���?���� ���'B ������� ������
 � #
[Hint: Expand ?�� ?������ BD������� B .]

15 Using the results of the previous two problems, show that if ?A� � ��� B is real for all � in
!� ,
then � must be Hermitian. Would this result be true if the assumption were to be replaced by:?A�"�1���@B is real for all real � ? Explain.

16 The definition of a positive definite matrix is that ?A�"�1���@B be real and positive for all real vectors
� . Show that this is equivalent to requiring that the Hermitian part of � , namely, 0# ?A��� �C��B ,
be (Hermitian) positive definite.

17 Let � 0 � � . 0%$ and � # �&$ � where $ is a Hermitian matrix and � is a Hermitian Positive
Definite matrix. Are � 0 and � # Hermitian in general? Show that � 0 and � # are Hermitian
(self-adjoint) with respect to the � -inner product.

18 Let a matrix � be such that � � � � ?A�CB where � is a polynomial. Show that � is normal. [Hint:
Use Lemma 1.2.]

19 Show that � is normal iff its Hermitian and skew-Hermitian parts, as defined in Section 1.11,
commute.

20 Let � be a Hermitian matrix and � a Hermitian Positive Definite matrix defining a � -inner
product. Show that � is Hermitian (self-adjoint) with respect to the � -inner product if and only
if � and � commute. What condition must satisfy � for the same condition to hold in the more
general case where � is not Hermitian?

21 Let � be a real symmetric matrix and � an eigenvalue of � . Show that if ' is an eigenvector
associated with � , then so is (' . As a result, prove that for any eigenvalue of a real symmetric
matrix, there is an associated eigenvector which is real.

22 Show that a Hessenberg matrix) such that *,+.- 0�/ +10��� �32�� � � � � #9#9# ��
 �/� , cannot be deroga-
tory.

23 Prove all the properties listed in Proposition 1.6.

24 Let � be an 4 -matrix and ' ��5 two nonnegative vectors such that 576 � . 0 '98 �
. Show that� � ':5 6 is an 4 -matrix.

25 Show that if ;=<)�&<)� then ;=< ��61�&<)�>6 � . Conclude that under the same assumption,
we have

; � ; # < ; � ; # .
26 Show that for two orthogonal bases ? 0 �@? # of the same subspace 4 of
 � we have ? 0 ? �0 �K�? # ?	�# �1�A��� .

27 What are the eigenvalues of a projector? What about its eigenvectors?

28 Show that if two projectors B 0 and B # commute, then their product B��=B 0 B # is a projector.
What are the range and kernel of B ?

	 � 	�� �gK � 	 �
� �@n � � �
	 � � 	

29 Consider the matrix � of size
 �

 and the vector � � � � ,

���

!""""""
#

�L���"���"��� #9#9# ���
� � ���"��� #9#9# ���
� � � ��� #9#9# ���
...

...
...

. . .
...

...
...

...
...

. . .
...� � � #9#9# � �

& ''''''
) � �

!"""""
#

���� ���� �����
...��� � � . 0

& '''''
) #

��� Compute � � ,
; � � ; # , and

; � ; # .	 � Show that
; � ; #�

�
 .

��� Give a lower bound for � # ?A� B .
30 What is the inverse of the matrix � of the previous exercise? Give an expression of � 0 ?A� B and

� : ?A�CB based on this.

31 Find a small rank-one perturbation which makes the matrix � in Exercise 29 singular. Derive a
lower bound for the singular values of � .

32 Consider a nonsingular matrix � . Given any matrix � , show that there exists � such that the
matrix ��?��IB � � �
��� is nonsingular for all � 8�� . What is the largest possible value for �
satisfying the condition? [Hint: Consider the eigenvalues of the generalized eigenvalue problem� ' ����� ' .]

NOTES AND REFERENCES. For additional reading on the material presented in this chapter, see
Golub and Van Loan [108], Datta [64], Stewart [202], and Varga [213]. Details on matrix eigenvalue
problems can be found in Gantmacher’s book [100] and Wilkinson [227]. An excellent treatise of
nonnegative matrices is in the book by Varga [213] which remains a good reference on iterative
methods more three decades after its first publication. Another book with state-of-the-art coverage
on iterative methods up to the very beginning of the 1970s is the book by Young [232] which covers
4 -matrices and related topics in great detail. For a good overview of the linear algebra aspects of
matrix theory and a complete proof of Jordan’s canonical form, Halmos [117] is recommended.

� � � � � � �

�

���
 � � � ����� � ��� ��� � � � � �

�;��&0"2� �!9cn(� op$�&8$�-#"_� �!9�	[aYC��#"2� .[-E� � �cn)� � �+.;-E�k"2� "6C#"%$}B6VP4i��&("6��$}B�� '�'A$+�="t�H.;C!&8�<$.�4L�+ ���&I�%$MQj�#"+&T� UR �&I.[B!9 $�QL�<J ����$P"wV! �� �<�)9Y1g�+V/"H.Z�=.;9 *�$>�+C����/$<aYC��#"2� .[-E�N� �t"H.
��� ���
	���
�� ��� "+��$�Q:e!�IJ $�J0eA"H.`�! ! �&I.<UA�0Q5�E"H$�"6��$�QsB6Vt$<aYC��#"2� .;-E�d"+���#"(�0-#*E.;9 *�$L�jfz-�� "H$-!C!Q`B�$�&;.�4hC!-!]�-E.#1L-E�<J ����$tQj�#"+&T� U� �&I.[B!9 $�QL�d"+���#"h��&T� �%$@4=&I.;Ql"6��$+�%$^W[� �%��&q$2"2� m+�ES"_� .;-E�c��&q$�'�$�-�$�&8�)9 9 V`9 ��&I'A$��!-�W`�6 ���&8�H$�e)�IJ $�J0e�"+��$6V`���#*�$(*�$�&0Vj4i$21�-E.;-Em+$�&I.�$�-#"+&T� $+�<J
����$�&8$b��&q$>�%$6*�$�&q�!9dW[� op$�&8$�-#" 1g�+VE��"=.RW[� �%��&8$6"2� m<$>� �Y��&0"_� �)9gn(� op$�&8$�-#"_� �!9�	[aYC��ES"_� .;-)J ����$L�2�FQ: !9 $+�="�Q5$6"+�E.)WPCE�%$+����� ��
������ ���
	�� � �
� �) ! �&I.#UA�FQj�#"2� .;-E�c4T.!&�"6��$t ���&IS"_� �!9AW[� op$�&q$�-#"2� �!9�.[A$�&q�#"H.!&I�<J �^��$�� � � ��
������ �
� � �
"!#��
%$'&(� &8$� !9 ���<$+�("6��$j.!&i� ')�0-��!94kC!-��6"2� .;-tB6VL�^4kC!-��6"2� .[-@1L��� ��� ���E�c�H.;Q5$�W!$+'[&8$<$@.�4u�6Q5.!.�"+�!-�$+�=�g.�*�$�&["+��$('[9 .;B��!9WA.[Q5�A�0-)edB!C#"t1L��� ���M� �N �� $<�<$61�� �%$M �.;9 V!-E.[Q � �)9u.[-b�2�0Q` !9 $P�<$�9 9 �<ep�+C����/���`�+Q5�!9 9"6&T� �)-E'[9 $+�@.!&@&8$<�2"%�!-E';9 $+�+J ����� �tQ5$6"+�E.)W/� �t �&I.[B��)B!9 V`"6��$,Q5.��="^'A$�-�$�&8�)9;�!-�W,1g$�9 9C!-�W!$�&8�k"H.!.)WbW[� �%��&8$6"_� m<�#"2� .[-`"%$<���!-�� aYC�$ �E*����09 �!B!9 $�JzKF-/B�$6"r1g$<$�-:"+��$+�H$`"r1h.MQ5$6"+�#S.)WA�+ep"6��$�&8$N��&8$N�>4T$61��6.;-E�%$�&0*��#"2� *�$N�H����$�Q5$+�`�<�!9 9 $<W)� � � ��
%�+*,&���-.� �#!/��
�$'&(�0� e1L��� ���M�E"k"%$�Q` #"`"H.R$�Q`C!9 �#"%$b�+.;-#"_�0-!CE.;CE� ��& � ���
	�132�
%� & � � 2'45� .�4� !�#VE�2� �+�<J
����� ������) #"H$�&c�0-#"+&I.)WYC��<$+�x"+��$+�%$L"+�!&8$<$ W[� op$�&8$�-#"(W[� �%��&q$2"2� m+�E"_� .;-NQ5$6"6�E.)WA�<J

� � ����� � ��� � � � ��� ��� � � � � ��
 � � � � � ���
�7|E{

Physical phenomena are often modeled by equations that relate several partial derivatives
of physical quantities, such as forces, momentums, velocities, energy, temperature, etc.
These equations rarely have a closed-form (explicit) solution. In this chapter, a few types
of Partial Differential Equations are introduced, which will serve as models throughout the
book. Only one- or two-dimensional problems are considered, and the space variables are
denoted by � in the case of one-dimensional problems or � � and � $ for two-dimensional
problems. In two dimensions, � denotes the “vector” of components *
� � �	� $ + .���

� � � � � ���LK ���Mn^K � � 	���	����^K ��� 	 ��
 ���^K � ��� � �

)�� ����� � � � ��
 �/�2
 �
 �
� � ����� �
One of the most common Partial Differential Equations encountered in various areas of
engineering is Poisson’s equation:� $ 8� � $ � �

� $ 8� � $$ ���y� for �\�
� � �
� $ � in � � �;J �	�

where � is a bounded, open domain in �
$
. Here, � � �	� $ are the two space variables.

�~

� $

� �

� �

, � ��� �
 � 6T� Domain � for Poisson’s equation.

The above equation is to be satisfied only for points that are located at the interior of
the domain � . Equally important are the conditions that must be satisfied on the boundary� of � . These are termed boundary conditions, and they come in three common types:

Dirichlet condition 8 *�� + � ��*�� +Neumann condition � ��	�� *
� + � %
Cauchy condition � ��
�� *�� + � � *
� + 8 *�� + � � *
� +

The vector
�~ usually refers to a unit vector that is normal to � and directed outwards.

Note that the Neumann boundary conditions are a particular case of the Cauchy conditions
with � � ��� % . For a given unit vector,

�� with components � � and � $, the directional
derivative

�
8 �
� �� is defined by�

8� �� *
� + � � � �� � � 8 *
� �
� �� + ! 8 *�� +��
�
8� � � *�� + � � �

�
8� �	$ *
� + � $ � �[J � �

��� 8 � �� � �[J � �

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

where � 8 is the gradient of 8 ,

� 8 �
� � �� � �� �� � ! � � � �;J � �

and the dot in (2.3) indicates a dot product of two vectors in �
$
.

In reality, Poisson’s equation is often a limit case of a time-dependent problem. It can,
for example, represent the steady-state temperature distribution in a region � when there is
a heat source � that is constant with respect to time. The boundary conditions should then
model heat loss across the boundary � .

The particular case where � *�� + �&% , i.e., the equation
� 8 �=%z�

to which boundary conditions must be added, is called the Laplace equation and its solu-
tions are called harmonic functions.

Many problems in physics have boundary conditions of mixed type, e.g., of Dirichlet
type in one part of the boundary and of Cauchy type in another. Another observation is that
the Neumann conditions do not define the solution uniquely. Indeed, if 8 is a solution, then
so is 8M� � for any constant � .

The operator

� �
� $�
� $ � �

� $�
� $$

is called the Laplacean operator and appears in many models of physical and mechanical
phenomena. These models often lead to more general elliptic operators of the form

� �
��
� � � �

��
� � � �

��
� $ � �

��
� $ �� �R� *k� � + � �;J � �

where the scalar function � depends on the coordinate and may represent some specific
parameter of the medium, such as density, porosity, etc. At this point it may be useful to
recall some notation which is widely used in physics and mechanics. The � operator can
be considered as a vector consisting of the components �� � � and �� � ! . When applied to a
scalar function 8 , this operator is nothing but the gradient operator, since it yields a vector
with the components � �� � � and � �� � ! as is shown in (2.4). The dot notation allows dot products

of vectors in �
$

to be defined. These vectors can include partial differential operators. For
example, the dot product �R� 8 of � with 8 ��� � ��

!
�

yields the scalar quantity,�
8 �� � � �

�
8 $� �	$ �

which is called the divergence of the vector function
�8 � � � ��

!
�
. Applying this divergence

operator to 8 � � � , where � is a scalar function, yields the � operator in (2.5). The
divergence of the vector function

�� is often denoted by div
�� or �?� �� . Thus,

div
�� ���R� �� �

�
� �� � � �

�
� $� � $ �

� � � ��K �@K �
	\n^K � � 	���	��
�
	 � 	 ��� � n
� � �
The closely related operator

� �
��
� � � � �

��
� � � �

��
� $ � � $

��
� $ ���� * ��y� � + � �[J � �

is a further generalization of the Laplacean operator
�

in the case where the medium is
anisotropic and inhomogeneous. The coefficients � � �6�%$ depend on the space variable � and
reflect the position as well as the directional dependence of the material properties, such as
porosity in the case of fluid flow or dielectric constants in electrostatics. In fact, the above
operator can be viewed as a particular case of � � �R� * � � + , where � is a � � � matrix
which acts on the two components of � .

)�� ���*) � ���"
 �������
���������	��6! ! � �
����� � � �.� �/�2���
Many physical problems involve a combination of “diffusion” and “convection” phenom-
ena. Such phenomena are modeled by the convection-diffusion equation

�
8�
� ��� �

�
8� � � ��� $

�
8� � $ ���R� *k� � + 8M� �

or
�
8�
� � �� � � 8 ���R� *k� � + 8/� �

the steady-state version of which can be written as

! �?� *w� � + 8Z� �� � � 8 ���y� � �[J � �
Problems of this type are often used as model problems because they represent the simplest
form of conservation of mass in fluid mechanics. Note that the vector

�� is sometimes quite
large, which may cause some difficulties either to the discretization schemes or to the
iterative solution techniques.

� � ��� � � � � � � ��� ��� ��� ������		� ���

�?|��

The finite difference method is based on local approximations of the partial derivatives in
a Partial Differential Equation, which are derived by low order Taylor series expansions.
The method is quite simple to define and rather easy to implement. Also, it is particularly
appealing for simple regions, such as rectangles, and when uniform meshes are used. The
matrices that result from these discretizations are often well structured, which means that
they typically consist of a few nonzero diagonals. Another advantage is that there are a
number of “fast solvers” for constant coefficient problems, which can deliver the solution
in logarithmic time per grid point. This means the total number of operations is of the
order of ~ ��� � * ~ + where ~ is the total number of discretization points. This section gives

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

an overview of finite difference discretization techniques.

)���)���� �
� � ��
 ��

���� �/�*$ � ������� �
The simplest way to approximate the first derivative of a function 8 at the point � is via the
formula � ' 8' � � *
� + � 8 *
� �
� + ! 8 *
� +� � � �;J �
When 8 is differentiable at � , then the limit of the above ratio when � tends to zero is the
derivative of 8 at � . For a function that is � � in the neighborhood of � , we have by Taylor’s
formula

8 *
� � � + � 8 *
� + �
� ' 8' � � �
$
�
' $ 8' � $ � � �� ' � 8' � � � � �� � ' � 8' � � *

 " + � � �;J � �

for some
 " in the interval *
�x�	� �
� + . Therefore, the above approximation (2.8) satisfies
' 8' � � 8 *�� �
� + ! 8 *
� +� ! � � '

$ 8 *�� +' � $ � � * � $ + � � �;J � � �
The formula (2.9) can be rewritten with � replaced by ! � to obtain

8 *
��! � + � 8 *
� + ! � ' 8' � � �
$
�
' $ 8' � $! � �� ' � 8' � � � � �� � ' � 8 *

 � +' � � � � �;J � � �

in which
 � belongs to the interval *
� ! � ��� + . Adding (2.9) and (2.11), dividing through
by � $, and using the mean value theorem for the fourth order derivatives results in the
following approximation of the second derivative

' $ 8 *
� +' � $ � 8 *
� � � + !l� 8 *
� + � 8 *
� ! � +� $! � $�A� ' � 8 *

 +' � � � � �;J � � �
where
 � �
 �
 " . The above formula is called a centered difference approximation of
the second derivative since the point at which the derivative is being approximated is the
center of the points used for the approximation. The dependence of this derivative on the
values of 8 at the points involved in the approximation is often represented by a “stencil”
or “molecule,” shown in Figure 2.2.

� !:� �
, � ��� �
 � 6 � The three-point stencil for the centered difference
approximation to the second order derivative.

The approximation (2.8) for the first derivative is forward rather than centered. Also,
a backward formula can be used which consists of replacing � with ! � in (2.8). The two
formulas can also be averaged to obtain the centered difference formula:

' 8 *�� +' � � 8 *�� � � + ! 8 *�� ! � +� � � � �;J � � �

� � � ��K �@K �
	\n^K � � 	���	��
�
	 � 	 ��� � n
� � �
It is easy to show that the above centered difference formula is of the second order,

while (2.8) is only first order accurate. Denoted by � " and � � , the forward and backward
difference operators are defined by

� " 8 *�� + � 8 *�� � � + ! 8 *�� + � �;J � � �
� � 8 *�� + � 8 *�� + ! 8 *
� ! � + � � �;J � � �

All previous approximations can be rewritten using these operators.
In addition to standard first order and second order derivatives, it is sometimes neces-

sary to approximate the second order operator

'
' � � � *�� + '' �
 �

A centered difference formula for this, which has second order accuracy, is given by

'
' � � � *
� + ' 8' �
 � �

� $ � " � � � � ��� $ � � 8 � � � * � $ + � �;J � � �
�

� � " ��� $ * 8 � " � ! 8 � + !�� � � ��� $ * 8 � ! 8 � � � +� $ �

)��*)��*) 	���! ! �
� �
�1
 � �
 ���
$ � ��!#��� � ����� ��
�� �1
 � �/�
�
 �
� � �����

If the approximation (2.12) is used for both the � !� � ! � and � !� � !! terms in the Laplacean oper-
ator, using a mesh size of � � for the � � variable and � $ for the �	$ variable, the following
second order accurate approximation results:

� 8 *
� + � 8 *
� � �
� � �	� $ + !l� 8 *
� � �	� $ + � 8 *
� ! � � �	� $ +� $ � �
8 *
� � �	�	$ �
� $ + !�� 8 *�� � �	� $ + � 8 *�� � �	� $9! � $ +� $$ �

In the particular case where the mesh sizes � � and � $ are the same and equal to a mesh
size � , the approximation becomes

� 8 *
� + �

�
� $ � 8 *�� � �
� ��� $ + � 8 *
� � ! � ��� $ + � 8 *
� � �	�	$ �
� +� 8 *�� � �	�	$! � + ! � 8 *
� � �	�	$ + ! � � �;J � � �

which is called the five-point centered approximation to the Laplacean. The stencil of this
finite difference approximation is illustrated in (a) of Figure 2.3.

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �
(a)

1

1 -4 1

1

(b)

1 1

-4

1 1

, � ��� �
 � 6 	 Five-point stencils for the centered difference ap-
proximation to the Laplacean operator: (a) the standard stencil,
(b) the skewed stencil.

Another approximation may be obtained by exploiting the four points 8 *
� � � � �	� $ � � +located on the two diagonal lines from 8 *
� � �	� $ + . These points can be used in the same
manner as in the previous approximation except that the mesh size has changed. The cor-
responding stencil is illustrated in (b) of Figure 2.3.

(c)

1 1 1

1 -8 1

1 1 1

(d)

1 4 1

4 -20 4

1 4 1

, � ��� �
 � 6 � Two nine-point centered difference stencils for the
Laplacean operator.

The approximation (2.17) is second order accurate and the error takes the form

� $�A� � � � 8�
� � � �

�
� 8�
� � $ � � � * � � + �

There are other schemes that utilize nine-point formulas as opposed to five-point formu-
las. Two such schemes obtained by combining the standard and skewed stencils described
above are shown in Figure 2.4. Both approximations (c) and (d) are second order accurate.
However, (d) is sixth order for harmonic functions, i.e., functions whose Laplacean is zero.

� � � ��K �@K �
	\n^K � � 	���	��
�
	 � 	 ��� � n
� � �
)��*)�� � ! �*��� � ��	���! ! �
� �
�1
 � � !#������� 	
�������� �
$ �

Consider the one-dimensional equation,

! 8 � � *�� + ��� *
� + for � � * %z��� + � �[J � �
8 *�% + � 8 *2� + �=%z� � �;J � � �

The interval [0,1] can be discretized uniformly by taking the ~7� � points

� � ��� � � �(�(�=%z�������E� ~Z� �
where � �
� � * ~ � � + . Because of the Dirichlet boundary conditions, the values 8 *�� � +and 8 *�� � " � + are known. At every other point, an approximation 8 � is sought for the exact
solution 8 *
� � + .If the centered difference approximation (2.12) is used, then by the equation (2.18)
expressed at the point � � , the unknowns 8 � � 8 � � � � 8 � " � satisfy the relation

! 8 � � � � � 8 � ! 8 � " � � � $ � � �
in which � � ;

� *
� � + . Notice that for �,� � and �,� ~ , the equation will involve 8 � and
8 � " � which are known quantities, both equal to zero in this case. Thus, for ~ � � , the
linear system obtained is of the form

� �D� �
where

� � �
� $

!"""""
#
� !P�
!P� � !P�

!P� � !P�
!P� � !P�

!P� � !P�
!P� �

& '''''
) �

)��*)�� � �
 � �*��	 �
1���
$"� �
Consider now the one-dimensional version of the convection-diffusion equation (2.7) in
which the coefficients � and � are constant, and �\�&% , using Dirichlet boundary conditions,� !`� 8 � � ���<8 � � %z� % � � � � ���

8 *�% + �&%p� 8 * � + � �[� � �;J � � �
In this particular case, it is easy to verify that the exact solution to the above equation is
given by

8 *
� + � � ! ��� �
� ! � �

where # is the so-called Péclet number defined by # � � � � � . Now consider the approxi-
mate solution provided by using the centered difference schemes seen above, for both the

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

first- and second order derivatives. The equation for unknown number � becomes

� 8 � " � ! 8 � � �� � !�� 8 � " � !l� 8 � � 8 � � �� $ �&%p�
or, defining �`� # � � � ,

! *_� !�� + 8 � " � � � 8 � ! *2� � � + 8 � � � � %p� � �;J � � �
This is a second order homogeneous linear difference equation and the usual way to solve
it is to seek a general solution in the form 8 � � � � . Substituting in (2.21), � must satisfy*2�9!�� + � $!l� �`� *k� � � + � %z�
Therefore, � � � � is a root and the second root is � $ � *2� � � + � *_�1!�� + . The general
solution of the above difference equation is now sought as a linear combination of the two
solutions corresponding to these two roots,

8 � ��� � �� � � � �$ � � � � � � � �� !�� � � �
Because of the boundary condition 8 � � % , it is necessary that

� � ! � . Likewise, the
boundary condition 8 � " � ��� yields��� �

� ! : � " � with : ;
� � �� !�� �

Thus, the solution is

8 � � � ! : �� ! : � " � �
When � ��� � # the factor : becomes negative and the above approximations will oscillate
around zero. In contrast, the exact solution is positive and monotone in the range � %p��� ! . In
this situation the solution is very inaccurate regardless of the arithmetic. In other words,
the scheme itself creates the oscillations. To avoid this, a small enough mesh � can be
taken to ensure that � � � . The resulting approximation is in much better agreement with
the exact solution. Unfortunately, this condition can limit the mesh size too drastically for
large values of � .

Note that when � � % , the oscillations disappear since : ��� . In fact, a linear algebra
interpretation of the oscillations comes from comparing the tridiagonal matrices obtained
from the discretization. Again, for the case ~ � � , the tridiagonal matrix resulting from
discretizing the equation (2.7) takes the form

� � �
� $

!"""""
#

� !P� � �!P� !�� � !P� � �!P� !�� � !P� � �!P� !�� � !P� � �!P� !�� � !P� � �!P� !�� �

& '''''
) �

The above matrix is no longer a diagonally dominant M-matrix. Observe that if the back-
ward difference formula for the first order derivative is used, we obtain

� 8 � ! 8 � � �� !�� 8 � � � !�� 8 � � 8 � " �� $ �=%z�

� � � ��K �@K �
	\n^K � � 	���	��
�
	 � 	 ��� � n
� �7	

Then (weak) diagonal dominance is preserved if � � % . This is because the new matrix
obtained for the above backward scheme is

� � �
� $

!"""""
#
� � � !P�
!P� !�� � � � !P�

!P� !�� � � � !P�
!P� !�� � � � !P�

!P� !�� � � � !P�
!P� !�� � � �

&('''''
)

where � is now defined by ��� # � . Each diagonal term � �8� gets reinforced by the positive
term � while each subdiagonal term � ��� � � � increases by the same amount in absolute value.
In the case where � � % , the forward difference formula

� 8 � " � ! 8 �� !�� 8 � � � !�� 8 � � 8 � " �� $ �=%
can be used to achieve the same effect. Generally speaking, if � depends on the space
variable � , the effect of weak-diagonal dominance can be achieved by simply adopting the
following discretization known as an “upwind scheme”:

� � � 8 �� !�� 8 � � � !�� 8 � � 8 � " �� $ �=%
where

� � � � � �� if � � %
� "� if � � %z�

The above difference scheme can be rewritten by introducing the sign function � � ��� * � + �� � � � � . The approximation to 8 � at � � is then defined by

8 � *���� + �

�
� *_�9! � � ����* � + + � " 8 �� � �

� *_� � � � ����* � + + � �-8 �� �
Making use of the notation*
� + " � �

� *
� � � � � + � *
� + � � �
� *
��! � � � + � � �;J � � �

a slightly more elegant formula can be obtained by expressing the approximation of the
product � *
� � + 8 � *
� � + ,

� *
� � + 8 � *
� � + �

�
� * � � ! � � � � + �

" 8 �� � �
� * � � � � � � � + � �-8 ��

�

�
� � ! � "� 8 � � � � � � � � 8 � ��� �� 8 � " � � � � �;J � � �

where � � stands for � *
� � + . The diagonal term in the resulting tridiagonal matrix is nonneg-
ative, the offdiagonal terms are nonpositive, and the diagonal term is the negative sum of
the offdiagonal terms. This property characterizes upwind schemes.

A notable disadvantage of upwind schemes is the low order of approximation which
they yield. An advantage is that upwind schemes yield linear systems that are easier to
solve by iterative methods.

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

�

�

, � ��� �
 � 6 � Natural ordering of the unknowns for a �L� � two-
dimensional grid.

)���)���� ! ����� ����	���! ! �
���
��
 � ��!#����� � 	
�������� �
$ �
Similar to the previous case, consider this simple problem,

! � � $ 8� � $ � �
� $ 8� � $$ � ��� in � � �;J � � �

8 �=% on � � �;J � � �
where � is now the rectangle *�%p� 3 � + � *�%p� 3 $ + and � its boundary. Both intervals can be
discretized uniformly by taking ~ � � � points in the � � direction and ~ $ � � points in the� $ directions:

� � � �(�s� � � � �2���&%p�������E� ~ � � � � $ � ����� � � $ �H�}�=%z��������� ~ $ � �
where

� � � 3 �
~ � � � � $:� 3 $

~ $ � � �
Since the values at the boundaries are known, we number only the interior points, i.e.,

the points *�� � � � �	�	$ � � + with % � � � ~ � and % � � � ~ $. The points are labeled from
the bottom up, one horizontal line at a time. This labeling is called natural ordering and is
shown in Figure 2.5 for the very simple case when ~ � � � and ~ $ � � . The pattern of the
matrix corresponding to the above equations appears in Figure 2.6.

� � � � � 	 ��K �@K �
	 	�� 	7� 	 � � � 	 ��� � n �
�

, � ��� �
 � 6 � Pattern of matrix associated with the �Z� � finite
difference mesh of Figure 2.5.

To be more accurate, the matrix has the following block structure:

� � �
� $

!# � ! �
! � � ! �

! � �
&) with � �

!"
#
� !P�
!P� � !P�

!P� � !P�
!P� �

&('
) �

��	
� � � � � � � � ��������� � ��� � 	 � �

�?|��

The finite element method is best illustrated with the solution of a simple elliptic Partial
Differential Equation in a two-dimensional space. Consider again Poisson’s equation (2.24)
with the Dirichlet boundary condition (2.25), where � is a bounded open domain in �

$
and � its boundary. The Laplacean operator

� �
� $�
� $ � �

� $�
� $$

appears in many models of physical and mechanical phenomena. Equations involving the
more general elliptic operators (2.5) and (2.6) can be treated in the same way as Pois-
son’s equation (2.24) and (2.25), at least from the viewpoint of the numerical solutions
techniques.

An essential ingredient for understanding the finite element method is Green’s for-
mula. The setting for this formula is an open set � whose boundary consists of a closed
and smooth curve � as illustrated in Figure 2.1. A vector-valued function

�� � ��� �� !
�

, which
is continuously differentiable in � , is given. The divergence theorem in two-dimensional
spaces states that ���

div
�� ' �D� ��� �� � �~ ' � � � �;J � � �

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

The dot in the right-hand side represents a dot product of two vectors in �
$
. In this case it is

between the vector
�� and the unit vector

�~ which is normal to � at the point of consideration
and oriented outward. To derive Green’s formula, consider a scalar function � and a vector
function

��3� ��� �

� !
�
. By standard differentiation,�R� * � �� + ��* � � + � �� � � �R� ��}�

which expresses � � � �� as � � � ��3� ! � �R� �� � �R� * � �� + � � �;J ��� �
Integrating the above equality over � and using the divergence theorem, we obtain� � � � � �� ' �D��! � �

� �R� �� ' � �
� � �?� * � �� + ' �

��! � �
� �R� �� ' � �

� �
� ��b� �~ ' � � � �;J �� �

The above equality can be viewed as a generalization of the standard integration by part
formula in calculus. Green’s formula results from (2.28) by simply taking a vector

�� which
is itself a gradient of a scalar function 8 , namely,

��3� � 8 ,� � � � � � 8 ' �D� ! ���
� �R� � 8 ' � �

� �
� � 8 � �~ ' � �

Observe that �R� � 8 � � 8 . Also the function � 8 � �~ is called the normal derivative and is
denoted by

� 8 � �~ �
�
8� �~ �

With this, we obtain Green’s formula� � � � � � 8 ' �D� ! � �
� � 8 ' � �

� �
�

�
8� �~ ' � � � �;J � � �

We now return to the initial problem (2.24-2.25). To solve this problem approximately, it
is necessary to (1) take approximations to the unknown function 8 , and (2) translate the
equations into a system which can be solved numerically. The options for approximating
8 are numerous. However, the primary requirement is that these approximations should be
in a (small) finite dimensional space. There are also some additional desirable numerical
properties. For example, it is difficult to approximate high degree polynomials numerically.
To extract systems of equations which yield the solution, it is common to use the weak
formulation of the problem. Let us define

� * 8 � � +<;
��� � 8 � � � ' �R� � � � � 8� � �

�
�� � � �

�
8� � $
�
�� � $ � ' �x�

* �y� � + ; � � � � ' �g�
An immediate property of the functional � is that it is bilinear. That means that it is linear
with respect to 8 and � , namely,

� * � � 8 � � � $ 8 $ � � + � � � � * 8 � � � + � � $ � * 8 $ � � + ��� � � � � $ � � ��	* 8 � (� � � � ($ � $ + � (� � * 8 � � � + � ($ � * 8 � � $ + ��� (� � ($ � � �

� � � � � 	 ��K �@K �
	 	�� 	7� 	 � � � 	 ��� � n � �
Notice that * 8 � � + denotes the � $ -inner product of 8 and � in � , i.e.,* 8 � � + � � �

8 *
� + � *�� + ' �x�
then, for functions satisfying the Dirichlet boundary conditions, which are at least twice
differentiable, Green’s formula (2.29) shows that

� * 8 � � + � ! * � 8 � � + �
The weak formulation of the initial problem (2.24-2.25) consists of selecting a subspace of
reference � of �

$
and then defining the following problem:

Find 8 � � such that �	* 8 � � + � * �y� � + � � � ��� � � �;J � � �
In order to understand the usual choices for the space � , note that the definition of the
weak problem only requires the dot products of the gradients of 8 and � and the functions� and � to be � $ –integrable. The most general � under these conditions is the space of
all functions whose derivatives up to the first order are in � $. This is known as �

� * � + .However, this space does not take into account the boundary conditions. The functions in� must be restricted to have zero values on � . The resulting space is called �
�� * � + .The finite element method consists of approximating the weak problem by a finite-

dimensional problem obtained by replacing � with a subspace of functions that are defined
as low-degree polynomials on small pieces (elements) of the original domain.

, � ��� �
 � 6 � Finite element triangulation of a domain.

Consider a region � in the plane which is triangulated as shown in Figure 2.7. In this
example, the domain is simply an ellipse but the external enclosing curve is not shown.
The original domain is thus approximated by the union � � of � triangles

� � ,
� � � ��� ��� � � �

For the triangulation to be valid, these triangles must have no vertex that lies on the edge

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

of any other triangle. The mesh size � is defined by

� � ������ � � ������� � � diam * � � +
where diam * � + , the diameter of a triangle

�
, is the length of its longest side.

Then the finite dimensional space � � is defined as the space of all functions which
are piecewise linear and continuous on the polygonal region � � , and which vanish on the
boundary � . More specifically,� � � � � � ��� � � continuous � ���

�
� �&%z� ��� ��� linear �>� � �

Here, ��� � represents the restriction of the function � to the subset � . If �y�[�H�R� �;�������E� ~
are the nodes of the triangulation, then a function �y� in � � can be associated with each
node �z� , so that the family of functions ��� ’s satisfies the following conditions:

� � *
� � + �=� �0� � � � if � � � � �
% if � �
� � � � � �;J � � �

These conditions define �d�2�6�@� �[��������� ~ uniquely. In addition, the �d� ’s form a basis of the
space � � .

Each function of � � can be expressed as

� *�� + � �� � ���
�� �y� *
� + �
The finite element approximation consists of writing the Galerkin condition (2.30) for func-
tions in � � . This defines the approximate problem:

Find 8 � � � such that � * 8 � � + � * �y� � + � � � � � � � � �;J � � �
Since 8 is in � � , there are ~ degrees of freedom. By the linearity of � with respect to � , it
is only necessary to impose the condition � * 8 � � � + � * �y� � � + for ��� �;�������E� ~ . This results
in ~ constraints.

Writing the desired solution 8 in the basis � �d� � as

8 � �� � ���
 � � � *
� +
and substituting in (2.32) gives the linear problem

��� ��� � �F�
 � � � � � �;J � � �
where �x�0�:� � * �y�6� �z� + � � �g� * �y� �y� + �
The above equations form a linear system of equations

� �R� � �
in which the coefficients of � are the ���0� ’s; those of � are the

� � ’s. In addition, � is a
Symmetric Positive Definite matrix. Indeed, it is clear that� � � �y� � �z��' �R� � � � �z� � �y� ' �x�

� � � � � 	 ��K �@K �
	 	�� 	7� 	 � � � 	 ��� � n � �
which means that � �0� � � �6� . To see that � is positive definite, first note that � * 8 � 8 + � %
for any function 8 . If � * �x� � + � % for a function in � � , then it must be true that � ��� %
almost everywhere in � � . Since � is linear in each triangle and continuous, then it is clear
that it must be constant on all � . Since, in addition, it vanishes on the boundary, then it
must be equal to zero on all of � . The result follows by exploiting the relation

* �
u�
 + ��� * �x� � + with �\� �� � ���
 � � � �
which is valid for any vector ��
�� � � ��� ������� � � .

Another important observation is that the matrix � is also sparse. Indeed, �L�0� is
nonzero only when the two basis functions �h� and �z� have common support triangles,
or equivalently when the nodes � and � are the vertices of a common triangle. Specifically,
for a given node � , the coefficient � �0� will be nonzero only when the node � is one of the
nodes of a triangle that is adjacent to node � .

In practice, the matrix is built by summing up the contributions of all triangles by
applying the formula

� * �y�+� �z� + � � � � � * �y�+� �z� +
in which the sum is over all the triangles

�
and

� � * �y�+� �z� + � �
�
� �y� � �u� ' �x�

Note that � � * �y�6� �z� + is zero unless the nodes � and � are both vertices of
�

. Thus, a triangle
contributes nonzero values to its three vertices from the above formula. The �M� � matrix

� � �
!# � � * ���+� ��� + � � * ���+� �u� + � � * �y�+� � � +� � * �z�[� �y� + � � * �z�[� �z� + � � * �z�[� � � +� � * � � � �y� + � � * � � � �z� + � � * � � � � � +

&)
associated with the triangle

� *r�<�H�[� � + with vertices �<�=�;� � is called an element stiffness
matrix. In order to form the matrix � , it is necessary to sum up all the contributions� � * � � � � �0+ to the position � � � of the matrix. This process is called an assembly pro-
cess. In the assembly, the matrix is computed as

� � ��� ��
�
��� � � � � � � �;J � � �

in which ~ � 3 is the number of elements. Each of the matrices � � � � is of the form

� � � � �
 � � ���
 /�
where � ��� is the element matrix for the element

�
� as defined above. Also
 � is an ~\� �

Boolean connectivity matrix which maps the coordinates of the �M� � matrix � � � into the
coordinates of the full matrix � .

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �
Finite element mesh

1

2 3

4 5

6

1

2

3

4

Assembled matrix

, � ��� �
 � 6 � A simple finite element mesh and the pattern of
the corresponding assembled matrix.

� ����� 	 �
 � 6T� The assembly process can be illustrated with a very simple example. Con-
sider the finite element mesh shown in Figure 2.8. The four elements are numbered from
bottom to top as indicated by the labels located at their centers. There are six nodes in this
mesh and their labeling is indicated in the circled numbers. The four matrices � � � � asso-
ciated with these elements are shown in Figure 2.9. Thus, the first element will contribute
to the nodes �;�+�u� � , the second to nodes �u� � � � , the third to nodes �u� ��� � , and the fourth to
nodes ��� � � � .

� � � � � � $ � � � � � � � � �

, � ��� �
 � 6 � The element matrices � � � � , �?� �[��������� � for the
finite element mesh shown in Figure 2.8.

In fact there are two different ways to represent and use the matrix � . We can form
all the element matrices one by one and then we can store them, e.g., in an ~ � 3j� �D� �
rectangular array. This representation is often called the unassembled form of � . Then the
matrix � may be assembled if it is needed. However, element stiffness matrices can also
be used in different ways without having to assemble the matrix. For example, frontal
techniques are direct solution methods that take the linear system in unassembled form and
compute the solution by a form of Gaussian elimination. There are also iterative solution
techniques which work directly with unassembled matrices. One of the main operations

� � � � 	 � � � 	�� 	�� ���^K ��� � �@n ��	���K � 	7� 	���� �y�

required in many iterative methods is to compute �R� � � , the product of the matrix � by
an arbitrary vector � . In unassembled form, this can be achieved as follows:

�M� � �\� ��� ��
�
��� � � � � � � � � ��

�
� �
 � � � � *
 /� � + � � �;J � � �

Thus, the product
 /� � gathers the � data associated with the � -element into a 3-vector
consistent with the ordering of the matrix � ��� . After this is done, this vector must be mul-
tiplied by � ��� . Finally, the result is added to the current � vector in appropriate locations
determined by the
 � array. This sequence of operations must be done for each of the ~ � 3
elements.

A more common and somewhat more appealing technique is to perform the assembly
of the matrix. All the elements are scanned one by one and the nine associated contribu-
tions � � * � � � � � + , � � � � ���<�H�[� � � added to the corresponding positions in the global
“stiffness” matrix. The assembled matrix must now be stored but the element matrices
may be discarded. The structure of the assembled matrix depends on the ordering of the
nodes. To facilitate the computations, a widely used strategy transforms all triangles into a
reference triangle with vertices *�%p�#% + � * %z��� + � *_�;�#% + . The area of the triangle is then simply
the determinant of the Jacobian of the transformation that allows passage from one set of
axes to the other.

Simple boundary conditions such as Neumann or Dirichlet do not cause any difficulty.
The simplest way to handle Dirichlet conditions is to include boundary values as unknowns
and modify the assembled system to incorporate the boundary values. Thus, each equation
associated with the boundary point in the assembled system is replaced by the equation
8 � � � � . This yields a small identity block hidden within the linear system. For Neumann
conditions, Green’s formula will give rise to the equations� � � 8 � � �u� ' �R� � � � �z� ' � � � � �u�

�
8� �~ ' � � � �;J � � �

which will involve the Neumann data � ��
�� over the boundary. Since the Neumann data is
typically given at some points only (the boundary nodes), linear interpolation (trapezoidal
rule) or the mid-line value (midpoint rule) can be used to approximate the integral. Note
that (2.36) can be viewed as the � -th equation of the linear system. Another important point
is that if the boundary conditions are only of Neumann type, then the resulting system is
singular. An equation must be removed, or the linear system must be solved by taking this
singularity into account.

��� ��	�� ���
� � � ��� � � � �
� � � � � �
� �������

�?|��

Generating a finite element triangulation can be done quite easily by exploiting some initial
grid and then refining the mesh a few times either uniformly or in specific areas. The
simplest refinement technique consists of taking the three midpoints of a triangle, thus
creating four smaller triangles from a larger triangle and losing one triangle, namely, the

��� ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

original one. A systematic use of one level of this strategy is illustrated for the mesh in
Figure 2.8, and is shown in Figure 2.10.

Finite element mesh

1

2 3

4 5

6

7

8

9

1011

12

13

1415

1

2

3

4

5

67

8 9

10

11

1213

14 15

16

Assembled matrix

, � ��� �
 � 6T��� The simple finite element mesh of Figure 2.8 af-
ter one level of refinement and the corresponding matrix.

One advantage of this approach is that it preserves the angles of the original triangu-
lation. This is an important property since the angles on a good quality triangulation must
satisfy certain bounds. On the other hand, the indiscriminate use of the uniform refinement
strategy may lead to some inefficiencies. Indeed, it is desirable to introduce more triangles
in areas where the solution is likely to have large variations. In terms of vertices, midpoints
should be introduced only where needed. To obtain standard finite element triangles, the
points that have been created on the edges of a triangle must be linked to existing vertices in
the triangle. This is because no vertex of a triangle is allowed to lie on the edge of another
triangle.

Figure 2.11 shows three possible cases that can arise. The original triangle is (a). In
(b), only one new vertex (numbered �) has appeared on one edge of the triangle and it
is joined to the vertex opposite to it. In (c), two new vertices appear inside the original
triangle. There is no alternative but to join vertices (4) and (5). However, after this is done,
either vertices (4) and (3) or vertices (1) and (5) must be joined. If angles are desired that
will not become too small with further refinements, the second choice is clearly better in
this case. In fact, various strategies for improving the quality of the triangles have been
devised. The final case (d) corresponds to the “uniform refinement” case where all edges
have been split in two. There are three new vertices and four new elements, and the larger
initial element is removed.

� � � ��K �@K �
	5� � �
?� 	�� 	 ��� �`n � 	

(a)

1 2

3
(b)

1 2

3

4

(c)

1 2

3

4

5

(d)

1 2

3

4

56

, � ��� �
 � 6T�z� Original triangle (a) and three possible refine-
ment scenarios.

� � ��� � � ��� � �
��� ������		� �
�?|��

The finite volume method is geared toward the solution of conservation laws of the form:
�
8�
� � �R� �� � � � � �;J ��� �

In the above equation,
�� * 8 � � + is a certain vector function of 8 and time, possibly nonlinear.

This is called the “flux vector.” The source term � is a function of space and time. We now
apply the principle used in the weak formulation, described before. Multiply both sides by
a test function � , and take the integral� �

�

�
8�
�
' � �

� �
� �R� �� ' �D� � �

� � ' �x�
Then integrate by part using formula (2.28) for the second term on the left-hand side to
obtain � �

�

�
8�
�
' � ! � � � �>� �� ' � �

� �
� �� � �~ ' � � � �

� � ' �x�
Consider now a control volume consisting, for example, of an elementary triangle

� � in
the two-dimensional case, such as those used in the finite element method. Take for � a
function �`� whose value is one on the triangle and zero elsewhere. The second term in the

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

above equation vanishes and the following relation results:�
� 4

�
8�
�
' � �

���
4
�� � �~ ' � � �

� 4 �
' �g� � �;J �� �

The above relation is at the basis of the finite volume approximation. To go a little further,
the assumptions will be simplified slightly by taking a vector function

��
that is linear with

respect to 8 . Specifically, assume �� � � (� 8
($ 8 � ;

�(8 �
Note that, in this case, the term �R� ��

in (2.37) becomes
�� * 8 + � �(� � 8 . In addition, the

right-hand side and the first term in the left-hand side of (2.38) can be approximated as
follows: �

� 4

�
8�
�
' � �

�
8 ��
�
� � � � � �

� 4 �
' � � ��� � � � � �

Here,
� � � � represents the volume

�
of

� � , and � � is some average value of � in the cell
� � .

These are crude approximations but they serve the purpose of illustrating the scheme.
The finite volume equation (2.38) yields�

8 ��
�
� � � � � �(� � � 4 8 �~ ' � �
��� � � � � � � �;J � � �

The contour integral � �
4 8
�~ ' �

is the sum of the integrals over all edges of the control volume. Let the value of 8 on each
edge � be approximated by some “average” 38 � . In addition, � � denotes the length of each
edge and a common notation is �� � � � � �~ � �
Then the contour integral is approximated by�(� � � 4 8 �~ ' � �

�
�
���
�
�
38 � �(� �~ � � � � �

�
���
�
�
38 � �(� �� � � � �;J � � �

The situation in the case where the control volume is a simple triangle is depicted in Figure
2.12. The unknowns are the approximations 8 � of the function 8 associated with each cell.
These can be viewed as approximations of 8 at the centers of gravity of each cell � . This
type of model is called cell-centered finite volume approximations. Other techniques based
on using approximations on the vertices of the cells are known as cell-vertex finite volume
techniques.

�����
	��
�������������������������������������� !���#"������$���%�'&����($�!����)*�+)*&$�')%,

� � � ��K �@K �
	5� � �
?� 	�� 	 ��� �`n � �

�

�~ �

��~ �

�

�~ �
�

��

3
, � ��� �
 � 6T� � Finite volume cell associated with node � and
three neighboring cells.

The value 38 � required in (2.40) can be taken simply as the average between the ap-
proximation 8 � of 8 in cell � and the approximation 8 � in the cell � on the other side of the
edge

38 �:� �
� * 8 � � 8 � + � � �;J � �	�

This gives �
8 ��
�
� � � � � �

� � � * 8 � � 8 � + �(� �� � ��� � � � � � �

One further simplification takes place by observing that�
� �� ��� %

and therefore �
� 8 � �(� �� � � 8 � �(� � � �� � � %p�

This yields �
8 ��
�
� � � � � �

� � � 8 � �(� �� �:����� � � � � �

In the above equation, the summation is over all the neighboring cells � . One prob-
lem with such simple approximations is that they do not account for large gradients of
8 in the components. In finite volume approximations, it is typical to exploit upwind
schemes which are more suitable in such cases. By comparing with one-dimensional up-

� � ��� � � �
	�� � n^K � � ��	 �^K �����^K � � � � �cn 	 �

wind schemes, it can be easily seen that the suitable modification to (2.41) is as follows:38 �`� �
� * 8 � � 8 � + ! �

� sign � �(� �� � � * 8 � ! 8 � + � � �;J � � �
This gives

�
8 ��
�
� � � � � � � �(� �� � � �

� * 8 � � 8 � + ! �
� sign * �(� �� � + * 8 �9! 8 � + � ����� � � � � �

Now write
�
8 ��
�
� � � � � � � � �

� * 8 � � 8 � + �(� �� � ! �
� � �(� �� � � * 8 � ! 8 � + � �
��� � � � ��

8 ��
�
� � � � � � � � 8 � * �(� �� � + " � 8 � * �(� �� � + � � ��� � � � � �

where * � + �

;

�
� �

�
�

� �
The equation for cell � takes the form

�
8 ��
�
� � � � � � � 8 � � � � � �0� 8 � ��� � � � � � �

where � � � � � * �(� �� � + " � %z� � �;J � � �
� �F� � * �(� �� � + � � %z� � �;J � � �

Thus, the diagonal elements of the matrix are nonnegative, while its offdiagonal elements
are nonpositive. In addition, the row-sum of the elements, i.e., the sum of all elements in
the same row, is equal to zero. This is because� � � � � � �F� � � � * �(� �� � + " � � � * �(� �� � + � � � � �(� �� � � �(� � � �� � � %z�
The matrices obtained have the same desirable property of weak diagonal dominance seen
in the one-dimensional case. A disadvantage of upwind schemes, whether in the context of
irregular grids or in one-dimensional equations, is the loss of accuracy due to the low order
of the schemes.

� � � � � � ��� �

1 Derive Forward Difference formulas similar to (2.8), i.e., involving ' ?��@BD��' ?�� � * BD��' ?�� �� * BD� #9#9# , which are of second and third order. Write down the discretization errors explicitly.

	 � 	�� �gK � 	 �
� �@n � � �
	 � � �
2 Derive a Centered Difference formula for the first derivative, similar to (2.13), which is at least

of third order.

3 Show that the Upwind Difference scheme described in 2.2.4, when % and
��

are constant, is stable
for the model problem (2.7).

4 Develop the two nine-point formulas illustrated in Figure 2.4. Find the corresponding discretiza-
tion errors. [Hint: Combine 0& of the five-point formula (2.17) plus

#& of the same formula based
on the diagonal stencil � ?�� � �'BD�9?�� � *-���!� * B,�/?�� � *1��� � * BD� ?�� � *-���!� * BD�9?�� � *-��� � * B��
to get one formula. Use the reverse combination

#& , 0& to get the other formula.]

5 Consider a (two-dimensional) rectangular mesh which is discretized as in the finite difference
approximation. Show that the finite volume approximation to

�� # � ' yields the same matrix as an
upwind scheme applied to the same problem. What would be the mesh of the equivalent upwind
finite difference approximation?

6 Show that the right-hand side of equation (2.16) can also be written as�
* #�� . � %	� - �

!
� - '
�
#

7 Show that the formula (2.16) is indeed second order accurate for functions that are in $�
 .
8 Show that the functions � � ’s defined by (2.31) form a basis of ?�
 .

9 Develop the equivalent of Green’s formula for the elliptic operator � defined in (2.6).

10 Write a short FORTRAN or C program to perform a matrix-by-vector product when the matrix
is stored in unassembled form.

11 Consider the finite element mesh of Example 2.1. Compare the number of operations required to
perform a matrix-by-vector product when the matrix is in assembled and in unassembled form.
Compare also the storage required in each case. For a general finite element matrix, what can
the ratio be between the two in the worst case (consider only linear approximations on triangular
elements) for arithmetic? Express the number of operations in terms of the number of nodes and
edges of the mesh. You may make the assumption that the maximum number of elements that
are adjacent to a given node is � (e.g., � � �

).

12 Let � be a polygon in
� #

with � edges, and let
�� + � � + �
 + , for 2 � � � #F#9# ��� , where � + is the

length of the 2 -th edge and
�
 + is the unit outward normal at the 2 -th edge. Use the divergence

theorem to prove that
���
+�� 0

�� + ��� .

NOTES AND REFERENCES. The material in this chapter is based on several sources. For a basic
description of the finite element method, the book by C. Johnson is a good reference [128]. Axelsson
and Barker [16] gives a treatment which includes various solution techniques emphasizing iterative
techniques. For finite difference and finite volume methods, we recommend C. Hirsch [121], which
also gives a good description of the equations and solution methods for fluid flow problems.

� � � � � � �

�

 � � �
 � � � � � � ���

�h�MW!$6�%��&T�0B�$<Wl�0-R"+��$G �&8$6*�� .[CE�/�����) #"H$�&we@�="%�!-�W!��&8W�W[� �H��&8$6"2� m+�E"_� .;-E�>.�4��;��&0"2� �!9n(� op$�&q$�-#"2� �!9�	[aYC��#"2� .[-E�@"rV! �� �<�!9 9 VP9 $<��WN"H.M9 ��&I'�$ �)-�W ���(20	 ��� Q5�E"6&i� �<$+�<J ���+ ���&I�%$Q5�#"+&T� UL� �yW!$2fp-�$+W�e#�H.;Q5$61L���E"p*��E';C�$�9 V<eE���y� Q5�#"+&T� U(15��� ���j���E��*�$�&0V�4i$21 -E.[-Em<$�&I.$�9 $�Q5$�-#"H�+J �dC#"+e��0-Z4T���2"<e@�GQ5�E"6&T� UD�<�)- B�$}"%$�&wQ5$<WG�+ ���&I�%$M1L��$�-�$6*�$�&j�+ �$<�E� �!9"H$<���!-�� aYC�$6�j�<�!-ZB�$}C#"2�09 � m<$<W>"H.b"%�!]+$���W�*��!-#"%�E'A$�.�4@"6��$b9 ��&I'A$b-!C!Q:B�$�&g.�4(m<$�&I.$�9 $�Q5$�-#"H�c�)-�Wj"6��$E�0&z9 .)�<�#"2� .[-E�<J �^��$6�%$��+ ���&I�%$jQ5�E"6&i� U5"H$<���!-�� aYC�$6�xB�$+')�0-�1�� "6��"+��$� W!$<�b"6���E"5"+��$Pm<$�&I.?$�9 $�Qj$�-#"H�N-�$<$<WG-E.�"PB�$N�="=.)&8$<W�J�� -�$N.�4L"6��$M]+$2V7� �=�+C�$+�,� �"=.,W!$2fp-�$LW!�#"%� �="+&rC��6"6C!&8$+�x4q.)&z"6��$+�%$:Q5�#"+&T� �<$6�x"+���#"x��&8$L1g$�9 9��+C�� "H$<W:4q.!&y$��N�E� $�-#"�FQ: !9 $�Q5$�-#"%�#"2� .[-,.�4@�="H�)-�W!��&8W/�=.;9 C#"_� .;-MQ5$6"6�E.)WA�<ez15��$6"6��$�&xW[�0&8$<�6"5.!&�� "%$�&8�#"2� *�$�J
����� �������! #"%$�&�'!� *�$+�,�)-/.�*�$�&0*�� $613.�45�+ ���&I�%$7Qj�#"+&T� �+$+�<ey"6��$E�0&t �&8.[A$�&I"_� $+�<ec"6��$E�0&&8$� �&8$+�%$�-#"H�E"_� .;-E�<e[�!-�W,"+��$tW!�#"%�`�="6&wC��2"+C!&8$+�tCE�%$<W,"=.N�="=.)&8$t"+��$�Q�J

� ����� � � �	� ��� � �

�7|E{

The natural idea to take advantage of the zeros of a matrix and their location was initiated
by engineers in various disciplines. In the simplest case involving banded matrices, special
techniques are straightforward to develop. Electrical engineers dealing with electrical net-
works in the 1960s were the first to exploit sparsity to solve general sparse linear systems
for matrices with irregular structure. The main issue, and the first addressed by sparse ma-
trix technology, was to devise direct solution methods for linear systems. These had to be
economical, both in terms of storage and computational effort. Sparse direct solvers can
handle very large problems that cannot be tackled by the usual “dense” solvers.

� �

��� � K � � � � n�
 � �^K � � � �

1 2 3 4

5

6

7

8

9 10 11 12

13

14

15

16

17

18

19

20

21 22

23

24

25 26

27

28

29 30

31

32

33

34 35

36

37 38

39

4041 42

43

44

45

, � ��� �
 	 6T� A finite element grid model.

Essentially, there are two broad types of sparse matrices: structured and unstructured.
A structured matrix is one whose nonzero entries form a regular pattern, often along a
small number of diagonals. Alternatively, the nonzero elements may lie in blocks (dense
submatrices) of the same size, which form a regular pattern, typically along a small num-
ber of (block) diagonals. A matrix with irregularly located entries is said to be irregularly
structured. The best example of a regularly structured matrix is a matrix that consists of
only a few diagonals. Finite difference matrices on rectangular grids, such as the ones seen
in the previous chapter, are typical examples of matrices with regular structure. Most fi-
nite element or finite volume techniques applied to complex geometries lead to irregularly
structured matrices. Figure 3.2 shows a small irregularly structured sparse matrix associ-
ated with the finite element grid problem shown in Figure 3.1.

The distinction between the two types of matrices may not noticeably affect direct
solution techniques, and it has not received much attention in the past. However, this dis-
tinction can be important for iterative solution methods. In these methods, one of the es-
sential operations is matrix-by-vector products. The performance of these operations can
differ significantly on high performance computers, depending on whether they are regu-
larly structured or not. For example, on vector computers, storing the matrix by diagonals
is ideal, but the more general schemes may suffer because they require indirect addressing.

The next section discusses graph representations of sparse matrices. This is followed
by an overview of some of the storage schemes used for sparse matrices and an explanation
of how some of the simplest operations with sparse matrices can be performed. Then sparse
linear system solution methods will be covered. Finally, Section 3.7 discusses test matrices.

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

, � ��� �
 	 6 � Sparse matrix associated with the finite element
grid of Figure 3.1.

� � � � 	 � � � � � ��������� ��� � ���
�7|��

Graph theory is an ideal tool for representing the structure of sparse matrices and for this
reason it plays a major role in sparse matrix techniques. For example, graph theory is the
key ingredient used in unraveling parallelism in sparse Gaussian elimination or in precon-
ditioning techniques. In the following section, graphs are discussed in general terms and
then their applications to finite element or finite difference matrices are discussed.

����)���� ��� ��
�� � �/��	 �/	�+ ��
 �
�1
 ����� ��
 � �
Remember that a graph is defined by two sets, a set of vertices� � � � � � � $ ��������� � � � �
and a set of edges � which consists of pairs * � � � � � + , where � � � � � are elements of � , i.e.,

����� � � �
This graph � � * � � � + is often represented by a set of points in the plane linked by
a directed line between the points that are connected by an edge. A graph is a way of
representing a binary relation between objects of a set � . For example, � can represent
the major cities of the world. A line is drawn between any two cities that are linked by
a nonstop airline connection. Such a graph will represent the relation “there is a nonstop
flight from city (A) to city (B).” In this particular example, the binary relation is likely to

��� � � � � � � ��	�����	 � 	 � �����^K � � � � �
be symmetric, i.e., when there is a nonstop flight from (A) to (B) there is also a nonstop
flight from (B) to (A). In such situations, the graph is said to be undirected, as opposed to
a general graph which is directed.

1 2

4 3

1 2

4 3

, � ��� �
 	 6 	 Graphs of two � � � sparse matrices.

Going back to sparse matrices, the adjacency graph of a sparse matrix is a graph� � * � � � + , whose ~ vertices in � represent the ~ unknowns. Its edges represent the
binary relations established by the equations in the following manner: There is an edge
from node � to node � when � �F�
�=% . This edge will therefore represent the binary relation
equation � involves unknown � . Note that the graph is directed, except when the matrix has
a symmetric pattern (� �0�
�&% iff � �6�
�&% for all � � �<�=� � ~).

When a matrix has a symmetric nonzero pattern, i.e., when �p�0� and �[�6� are always
nonzero at the same time, then the graph is undirected. Thus, for undirected graphs, ev-
ery edge points in both directions. As a result, undirected graphs can be represented with
nonoriented edges.

As an example of the use of graph models, parallelism in Gaussian elimination can
be extracted by finding unknowns that are independent at a given stage of the elimination.
These are unknowns which do not depend on each other according to the above binary rela-
tion. The rows corresponding to such unknowns can then be used as pivots simultaneously.
Thus, in one extreme, when the matrix is diagonal, then all unknowns are independent.
Conversely, when a matrix is dense, each unknown will depend on all other unknowns.
Sparse matrices lie somewhere between these two extremes.

There are a few interesting simple properties of adjacency graphs. The graph of � $
can be interpreted as an ~ -vertex graph whose edges are the pairs *r�<�H� + for which there
exists at least one path of length exactly two from node � to node � in the original graph of� . Similarly, the graph of � � consists of edges which represent the binary relation “there
is at least one path of length � from node � to node � .” For details, see Exercise 4.

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �
����)��*) ��� ��
�� � � !
 	 �&$ � ��� �2
1� �

For Partial Differential Equations involving only one physical unknown per mesh point, the
adjacency graph of the matrix arising from the discretization is often the graph represented
by the mesh itself. However, it is common to have several unknowns per mesh point. For
example, the equations modeling fluid flow may involve the two velocity components of
the fluid (in two dimensions) as well as energy and momentum at each mesh point. In
such situations, there are two choices when labeling the unknowns. They can be labeled
contiguously at each mesh point. Thus, for the example just mentioned, we can label all
four variables (two velocities followed by momentum and then pressure) at a given mesh
point as 8 * � + , ����� , 8 * �p� � + . Alternatively, all unknowns associated with one type of variable
can be labeled first (e.g., first velocity components), followed by those associated with the
second type of variables (e.g., second velocity components), etc. In either case, it is clear
that there is redundant information in the graph of the adjacency matrix. The quotient graph
corresponding to the physical mesh can be used instead. This results in substantial savings
in storage and computation. In the fluid flow example mentioned above, the storage can
be reduced by a factor of almost 16 for the integer arrays needed to represent the graph.
This is because the number of edges has been reduced by this much, while the number of
vertices, which is usually much smaller, remains the same.

� � � � � � � � � � ��� � ��� � � � � � ��� � � � �
�7|��

Permuting the rows or the columns, or both the rows and columns, of a sparse matrix is a
common operation. In fact, reordering rows and columns is one of the most important in-
gredients used in parallel implementations of both direct and iterative solution techniques.
This section introduces the ideas related to these reordering techniques and their relations
to the adjacency graphs of the matrices. Recall the notation introduced in Chapter 1 that
the � -th column of a matrix is denoted by � � and the � -th row by � � .

��������� �
� � �2
�
 ���1
 �
 � �
We begin with a definition and new notation.

+ � , .�01.q�2.43 0 	 6T� Let � be a matrix and � � ��� � �2� $!���������2� � � a permutation of the set�;�;�+�u�������#� ~ � . Then the matrices

��� � :� ���
� � � � � � �A� � � ������� � � � � ��� ������� � � �� � � � ��� ���
� � � � �A� � � ������� � � � � ��� ������� � �

are called row � -permutation and column � -permutation of � , respectively.

��� � � 	�� �
������^K � � ��� �@n ��	 � �dn 	 �dK ��� � �$	
It is well known that any permutation of the set �Y�[�<�u�������#� ~ � results from at most ~ inter-
changes, i.e., elementary permutations in which only two entries have been interchanged.
An interchange matrix is the identity matrix with two of its rows interchanged. Denote by
� �0� such matrices, with � and � being the numbers of the interchanged rows. Note that
in order to interchange rows � and � of a matrix � , we only need to premultiply it by the
matrix � �0� . Let � � ��� � �2� $ ���������2� � � be an arbitrary permutation. This permutation is the
product of a sequence of ~ consecutive interchanges : *w� � �=� � + � � � �;�������E� ~ . Then the
rows of a matrix can be permuted by interchanging rows � � �H� � , then rows � $ �H� $ of the
resulting matrix, etc., and finally by interchanging � � �=� � of the resulting matrix. Each of
these operations can be achieved by a premultiplication by � � � � � � . The same observation
can be made regarding the columns of a matrix: In order to interchange columns � and � of a
matrix, postmultiply it by � �F� . The following proposition follows from these observations.

�5�<3/�<32>?.8�1.4350 	 6T� Let � be a permutation resulting from the product of the inter-
changes : *r� � �=� � + , � ���[��������� ~ . Then,

� � � �
 � � � � � � � � � � �
where
 � � � � � � � � � � � � �

� �
� � �

����� � � � � � � � � �[J �	�
� � � � � � � � �"� �

!
� �
!
����� � � � � � � � � �[J � �

Products of interchange matrices are called permutation matrices. Clearly, a permutation
matrix is nothing but the identity matrix with its rows (or columns) permuted.

Observe that � $��� � � �
, i.e., the square of an interchange matrix is the identity, or

equivalently, the inverse of an interchange matrix is equal to itself, a property which is
intuitively clear. It is easy to see that the matrices (3.1) and (3.2) satisfy
 ��� � � � � � � � � � � � � �

� �
� � �

����� � � � � � �N� � � � � � �"� �
!
� �
!
����� � � � � � � � � �

which shows that the two matrices � � and
 � are nonsingular and that they are the inverse
of one another. In other words, permuting the rows and the columns of a matrix, using
the same permutation, actually performs a similarity transformation. Another important
consequence arises because the products involved in the definitions (3.1) and (3.2) of
 �
and � � occur in reverse order. Since each of the elementary matrices � � � � � � is symmetric,
the matrix � � is the transpose of
 � . Therefore,

� � �
 /� �
 � �� �
Since the inverse of the matrix
 � is its own transpose, permutation matrices are unitary.

Another way of deriving the above relationships is to express the permutation matrices
 � and
 /� in terms of the identity matrix, whose columns or rows are permuted. It can
easily be seen (See Exercise 3) that
 � � �

�
� !�
 /� � � �

�
�

It is then possible to verify directly that

� � � � �
�
� � �
 � � � � � � � � � �

�
� ��
 /� �

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

It is important to interpret permutation operations for the linear systems to be solved.
When the rows of a matrix are permuted, the order in which the equations are written is
changed. On the other hand, when the columns are permuted, the unknowns are in effect
relabeled, or reordered.

� ����� 	 �
 	 6T� Consider, for example, the linear system � �D� � where

� �
!"
#
� � � % � ��� %
% �%$-$ �%$ � � $ �� ��� � � $ � ��� %
% � � $ % � � �

&('
)

and � ���;�;� � �<�u� � � , then the (column-) permuted linear system is!"
#
� � � � � � % %
% � $ � � $ $ � $ �� ��� � � � � � $ %
% % � � $ � � �

&('
)
!"
#
� �
� �
� $
� �

&('
) �

!"
�
�
� $� �� �
&('
) �

Note that only the unknowns have been permuted, not the equations, and in particular, the
right-hand side has not changed.

In the above example, only the columns of � have been permuted. Such one-sided
permutations are not as common as two-sided permutations in sparse matrix techniques.
In reality, this is often related to the fact that the diagonal elements in linear systems play
a distinct and important role. For instance, diagonal elements are typically large in PDE
applications and it may be desirable to preserve this important property in the permuted
matrix. In order to do so, it is typical to apply the same permutation to both the columns
and the rows of � . Such operations are called symmetric permutations, and if denoted by� � � � , then the result of such symmetric permutations satisfies the relation

��� � � �
 /� �
 � �
The interpretation of the symmetric permutation is quite simple. The resulting matrix cor-
responds to renaming, or relabeling, or reordering the unknowns and then reordering the
equations in the same manner.

� ����� 	 �
 	 6 � For the previous example, if the rows are permuted with the same permu-
tation as the columns, the linear system obtained is!"

#
� � � � � � % %� ��� � � � � � $ %
% �%$ � �%$ $ �%$ �% % � � $ � � �

&('
)
!"
#
� �
� �
� $
� �

&('
) �

!"
�
�
� �� $� �
&('
) �

Observe that the diagonal elements are now diagonal elements from the original matrix,
placed in a different order on the main diagonal.

��� � � 	�� �
������^K � � ��� �@n ��	 � �dn 	 �dK ��� � ���
�������*) ��� � � �/�2��� � �0� ��� � ��� �/	�+ ��
 �
�1
 ����� ��
 �

From the point of view of graph theory, another important interpretation of a symmetric
permutation is that it is equivalent to relabeling the vertices of the graph without altering
the edges. Indeed, let *r�<�=� + be an edge in the adjacency graph of the original matrix �
and let � � be the permuted matrix. Then � ��F� � �

� � � � � � � � � and a result *r�<�=� + is an edge
in the adjacency graph of the permuted matrix � � , if and only if * � *w� + � � *q� +-+ is an edge
in the graph of the original matrix � . Thus, the graph of the permuted matrix has not
changed; rather, the labeling of the vertices has. In contrast, nonsymmetric permutations
do not preserve the graph. In fact, they can transform an indirected graph into a directed
one. Symmetric permutations may have a tremendous impact on the structure of the matrix
even though the general graph of the adjacency matrix is identical.

� �����
	���
 	 6 	 Consider the matrix illustrated in Figure 3.4 together with its adjacency
graph. Such matrices are sometimes called “arrow” matrices because of their shape, but it
would probably be more accurate to term them “star” matrices because of the structure of
their graphs.

If the equations are reordered using the permutation �p� �z�������#��� , the matrix and graph
shown in Figure 3.5 are obtained. Although the difference between the two graphs may
seem slight, the matrices have a completely different structure, which may have a signif-
icant impact on the algorithms. As an example, if Gaussian elimination is used on the
reordered matrix, no fill-in will occur, i.e., the L and U parts of the LU factorization will
have the same structure as the lower and upper parts of � , respectively. On the other hand,
Gaussian elimination on the original matrix results in disastrous fill-ins. Specifically, the
L and U parts of the LU factorization are now dense matrices after the first step of Gaus-
sian elimination. With direct sparse matrix techniques, it is important to find permutations
of the matrix that will have the effect of reducing fill-ins during the Gaussian elimination
process.

To conclude this section, it should be mentioned that two-sided nonsymmetric permu-
tations may also arise in practice. However, they are more common in the context of direct
methods.

��� ��� �
 ��$ $ ��� ��� ����	 �
� �*��� �
The type of reordering, or permutations, used in applications depends on whether a direct
or an iterative method is being considered. The following is a sample of such reorderings
which are more useful for iterative methods.

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

1

2

3

4

5

6

7

8

9

, � ��� �
 	 6 � Pattern of a 9 � 9 arrow matrix and its adjacency
graph.

1

2

3

4

5

6

7

8

9

, � ��� �
 	 6 � Adjacency graph and matrix obtained from above
figure after permuting the nodes in reverse order.

Level-set orderings. This class of orderings contains a number of techniques that are
based on traversing the graph by level sets. A level set is defined recursively as the set
of all unmarked neighbors of all the nodes of a previous level set. Initially, a level set
consists of one node, although strategies with several starting nodes are also important
and will be considered later. As soon as a level set is traversed, its nodes are marked and
numbered. They can, for example, be numbered in the order in which they are traversed. In
addition, the order in which each level itself is traversed gives rise to different orderings.
For instance, the nodes of a certain level can be visited in the natural order in which they
are listed. The neighbors of each of these nodes are then inspected. Each time, a neighbor
of a visited vertex that is not numbered is encountered, it is added to the list and labeled as

��� � � 	�� �
������^K � � ��� �@n ��	 � �dn 	 �dK ��� � � �
the next element of the next level set. This simple strategy is called Breadth First Search
(BFS) traversal in graph theory. The ordering will depend on the way in which the nodes
are traversed in each level set. In BFS the elements of a level set are always traversed in
the natural order in which they are listed. In the Cuthill-McKee ordering the elements of a
level set are traversed from the nodes of lowest degree to those of highest degree.

����� 3/� .q�P��� 	 6T�
	 � ��� ��� � � � �'�
�* * �$�
��*
� � ��	
1. Input: initial node � � ; Output: permutation array

���������
.

2. Start: Set 3 � � � � � 	 � ��� � � ; ~ � � � �3� ;
3. Set � � � � � � *r� � + �O� ; �	�����
� *_� + �s� �4. While (~ � � � � ~) Do:
5. � � � � 3 � � � � � �
�
6. Traverse 3 � � � � � in order of increasing degree and
7. for each visited node Do:
8. For each neighbor � of � such that � � � � � � *w� + � % Do:
9. Add � to the set � � � � 3 � � � � �

10. � � � � � � *r� + 	 ��� ; �	������� * ~ � � � + �s�11. ~ � � � � ~ � � � � �
12. EndDo
13. EndDo
14. 3 � � � � � 	 � � � � � 3 � � � � �
15. EndWhile

The
�	�������

array obtained from the procedure lists the nodes in the order in which
they are visited and can, in a practical implementation, be used to store the level sets in
succession. A pointer is needed to indicate where each set starts. The array

�	�������
thus

constructed does in fact represent the permutation array � defined earlier.
In 1971, George [103] observed that reversing the Cuthill-McKee ordering yields a

better scheme for sparse Gaussian elimination. The simplest way to understand this is to
look at the two graphs produced by these orderings. The results of the standard and reversed
Cuthill-McKee orderings on the sample finite element mesh problem seen earlier are shown
in Figures 3.6 and 3.7, when the initial node is � � � � (relative to the labeling of the original
ordering of Figure 2.10). The case of the figure, corresponds to a variant of CMK in which
the traversals in Line 6, is done in a random order instead of according to the degree. A
large part of the structure of the two matrices consists of little “arrow” submatrices, similar
to the ones seen in Example 3.3. In the case of the regular CMK ordering, these arrows
point upward, as in Figure 3.4, a consequence of the level set labeling. These blocks are
similar the star matrices of Figure 3.4. As a result, Gaussian elimination will essentially
fill in the square blocks which they span. As was indicated in Example 3.3, a remedy is
to reorder the nodes backward, as is done globally in the reverse Cuthill-McKee strategy.
For the reverse CMK ordering, the arrows are pointing downward, as in Figure 3.5, and
Gaussian elimination yields much less fill-in.

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

12

3

4

5

6

7

8

910

11

1213

14

15

, � ��� �
 	 6 � Cuthill-McKee ordering.

1

2

3 4

5

6 7

8

9

10

11

12

13

14 15

, � ��� �
 	 6 � Reverse Cuthill-McKee ordering.

��� � � 	�� �
������^K � � ��� �@n ��	 � �dn 	 �dK ��� � ���
� �����
	���
 	 6 � The choice of the initial node in the CMK and RCMK orderings may be
important. Referring to the original ordering of Figure 2.10, the previous illustration used� � � � . However, it is clearly a poor choice if matrices with small bandwidth or profile are
desired. If � � � � is selected instead, then the reverse Cuthill-McKee algorithm produces
the matrix in Figure 3.8, which is more suitable for banded or skyline solvers.

1

2 3

4 5 6

7 8 9

10 1112

13 14

15

, � ��� �
 	 6 � Reverse Cuthill-McKee ordering starting with� � ��� .

Independent set orderings. The matrices that arise in the model finite element prob-
lems seen in Figures 2.7, 2.10, and 3.2 are all characterized by an upper-left block that is
diagonal, i.e., they have the structure

� � � % �
� � � � � �[J � �

in which % is diagonal and � � � , and
�

are sparse matrices. The upper-diagonal block
corresponds to unknowns from the previous levels of refinement and its presence is due to
the ordering of the equations in use. As new vertices are created in the refined grid, they
are given new numbers and the initial numbering of the vertices is unchanged. Since the
old connected vertices are “cut” by new ones, they are no longer related by equations. Sets
such as these are called independent sets. Independent sets are especially useful in parallel
computing, for implementing both direct and iterative methods.

Referring to the adjacency graph � � * � � � + of the matrix, and denoting by *
�x�	� + the
edge from vertex � to vertex � , an independent set � is a subset of the vertex set � such
that

if � � � � then �%*
�x�	� + � � or *��y��� + � � � � � �� � �

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

To explain this in words: Elements of � are not allowed to be connected to other elements
of � either by incoming or outgoing edges. An independent set is maximal if it cannot be
augmented by elements in its complement to form a larger independent set. Note that a
maximal independent set is by no means the largest possible independent set that can be
found. In fact, finding the independent set of maximum cardinal is �
 -hard [132]. In the
following, the term independent set always refers to maximal independent set.

There are a number of simple and inexpensive heuristics for finding large maximal
independent sets. A greedy heuristic traverses the nodes in a given order, and if a node is
not already marked, it selects the node as a new member of � . Then this node is marked
along with its nearest neighbors. Here, a nearest neighbor of a node � means any node
linked to � by an incoming or an outgoing edge.

��� �93/� .8�P��� 	 6 ��	 ���
* *,��� � � 	�&�� � � ����� &�� � � �
1. Set � � � .
2. For �}�O�;�+�z�������E� ~ Do:
3. If node � is not marked then
4. � � ��� �#� �
5. Mark � and all its nearest neighbors
6. EndIf
7. EndDo

In the above algorithm, the nodes are traversed in the natural order �;�+�u�������E� ~ , but they
can also be traversed in any permutation ��� � ���������2� � � of �Y�[�<�u�������#� ~ � . Since the size of the
reduced system is ~ ! � � � , it is reasonable to try to maximize the size of � in order to obtain
a small reduced system. It is possible to give a rough idea of the size of � . Assume that the
maximum degree of each node does not exceed � . Whenever the above algorithm accepts
a node as a new member of � , it potentially puts all its nearest neighbors, i.e., at most �
nodes, in the complement of � . Therefore, if � is the size of � , the size of its complement,~ ! � , is such that ~ ! � ��� � , and as a result,

� � ~� ��� �
This lower bound can be improved slightly by replacing � with the maximum degree � � of
all the vertices that constitute � . This results in the inequality

� � ~� ��� � �
which suggests that it may be a good idea to first visit the nodes with smaller degrees. In
fact, this observation leads to a general heuristic regarding a good order of traversal. The
algorithm can be viewed as follows: Each time a node is visited, remove it and its nearest
neighbors from the graph, and then visit a node from the remaining graph. Continue in the
same manner until all nodes are exhausted. Every node that is visited is a member of � and
its nearest neighbors are members of 3� . As result, if � � is the degree of the node visited at
step � , adjusted for all the edge deletions resulting from the previous visitation steps, then
the number ~ � of nodes that are left at step � satisfies the relation

~ �g� ~ � � � ! � �*!��;�

��� � � 	�� �
������^K � � ��� �@n ��	 � �dn 	 �dK ��� � �y�

The process adds a new element to the set � at each step and stops when ~ � � % . In order
to maximize

� � � , the number of steps in the procedure must be maximized. The difficulty
in the analysis arises from the fact that the degrees are updated at each step � because of the
removal of the edges associated with the removed nodes. If the process is to be lengthened,
a rule of thumb would be to visit the nodes that have the smallest degrees first.

����� 3/� .q�P��� 	 6 	 	 � � �/� * ��� � ��	 ��* 	��
* * � �
��� *
� � ��� � &�� � � �
1. Set � � � . Find an ordering � � ���������2� � of the nodes by increasing degree.
2. For �/�O�;�+�u������� ~ , Do:
3. If node � � is not marked then
4. � � � � ��� ���
5. Mark � � and all its nearest neighbors
6. EndIf
7. EndDo

A refinement to the above algorithm would be to update the degrees of all nodes in-
volved in a removal, and dynamically select the one with the smallest degree as the next
node to be visited. This can be implemented efficiently using a min-heap data structure.
A different heuristic is to attempt to maximize the number of elements in � by a form of
local optimization which determines the order of traversal dynamically. In the following,
removing a vertex from a graph means deleting the vertex and all edges incident to/from
this vertex.

� �����
	���
 	 6 � The algorithms described in this section were tested on the same example
used before, namely, the finite element mesh problem of Figure 2.10. Here, all strategies
used yield the initial independent set in the matrix itself, which corresponds to the nodes
of all the previous levels of refinement. This may well be optimal in this case, i.e., a larger
independent set may not exist.

Multicolor orderings. Graph coloring is a familiar problem in computer science which
refers to the process of labeling (coloring) the nodes of a graph in such a way that no
two adjacent nodes have the same label (color). The goal of graph coloring is to obtain
a colored graph which uses the smallest possible number of colors. However, optimality
in the context of numerical linear algebra is a secondary issue and simple heuristics do
provide adequate colorings.

Basic methods for obtaining a multicoloring of an arbitrary grid are quite simple. They
rely on greedy techniques, a simple version of which is as follows.

����� 3/� .q�P��� 	 6 � 	 ��� *,*,����� � � � � �,&�� &�� � ��	 � � 	 &�� � � ���

1. For �@���;�������E� ~ Do: set �
 3�
 � *r� + �&% .
2. For �@���;�+�u�������#� ~ Do:
3. Set Color *r� + � � � � � � � % � �
� Color *8� + ���>� � � ��� *w� +-+ �4. EndDo

��� ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

Here, Adj *w� + represents the set of nodes that are adjacent to node � . The color assigned to
node � in line 3 is the smallest allowable color number which can be assigned to node � .
Here, allowable means different from the colors of the nearest neighbors and positive. This
procedure is illustrated in Figure 3.9. The node being colored in the figure is indicated by
an arrow. It will be assigned color number 3, the smallest positive integer different from 1,
2, 4, 5.

3

4

5

2

1

0

0

, � ��� �
 	 6 � The greedy multicoloring algorithm.

In the above algorithm, the order �;�+�z�������#� ~ has been arbitrarily selected for traversing
the nodes and coloring them. Instead, the nodes can be traversed in any order ��� � , � $, �������� � � . If a graph is bipartite, i.e., if it can be colored with two colors, then the algorithm will
find the optimal two-color (Red-Black) ordering for Breadth-First traversals. In addition, if
a graph is bipartite, it is easy to show that the algorithm will find two colors for any traversal
which, at a given step, visits an unmarked node that is adjacent to at least one visited node.
In general, the number of colors needed does not exceed the maximum degree of each node
+1. These properties are the subject of Exercises 9 and 8.

� ����� 	 �
 	 6 � Figure 3.10 illustrates the algorithm for the same example used earlier,
i.e., the finite element mesh problem of Figure 2.10. The dashed lines separate the different
color sets found. Four colors are found in this example.

Once the colors have been found, the matrix can be permuted to have a block structure
in which the diagonal blocks are diagonal. Alternatively, the color sets � �:� � � � � �� , ����� , � � � �� � !and the permutation array in the algorithms can be used.

��� � � 	�� �
������^K � � ��� �@n ��	 � �dn 	 �dK ��� � � 	

1

2 3

4 5

6

7

8

9

10

11

12

13

14

15

, � ��� �
 	 6T��� Graph and matrix corresponding to mesh of
Figure 2.10 after multicolor ordering.

��� ����� �*��� �
	���
�� ����� � � �

Remember that a path in a graph is a sequence of vertices � � � � $)��������� � � , which are such
that * � � � � � " � + is an edge for �}� �[�������E� � !O� . Also, a graph is said to be connected if
there is a path between any pair of two vertices in � . A connected component in a graph
is a maximal subset of vertices which all can be connected to one another by paths in the
graph. Now consider matrices whose graphs may be directed. A matrix is reducible if its
graph is not connected, and irreducible otherwise. When a matrix is reducible, then it can
be permuted by means of symmetric permutations into a block upper triangular matrix of
the form !""

#
� � � � � $ � ��� �����

� $ $ � $ � �����
. . .

...� �.�

&(''
) �

where each partition corresponds to a connected component. It is clear that linear systems
with the above matrix can be solved through a sequence of subsystems with the matrices� �q� , ��� � � � ! �[�������E��� .

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �
��� � ���	� � � � 	�� ��� �

�7|��

In order to take advantage of the large number of zero elements, special schemes are re-
quired to store sparse matrices. The main goal is to represent only the nonzero elements,
and to be able to perform the common matrix operations. In the following, �

�
denotes the

total number of nonzero elements. Only the most popular schemes are covered here, but
additional details can be found in books such as Duff, Erisman, and Reid [77].

The simplest storage scheme for sparse matrices is the so-called coordinate format.
The data structure consists of three arrays: (1) a real array containing all the real (or com-
plex) values of the nonzero elements of � in any order; (2) an integer array containing
their row indices; and (3) a second integer array containing their column indices. All three
arrays are of length �

�
, the number of nonzero elements.

� ����� 	 �
 	 6 � The matrix

� �
!"""
#
�[� %p� %p� �u� %z�
� � ��� %p� � � %z�
�z� %p� � � �z� �z�
%z� %p� � %p�
�[�;� %z�
%z� %p� %p� %z� ���u�

& '''
)

will be represented (for example) by

AA 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

JR 5 3 3 2 1 1 4 2 3 2 3 4

JC 5 5 3 4 1 4 4 1 1 2 4 3

In the above example, the elements are listed in an arbitrary order. In fact, they are
usually listed by row or columns. If the elements were listed by row, the array � � which
contains redundant information might be replaced by an array which points to the begin-
ning of each row instead. This would involve nonnegligible savings in storage. The new
data structure has three arrays with the following functions:� A real array ��� contains the real values �z�0� stored row by row, from row 1 to ~ .

The length of �:� is �
�
.� An integer array � � contains the column indices of the elements � �F� as stored in

the array ��� . The length of � � is Nz.� An integer array
� � contains the pointers to the beginning of each row in the arrays��� and � � . Thus, the content of

� � *r� + is the position in arrays ��� and � � where
the � -th row starts. The length of

� � is ~,� � with
� � * ~,� � + containing the number� � *2� + � �

�
, i.e., the address in � and � � of the beginning of a fictitious row

number ~Z� � .

��� � ��� � � ��� 	 � ��� 	 � 	 � � �

Thus, the above matrix may be stored as follows:

AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

This format is probably the most popular for storing general sparse matrices. It is
called the Compressed Sparse Row (CSR) format. This scheme is preferred over the coor-
dinate scheme because it is often more useful for performing typical computations. On the
other hand, the coordinate scheme is advantageous for its simplicity and its flexibility. It is
often used as an “entry” format in sparse matrix software packages.

There are a number of variations for the Compressed Sparse Row format. The most
obvious variation is storing the columns instead of the rows. The corresponding scheme is
known as the Compressed Sparse Column (CSC) scheme.

Another common variation exploits the fact that the diagonal elements of many ma-
trices are all usually nonzero and/or that they are accessed more often than the rest of the
elements. As a result, they can be stored separately. The Modified Sparse Row (MSR) for-
mat has only two arrays: a real array �:� and an integer array � � . The first ~ positions in�:� contain the diagonal elements of the matrix in order. The position ~^� � of the array ���
is not used, but may sometimes be used to carry other information concerning the matrix.
Starting at position ~D� � , the nonzero elements of �:� , excluding its diagonal elements,
are stored by row. For each element ��� * � + , the integer � � * � + represents its column index
on the matrix. The ~?� � first positions of � � contain the pointer to the beginning of each
row in �:� and � � . Thus, for the above example, the two arrays will be as follows:

AA 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.

JA 7 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice that � � * ~ + � � � * ~ � � + � � � , indicating
that the last row is a zero row, once the diagonal element has been removed.

Diagonally structured matrices are matrices whose nonzero elements are located
along a small number of diagonals. These diagonals can be stored in a rectangular ar-
ray ����������	�

����	�
������ , where ��� is the number of diagonals. The offsets of each of the
diagonals with respect to the main diagonal must be known. These will be stored in an ar-
ray ����������	�
������ . Thus, the element � � � � "�� � � � � � of the original matrix is located in position*r�<�=� + of the array ������� , i.e.,

������� *w�+�H� + � � � � � "�� �!� � � � �
The order in which the diagonals are stored in the columns of ������� is generally unimpor-
tant, though if several more operations are performed with the main diagonal, storing it in
the first column may be slightly advantageous. Note also that all the diagonals except the
main diagonal have fewer than ~ elements, so there are positions in ������� that will not be
used.

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �
� ����� 	 �
 	 6 � For example, the following matrix which has three diagonals

� �
!"""
#
�;� %z� �z� %z� %z�
� � �p� %p� � � %z�
%p� �z� � � %z� �z�
%p� %z� �p�
� %z� %z�
%p� %z� %p�
�[�[�
�A�u�

&('''
)

will be represented by the two arrays

������� =

* 1. 2.
3. 4. 5.
6. 7. 8.
9. 10. *
11 12. *

����� � = -1 0 2 .

A more general scheme which is popular on vector machines is the so-called Ellpack-
Itpack format. The assumption in this scheme is that there are at most � ' nonzero elements
per row, where ��� is small. Then two rectangular arrays of dimension ��� ��� each are
required (one real and one integer). The first,

� ����� , is similar to ������� and contains the
nonzero elements of � . The nonzero elements of each row of the matrix can be stored in
a row of the array

� ����� ��	�

����	�
������ , completing the row by zeros as necessary. Together
with

� ����� , an integer array �
� ��������	�

����	
������ must be stored which contains the column

positions of each entry in
� ��� � .

� ����� 	 �
 	 6 � Thus, for the matrix of the previous example, the Ellpack-Itpack storage
scheme is

� ����� =

1. 2. 0.
3. 4. 5.
6. 7. 8.
9. 10. 0.
11 12. 0.

�
� ����� =

1 3 1
1 2 4
2 3 5
3 4 4
4 5 5

.

A certain column number must be chosen for each of the zero elements that must be
added to pad the shorter rows of � , i.e., rows 1, 4, and 5. In this example, those integers are
selected to be equal to the row numbers, as can be seen in the �

� ����� array. This is some-
what arbitrary, and in fact, any integer between � and ~ would be acceptable. However,
there may be good reasons for not inserting the same integers too often, e.g. a constant
number, for performance considerations.

��� � � �
�pK � � � � ��� 	�� ��� �dK � � � 	�� ���^K � ��� � �
� � � � � � ��� ����� � � ��� ��� � � � � � � � � ���
�?|��

The matrix-by-vector product is an important operation which is required in most of the
iterative solution algorithms for solving sparse linear systems. This section shows how
these can be implemented for a small subset of the storage schemes considered earlier.

The following Fortran 90 segment shows the main loop of the matrix-by-vector oper-
ation for matrices stored in the Compressed Sparse Row stored format.

� � ����	�� �� 	�� ������� ���� � ����������	 ����		 �����
� � ���
�
� � ��� � ���!��� � 	�
 ��� � ����� � ��� � 	�
 ��� ��� �
������� �

Notice that each iteration of the loop computes a different component of the resulting
vector. This is advantageous because each of these components can be computed indepen-
dently. If the matrix is stored by columns, then the following code could be used instead:

� � ����	�� �� 	�� ����� � ���� � ����� ����	 ����		 � ����� � 	�
 ��� � ��� 	 � ��� � � 	�
 ��� ������� � � ������� � 	�
 ��� �
������� �

In each iteration of the loop, a multiple of the � -th column is added to the result, which
is assumed to have been initially set to zero. Notice now that the outer loop is no longer
parallelizable. An alternative to improve parallelization is to try to split the vector operation
in each inner loop. The inner loop has few operations, in general, so this is unlikely to be a
sound approach. This comparison demonstrates that data structures may have to change to
improve performance when dealing with high performance computers.

Now consider the matrix-by-vector product in diagonal storage.

� � ����	�� �
� ������� � ������� � �
� � ����	�� �	 �����
� 	 �����
� ������� ����� � ������� � �����
� ���
� ����� �

������� �
Here, each of the diagonals is multiplied by the vector � and the result added to the

vector � . It is again assumed that the vector � has been filled with zeros at the start of
the loop. From the point of view of parallelization and/or vectorization, the above code is
probably the better to use. On the other hand, it is not general enough.

Solving a lower or upper triangular system is another important “kernel” in sparse
matrix computations. The following segment of code shows a simple routine for solving a
unit lower triangular system � �R� � for the CSR storage format.

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

� ��	 �
� 	 ��	 �
� � � � � � �� 	�� ��� � ��� ���� � ��� � ������	 ����	

��� ����� 	 � ������� � �
�
� � ��� � � �!� � � � 	�
 ��� ��� ��� � � � � � 	�
 ��� �����
� ����� �

At each step, the inner product of the current solution � with the � -th row is computed and
subtracted from � *w� + . This gives the value of ��*w� + . The ����� � � � �����	� function computes
the dot product of two arbitrary vectors � ��
 	
�
 � � and
���
 	�
�
 � � . The vector � � � � 	�
 ��� �
is the � -th row of the matrix � in sparse format and ��� ��� � � � 	�
 ��� ��� is the vector of the
components of � gathered into a short vector which is consistent with the column indices
of the elements in the row � � � � 	�
 ��� � .

� ��� ����� � � � � � � � � � � � � � � ������		� ���

�7|��
Most direct methods for sparse linear systems perform an LU factorization of the original
matrix and try to reduce cost by minimizing fill-ins, i.e., nonzero elements introduced
during the elimination process in positions which were initially zeros. The data structures
employed are rather complicated. The early codes relied heavily on linked lists which are
convenient for inserting new nonzero elements. Linked-list data structures were dropped
in favor of other more dynamic schemes that leave some initial elbow room in each row
for the insertions, and then adjust the structure as more fill-ins are introduced.

A typical sparse direct solution solver for positive definite matrices consists of four
phases. First, preordering is applied to minimizing fill-in. Two popular methods are used:
minimal degree ordering and nested-dissection ordering. Second, a symbolic factorization
is performed. This means that the factorization is processed only symbolically, i.e., without
numerical values. Third, the numerical factorization, in which the actual factors � and 	
are formed, is processed. Finally, the forward and backward triangular sweeps are executed
for each different right-hand side. In a code where numerical pivoting is necessary, the
symbolic phase cannot be separated from the numerical factorization.

� � ��� � ��� � � � � �
�7|��

For comparison purposes it is important to use a common set of test matrices that represent
a wide spectrum of applications. There are two distinct ways of providing such data sets.
The first approach is to collect sparse matrices in a well-specified standard format from
various applications. This approach is used in the Harwell-Boeing collection of test matri-
ces. The second approach is to generate these matrices with a few sample programs such

��� � �
	 ��� ��� ����� 	7� � � �
as those provided in the SPARSKIT library [179]. The coming chapters will use exam-
ples from these two sources. In particular, five test problems will be emphasized for their
varying degrees of difficulty.

The SPARSKIT package can generate matrices arising from the discretization of the
two- or three-dimensional Partial Differential Equations

!
��
�
� �
�
8� � � !

��
�
�
�
�
8� � � !

�� � � �
�
8� � �

�
� * ' 8 +�
� �

� * � 8 +�
� �

� * � 8 +� � ����8 � �
on rectangular regions with general mixed-type boundary conditions. In the test problems,
the regions are the square � � * %z��� + $, or the cube � � *�%z��� + � ; the Dirichlet condition
8 � % is always used on the boundary. Only the discretized matrix is of importance, since
the right-hand side will be created artificially. Therefore, the right-hand side, � , is not
relevant.

�
� � � � � ����� � � � � �� ���

�

�

�	*��g��� + � � *��g�	� + ���

�
�

�
�

�
�

�
�

, � ��� �
 	 6T�z� Physical domain and coefficients for Problem 1.

Problem 1: F2DA. In the first test problem which will be labeled F2DA, the domain is
two-dimensional, with

� *
�x�	� + � � *
�x�	� + ���;� %
and

'	*
�g��� + � � *
� � � + � �%*
�x�	� + � � *�� ! � + � � *
�g��� + � � *
�x�	� + �&%p� %p� � �[J � �
where the constant � is equal to 10. The domain and coefficients for this problem are shown
is Figure 3.11. If the number of points in each direction is 34, then there are ~ � � ~ � � � �

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

interior points in each direction and a matrix of size ~ � ~ � �l~ � � � � $ � � %;� � is
obtained. In this test example, as well as the other ones described below, the right-hand
side is generated as

� � � �Y�
in which �G� *_�;���[�������E��� + / . The initial guess is always taken to be a vector of pseudo-
random values.

Problem 2: F2DB. The second test problem is similar to the previous one but involves
discontinuous coefficient functions � and � . Here, ~ � � ~ � � � � and the functions'p� �Y� �y� � are also defined by (3.4). However, the functions � and � now both take the value
1,000 inside the subsquare of width

�$ centered at (
�$ � �$), and one elsewhere in the domain,

i.e.,

� *
�x�	� + � � *
�x�	� + �
� � % � ��� �

�
���g��� � �

�� ��� � � � � � � � �

Problem 3: F3D. The third test problem is three-dimensional with ~ � � ~ � � ~�� ��� �
internal mesh points in each direction leading to a problem of size ~ � � %�� � . In this case,
we take

� *
�g���c� � + � � *��g�	�c� � + ��� *
�x�	�c� � + ���
' *��g�	�c� � + � � � � � � � *��g���y� � + � � � � � � �

and � *
�x�	�c� � + � � *
�x�	�c� � + �&%p� %p�
The constant � is taken to be equal to 10.0 as before.

The Harwell-Boeing collection is a large data set consisting of test matrices which
have been contributed by researchers and engineers from many different disciplines. These
have often been used for test purposes in the literature [78]. The collection provides a data
structure which constitutes an excellent medium for exchanging matrices. The matrices are
stored as ASCII files with a very specific format consisting of a four- or five-line header.
Then, the data containing the matrix is stored in CSC format together with any right-
hand sides, initial guesses, or exact solutions when available. The SPARSKIT library also
provides routines for reading and generating matrices in this format.

Only one matrix from the collection was selected for testing the algorithms described
in the coming chapters. The matrices in the last two test examples are both irregularly
structured.

Problem 4: ORS The matrix selected from the Harwell-Boeing collection is ORSIRR1.
This matrix arises from a reservoir engineering problem. Its size is ~ � � % � % and it has
a total of �

� � 6,858 nonzero elements. The original problem is based on a �z� � �u� � �
irregular grid. In this case and the next one, the matrices are preprocessed by scaling their
rows and columns.

	 � 	�� �gK � 	 �
� �@n � � �
	 � � �
Problem 5: FID This test matrix is extracted from the well known fluid flow simulation
package FIDAP [84]. It is actually the test example number 36 from this package and
features a two-dimensional Chemical Vapor Deposition in a Horizontal Reactor. The matrix
has a size of ~ � � % � � and has �

� � � � ��� � nonzero elements. It has a symmetric pattern
and few diagonally dominant rows or columns. The rows and columns are prescaled in the
same way as in the previous example. Figure 3.12 shows the patterns of the matrices ORS
and FID.

, � ��� �
 	 6T� � Patterns of the matrices ORS (left) and FID
(right).

� � ��� �
� ��� �

1 Consider the mesh of a discretized PDE. In which situations is the graph representing this mesh
the same as the adjacency graph of the matrix? Give examples from both Finite Difference and
Finite Element discretizations.

2 Let � and � be two sparse (square) matrices of the same dimension. How can the graph of
$$����� � be characterized with respect to the graphs of � and � ?

3 Consider the matrix defined as
B�� � � � / � #

Show directly (without using Proposition 3.1 or interchange matrices) that the following three
relations hold

��� / � � � � / � ��
� / � � B 6��"B 6� ��� �./ � #

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �

4 Consider the two matrices

���

!""""
#
��� � � �L�� � �"�"� �

� ��� �"�L�� � �"� � ��"�L�"� � ��"�L�"�"� �

& ''''
) � �

!""""
#
� � �L�"�"�
� � � � � �� � �L�"�"�
��� �L�"�"�� � � ��� ��"� � �"� �

& ''''
)

where a � represents an arbitrary nonzero element.
� � Show the adjacency graphs of the matrices � , � , ��� , and �	� . (Assume that there are

no numerical cancellations in computing the products ��� and �	�). Since there are zero
diagonal elements, represent explicitly the cycles corresponding to the ? � � � B edges when
they are present.	 � Consider the matrix $ � �C� . Give an interpretation of an edge in the graph of $ in terms
of edges in the graph of � and � . Verify this answer using the above matrices.

��� Consider the particular case in which � ��� . Give an interpretation of an edge in the graph
of $ in terms of paths of length two in the graph of � . The paths must take into account the
cycles corresponding to nonzero diagonal elements of � .

� � Now consider the case where � � � # . Give an interpretation of an edge in the graph of
$$��� & in terms of paths of length three in the graph of � . Generalize the result to arbitrary
powers of � .

5 Consider a � ��� matrix which has the pattern

�)�

!""""
#
��� �
����� �
���

���
� �����
� ���

&(''''
) #

� � Show the adjacency graph of � .	 � Consider the permutation ��� � � �
	 � � � ��� �
� � . Show the adjacency graph and new pattern
for the matrix obtained from a symmetric permutation of � based on the permutation array � .

6 Consider a matrix which has the pattern

�)�

!""""""""
#

��� � �
����� �
����� �
����� �

� �����
� �����
� �����

� � ���

&(''''''''
) #

� � Show the adjacency graph of � . (Place the 8 vertices on a circle.)	 � Consider the permutation � � � � �
	 ��� �
� � � � �
� � � � . Show the adjacency graph and new
pattern for the matrix obtained from a symmetric permutation of � based on the permutation
array � .

��� Show the adjacency graph and new pattern for the matrix obtained from a reverse Cuthill-
McKee ordering of � starting with the node 1. (Assume the vertices adjacent to a given
vertex are always listed in increasing order in the data structure that describes the graph.)

	 � 	�� �gK � 	 �
� �@n � � �
	 � �$	
� � Find a multicolor ordering for � (give the vertex labels color 1, followed by those for color

2, etc.).

7 Given a five-point finite difference graph, show that the greedy algorithm will always find a
coloring of the graph with two colors.

8 Prove that the total number of colors found by the greedy multicoloring algorithm does not
exceed � ����� � � , where � ����� is the maximum degree of all the vertices of a graph (not counting
the cycles ? � � � B associated with diagonal elements).

9 Consider a graph that is bipartite, i.e., 2-colorable. Assume that the vertices of the graph are
colored by a variant of Algorithm (3.4), in which the nodes are traversed in a certain order� 0 � � # � #F# # � � � .
��� Is it true that for any permutation

� 0 � #9#9# � � � the number of colors found will be two?
	 � Consider now a permutation satisfying the following property: for each 2 at least one of the

nodes
� 0 � � # � #9#9# � � + . 0 is adjacent to

� + . Show that the algorithm will find a 2-coloring of the
graph.

��� Among the following traversals indicate which ones satisfy the property of the previous
question: (1) Breadth-First Search, (2) random traversal, (3) traversal defined by

� + = any
node adjacent to

� + . 0 .
10 Given a matrix that is irreducible and with a symmetric pattern, show that its structural inverse is

dense. Structural inverse means the pattern of the inverse, regardless of the values, or otherwise
stated, is the union of all patterns of the inverses for all possible values. [Hint: Use Cayley
Hamilton’s theorem and a well known result on powers of adjacency matrices mentioned at the
end of Section 3.2.1.]

11 The most economical storage scheme in terms of memory usage is the following variation on the
coordinate format: Store all nonzero values % � + in a real array ��� � �	��
 �
� and the corresponding
“linear array address” ? � ��� B��
 � 2 in an integer array +1� � ����
 �
� . The order in which these
corresponding entries are stored is unimportant as long as they are both in the same position in
their respective arrays. What are the advantages and disadvantages of this data structure? Write
a short routine for performing a matrix-by-vector product in this format.

12 Write a FORTRAN code segment to perform the matrix-by-vector product for matrices stored
in Ellpack-Itpack format.

13 Write a small subroutine to perform the following operations on a sparse matrix in coordinate
format, diagonal format, and CSR format:
��� Count the number of nonzero elements in the main diagonal;
	 � Extract the diagonal whose offset is � ;
��� Add a nonzero element in position ? � � 2 B of the matrix (this position may initially contain a

zero or a nonzero element);
� � Add a given diagonal to the matrix. What is the most convenient storage scheme for each of

these operations?

14 Linked lists is another popular scheme often used for storing sparse matrices. These allow to link
together � data items (e.g., elements of a given row) in a large linear array. A starting position is
given in the array which contains the first element of the set. Then, a link to the next element in
the array is provided from a LINK array.
��� Show how to implement this scheme. A linked list is to be used for each row.
	 � What are the main advantages and disadvantages of linked lists?

� � ��� � � �
	�� � � � � ��� 	 � ��� �dK � 	 �
��� Write an algorithm to perform a matrix-by-vector product in this format.

NOTES AND REFERENCES. Two good references on sparse matrix computations are the book by
George and Liu [104] and the more recent volume by Duff, Erisman, and Reid [77]. These are geared
toward direct solution methods and the first specializes in symmetric positive definite problems. Also
of interest are [157] and [163] and the early survey by Duff [76].

Sparse matrix techniques have traditionally been associated with direct solution methods.
Clearly, this is now changing rapidly since the sophistication of iterative solution packages is
starting to equal that of direct solvers. The SPARSKIT library, a package for sparse matrix
computations [179] is currently in its second version and is available through anonymous FTP
(�����������	��
	
	
���
���������������������������������
��������������	 �!�"��# �$#%�&). Another available software package
which emphasizes object-oriented design with the goal of hiding complex data structures from
users is PETSc [19]. A manipulation package for sparse matrices, similar to SPARSKIT in spirit, is
SMMS developed by Alvarado [6].

The idea of the greedy multicoloring algorithm is known in Finite Element techniques (to color
elements); see, e.g., Benantar and Flaherty [23]. Wu [229] presents the greedy algorithm for multi-
coloring vertices and uses it for SOR type iterations, see also [182]. The effect of multicoloring has
been extensively studied by Adams [2, 3] and Poole and Ortega [164]. Interesting results regarding
multicoloring in the context of finite elements based on quad-tree structures have been obtained by
Benantar and Flaherty [23] who show, in particular, that with this structure a maximum of six colors
is required.

� � � � � � �

�

�
	���
��
�������	���
���� � �������! "�

#%$'&)(+*-,/.)0 .1&�*324.50 6'&87)&9.9$4:<;=,?>4,@&A;CBD:�*E,1:GF 6H0JI4KLF 2H*3KH&8F 0MI'&A2H*+,/N4,/.1&�7O,QPR&'*D&CS'24,@&A;:TIVUXWAY Z\[HZ�]_^ `�a8`<bc]_d�Wfe9`�`�UXg�^ aHZ�]_W5h\ikjk&\K<0JI�IH0MI4K8P%0 .\$l28K�0 6'&�Im2<n�n�*-:po=0M7?2p.@&O,1:TF >pq.r0 :GI<sH.\$'&9,@&t7)&9.9$4:<;=,)7O:<;G0 B3N?.\$'&Ou\:G78n�:TI'&'Ip.1,v:'Bw.9$'&Q2<n�n�*3:Ao=0J7)2p.r0 :GI<sH:GI'&):�*k2Bx&9Py24.Q2l.r0M7?&?2<I';z0JI82muA&�*J.@2H0JIt:�*3;�&�*_sw>�Ip.50JF=u9:TIp6'&�*-K=&'I'uA&m0 ,f*3&A2�u'$'&A;{iw|G2'u�$8:�B.\$'&\,1&C7):<;G0 (�u\24.50 :TI4,AsGuA2�F F &\;}*3&�F 2Ao�24.50 :TIt,/.1&�n4,As{0 ,%2H0J7)&A;~2p.%2�I�IH0J$H0JF 2p.r0JI4K?:TI'&f:�*2CBx&9P�u9:T7tnH:GI'&�Ip.1,O:�B�.9$'&~*3&\,50 ;�>'2<F<6'&Aur.1:�*_ic�c:pP?s{.9$'&\,@&l.@&Au'$�IH0 ��>'&\,Q2H*3&�*D2H*3&�F N>4,@&A;~,@&�n'2H*32p.@&�F Npiw�E:4PR&r6'&�*_s�P)$'&'ICu9:T7tSH0JI'&A;CP%0 .\$l.9$'&m7O:�*D&t&9�Cu40 &'Ip.?7)&9.\$4:<;=,;�&\,@u�*�0JSH&A;�0JI�F 24.1&�*�u�$'2<np.1&�*-,As+.\$'&9NzuA2�I�SH&~��>H0 .@&8,\>'uAuA&\,/,/B/>�FMiv�8:�*3&\:'6'&�*_sE.\$'&�*3&2H*3&?2?Bx&rP�2�n�n�F 0 uA2p.r0 :TIO2H*3&A24,�PO$'&�*3&O6'2H*�0 2p.r0 :GI4,�:'Bw.9$'&\,@&87)&9.9$4:<;=,�2H*3&Q,/.r0JF FH��>H0 .@&nH:Gn�>�F 2H*_i

�+���l���~�X�?�8�V�8���R�4�)�f�X���f���%�L�L���%���
 ¢¡4£

This chapter begins by reviewing the basic iterative methods for solving linear systems.
Given an ¤¦¥�¤ real matrix § and a real ¤ -vector ¨ , the problem considered is: Find ©
belonging to ª?« such that

§t©�¬­¨ ®X¯ iM°4±
Equation (4.1) is a linear system, § is the coefficient matrix, ¨ is the right-hand side vector,
and © is the vector of unknowns. Most of the methods covered in this chapter involve pass-
ing from one iterate to the next by modifying one or a few components of an approximate
vector solution at a time. This is natural since there are simple criteria when modifying a
component in order to improve an iterate. One example is to annihilate some component(s)
of the residual vector ¨k²}§8© . The convergence of these methods is rarely guaranteed for all
matrices, but a large body of theory exists for the case where the coefficient matrix arises
from the finite difference discretization of Elliptic Partial Differential Equations.

³µ´

³�� � �����{#O|��	� j���

� � � #Q|����+#�� �O| �z|G#Q������

We begin with the decomposition

§ ¬�� ²�� ²���� ®X¯ i �H±
in which � is the diagonal of § , ²�� its strict lower part, and ²�� its strict upper part, as
illustrated in Figure 4.1. It is always assumed that the diagonal entries of § are all nonzero.

D

- F

- E

! "�#�$&%('*),+
Initial partitioning of matrix A.

The Jacobi iteration determines the - -th component of the next approximation so as
to annihilate the - -th component of the residual vector. In the following, .�/10324 denotes the- -th component of the iterate © 0 and 5 4 the - -th component of the right-hand side ¨ . Thus,
writing 6

¨)²�§t© 087�9 : 4 ¬<;�� ®X¯ i =H±
in which

6 > : 4 represents the - -th component of the vector > , yields? 4@4 . /1037�9A24 ¬ ² «B C DFECHGDJI ? 4LK . /1082KNM 5 4 �
or

.F/,037�9H24 ¬ O? 4@4 PQR 5 4 ² «B C DSECHGDJI ? 4LK .F/1032KUTWVX -v¬ O �ZYWYZY8�r¤[Y ®X¯ i ¯ ±

This is a component-wise form of the Jacobi iteration. All components of the next iterate
can be grouped into the vector © 037�9 . The above notation can be used to rewrite the Jacobi
iteration (4.4) in vector form as

© 037\9 ¬<�^] 9 6 � M � : © 0 M �_] 9 ¨`Y ®X¯ i aH±
Similarly, the Gauss-Seidel iteration corrects the - -th component of the current ap-

proximate solution, in the order -)¬ O �cb��ZYWYZY8�r¤ , again to annihilate the - -th component of
the residual. However, this time the approximate solution is updated immediately after the
new component is determined. The newly computed components .
/10824 , -Q¬ O �cb��ZYWYZY3�r¤ can
be changed within a working vector which is redefined at each relaxation step. Thus, since

����� �8� � �tj��Js�������
S
<q
k|�� �Q|�	Gs �Q� �
F��� ³�

the order is -v¬ O �cb��WYWYZY , the result at the - -th step is5 4 ² 4] 9BK�� 9 ? 4LK . /1037\9A2K ² ? 4@4 . /1037�9A24 ² «BK���4 7�9 ? 4 K . /1032K ¬�;�� ®X¯ i
=±

which leads to the iteration,.F/1037�9A24 ¬ O? 414 PR ² 4] 9BK�� 9 ? 4 K .F/,037�9H2K ² «BK���4 7�9 ? 4 K .F/1082KNM 5 4 TX ��-�¬ O �WYZYWYZ�r¤[Y ®X¯ i �=±

The defining equation (4.6) can be written as

¨ M �~© 087�9 ²���© 087�9 M ��© 0 ¬ ;��
which leads immediately to the vector form of the Gauss-Seidel iteration

© 037�9 ¬ 6 � ²�� :] 9 ��© 0 M 6 � ² � :] 9 ¨`Y ®X¯ i �=±
Computing the new approximation in (4.5) requires multiplying by the inverse of the

diagonal matrix � . In (4.8) a triangular system must be solved with ��²�� , the lower
triangular part of § . Thus, the new approximation in a Gauss-Seidel step can be determined
either by solving a triangular system with the matrix � ²�� or from the relation (4.7).

A backward Gauss-Seidel iteration can also be defined as6 � ² � : © 037\9 ¬��V© 0 M ¨`� ®X¯ i �=±
which is equivalent to making the coordinate corrections in the order ¤[�9¤�² O �ZYWYWYW� O . A
Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a backward
sweep.

The Jacobi and the Gauss-Seidel iterations are both of the form� © 037�9 ¬�� © 0 M ¨f¬ 6 � ²�§ : © 0 M ¨`� ®X¯ iM°��=±
in which

§ ¬ � ²�� ®X¯ iM°�°4±
is a splitting of § , with

� ¬ � for Jacobi,
� ¬ � ² � for forward Gauss-Seidel,

and
� ¬ ��² � for backward Gauss-Seidel. An iterative method of the form (4.10) can

be defined for any splitting of the form (4.11) where
�

is nonsingular. Overrelaxation is
based on the splitting

� § ¬
6 � ² � � : ² 6

� � M 6 O ² � : � : �
and the corresponding Successive Over Relaxation (SOR) method is given by the recursion6 ��² � � : © 037�9 ¬�� � � M 6 O ² � : ���D© 0 M � ¨`Y ®X¯ iM° �=±
The above iteration corresponds to the relaxation sequence. /1087�9H24 ¬ � .����4 M 6 O ² � : . /,0324 �A-�¬ O �cb��ZYWYZY3�r¤[�
in which . ���4 is defined by the expression in the right-hand side of (4.7). A backward SOR
sweep can be defined analogously to the backward Gauss-Seidel sweep (4.9).

³�� � �����{#O|��	� j���

� � � #Q|����+#�� �O| �z|G#Q������

A Symmetric SOR (SSOR) step consists of the SOR step (4.12) followed by a back-

ward SOR step, 6 ��² � � : © 037�9 ��� ¬�� � � M 6 O ² � : ���D© 0 M � ¨6 � ² � � : © 037�9 ¬�� � � M 6 O ² � : � �D© 037�9 ��� M � ¨
This gives the recurrence

© 037\9 ¬��	�c© 0 M�
 �\�
where

� � ¬
6 � ² � � :] 9 6 � � M 6 O ² � : � : ¥6 � ² � � :] 9 6 � � M 6 O ² � : � : � ®X¯ iM°3=H±
 � ¬ �
6 ��² � � :] 9
��� M � � � M 6 O ² � : � � 6 � ² � � :] 9�� ¨`Y ®X¯ iM° ¯ ±

Observing that

� � � M 6 O ² � : � � 6 � ² � � :] 9 ¬ �-²
6 � ² � � : M 6 bC² � : ��� 6 � ² � � :] 9

¬ ² � M 6 bC² � : � 6 � ² � � :] 9 �

 � can be rewritten as

 � ¬ �
6 bC² � : 6 � ² � � :] 9 � 6 � ² � � :] 9 ¨`Y

��������� ������� �"!$#%�'&$(&%)+*,�	-�./� 0
#213#�.

Block relaxation schemes are generalizations of the “point” relaxation schemes described
above. They update a whole set of components at each time, typically a subvector of the
solution vector, instead of only one component. The matrix § and the right-hand side and
solution vectors are partitioned as follows:

§ ¬

PQQQQR
§ 9c9 § 9 � § 954768696 § 9;:§ � 9 § ��� § � 4768696 § � :§ 439 § 4 � § 4�4768696 § 4<:...

...
...

. . .
...§ : 9 § : � 69686=68696 § :>:

T VVVVX �R© ¬
PQQQQR
. 9. �. 4.... :
T VVVVX �%¨?¬

PQQQQR
5 95 �5 4...5 :
T VVVVX � ®X¯ iM°3aH±

in which the partitionings of ¨ and © into subvectors 5 4 and . 4 are identical and compatible
with the partitioning of § . Thus, for any vector © partitioned as in (4.15),6

§t© : 4 ¬ :BK�� 9 § 4LK . K �
in which

6 > : 4 denotes the - -th component of the vector - according to the above partitioning.
The diagonal blocks in § are square and assumed nonsingular.

Now define, similarly to the scalar case, the splitting

§ ¬<� ²�� ² �

����� �8� � �tj��Js�������
S
<q
k|�� �Q|�	Gs �Q� �
F��� ³+³

with

� ¬
PQQR § 9c9 § ���

. . .
§ :>:

TWVVX � ®X¯ iM°�
=±

� ¬ ²
PQQR
�

§ � 9 �
...

...
. . .

§ : 9 § : � 69686 �

TWVVX � � ¬ ²
PQQR
� § 9 � 69686 § 9�:� 69686 § � :. . .

...�

TWVVX Y
With these definitions, it is easy to generalize the previous three iterative procedures de-
fined earlier, namely, Jacobi, Gauss-Seidel, and SOR. For example, the block Jacobi it-
eration is now defined as a technique in which the new subvectors .
/10824 are all replaced
according to

§ 414 . /1037�9H24 ¬
6H6 � M � : © 0 : 4 M 5 4

or, . /1037�9H24 ¬ §] 94@4 6H6 � M � : © 0 : 4 M §] 9414 5 4 � -v¬ O �ZYWYZY8�����
which leads to the same equation as before,

© 037�9 ¬<�] 9 6 � M � : © 0 M �] 9 ¨`�
except that the meanings of � , � , and � have changed to their block analogues.

With finite difference approximations of PDEs, it is standard to block the variables
and the matrix by partitioning along whole lines of the mesh. For example, for the two-
dimensional mesh illustrated in Figure 2.5, this partitioning is

. 9 ¬
PQQQR
� 9c9� 9 �� 954� 9 �� 9 �

TWVVVX � . � ¬
PQQQR
� � 9� ���
� � 4� � �
� � �

TWVVVX � . 4 ¬
PQQQR
� 4 9� 4 �� 4�4� 4 �� 4 �

TWVVVX Y
This corresponds to the mesh 2.5 of Chapter 2, whose associated matrix pattern is shown
in Figure 2.6. A relaxation can also be defined along the vertical instead of the horizontal
lines. Techniques of this type are often known as line relaxation techniques.

In addition, a block can also correspond to the unknowns associated with a few con-
secutive lines in the plane. One such blocking is illustrated in Figure 4.2 for a � ¥�� grid.
The corresponding matrix with its block structure is shown in Figure 4.3. An important
difference between this partitioning and the one corresponding to the single-line partition-
ing is that now the matrices § 4@4 are block-tridiagonal instead of tridiagonal. As a result,
solving linear systems with § 414 may be much more expensive. On the other hand, the num-
ber of iterations required to achieve convergence often decreases rapidly as the block-size
increases.

+���� � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

! "�#�$&%('*)��
Partitioning of a �Q¥ � square mesh into three sub-

domains.

! "�#�$&%('*)��
Matrix associated with the mesh of Figure 4.2.

Finally, block techniques can be defined in more general terms. First, by using blocks
that allow us to update arbitrary groups of components, and second, by allowing the blocks
to overlap. Since this is a form of the domain-decomposition method which will be seen
later, we define the approach carefully. So far, our partition has been based on an actual
set-partition of the variable set ��¬�� O � b��WYZYWY3�9¤
	 into subsets � 9 ��� � �ZYWYWYW��� : , with the
condition that two distinct subsets are disjoint. In set theory, this is called a partition of � .
More generally, a set-decomposition of � removes the constraint of disjointness. In other

words it is required that the union of the subsets � 4 ’s be equal to � :

� 4�
 � � �4�� 9���������� : � 4 ¬�� Y
In the following, ¤ 4 denotes the size of � 4 and the subset � 4 is of the form,

� 4 ¬���� 4 6 O : ��� 4 6 b : �ZYWYWY�� 4 6 ¤ 4 : 	SY

����� �8� � �tj��Js�������
S
<q
k|�� �Q|�	Gs �Q� �
F��� +�� +
A general block Jacobi iteration can be defined as follows. Let � 4 be the ¤¢¥z¤ 4 matrix� 4 ¬�� ��� I /,9A2 ����� I / � 2 �WYZYWY���� I / « I 2 �

and � 4 ¬ � ��� I / 9 2 ��� I /,9A2 ���	� I / � 2 ��� I / � 2 �WYZYWYZ����� I / « I 2 ��� I / « I 2 �&�
where each � K is the
 -th column of the ¤�¥�¤ identity matrix, and ��� I / K 2 represents a
weight factor chosen so that �
�4 � 4 ¬ � Y
When there is no overlap, i.e., when the � 4 ’s form a partition of the whole set � O �cb��WYZYWY3�r¤
	 ,then define �	� I / K 2 ¬ O .Let § 4LK be the ¤ 4 ¥ ¤ K matrix

§ 4 K ¬ �
�4 §�� K
and define similarly the partitioned vectors. 4 ¬ �
�4 ©�� 5 4 ¬ �
�4 ¨`Y
Note that � 4 � �4 is a projector from ªf« to the subspace � 4 spanned by the columns � 4 6 O : ,. . . , � 4 6 ¤ 4 : . In addition, we have the relation

© ¬
�B 4�� 9 � 4 . 4 Y

The ¤ 4 -dimensional vector
� �4 © represents the projection � 4 � �4 © of © with respect to

the basis spanned by the columns of � 4 . The action of � 4 performs the reverse operation.
That means � 4 > is an extension operation from a vector > in � 4 (represented in the basis
consisting of the columns of � 4) into a vector � 4 > in ª « . The operator

� �4 is termed a
restriction operator and � 4 is an prolongation operator.

Each component of the Jacobi iteration can be obtained by imposing the condition that
the projection of the residual in the span of � 4 be zero, i.e.,�
�4 ��

¨O²�§
PR � 4 �
�4 © 037�9 M B K����4 � K �
�K © 0 TX��� ¬ ;�Y

Remember that . K ¬ � �K © , which can be rewritten as.F/1087�9H24 ¬<.F/10324 M §] 9414 �
�4 6 ¨)² §8© 0 : Y ®X¯ iM°��=±
This leads to the following algorithm:

�������L���D�~� � '*),+"! ��#"$%#'&)(+*)��* ,.-'/��%(%-0,2143)�657#'&8(%5�3 ,2$
1. For 9 ¬ ;�� O �WYZYWY8� until convergence Do:
2. For -v¬ O � b��WYZYWY3� � Do:
3. Solve § 4@4;:W4 ¬ � �4 6 ¨)² §8© 0 :4. Set © 037\9 ! ¬¦© 0 M � 4<:Z45. EndDo
6. EndDo

+�� � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

As was the case with the scalar algorithms, there is only a slight difference between

the Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the component
to be corrected at step - , and uses the updated approximate solution to compute the residual
vector needed to correct the next component. However, the Jacobi iteration uses the same
previous approximation © 0 for this purpose. Therefore, the block Gauss-Seidel iteration
can be defined algorithmically as follows:

���%� �L� �3�~� � '*)��4! ��#'$%#"&)(+*?��* , -"/ � (����� �4�2#%3��+#"*f�657#'&8(%5�3 ,2$
1. Until convergence Do:
2. For -v¬ O � b��ZYWYWYW��� Do:
3. Solve § 4@4 : 4 ¬ � �4 6 ¨)² §8© :
4. Set © ! ¬ © M � 4 : 4
5. EndDo
6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new ap-
proximation can be overwritten over the same vector. Also, it typically converges faster. On
the other hand, the Jacobi iteration has some appeal on parallel computers since the second
Do loop, corresponding to the � different blocks, can be executed in parallel. Although the
point Jacobi algorithm by itself is rarely a successful technique for real-life problems, its
block Jacobi variant, when using large enough overlapping blocks, can be quite attractive
especially in a parallel computing environment.

��������� *) #2!/&%)+*,�	-�1 &) ! * � #�. &+-
	�� !$# � �	-
	
*)�* �	- * -�

The Jacobi and Gauss-Seidel iterations are of the form

© 087�9 ¬ ��© 0 M�
 � ®X¯ iM° �H±
in which

�����
6
§ : ¬ � ²��] 9 § � ®X¯ iM° �H±

� � �
6
§ : ¬ � ²

6 � ²�� :] 9 § � ®X¯ i � �H±
for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix split-
ting

§ ¬ � ² �^� ®X¯ i �G°p±
where § is associated with the linear system (4.1), a linear fixed-point iteration can be
defined by the recurrence

© 037�9 ¬ �] 9 � © 0 M �] 9 ¨ � ®X¯ i � �H±

����� �8� � �tj��Js�������
S
<q
k|�� �Q|�	Gs �Q� �
F��� +�� �
which has the form (4.18) with

� ¬ �] 9 � ¬ �] 9 6 � ²�§ : ¬ � ² �] 9 § �
 ¬ �] 9 ¨`Y ®X¯ i �Z==±
For example, for the Jacobi iteration,

� ¬ � ���­¬ § ² � , while for the Gauss-Seidel
iteration,

� ¬<��² � � � ¬ � ²�§ ¬ � .
The iteration © 037\9 ¬���© 0 M
 can be viewed as a technique for solving the system6

� ² � : © ¬
 Y
Since � has the form � ¬ � ² �] 9 § , this system can be rewritten as�] 9 §8© ¬ �] 9 ¨`Y
The above system which has the same solution as the original system is called a precon-
ditioned system and

�
is the preconditioning matrix or preconditioner. In other words, a

relaxation scheme is equivalent to a fixed-point iteration on a preconditioned system.
For example, for the Jacobi, Gauss-Seidel, SOR, and SSOR iterations, these precon-

ditioning matrices are, respectively,�
� � ¬�� � ®X¯ i � ¯ ±�
� � ¬�� ²�� � ®X¯ i �Za=±

�
� ��� ¬ O� 6 � ² � � : � ®X¯ i �
=±

�
� � ��� ¬ O�

6 bC² � : 6 � ² � � : �] 9 6 � ² � � : Y ®X¯ i � �=±
Thus, the Jacobi preconditioner is simply the diagonal of § , while the Gauss-Seidel pre-
conditioner is the lower triangular part of § . The constant coefficients in front of the matri-
ces

�
� ��� and

�
� � ��� only have the effect of scaling the equations of the preconditioned

system uniformly. Therefore, they are unimportant in the preconditioning context.
Note that the “preconditioned” system may be a full system. Indeed, there is no reason

why
�] 9 should be a sparse matrix (even though

�
may be sparse), since the inverse

of a sparse matrix is not necessarily sparse. This limits the number of techniques that can
be applied to solve the preconditioned system. Most of the iterative techniques used only
require matrix-by-vector products. In this case, to compute � ¬ �] 9 §�� for a given vector
� , first compute �~¬ §	� and then solve the system

�
� ¬
� :

�~¬ §	���
� ¬ �] 9 � Y

In some cases, it may be advantageous to exploit the splitting §�¬ � ² � and compute
� ¬ �] 9 §	� as � ¬

6
� ² �] 9 � : � by the procedure

��¬ �����
�
¬ �] 9 � �
�
! ¬��z²
� Y

The matrix � may be sparser than § and the matrix-by-vector product ��� may be less
expensive than the product §	� . A number of similar but somewhat more complex ideas
have been exploited in the context of preconditioned iterative methods. A few of these will
be examined in Chapter 9.

+���' � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

�l� �����?�t�z�?�V���
 �¡��

All the methods seen in the previous section define a sequence of iterates of the form

© 087�9 ¬ ��© 0 M�
 � ®X¯ i � �H±
in which � is a certain iteration matrix. The questions addressed in this section are: (a) if
the iteration converges, then is the limit indeed a solution of the original system? (b) under
which conditions does the iteration converge? (c) when the iteration does converge, how
fast is it?

If the above iteration converges, its limit © satisfies

©¢¬"��© M�
 Y ®X¯ i � �H±
In the case where the above iteration arises from the splitting § ¬ � ² � , it is easy to see
that the solution © to the above system is identical to that of the original system §t© ¬ ¨ .
Indeed, in this case the sequence (4.28) has the form

© 037�9 ¬ �] 9 � © 0 M �] 9 ¨
and its limit satisfies � ©¢¬ � © M ¨`�
or §t©¢¬ ¨ . This answers question (a). Next, we focus on the other two questions.

��� �$���
 #2-
#2! & � � �	-���#2!
 #2- � # !$#�.�� ��)

If � ² � is nonsingular then there is a solution ©	� to the equation (4.29). Subtracting (4.29)
from (4.28) yields

© 037�9 ² ©��8¬"�
6
© 0 ² ©�� : ¬ 68686 ¬"� 037\9 6 ©�
t²�©�� : Y ®X¯ i = �H±

Standard results seen in Chapter 1 imply that if the spectral radius of the iteration matrix �
is less than unity, then © 0 ² © � converges to zero and the iteration (4.28) converges toward
the solution defined by (4.29). Conversely, the relation

© 037�9 ² © 0 ¬��
6
© 0 ² © 0] 9 : ¬ 69686 ¬ � 0 6
 ² 6

� ² � : ©
 : Y
shows that if the iteration converges for any ©�
 and
 then � 0 � converges to zero for any
vector � . As a result, �

6
� : must be less than unity and the following theorem is proved:

�~�V� �L�?� � '*),+
Let � be a square matrix such that �

6
� :�
 O . Then � ² � is nonsin-

gular and the iteration (4.28) converges for any
 and ©�
 . Conversely, if the iteration (4.28)
converges for for any
 and ©�
 , then �

6
� :�
 O .

Since it is expensive to compute the spectral radius of a matrix, sufficient conditions that
guarantee convergence can be useful in practice. One such sufficient condition could be
obtained by utilizing the inequality, �

6
� :���� � � , for any matrix norm.

��� � � �t�
�)|�� �v|+� � | +�� ´
���L� � � ���V��� '*),+

Let � be a square matrix such that
� � �
 O for some matrix norm� Y � . Then � ² � is nonsingular and the iteration (4.28) converges for any initial vector ©	
 .

Apart from knowing that the sequence (4.28) converges, it is also desirable to know
how fast it converges. The error � 0 ¬�© 0 ² ©�� at step 9 satisfies� 0 ¬"� 0 �
 Y
The matrix � can be expressed in the Jordan canonical form as � ¬������] 9 . Assume for
simplicity that there is only one eigenvalue of � of largest modulus and call it 	 . Then

� 0 ¬
	 0 � � � 	
� 0 �] 9 �
SY
A careful look at the powers of the matrix ����	 shows that all its blocks, except the block
associated with the eigenvalue 	 , converge to zero as 9 tends to infinity. Let this Jordan
block be of size � and of the form ���}¬
	 � M � �
where � is nilpotent of index � , i.e., � : ¬�; . Then, for 9�� � ,

� 0� ¬ 6 	 � M � : 0 ¬
	 0 6 � M] 9 � : 0 ¬�	 0�� :] 9B 4��
] 4 � 9 -�� � 4�� Y
If 9 is large enough, then for any 	 the dominant term in the above sum is the last term,
i.e., � 0��� 	 0] :W7�9 � 9

��² O � � :] 9 Y
Thus, the norm of � 0 ¬ � 0 �
 has the asymptotical form

� � 0 � �
� ¥�� 	 0] :W7�9 � � 9
��² O � �

where � is some constant. The convergence factor of a sequence is the limit

� ¬! #"#$0&%(' � � � 0 �� �
 � � 9 � 0 Y
It follows from the above analysis that �¢¬��

6
� : . The convergence rate) is the (natural)

logarithm of the inverse of the convergence factor)�¬ ²* #+ �
Y
The above definition depends on the initial vector ©
 , so it may be termed a specific

convergence factor. A general convergence factor can also be defined by, ¬- ."#$0/%(' � $103246587�9�: � � 0 �� �
 � � 9 � 0 Y

+�� � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

This factor satisfies , ¬- #"#$0&%(' � $ 0 2� 587�9 : � � 0 �
 �� �
 � � 9 � 0

¬- #"#$0&%(' � � � 0 � � 9 � 0 ¬ �

6
� : Y

Thus, the global asymptotic convergence factor is equal to the spectral radius of the it-
eration matrix � . The general convergence rate differs from the specific rate only when
the initial error does not have any components in the invariant subspace associated with
the dominant eigenvalue. Since it is hard to know this information in advance, the general
convergence factor is more useful in practice.

�������	��
 %	'*),+
Consider the simple example of Richardson’s Iteration,

© 037�9 ¬�© 0 M
� 6 ¨)²�§t© 0 : � ®X¯ i =G°p±
where � is a nonnegative scalar. This iteration can be rewritten as

© 037�9 ¬ 6
� ² � § : © 0 M
� ¨`Y ®X¯ i = �H±

Thus, the iteration matrix is ��� ¬ � ² � § and the convergence factor is �

6
� ² � § : .

Assume that the eigenvalues 	 4 �A-v¬ O �ZYWYWYW�r¤ , are all real and such that,	 � 4 « � 	 4 � 	 ��� 4 Y
Then, the eigenvalues � 4 of � � are such thatO ² � 	 ��� 4 � � 4 � O ² � 	 � 4 « Y
In particular, if 	 � 4 «
 ; and 	 ��� 4�� ; , at least one eigenvalue is � O , and so �

6
� � : � Ofor any � . In this case the method will always diverge for some initial guess. Let us assume

that all eigenvalues are positive, i.e., 	 � 4 « � ; . Then, the following conditions must be
satisfied in order for the method to converge:O ² � 	 � 4 «
 O �O ² � 	 ��� 4 � ² O Y
The first condition implies that � � ; , while the second requires that �

� b ��	 ��� 4 . In
other words, the method converges for any scalar � which satisfies;
 �
 b	 ��� 4 Y
The next question is: What is the best value ��� : � for the parameter � , i.e., the value of �
which minimizes �

6
� � : ? The spectral radius of � � is

�

6
� � : ¬�$ 0 2 � � O ² � 	 � 4 « �L�
� O ² � 	 ��� 4 ��	SY

This function of � is depicted in Figure 4.4. As the curve shows, the best possible � is
reached at the point where the curve � O ² 	 ��� 4 � � with positive slope crosses the curve� O ²�	 � 4 « � � with negative slope, i.e., when

² O M 	 ��� 4 � ¬ O ² 	 � 4 « � Y

��� � � �t�
�)|�� �v|+� � | +��

9��� I :9������� � � : �

� O ²�	 � 4 « � �� O ²�	 ��� 4 � �

�

1

 �! "�#�$ %	'*)L'
The curve �

6
� � : as a function of � .

This gives

� � : � ¬ b	 � 4 « M 	 ��� 4 Y ®X¯ i =Z==±
Replacing this in one of the two curves gives the corresponding optimal spectral radius

� � : � ¬ 	 ��� 4 ² 	 � 4 «	 ��� 4 M 	 � 4 « Y
This expression shows the difficulty with the presence of small and large eigenvalues. The
convergence rate can be extremely small for realistic problems. In addition, to achieve
good convergence, eigenvalue estimates are required in order to obtain the optimal or a
near-optimal � , and this may cause difficulties. Finally, since 	 ��� 4 can be very large, the
curve �

6
� � : can be extremely sensitive near the optimal value of � . These observations

are common to many iterative methods that depend on an acceleration parameter.

�����$��� !$#
 � �'&+! . � � *))�* -�
$.
� � ��� �D��� �	� '*),+

Let § � � � � be three given matrices satisfying § ¬ � ² � . The
pair of matrices

� ��� is a regular splitting of § , if
�

is nonsingular and
�] 9 and � are

nonnegative.

With a regular splitting, we associate the iteration

© 087�9 ¬ �] 9 � © 0 M �] 9 ¨`Y ®X¯ i = ¯ ±
The question asked is: Under which conditions does such an iteration converge? The fol-
lowing result, which generalizes Theorem 1.15, gives the answer.

�~�V� �L�)�2� '�)��
Let

� � � be a regular splitting of a matrix § . Then �

6 �] 9 � :
 O if
and only if § is nonsingular and §] 9 is nonnegative.

+�� � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

� $������c)

Define � ¬ �] 9 � . From the fact that �

6
� :�
 O , and the relation

§ ¬ � 6
� ² � : ®X¯ i = aH±

it follows that § is nonsingular. The assumptions of Theorem 1.15 are satisfied for the
matrix � since ��¬ �] 9 � is nonnegative and �

6
� :
 O . Therefore,

6
� ² � :] 9 is

nonnegative as is §] 9 ¬ 6
� ² � :] 9 �] 9 .

To prove the sufficient condition, assume that § is nonsingular and that its inverse is
nonnegative. Since § and

�
are nonsingular, the relation (4.35) shows again that � ² � is

nonsingular and in addition,

§] 9 ��¬ � �
6
� ² �] 9 � : �] 9 �

¬
6
� ² �] 9 � :] 9 �] 9 �

¬
6
� ² � :] 9 � Y ®X¯ i =
H±

Clearly, � ¬ �] 9 � is nonnegative by the assumptions, and as a result of the Perron-
Frobenius theorem, there is a nonnegative eigenvector © associated with �

6
� : which is an

eigenvalue, such that

��© ¬ �

6
� : ©�Y

From this and by virtue of (4.36), it follows that

§] 9 � ©¢¬ �

6
� :O ² � 6 � : ©�Y

Since © and §] 9 � are nonnegative, this shows that

�

6
� :O ² � 6 � : � ;

and this can be true only when ; � � 6 � :�� O . Since � ² � is nonsingular, then �

6
� :��¬ O ,which implies that �

6
� :�
 O .

This theorem establishes that the iteration (4.34) always converges, if
� ��� is a regu-

lar splitting and § is an M-matrix.

��� �$��� 	
* &�
��	- & � �
	 	 �	1 * - &+-$) 1 &%)�! *,� #�.

We begin with a few standard definitions.

� � ��� �D��� � � '*)��
A matrix § is

� (weakly) diagonally dominant if

� ? K K � � 4�� «B I1DSEI GD C � ? 4 K � �
}¬ O �ZYWYWYW�r¤[Y

��� � � �t�
�)|�� �v|+� � | +�� ³
� strictly diagonally dominant if

� ? K K � � 4�� «B I@DFEI GD C � ? 4LK � �
}¬ O �WYZYWY8�9¤[Y
� irreducibly diagonally dominant if § is irreducible, and

� ? K K � � 4�� «B I@DFEI GD C � ? 4LK � �
}¬ O �WYZYWY8�9¤[Y
with strict inequality for at least one
 .

Often the term diagonally dominant is used instead of weakly diagonally dominant.
Diagonal dominance is related to an important result in Numerical Linear Algebra

known as Gershgorin’s theorem. This theorem allows rough locations for all the eigenval-
ues of § to be determined. In some situations, it is desirable to determine these locations
in the complex plane by directly exploiting some knowledge of the entries of the matrix § .
The simplest such result is the bound � 	 4 � � � § �
for any matrix norm. Gershgorin’s theorem provides a more precise localization result.

�~�V� �L�)�2� '�)��
(Gershgorin) Any eigenvalue 	 of a matrix § is located in one of the

closed discs of the complex plane centered at ? 414 and having the radius

� 4 ¬ K�� «B C DFECHGDJI � ? 4LK � Y
In other words,

� 	���� 6 § : ��� - such that � 	�² ? 414 � � K�� «BK�� 9K����4 � ? 4LK �LY ®X¯ i = �=±
� $ � � �)

Let © be an eigenvector associated with an eigenvalue 	 , and let � be the index
of the component of largest modulus in © . Scale © so that � . � �)¬ O , and � . 4 � � O , for- �¬ � . Since © is an eigenvector, then6 	 ² ? � � : . � ¬ ² «B C DFECHGD � ? � K . K �
which gives

� 	�² ? � � � � «B C DSECHGD � � ? � K �#� . K � � «B C DFECcGD � � ? � K ��¬ � � Y ®X¯ i = �=±
This completes the proof.

+�+�� � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

Since the result also holds for the transpose of § , a version of the theorem can also be
formulated based on column sums instead of row sums.

The ¤ discs defined in the theorem are called Gershgorin discs. The theorem states that
the union of these ¤ discs contains the spectrum of § . It can also be shown that if there are
� Gershgorin discs whose union � is disjoint from all other discs, then � contains exactly
� eigenvalues (counted with their multiplicities). For example, when one disc is disjoint
from the others, then it must contain exactly one eigenvalue.

An additional refinement which has important consequences concerns the particular
case when § is irreducible.

�~�V� �L�?� � '*)L'
Let § be an irreducible matrix, and assume that an eigenvalue 	 of §

lies on the boundary of the union of the ¤ Gershgorin discs. Then 	 lies on the boundary
of all Gershgorin discs.

� $������c)
As in the proof of Gershgorin’s theorem, let © be an eigenvector associated with	 , with � . � �?¬ O , and � . 4 � � O , for - �¬ � . Start from equation (4.38) in the proof of

Gershgorin’s theorem which states that the point 	 belongs to the � -th disc. In addition, 	
belongs to the boundary of the union of all the discs. As a result, it cannot be an interior
point to the disc � 6 	�� � � : . This implies that � 	 ² ? � � �T¬ � � . Therefore, the inequalities
in (4.38) both become equalities:

� 	�² ? � � �G¬ «B C DFECcGD � � ? � K �#� . K �G¬ «B C DFECHGD � � ? � K �G¬ � � Y ®X¯ i = �H±
Let
 be any integer O �
 � ¤ . Since § is irreducible, its graph is connected and, therefore,
there exists a path from node � to node
 in the adjacency graph. Let this path be

� ��� 9 ��� � �WYWYZYW��� 0 ¬
JY
By definition of an edge in the adjacency graph, ? � � � E �¬ ; . Because of the equality in
(4.39), it is necessary that � . K �k¬ O for any nonzero . K . Therefore, � . � E � must be equal to
one. Now repeating the argument with � replaced by � 9 shows that the following equality
holds: � 	�² ? � E � � E �G¬ «B C DFECHGD � E � ? � E � K �.� . K �G¬ «B C DSECHGD � E � ? � E � K �G¬ � � E Y ®X¯ i ¯ �H±

The argument can be continued showing each time that� 	 ² ? � I � � I �G¬ � � I � ®X¯ i ¯ °p±
and this is valid for -�¬ O �ZYWYWYW� 9 . In the end, it will be proved that 	 belongs to the boundary
of the
 -th disc for an arbitrary
 .

An immediate corollary of the Gershgorin theorem and the above theorem follows.

��� � � � �{�~��� '*)��
If a matrix § is strictly diagonally dominant or irreducibly diago-

nally dominant, then it is nonsingular.

��� � � �t�
�)|�� �v|+� � | +�+�+
� $ � � �)

If a matrix is strictly diagonally dominant, then the union of the Gershgorin disks
excludes the origin, so 	¦¬ ; cannot be an eigenvalue. Assume now that it is only irre-
ducibly diagonal dominant. Then if it is singular, the zero eigenvalue lies on the boundary
of the union of the Gershgorin disks. In this situation, according to the previous theorem,
this eigenvalue should lie on the boundary of all the disks. This would mean that� ? K K �G¬ «B I1DSEI GD C � ? 4 K � for
L¬ O �WYWYZY8�r¤[�
which contradicts the assumption of irreducible diagonal dominance.

The following theorem can now be stated.

�~�V� �L�)�2� '�) ´
If § is a strictly diagonally dominant or an irreducibly diagonally dom-

inant matrix, then the associated Jacobi and Gauss-Seidel iterations converge for any ©	
 .
� $ � � �)

We first prove the results for strictly diagonally dominant matrices. Let 	 be
the dominant eigenvalue of the iteration matrix

�
� ¬ �] 9 6 � M � : for Jacobi and�

� ¬
6 ��²<� :] 9 � for Gauss-Seidel. As in the proof of Gershgorin’s theorem, let ©

be an eigenvector associated with 	 , with � . � �R¬ O , and � . 4 � � O , for - �¬ O . Start from
equation (4.38) in the proof of Gershgorin’s theorem which states that for

�
� ,

� 	�� � «B C DSECcGD � � ? � K �� ? � � � � . K � � «B C DSECHGD � � ? � K �� ? � � �
 O Y
This proves the result for Jacobi’s method.

For the Gauss-Seidel iteration, write the � -th row of the equation ��© ¬ 	 6 ��²�� : ©
in the form BK�� � ? � K . K ¬
	

PR ? � � . � M BK�� � ? � K . K TX �
which yields the inequality� 	 � � � K�� � � ? � K �.� . K �� ? � � ��² � K�� � � ? � K �#� . K � � � K�� � � ? � K �� ? � � �=² � K�� � � ? � K � Y
The last term in the above equation has the form � � � 6 �%² � 9 : with ��� � 9 � � � all nonnegative
and �z² � 9 ² � � � ; . Therefore,� 	 � � � �

� � M 6 �z² � � ² � 9 :
 O Y
In the case when the matrix is only irreducibly diagonally dominant, the above proofs

only show that �

6 �] 9 � : � O , where
�] 9 � is the iteration matrix for either Jacobi or

Gauss-Seidel. A proof by contradiction will be used to show that in fact �

6 �] 9 � :
 O .Assume that 	 is an eigenvalue of
�] 9 � with � 	 �%¬ O . Then the matrix

�] 9 � ² 	 �
would be singular and, as a result, §��R¬ � ² 	 � would also be singular. Since � 	��+¬ O ,it is clear that §�� is also an irreducibly diagonally dominant matrix. This would contradict
Corollary 4.2.

+�+ � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

�����$� � . 	�131 #) ! * � ��� .%*)+* ��# 	 #��/* - *)�# 1 &%)�! * � #�.

It is possible to show that when § is Symmetric Positive Definite, then SOR will converge
for any � in the open interval

6 ;��cb : and for any initial guess ©
 . In fact, the reverse is also
true under certain assumptions.

�~�V� �L�?� � '*) �
If § is symmetric with positive diagonal elements and for ;
 �
 b ,

SOR converges for any ©�
 if and only if § is positive definite.

�����$��� � !�� �$#2!%) 	 & &+-
	 � �	-�.%* .)�#2-$)"�	! 	 #2! * -�
$.

A number of properties which are related to the graph of a finite difference matrix are
now defined. The first of these properties is called Property A. A matrix has Property A
if its graph is bipartite. This means that the graph is two-colorable in the sense defined in
Chapter 3: Its vertices can be partitioned in two sets in such a way that no two vertices in
the same set are connected by an edge. Note that, as usual, the self-connecting edges which
correspond to the diagonal elements are ignored.

� � ��� �D��� � � '*)��
A matrix has Property A if the vertices of its adjacency graph can be

partitioned in two sets � 9 and � � , so that any edge in the graph links a vertex of � 9 to a
vertex of � � .
In other words, nodes from the first set are connected only to nodes from the second set
and vice versa. This definition is illustrated in Figure 4.5.

� �� 9

! "�#�$&%('*) ´
Graph illustration of Property A.

An alternative definition is that a matrix has Property A if it can be permuted into a
matrix with the following structure:

§ � ¬
� � 9 ²��²�� � � � � ®X¯ i ¯ �H±

��� � � �t�
�)|�� �v|+� � | +�+ �
where � 9 and � � are diagonal matrices. This structure can be obtained by first labeling
all the unknowns in � 9 from 1 to ¤ 9 , in which ¤ 9 ¬ � � 9 � and the rest from ¤ 9 M O to ¤ .
Note that the Jacobi iteration matrix will have the same structure except that the � 9 �H� �blocks will be replaced by zero blocks. These Jacobi iteration matrices satisfy an important
property stated in the following proposition.

�)� �L� ��� �3� � �	� '*),+
Let � be a matrix with the following structure:

��¬
� � � 9 �� � 9 � � � ®X¯ i ¯ ==±

and let � and � be the lower and upper triangular parts of � , respectively. Then���
If � is an eigenvalue of � , then so is ²�� .�	�
The eigenvalues of the matrix

�
6
� : ¬ � � M O� �

defined for �
�¬<; are independent of � .

� $ � � �)
The first property is shown by simply observing that if � 4
 � is an eigenvector

associated with � , then
� 4]

� is an eigenvector of � associated with the eigenvalue ²�� .

Consider the second property. For any � , the matrix �
6
� : is similar to � , i.e., �

6
� : ¬���(�] 9 with � defined by � ¬

� O �
� � � Y

This proves the desired result

A definition which generalizes this important property is consistently ordered matrices.
Varga [213] calls a consistently ordered matrix one for which the eigenvalues of �

6
� : are

independent of � . Another definition given by Young [232] considers a specific class of
matrices which generalize this property. We will use this definition here. Unlike Property
A, the consistent ordering property depends on the initial ordering of the unknowns.

� � ��� �D��� �	� '*)L'
A matrix is said to be consistently ordered if the vertices of its adja-

cency graph can be partitioned in � sets � 9 , � � , YWYZY , � : with the property that any two
adjacent vertices - and
 in the graph belong to two consecutive partitions � 0 and � 0�� , with9 �w¬ 9L² O , if

 - , and 9 �w¬ 9 M O , if
 � - .
It is easy to show that consistently ordered matrices satisfy property A: the first color is
made up of all the partitions � 4 with odd - and the second with the partitions � 4 with even- .

+�+J' � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

�������	��
 %	'*)��

Block tridiagonal matrices of the form

� ¬

PQQQQQR
� 9 � 9 �� � 9 � � � � 4� 4 � � 4 . . .

. . .
. . .

� :] 9�� :� : � :] 9 � :
T VVVVVX

whose diagonal blocks � 4 are diagonal matrices are called
�

-matrices. Clearly, such ma-
trices are consistently ordered. Note that matrices of the form (4.42) are a particular case
with �¢¬ b .

Consider now a general, consistently ordered matrix. By definition, there is permuta-
tion � of � O � b��WYZYWY3�9¤
	 which is the union of � disjoint subsets

��¬�� 9 ��� � YWYZY���� : ®X¯ i ¯H¯ ±
with the property that if ? 4LK �¬ ;��
 �¬ - and - belongs to � 0 , then
 belongs to � 0 � 9depending on whether -

 or - �
 . This permutation � can be used to permute §
symmetrically. If � is the permutation matrix associated with the permutation � , then
clearly

§ � ¬�� � §��
is a

�
-matrix.

Not every matrix that can be symmetrically permuted into a
�

-matrix is consistently
ordered. The important property here is that the partition ��� 4 	 preserves the order of the
indices - �;
 of nonzero elements. In terms of the adjacency graph, there is a partition of
the graph with the property that an oriented edge - �8
 from - to
 always points to a set
with a larger index if
 � - , or a smaller index otherwise. In particular, a very important
consequence is that edges corresponding to the lower triangular part will remain so in
the permuted matrix. The same is true for the upper triangular part. Indeed, if a nonzero
element in the permuted matrix is ? �4 � � K � ¬ ?
	�� E / 4 2 � 	
� E / K 2 �¬ ; with - � �
 � , then by
definition of the permutation �

6 - � : � � 6
 � : , or -�¬�� 6 �] 9 6 - :A: �
 ¬�� 6 �] 9 6
 :A: . Because
of the order preservation, it is necessary that - �
 . A similar observation holds for the
upper triangular part. Therefore, this results in the following proposition.

�)� �L� ��� �D��� �	� '*)��
If a matrix § is consistently ordered, then there exists a permuta-

tion matrix � such that � � §�� is a
�

-matrix and6
� � §�� :�� ¬�� � § � ��� 6

� � §�� :�� ¬�� � § � � ®X¯ i ¯ aH±
in which � � represents the (strict) lower part of � and � � the (strict) upper part of � .

With the above property it can be shown that for consistently ordered matrices the
eigenvalues of �

6
� : as defined in Proposition 4.1 are also invariant with respect to � .

�)� �L� ��� �D��� �	� '*)��
Let � be the Jacobi iteration matrix associated with a consistently

ordered matrix § , and let � and � be the lower and upper triangular parts of � , respec-

��� � � �t�
�)|�� �v|+� � | +�+ ´
tively. Then the eigenvalues of the matrix

�
6
� : ¬ � � M O� �

defined for �
�¬�; do not depend on � .

� $ � � �)
First transform �

6
� : into a

�
-matrix using the permutation � in (4.44) provided

by the previous proposition

� � � 6 � : � ¬ � � � � � M O� � � � ��Y
From the previous proposition, the lower part of � � � � is precisely � �v¬ � � � � . Simi-
larly, the upper part is � � ¬�� � � � , the lower and upper parts of the associated

�
-matrix.

Therefore, we only need to show that the property is true for a
�

-matrix.
In this case, for any � , the matrix �

6
� : is similar to � . This means that �

6
� : ¬���(�] 9 with � being equal to

� ¬

PQQQQR O � �
� � �

. . .
� :] 9 �

TWVVVVX �
where the partitioning is associated with the subsets � 9 �WYZYWYZ� � : respectively.

Note that
�

-matrices and matrices with the structure (4.42) are two particular cases
of matrices which fulfill the assumptions of the above proposition. There are a number of
well known properties related to Property A and consistent orderings. For example, it is
possible to show that,

� Property A is invariant under symmetric permutations.
� A matrix has Property A if and only if there is a permutation matrix � such that§ �c¬��] 9 §�� is consistently ordered.

Consistently ordered matrices satisfy an important property which relates the eigenval-
ues of the corresponding SOR iteration matrices to those of the Jacobi iteration matrices.
The main theorem regarding the theory for SOR is a consequence of the following result
proved by Young [232]. Remember that�

� ��� ¬
6 ��² � � :] 9 6 � � M 6 O ² � : � :¬
6
� ² � �] 9 � :] 9 � � �] 9 � M 6 O ² � : � � Y�~�V� �L�)�2� '�)

Let § be a consistently ordered matrix such that ? 4@4 �¬ ; for -�¬O �WYZYWY8�9¤ , and let � �¬ ; . Then if 	 is a nonzero eigenvalue of the SOR iteration matrix�
� ��� , any scalar � such that 6 	 M � ² O : � ¬�	 � � � � ®X¯ i ¯
=±

is an eigenvalue of the Jacobi iteration matrix � . Conversely, if � is an eigenvalue of the
Jacobi matrix � and if a scalar 	 satisfies (4.46), then 	 is an eigenvalue of

�
� ��� .

+�+ � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

� $������c)

Denote �] 9 � by � and �] 9 � by � , so that�
� ��� ¬

6
� ² � � :] 9 6 � � M 6 O ² � : � :

and the Jacobi iteration matrix is merely � M � . Writing that 	 is an eigenvalue yields
����� � 	 � ² 6

� ² � � :] 9 6 � � M 6 O ² � : � : � ¬�;
which is equivalent to

�����
6 	 6 � ² � � : ² 6

� � M 6 O ² � : � :A: ¬�;
or

�����
6A6 	 M � ² O : � ² � 6 	�� M � :H: ¬<;�Y

Since � �¬�; , this can be rewritten as

����� � 	 M � ² O� � ²
6 	�� M � : � ¬�;��

which means that

6 	 M � ² O : � � is an eigenvalue of 	 � M � . Since § is consistently
ordered, the eigenvalues of 	�� M � which are equal to 	 9 ��� 6 	 9 ��� � M] 9 ��� � : are the
same as those of 	 9 ��� 6 � M � : , where � M � is the Jacobi iteration matrix. The proof
follows immediately.

This theorem allows us to compute an optimal value for � , which can be shown to be
equal to

� � : � ¬ bO M�� O ² � 6 � : � Y ®X¯ i ¯ �H±
A typical SOR procedure starts with some � , for example, � ¬ O , then proceeds with a
number of SOR steps with this � . The convergence rate for the resulting iterates is esti-
mated providing an estimate for �

6
� : using Theorem 4.7. A better � is then obtained from

the formula (4.47), and the iteration restarted. Further refinements of the optimal � are
calculated and retrofitted in this manner as the algorithm progresses.

� �
	¢�?�m�C��	¢�_�V� � �_�m�Q��	¢�3����
¦��	������V�
 �¡��

The Alternating Direction Implicit (ADI) method was introduced in the mid-1950s by
Peaceman and Rachford [162] specifically for solving equations arising from finite dif-
ference discretizations of elliptic and parabolic Partial Differential Equations. Consider a
partial differential equation of elliptic type�

� ©
� ? 6 ©�� > : � � 6 ©�� > :� © � M �

� > � ¨ 6 ©�� > : � � 6 ©�� > :� > � ¬

6
©�� > : ®X¯ i ¯ �H±

on a rectangular domain with Dirichlet boundary conditions. The equations are discretized
with centered finite differences using ¤ M b points in the © direction and � M b points in

��� � � 	r#Q|�� � �+#��J� � ���L� | � #�� �t� �V|G#O������
 +�+

the > direction, This results in the system of equations� � M � � ¬"¨`� ®X¯ i ¯ �=±
in which the matrices

�
and � represent the three-point central difference approximations

to the operators �
� ©

� ? 6 ©�� > : �� © � and
�
� > � ¨ 6 ©�� > : �� > � �

respectively. In what follows, the same notation is used to represent the discretized version
of the unknown function � .

The ADI algorithm consists of iterating by solving (4.49) in the © and > directions
alternatively as follows.

�������L���D�~� � '*)��4!�� #0("-	#�� (${��� (%-���� ,+& �
	 � ��� � � �
1. For 9 ¬ ;�Y1� O �ZYWYZY8� until convergence Do:
2. Solve:

6 � M � 0 � : � 037 E
 ¬ 6
� 0 � ² � : � 0 M ¨

3. Solve:

6 � M � 0 � : � 087�9 ¬ 6
� 0 � ² � : � 037 E
 M ¨4. EndDo

Here, � 0 � 9�¬ O �cb��WYZYWY , is a sequence of positive acceleration parameters.
The specific case where � 0 is chosen to be a constant � deserves particular attention.

In this case, we can formulate the above iteration in the usual form of (4.28) with

� ¬
6 � M � � :] 9 6 � ² � � : 6 � M � � :] 9 6 � ² � � : � ®X¯ i a �=±
 ¬
6 � M � � :] 9�� � ² 6 � ² � � : 6 � M � � :] 9�� ¨ ®X¯ i a<°4±

or, when � � ; , in the form (4.22) with

� ¬ Ob � 6 � M � � : 6 � M � � : � � ¬ Ob � 6 � ² � � : 6 � ² � � : Y ®X¯ i aZ�=±
Note that (4.51) can be rewritten in a simpler form; see Exercise 5.

The ADI algorithm is often formulated for solving the time-dependent Partial Differ-
ential Equation � �

��� ¬ �
� ©

� ? 6 ©�� > : � �� © � M �
� > � ¨ 6 ©�� > : � �� > � ®X¯ i aZ==±

on the domain

6
©�� > � � : ��� ¥ � ;�� � ��� 6 ;�� O : ¥ 6 ;�� O : ¥ � ;�� � � . The initial and boundary

conditions are:
�
6
©�� > �H; : ¬ ©
 6 ©�� > : � � 6 ©�� > : ��� � ®X¯ i a ¯ ±

�
6��
©\� �> � � : ¬�� 6��©�� �> � � : � � 6��©�� �> : � � � � � � ;�� ®X¯ i aZa=±

where
� � is the boundary of the unit square � . The equations are discretized with respect

to the space variables © and > as before, resulting in a system of Ordinary Differential
Equations: � �� � ¬ � � M � � � ®X¯ i a
=±

+�+ � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

in which the matrices

�
and � have been defined earlier. The Alternating Direction Im-

plicit algorithm advances the relation (4.56) forward in time alternately in the © and >
directions as follows: 6

� ² Ob�� � � : � 037 E
 ¬ 6
� M Ob�� � � : � 0 �6

� ² Ob�� � � : � 037�9 ¬ 6
� M Ob�� � � : � 037 E
 Y

The acceleration parameters � 0 of Algorithm 4.3 are replaced by a natural time-step.

Horizontal ordering

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Vertical ordering

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

! "�#�$&%('*) �
The horizontal and vertical orderings for the un-

knowns in ADI.

Assuming that the mesh-points are ordered by lines in the © -direction, then the first
step of Algorithm 4.3 constitutes a set of � independent tridiagonal linear systems of size ¤
each. However, the second step constitutes a large tridiagonal system whose three diagonals
are offset by ² � , ; , and � , respectively. This second system can also be rewritten as a set
of ¤ independent tridiagonal systems of size � each by reordering the grid points by lines,
this time in the > direction. The natural (horizontal) and vertical orderings are illustrated
in Figure 4.6. Whenever moving from one half step of ADI to the next, we must implicitly
work with the transpose of the matrix representing the solution on the ¤ ¥ � grid points.
This data operation may be an expensive task on parallel machines and often it is cited as
one of the drawbacks of Alternating Direction Methods in this case.

ADI methods were extensively studied in the 1950s and 1960s for the particular case
of positive definite systems. For such systems,

�
and � have real eigenvalues and the

following is a summary of the main results in this situation. First, when
�

and � are
Symmetric Positive Definite, then the stationary iteration (� 0 ¬ � � ; , for all 9) converges.
For the model problem, the asymptotic rate of convergence of the stationary ADI iteration
using the optimal � is the same as that of SSOR using the optimal � . However, each ADI
step is more expensive than one SSOR step. One of the more important results in the
ADI theory is that the rate of convergence of ADI can be increased appreciably by using
a cyclic sequence of parameters, � 0 . A theory for selecting the best sequence of � 0 ’s is
well understood in the case when

�
and � commute [26]. For the model problem, the

parameters can be selected so that the time complexity is reduced to
�
6
¤ � ����Q¤ : , for

details see [162].

|��O|�� � �
w|
 �Q� �����Q#O|
 +�+ ³
�����?�t���3�?�v�

1 Consider an ����� tridiagonal matrix of the form

�
	��

PQQQQR

 ���
���
 ���

���
 ���
���
 ���

���
 ���
���

TWVVVVX � ®X¯ i a �=±
where
 is a real parameter.
��� Verify that the eigenvalues of

��	
are given by

��� �
�������� �"!$#&% '(# � � �*)*)+)*� � �
where % � ,

�.- �
and that an eigenvector associated with each

� �
is

/ � �10 �32546!$#&% ' � �3254"!7��#&% ' �+)*)*)*� �32$46! � #&% '98;:)
Under what condition on
 does this matrix become positive definite?< � Now take
 � � . How does this matrix relate to the matrices seen in Chapter 2 for one-
dimensional problems?= � Will the Jacobi iteration converge for this matrix? If so, what will its convergence factor

be?=9= � Will the Gauss-Seidel iteration converge for this matrix? If so, what will its convergence
factor be?=9=7= � For which values of > will the SOR iteration converge?

2 Prove that the iteration matrix ?A@ of SSOR, as defined by (4.13), can be expressed as

?B@ �DC � > !7�E� > '�!GF1� >IH 'KJ6LMFN!GFO� >IP 'KJ6L3Q)
Deduce the expression (4.27) for the preconditioning matrix associated with the SSOR iteration.

3 Let Q be a matrix with a positive diagonal F .
��� Obtain an expression equivalent to that of (4.13) for ? @ but which involves the matricesRTSVU F JTL9WKX P F JTL9WKX and

R�YVU F J6L9WZX H F J6L9WZX .< � Show that

F L9WZX ? @ F J6L9WZX � ! C � > R�Y ' J6L ! C � > RTS ' JTL ! > R�S - ![�\� > ' C '�! > R�Y - ![�]� > ' C '
^_� Now assume that in addition to having a positive diagonal, Q is symmetric. Prove that the

eigenvalues of the SSOR iteration matrix ?A@ are real and nonnegative.

+ � � � � ���µ#Q|��(� j���

� � � #O|����+#�� �)| �z|G#Q������

4 Let

Q �

PQQQQR
F L � H X� P X F X � H��

� P � F �
. . .

. . .
. . . � H��� P � F �

TWVVVVX �

where the F�� blocks are nonsingular matrices which are not necessarily diagonal.
� � What are the block Jacobi and block Gauss-Seidel iteration matrices?< � Show a result similar to that in Proposition 4.3 for the Jacobi iteration matrix.
^_� Show also that for > � � (1) the block Gauss-Seidel and block Jacobi iterations either both

converge or both diverge, and (2) when they both converge, then the block Gauss-Seidel
iteration is (asymptotically) twice as fast as the block Jacobi iteration.

5 According to formula (4.23), the
�

vector in iteration (4.22) should be equal to � JTL�� , where �
is the right-hand side and � is given in (4.52). Yet, formula (4.51) gives a different expression
for

�
. Reconcile the two results, i.e., show that the expression (4.51) can also be rewritten as

� � �
	
!�� - 	 C ' J6L !�
 - 	 C ' J6L �)
6 Show that a matrix has Property A if and only if there is a permutation matrix � such thatQ�� � � J6L Q � is consistently ordered.

7 Consider a matrix Q which is consistently ordered. Show that the asymptotic convergence rate
for Gauss-Seidel is double that of the Jacobi iteration.

8 A matrix of the form
�1� � � P �

� � H

 � �

�
is called a three-cyclic matrix.
� � What are the eigenvalues of

�
? (Express them in terms of eigenvalues of a certain matrix

which depends on P , H , and
 .)< � Assume that a matrix Q has the form Q � F - �
, where F is a nonsingular diagonal matrix,

and
�

is three-cyclic. How can the eigenvalues of the Jacobi iteration matrix be related to
those of the Gauss-Seidel iteration matrix? How does the asymptotic convergence rate of the
Gauss-Seidel iteration compare with that of the Jacobi iteration matrix in this case?

^_� Answer the same questions as in (2) for the case when SOR replaces the Gauss-Seidel itera-
tion.

� � Generalize the above results to � -cyclic matrices, i.e., matrices of the form

�1�

PQQQR
� P L� P X

� . . .� P�� JTL
P � �

TWVVVX)

NOTES AND REFERENCES. Two good references for the material covered in this chapter are Varga
[213] and and Young [232]. Although relaxation-type methods were very popular up to the 1960s,
they are now mostly used as preconditioners, a topic which will be seen in detail in Chapters 9
and 10. One of the main difficulties with these methods is finding an optimal relaxation factor for

|��O|�� � �
w|
 �Q� �����Q#O|
 + ��+
general matrices. Theorem 4.4 is due to Ostrowski. For details on the use of Gershgorin’s theorem in
eigenvalue problems, see [180]. The original idea of the ADI method is described in [162] and those
results on the optimal parameters for ADI can be found in [26]. A comprehensive text on this class of
techniques can be found in [220]. Not covered in this book is the related class of multigrid methods;
see the reference [115] for a detailed exposition. Closely related to the multigrid approach is the
Aggregation-Disaggregation technique which is popular in Markov chain modeling. A recommended
book for these methods and others used in the context of Markov chain modeling is [203].

� � � � � � �

�

� � ��� � �
��
T��� � �������! "�

�t:H,/.C:�B).\$'&z&ro=0 ,/.50JI4K nH*32�ur.r0 uA2�Fc0 .@&'*D2p.r0 6'&V.1&Au�$�IH0 ��>'&\,tB�:�*O,1:GF 6H0JI4K F 2H*-K=& F 0JI'&A2H*, N4,/.@&�7O,~:'B8&A��>'24.50 :TI4,z>p.r0JF 0 �A&z2�n�*-:��_&Au9.50 :TI�n�*3:<u\&\,1,}0JI :GI'&}PR2\N�:<*?2�I4:�.\$'&'* i��n�*3:	�_&Au9.50 :TI�n�*3:<u\&\,1,~*3&�nH*3&\,@&'Ip.1,t2�e9Z=aH`=a�^ e9ZHY�PR2\N~BD:<*v&ro4.9*D2'u9.50JI4K 2�Iz2<n�n�*-:po4q0M7?2p.r0 :TI�./: .\$'&�,1:GF >p.r0 :GIV:�B)2�F 0JI'&A2H*R,/N4,/.1&�7 B *3:G7 2},9>�S4,\n'2�u\&Hic#%$H0 ,tu�$'2�np.@&�*;�&9,@u�*�0JSH&\,O.9$'&\,@&l.@&Au'$�IH0 ��>'&\,)0JIC2C6'&�*JN~K=&'I'&�*32<F<B/*32�7)&9P�:�*�
C2�I'; n�*D&9,@&�Ip.1,),1:T7)&.9$'&\:�*JNpi'#Q$'&�:GI'&9q ;G0J7)&�I4,r0 :GI'2<F9uA24,@&O0 , u9:�6'&�*3&A;m0JIO;�&9.12=0MFA2p.E.9$'&v&�I';f:'B{.\$'&�u'$'2<npq.1&�*_s<2',%0 .%nH*-:'6H0 ;�&\,�2lK�:�:<;}nH*3&96H0 &rP :'BE.9$'&t7O:�*3&?u\:G78n�F &ro~nH*-:	�_&Au9.r0 :TI�n�*3:<u\&\,1,@&\,./:}SH&f,@&A&�I�0JICF 24.1&�*wu�$'2�np.@&�*-,Ai

�f���f�x� ���
�Q�_�L� 	¢�3���C� �L�L� ��� �C���m� 	 �
y�
��¡4£

Consider the linear system

§t©�¬­¨`� ® aTiM°p±
where § is an ¤ ¥�¤ real matrix. In this chapter, the same symbol § is often used to de-
note the matrix and the linear mapping in ªt« that it represents. The idea of projection
techniques is to extract an approximate solution to the above problem from a subspace ofª)« . If � is this subspace of candidate approximants, or search subspace, and if � is its
dimension, then, in general, � constraints must be imposed to be able to extract such an
approximation. A typical way of describing these constraints is to impose � (independent)
orthogonality conditions. Specifically, the residual vector ¨t²�§t© is constrained to be or-
thogonal to � linearly independent vectors. This defines another subspace � of dimension
� which will be called the subspace of constraints or left subspace for reasons that will
be explained below. This simple framework is common to many different mathematical
methods and is known as the Petrov-Galerkin conditions.

There are two broad classes of projection methods: orthogonal and oblique. In an
orthogonal projection technique, the subspace � is the same as � . In an oblique projection+ ���

� ��� j���
�� � �Q|��F�J� � #�� �l�*
 �Q� � � 	 �*���*� #Q�%�
 + ���
method, � is different from � and may be totally unrelated to it. This distinction is rather
important and gives rise to different types of algorithms.

���������
 #2- #2! & � � !���� # �)+*,�	-"13#)�0 � 	 .

Let § be an ¤ ¥�¤ real matrix and � and � be two � -dimensional subspaces of ª8« . A
projection technique onto the subspace � and orthogonal to � is a process which finds an
approximate solution �© to (5.1) by imposing the conditions that �© belong to � and that the
new residual vector be orthogonal to � ,

Find �© � � � such that ¨)²�§��©�� � Y ® aGi �=±
If we wish to exploit the knowledge of an initial guess ©
 to the solution, then the approxi-
mation must be sought in the affine space ©�
 M � instead of the homogeneous vector space
� . This requires a slight modification to the above formulation. The approximate problem
should be redefined as

Find �©��¢©
 M � � such that ¨)²�§��©	� � Y ® aTi =H±
Note that if �© is written in the form �© ¬�©
 M : , and the initial residual vector �
 is defined
as

�
m¬ ¨)²�§t©�
S� ® aGi ¯ ±
then the above equation becomes ¨)² §

6
©�
 M : : � � or

�
t²�§ : � � Y
In other words, the approximate solution can be defined as

�©¢¬�©
 M : � : � � � ® aGi a=±6
�
t²�§ : � � : ¬<;�� � � � � Y ® aGi
=±

The orthogonality condition (5.6) imposed on the new residual � «�

� ¬ �
C² § : is illus-
trated in Figure 5.1.

�

� �
�§ :�
� «�
��

O �! "�#�$ % ´),+
Interpretation of the orthogonality condition.

This is a basic projection step, in its most general form. Most standard techniques
use a succession of such projections. Typically, a new projection step uses a new pair of
subspace � and � and an initial guess ©
 equal to the most recent approximation obtained

+ ��' � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

from the previous projection step. Projection methods form a unifying framework for many
of the well known methods in scientific computing. In fact, virtually all of the basic iterative
techniques seen in the previous chapter can be considered projection techniques. Whenever
an approximation is defined via � degrees of freedom (subspace �) and � constraints
(Subspace �), a projection process results.

�������	��
 % ´),+
In the simplest case, an elementary Gauss-Seidel step as defined by (4.6)

is nothing but a projection step with � ¬ � ¬ ��� 03+ � � 4 	 . These projection steps are cycled
for -l¬ O �WYZYWY8�9¤ until convergence. See Exercise 1 for an alternative way of selecting the
sequence of � 4 ’s.

Orthogonal projection methods correspond to the particular case when the two sub-
spaces � and � are identical. The distinction is particularly important in the Hermitian
case since we are guaranteed that the projected problem will be Hermitian in this situa-
tion, as will be seen shortly. In addition, a number of helpful theoretical results are true for
the orthogonal case. When �¦¬ � , the Petrov-Galerkin conditions are called the Galerkin
conditions.

��������� 1 &%)�! * (!$# � !$#�.2#2-$)%&%)+*,�	-

Let � ¬ � � 9 �WYZYWYZ� � � � , an ¤¦¥ � matrix whose column-vectors form a basis of � and,
similarly,

� ¬ � � 9 �ZYWYWYZ� � � � , an ¤�¥ � matrix whose column-vectors form a basis of � .
If the approximate solution is written as

© ¬¦©
 M � > �
then the orthogonality condition leads immediately to the following system of equations
for the vector > : � � §�� > ¬ � � �
SY
If the assumption is made that the ��¥ � matrix

� � §�� is nonsingular, the following
expression for the approximate solution �© results,

�©¢¬ ©
 M � 6 �
� §�� :] 9 �
� �
 Y ® aTi �H±
In many algorithms, the matrix

� � § � does not have to be formed since it is available
as a by-product of the algorithm. A prototype projection technique is represented by the
following algorithm.

� ��� j���
�� � �Q|��F�J� � #�� �l�*
 �Q� � � 	 �*���*� #Q�%�
 + � ´
�������L���D�~� �­´),+"!�� &8, 57,'5���� # � &8,��7#	-	5�3 ,2$
 #�5 �%, �

1. Until convergence, Do:
2. Select a pair of subspaces � and �
3. Choose bases � ¬�� � 9 �ZYWYWYZ� � � � and

� ¬�� � 9 �WYZYWY8� � � � for � and �
4. �

! ¬ ¨)² §8©
5. > ! ¬ 6 � � § � :] 9 � � �
6. © ! ¬ © M � >
7. EndDo

The approximate solution is defined only when the matrix
� � § � is nonsingular,

which is not guaranteed to be true even when § is nonsingular.

����� � ��
 % ´)��
As an example, consider the matrix

§ ¬
� � �� � � �

where � is the � ¥ � identity matrix and
�

is the � ¥ � zero matrix, and let ��¬ � ¬
� � 9 � � � �WYZYWYW� � � � . Although § is nonsingular, the matrix

� � § � is precisely the
�

block in
the upper-left corner of § and is therefore singular.

There are two important particular cases where the nonsingularity of
� � §�� is guar-

anteed. These are discussed in the following proposition.

�)� �L� ��� �3� � �	��´),+
Let § , � , and � satisfy either one of the two following conditions,

� � § is positive definite and � ¬ � , or
��� � § is nonsingular and � ¬ § � .

Then the matrix � ¬ � � § � is nonsingular for any bases � and
�

of � and � , respec-
tively.

� $ � � �)
Consider first the case (i). Let � be any basis of � and

�
be any basis of � . In

fact, since � and � are the same,
�

can always be expressed as
� ¬ � � , where � is a

nonsingular � ¥ � matrix. Then

� ¬ �
� § ��¬"� � � � §���Y
Since § is positive definite, so is � � §�� , see Chapter 1, and this shows that � is non-
singular.

Consider now case (ii). Let � be any basis of � and
�

be any basis of � . Since
��¬ § � ,

�
can be expressed in this case as

� ¬ §�� � , where � is a nonsingular
� ¥ � matrix. Then

��¬ �
� §�� ¬"� � 6 § � : � § ��Y ® aGi �=±
Since § is nonsingular, the ¤�¥ � matrix §�� is of full rank and as a result,

6
§ � : � §�� is

nonsingular. This, along with (5.8), shows that � is nonsingular.

+ � � � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

Now consider the particular case where § is symmetric (real) and an orthogonal pro-

jection technique is used. In this situation, the same basis can be used for � and � , which
are identical subspaces, and the projected matrix, which is � ¬ � � § � , is symmetric. In
addition, if the matrix § is Symmetric Positive Definite, then so is � .

�z�)�L�?�)��� 	 �L�%�����
��¡��

This section gives some general theoretical results without being specific about the sub-
spaces � and � which are used. The goal is to learn about the quality of the approximation
obtained from a general projection process. Two main tools are used for this. The first is
to exploit optimality properties of projection methods. These properties are induced from
those properties of projectors seen in Section 1.12.4 of Chapter 1. The second tool consists
of interpreting the projected problem with the help of projection operators in an attempt to
extract residual bounds.

�����$���)�� � � �%)+* 1 & � *) 	 !$#�.�� �>) .

In this section, two important optimality results will be established that are satisfied by the
approximate solutions in some cases. Consider first the case when § is SPD.

�)� �L� ��� �D��� �	� ´)��
Assume that § is Symmetric Positive Definite and ��¬ � . Then

a vector �© is the result of an (orthogonal) projection method onto � with the starting vector©�
 if and only if it minimizes the § -norm of the error over ©
 M � , i.e., if and only if� 6 �© : ¬ $1"#+437�4 5 7�� �
6
© : �

where � 6 © : � 6
§
6
© �l² © : �r©��t² © : 9 ��� Y

� $������c)
As was seen in Section 1.12.4, for �© to be the minimizer of � 6 © : , it is necessary

and sufficient that © �f² �© be § -orthogonal to all the subspace � . This yields6
§
6
©��t² �© : � � : ¬ ;�� � � � � �

or, equivalently, 6
¨O²�§��©\� � : ¬ ;�� � � � � �

which is the Galerkin condition defining an orthogonal projection process for the approxi-
mation �© .

We now take up the case when � is defined by � ¬ § � .

� � � ��|+��|���� 	�#Q��|J����� + �

�)� �L� ��� �3� � �	��´)��

Let § be an arbitrary square matrix and assume that � ¬
§ � .
Then a vector �© is the result of an (oblique) projection method onto � orthogonally to �
with the starting vector ©�
 if and only if it minimizes the b -norm of the residual vector¨O²�§t© over ©�� ©
 M � , i.e., if and only if

�

6
�© : ¬ $1".+4�7�4 5 7�� �

6
© : �

where
�

6
© : � � ¨)²�§t© � � .

� $ � � �)
As was seen in Section 1.12.4, for �© to be the minimizer of

�

6
© : , it is necessary

and sufficient that ¨w² §��© be orthogonal to all vectors of the form � ¬ § > , where > belongs
to � , i.e., 6

¨?²�§��©�� � : ¬�;�� � � � § � �
which is precisely the Petrov-Galerkin condition that defines the approximate solution �© .

It is worthwhile to point out that § need not be nonsingular in the above proposition. When§ is singular there may be infinitely many vectors �© satisfying the optimality condition.

�����$��� * -) #2! � !$#)%&%)+*,�	- * -�)�#2!$1 .3� � �$!2� � # �) � !%.

We now return to the two important particular cases singled out in the previous section,
namely, the cases �¦¬ � and � ¬ § � . In these cases, the result of the projection process
can be interpreted easily in terms of actions of orthogonal projectors on the initial residual
or initial error. Consider the second case first, as it is slightly simpler. Let �
 be the initial
residual �
~¬ ¨?²y§t©
 , and ��}¬ ¨?² § �© the residual obtained after the projection process
with � ¬ § � . Then,

��~¬ ¨O²�§
6
©�
 M : : ¬ �
t²�§ : Y ® aGi �=±

In addition, : is obtained by enforcing the condition that �
 ² § : be orthogonal to § � .
Therefore, the vector § : is the orthogonal projection of the vector �
 onto the subspace§ � . This is illustrated in Figure 5.2. Hence, the following proposition can be stated.

�)� �L� ��� �3� � �	��´)L'
Let �© be the approximate solution obtained from a projection pro-

cess onto � orthogonally to � ¬ § � , and let ��~¬ ¨�² §��© be the associated residual. Then,

��V¬
6
� ² � : �
S� ® aTiM°��=±

where � denotes the orthogonal projector onto the subspace § � .

A result of the proposition is that the 2-norm of the residual vector obtained after one
projection step will not exceed the initial 2-norm of the residual, i.e.,

�
��
� � ���

�

� � �

a result which has been established already. This class of methods may be termed residual
projection methods.

+ � � � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

�

§ : ¬�� �
 § �

O

� �

�

! "�#�$&% ´)��
Interpretation of the projection process for the

case when � ¬ § � .

Now consider the case where ��¬ � and § is Symmetric Positive Definite. Let �
 ¬© � ²~©
 be the initial error, where © � denotes the exact solution to the system and, similarly,
let �� ¬¦© � ² �© where �© ¬¦©
 M : is the approximate solution resulting from the projection
step. Then (5.9) yields the relation

§ ��}¬	��V¬�§
6 �
 ² : : �

where : is now obtained by constraining the residual vector �
�²�§ : to be orthogonal to � :6
�
t² § : � � : ¬<;�� � � � � Y

The above condition is equivalent to6
§
6 �
t² : : � � : ¬<;�� � � � � Y

Since § is SPD, it defines an inner product (see Section 1.11) which is usually denoted by
6 Y1�WY : � and the above condition becomes6 �
 ² : ��� : �y¬<;�� � � � � Y
The above condition is now easy to interpret: The vector : is the § -orthogonal projection
of the initial error �
 onto the subspace � .

�)� �L� ��� �D��� �	� ´) ´
Let �© be the approximate solution obtained from an orthogonal

projection process onto � and let ��}¬ ©��f² �© be the associated error vector. Then,

��}¬ 6
� ² � � : �
J�

where � � denotes the projector onto the subspace � , which is orthogonal with respect to
the § -inner product.

A result of the proposition is that the § -norm of the error vector obtained after one projec-
tion step does not exceed the initial § -norm of the error, i.e.,

� �� � � ��� �
 � � �

� � � ��|+��|���� 	�#Q��|J����� + � ³
which is expected because it is known that the § -norm of the error is minimized in ©	
 M � .
This class of methods may be termed error projection methods.

��� �$���
 #2- #2! & �3#2! !��	! � � � -
	

If no vector of the subspace � comes close to the exact solution © , then it is impossible
to find a good approximation �© to © from � . Therefore, the approximation obtained by
any projection process based on � will be poor. On the other hand, if there is some vector
in � which is a small distance � away from © , then the question is: How good can the
approximate solution be? The purpose of this section is to try to answer this question.

�

�

�

©

��� ©�
���� ©

��� © � � � ©�² �	� © � �
���� ©�� � � © ² �
�� © � �

 �! "�#�$ % ´)��
Orthogonal and oblique projectors.

Let
�	�

be the orthogonal projector onto the subpace � and let
����

be the (oblique)
projector onto � and orthogonally to � . These projectors are defined by

��� ©�� � � © ² �	� © � � �
� �� ©�� � � © ² � �� © � � �

and are illustrated in Figure 5.3. The symbol § � is used to denote the operator

§ � ¬ � �� § � � �
and it is assumed, without loss of generality, that ©
 ¬ ; . Then according to the property
(1.54), the approximate problem defined in (5.5 – 5.6) can be reformulated as follows: find
�©�� � such that

� ��
6
¨)²�§��© : ¬<;��

+ � � � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

or, equivalently,

§ � �© ¬ � �� ¨`� �©�� � Y
Thus, an ¤ -dimensional linear system is approximated by an � -dimensional one.

The following proposition examines what happens in the particular case when the
subspace � is invariant under § . This is a rare occurrence in practice, but the result helps
in understanding the breakdown behavior of the methods to be considered in later chapters.

�)� �L� ��� �D��� �	� ´) �
Assume that � is invariant under § , ©
 ¬ ; , and ¨ belongs to

� . Then the approximate solution obtained from any (oblique or orthogonal) projection
method onto � is exact.

� $������c)
An approximate solution �© is defined by

� ��
6
¨)²�§��© : ¬<;��

where �© is a nonzero vector in � . The right-hand side ¨ is in � , so we have
���� ¨�¬�¨ .

Similarly, �© belongs to � which is invariant under § , and therefore,
� �� §��©y¬�§ �© . Then

the above equation becomes

¨)²�§��© ¬ ;��
showing that �© is an exact solution.

The result can be extended trivially to the case where ©
 �¬ ; . The required assumption in
this case is that the initial residual �
�¬ ¨)² §8©�
 belongs to the invariant subspace � .

An important quantity for the convergence properties of projection methods is the
distance

�
6
� ² ��� : ©�� � � of the exact solution © � from the subspace � . This quantity plays

a key role in the analysis of projection methods. Note that the solution © � cannot be well
approximated from � , if

�
6
� ² � � : © � � � is not small because
�
�© ² © � � � � �

6
� ² ��� : © � � � Y

The fundamental quantity
�
6
� ² � � : © � � � � � © � � � is the sine of the acute angle between the

solution © � and the subspace � . The following theorem establishes an upper bound for the
residual norm of the exact solution with respect to the approximate operator § � .

�~�V� �L�?� �­´),+
Let � ¬ � ���� §

6
� ² ��� : � � and assume that ¨ is a member of � and©
 ¬ ; . Then the exact solution © � of the original problem is such that

� ¨Q²�§ � ©�� � � � � �
6
� ² ��� : ©�� � � Y ® aTiM°H°p±

� $������c)
Since ¨ � � , then

¨)² § � © �t¬ � ��
6
¨)² § �	� ©�� :

¬ � ��
6
§t© � ²�§ � � © � :

¬ � �� §
6
© �f² �	� ©�� :

¬ � �� §
6
� ² � � : © � Y

� � � �t��|�qA���-�z|+�*
�� �l� � 	 ����� ��| � #�� �l� � ��� � |
S
w|
 + ��+
Noting that � ² ��� is a projector, it follows that

� ¨O² § � © � � � ¬ � � �� §
6
� ² � � : 6 � ² � � : ©�� � ���� � �� §
6
� ² ��� : � � � 6 � ² ��� : © � � � �

which completes the proof.

It is useful to consider a matrix interpretation of the theorem. We consider only the
particular case of orthogonal projection methods (� ¬ �). Assume that � is unitary, i.e.,
that the basis � � 9 �WYZYWYW� � � 	 is orthonormal, and that

� ¬ � . Observe that ¨ ¬ � � � ¨ .
Equation (5.11) can be represented in the basis � as

� ¨O² � 6 � � § � : � � ©�� � � � � �
6
� ² ��� : ©�� � � Y

However,
� ¨O² � 6 � � §�� : � � © � � � ¬ � � 6 � � ¨)² 6 � � § � : � � © � � �

¬ � � � ¨)² 6 � � §�� : � � © � � � Y
Thus, the projection of the exact solution has a residual norm with respect to the matrix��¬ � � § � , which is of the order of

�
6
� ² �
� : © � � � .

���}�R��� �
¦�?�C�f�3���m��� � �?��� �O� 	¢�D� � � �f� ���v���?���
�¢¡��

This section examines simple examples provided by one-dimensional projection processes.
In what follows, the vector � denotes the residual vector � ¬ ¨z² §8© for the current
approximation © . To avoid subscripts, arrow notation is used to denote vector updates.
Thus, “ ©��"© M � � ” means “compute © M � � and overwrite the result on the current © .”
(This is known as a SAXPY operation.)

One-dimensional projection processes are defined when

� ¬�� � ? ¤
� � 	 and � ¬�� � ? ¤
� � 	J�
where � and � are two vectors. In this case, the new approximation takes the form©�� © M � � and the Petrov-Galerkin condition �C² § : ��� yields

� ¬
6
� � � :6
§	��� � : Y ® aTiM° �=±

Following are three popular choices to be considered.

��� �$��� .�)�#2# �$#�.) 	 #�./� #2-$)

The steepest descent algorithm is defined for the case where the matrix § is Symmetric
Positive Definite. It consists of taking at each step � ¬ � and �"¬ � . This yields an
iteration described by the following algorithm.

+ ��� � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

���%� �L� �3�~� �­´)��4! � 57#0# �4# � 5 ��# � -	#'$�5�� * �4,+&�3 5 � �

1. Until convergence, Do:
2. � � ¨)²�§t©
3. � �

6
� � � : � 6 §	� � � :

4. ©�� © M � �
5. EndDo

Each step of the above iteration minimizes

6
© : ¬ � ©�² © � � �� ¬

6
§
6
©�² ©�� : � 6 ©�² ©�� :A: �

over all vectors of the form © M � � , where � is the negative of the gradient direction ²��
 .
The negative of the gradient direction is locally the direction that yields the fastest rate of
decrease for
 . Next, we prove that convergence is guaranteed when § is SPD. The result
is a consequence of the following lemma known as the Kantorovich inequality.�w�2� ��� ´),+

(Kantorovich inequality) Let � be any Symmetric Positive Definite real
matrix and 	 ��� 4 , 	 � 4 « its largest and smallest eigenvalues. Then,6

�V©��r© : 6 �] 9 ©��9© :6
©��r© : � �

6 	 ��� 4 M 	 � 4 « : �� 	 ��� 4 	 � 4 « � � © �¬ ;�Y ® aTiM°3=H±
� $������c)

Clearly, it is equivalent to show that the result is true for any unit vector © . Since� is symmetric, it is unitarily similar to a diagonal matrix, ��¬�� � ��� , and6
�z©��r© : 6 �] 9 ©��r© : ¬ 6

� � ���~©��r© : 6 � � �] 9 �~©��r© :
¬
6 ����©�����© : 6 �_] 9 �~©����~© : Y

Setting > ¬���©¢¬
6 > 9 �WYWYZYW� > « : � , and 5 4 ¬ > �4 , note that

	 � 6 � > � > : ¬ «B 4 � 9 5 4 	 4
is a convex combination of the eigenvalues 	 4 �A-v¬ O �ZYWYZY8�r¤ . The following relation holds,6

�V©��r© : 6 �] 9 ©��9© : ¬�	
	 6 > :
with

	
6 > : ¬ 6 �] 9 > � > : ¬ «B 4�� 9 5 4 O	 4 Y

Noting that the function O �=© is convex, 	
6 > : is bounded from above by the linear curve

that joins the points

6 	 9 � O �3	 9 : and

6 	 « � O �3	 « : , i.e.,

	
6 > : � O	 9 M O	 « ² 		 9 	 « Y

Therefore, 6
�V©��9© : 6 �] 9 ©��r© : ¬�	�	 6 > :�� 	 � O	 9 M O	 « ² 		 9 	 « � Y

� � � �t��|�qA���-�z|+�*
�� �l� � 	 ����� ��| � #�� �l� � ��� � |
S
w|
 + ���

	 9 	 � 	 4 	 «	
The maximum of the right-hand side is reached for 	�¬ 9� 6 	 9 M 	 « : yielding,6

�z©��9© : 6 �] 9 ©��r© : ¬
	
	 6 > :�� 6 	 9 M 	 « : �� 	 9 	 «
which gives the desired result.

This lemma helps to establish the following result regarding the convergence rate of
the method.

�~�V� �L�)�2�"´)��
Let § be a Symmetric Positive Definite matrix. Then, the § -norms of

the error vectors � 0 ¬�© � ² © 0 generated by Algorithm 5.2 satisfy the relation

� � 037\9 � � � 	 ��� 4 ²�	 � 4 «	 ��� 4 M 	 � 4 « � � 0 � � � ® aTiM° ¯ ±
and Algorithm 5.2 converges for any initial guess ©
 .
� $ � � �)

Start by observing that
� � 037�9 � �� ¬ 6

§ � 037�9 � � 037�9 : ¬ 6
� 037�9 � � 037�9 : and then by

simple substitution,
� � 037�9 � �� ¬ 6

� 037�9 � � 0 ² � 0 � 0 :
Since by construction the new residual vector � 037�9 must be orthogonal to the search direc-
tion � 0 , the second term in the right-hand side of the above equation is zero. Thus,

� � 037�9 � �� ¬ 6
� 0 ² � 0 §�� 0 � � 0 : ® aTiM° a=±

¬
6
� 0 �\§] 9 � 0 : ² � 0 6 � 0 � � 0 : ® aTiM°�
=±

¬ � � 0 � �� � O ²
6
� 0 � � 0 :6
� 0 �9§�� 0 : ¥

6
� 0 � � 0 :6

� 0 �9§] 9 � 0 : � Y ® aTiM°��=±
The result follows by applying the Kantorovich inequality (5.13).

+ ��' � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

�����$� � 1 * - * 1 & �3! #�.2* 	�� & ����1 !�� *) #2! &)�* �	-

We now assume that § is not necessarily symmetric but only positive definite, i.e., its
symmetric part § M § � is Symmetric Positive Definite. Taking at each step ��¬ � and
� ¬ §�� , the following iterative procedure results.

���%� �L� �3�~� �­´)��4!
 3 $43 � (+*Q��# � 3 � � (*)�657#'&8(%5�3 ,2$
1. Until convergence, Do:
2. � � ¨)²�§t©
3. � �

6
§�� � � : � 6 §�� �9§	� :

4. ©�� © M � �
5. EndDo

Here, each step minimizes

6
© : ¬ � ¨f² §8© � �� in the direction � . The iteration converges

under the condition that § is positive definite as is stated in the next theorem.

�~�V� �L�?� �­´)��
Let § be a real positive definite matrix, and let

��¬
	 � 4 « 6 § M § � : � b�� ��¬ � § � � Y
Then the residual vectors generated by Algorithm 5.3 satisfy the relation

�
� 037\9 � � � � O ² �

�
�
� � 9 ��� � � 0 � � ® aTiM° �H±

and Algorithm (5.3) converges for any initial guess ©
 .
� $������c)

We proceed similarly to the steepest descent method, starting with the relation
�
� 037\9 � �� ¬ 6

� 0 ² � 0 §�� 0 � � 0 ² � 0 §	� 0 : ® aTiM° �H±
¬
6
� 0 ² � 0 §�� 0 � � 0 : ² � 0 6 � 0 ² � 0 §�� 0 �\§	� 0 : Y ® aTi � �H±

By construction, the new residual vector � 0 ² � 0 §	� 0 must be orthogonal to the search
direction §	� 0 , and, as a result, the second term in the right-hand side of the above equation
vanishes and we obtain

�
� 037�9 � �� ¬ 6

� 0 ² � 0 §	� 0 � � 0 :¬
6
� 0 � � 0 : ² � 0 6 §	� 0 � � 0 :

¬ �
� 0 � �� � O ²

6
§�� 0 � � 0 :6
� 0 � � 0 :

6
§	� 0 � � 0 :6
§�� 0 �\§	� 0 : � ® aTi �G°p±

¬ �
� 0 � �� � O ²

6
§�� 0 � � 0 : �6
� 0 � � 0 : � �

� 0 � ��� §	� 0 � �� � Y
From Theorem 1.19, it can be stated that6

§t©��9© :6
©��9© : � � � ;�� ® aTi � �H±

� � � �t��|�qA���-�z|+�*
�� �l� � 	 ����� ��| � #�� �l� � ��� � |
S
w|
 + � ´
where � ¬ 	 � 4 « 6 § M § � : � b . The desired result follows immediately by using the in-
equality

� §	� 0 � � � � § � � � � 0 � � .
There are alternative ways of obtaining inequalities that prove convergence. For ex-

ample, starting from (5.21), (5.22) can be used again for the term

6
§�� 0 � � 0 : � 6 � 0 � � 0 : and

similarly, we can write6
§8©��r© :6
§t©��9§8© : ¬

6
§8©��\§] 9 6 §8© :H:6
§t©��9§8© : � 	 � 4 « � §] 9 M §] �b � � ;��

since §] 9 is also positive definite. This would yield the inequality
�
� 037\9 � �� � � O ² � 6 § : � 6 §] 9 : � � � 0 � �� � ® aTi �Z==±

in which �

6
� : ¬
	 � 4 « 6 � M � � : � b .

Another interesting observation is that if we define

� � � � 0 ¬
6
§�� 0 � � 0 :� §�� 0 � � � � 0 � � �

then (5.21) can be rewritten as

�
� 087�9 � �� ¬ �

� 0 � �� � O ²
6
§�� 0 � � 0 :6
§	� 0 �\§	� 0 :

6
§�� 0 � � 0 :6
� 0 � � 0 : �¬ �

� 0 � �� � O ² � � � � � 0 �¬ �
� 0 � �� � ".+ � � 0 Y

At each step the reduction in the residual norm is equal to the sine of the acute angle
between � and §	� . The convergence factor is therefore bounded by

�L¬ $10324 7 9 : � 4 ��
 � "#+ � 6 ©��9§8© : �
in which

� 6 ©��9§t© : is the acute angle between © and §8© . The maximum angle
� 6 ©��\§t© : is

guaranteed to be less than ��� b when § is positive definite as the above results show.

��� �$��� !$#�.%*�	�� & � - �	!$1 .)�#2# �$#�.)�	 #�./� #2-$)

In the residual norm steepest descent algorithm, the assumption that § is positive definite
is relaxed. In fact, the only requirement is that § is a (square) nonsingular matrix. At
each step the algorithm uses � ¬ § � � and � ¬ §	� , giving the following sequence of
operations:

� � ¨)²�§t©�� � ¬ § � � �
� �

�
�
� �� � � §�� � �� �© � © M � ��Y ® aTi � ¯ ±

However, an algorithm based on the above sequence of operations would require three
matrix-by-vector products, which is three times as many as the other algorithms seen in
this section. The number of matrix-by-vector operations can be reduced to two per step by
computing the residual differently. This variant is as follows.

+ � � � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

���%� �L� �3�~� �­´)L'+! ��# � 3 � � (*Q� , & �"� 57#0# �4# � 5 ��# � -	#'$�5
1. Compute �

! ¬ ¨)² §8©
2. Until convergence, Do:
3. �

! ¬ § � �
4. Compute §�� and �

! ¬ �
�
� �� � � §�� � ��

5. © ! ¬ © M � �
6. �

! ¬��C² � §��
7. EndDo

Here, each step minimizes

6
© : ¬ � ¨f² §8© � �� in the direction ²��
 . As it turns out,

this is equivalent to the steepest descent algorithm of Section 5.3.1 applied to the normal
equations § � §8© ¬ § � ¨ . Since § � § is positive definite when § is nonsingular, then,
according to Theorem 5.2, the method will converge whenever § is nonsingular.

�L��� � 	¢� � � �L�L�
¦�z�
	¢� � �v���?� 	¢� ��� � �f� ���v���?���
��¡5

We begin by considering again the block relaxation techniques seen in the previous chapter.
To define these techniques, a set-decomposition of � ¬ � O � b��ZYWYWYW�r¤
	 is considered as the
definition of � subsets � 9 �WYZYWYW��� : of � with

� 4
 � � �4�� 9���������� : � 4 ¬�� Y
Denote by ¤ 4 the size of � 4 and define the subset � 4 as

� 4 ¬ � � 4 6 O : ��� 4 6 b : �WYWYZY8��� 4 6 ¤ 4 : 	JY
Let � 4 be the ¤�¥ ¤ 4 matrix � 4 ¬ � � � I / 9 2 � � � I / � 2 �ZYWYWYW����� I / « I 2 �&�
where each � K is the
 -th column of the ¤ ¥ ¤ identity matrix.

If the block Jacobi and block Gauss-Seidel algorithms, Algorithms 4.1 and 4.2, are
examined carefully, it can be observed that each individual step in the main loop (lines 2 to
5) represents an orthogonal projection process over � 4 ¬ ��� 03+ ��� 4 	 . Indeed, the equation
(4.17) is exactly (5.7) with

� ¬ � ¬ � 4 . This individual projection step modifies only the
components corresponding to the subspace � 4 . However, the general block Jacobi iteration
combines these modifications, implicitly adding them together, to obtain the next iterate© 037\9 . Borrowing from the terminology of domain decomposition techniques, this will be
called an additive projection procedure. Generally, an additive projection procedure can
be defined for any sequence of subspaces � 4 , not just subspaces spanned by the columns
of the identity matrix. The only requirement is that the subspaces � 4 should be distinct,
although they are allowed to overlap.

Let a sequence of � orthogonal systems � 4 be given, with the condition that ��� 03+ � � 4 	

� � � ������� #�� �O| �Q� � � � 	r#��L� 	 � � �+#�� �O|(� ��� � |J
J
w|
 + �

�¬ ��� 03+ � � K 	 for - �¬
 , and define

§ 4 ¬ � �4 §�� 4 Y
The additive projection procedure can be written as> 4 ¬ §] 94 � �4 6 ¨?²�§t© 0 : � -%¬ O �WYZYWY8� �	�

© 037�9 ¬ © 0 M :B 4 � 9 � 4 > 4 � ® aTi �Za=±
which leads to the following algorithm.

�������L���D�~� �­´) ´ ! � � �23 5�3 �%# � &;, � #0-�5�36,2$ � &;, -	# � � &;#
1. For 9 ¬ ;�� O �WYZYWY8� until convergence, Do:
2. For -v¬ O � b��WYZYWY3� � Do:
3. Solve § 4 > 4 ¬ � �4 6 ¨)²�§t© 0 :4. EndDo
5. Set © 087�9 ¬ © 0 M � : 4 � 9 � 4 > 46. EndDo

Defining � 0 ¬ ¨)²�§t© 0 , the residual vector at step 9 , then clearly

� 037�9 ¬ ¨)² §8© 037�9
¬ ¨)² §8© 0 ² :B 4�� 9 §�� 4 � � �4 §�� 4 �] 9 � �4 � 0
¬
�
� ² :B 4�� 9 §�� 4 � � �4 § � 4 �] 9 � �4�� � 0 Y

Observe that each of the � operators

� 4 ¬ § � 4 � � �4 § � 4 �] 9 � �4
represents the projector onto the subspace spanned by § � 4 , and orthogonal to � 4 . Often,
the additive processes are used in conjunction with an acceleration parameter � , thus (5.25)
is replaced by > 4 ¬ §] 94 � �4 6 ¨?²�§t© 0 : � -%¬ O �WYZYWY8� �	�

© 037�9 ¬ © 0 M � :B 4�� 9 � 4 > 4 Y
Even more generally, a different parameter � 4 can be used for each projection, i.e.,> 4 ¬ §] 94 � �4 6 ¨O²�§t© 0 : � -v¬ O �WYZYWY8� ���

© 037�9 ¬ © 0 M :B 4 � 9 � 4 � 4 > 4 Y

+ � � � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

The residual norm in this situation is given by

� 037\9 ¬ � � ² :B 4�� 9 � 4 � 4 � � 0 � ® aTi �
H±
considering the single � parameter as a particular case. Exercise 14 gives an example of
the choice of � 4 which has the effect of producing a sequence with decreasing residual
norms.

We now return to the generic case, where � 4 ¬ O � � - . A least-squares option can be
defined by taking for each of the subproblems � 4 ¬ § � 4 . In this situation, � 4 becomes an
orthogonal projector onto §�� 4 , since

� 4 ¬�§�� 4 � 6 § � 4 : � § � 4 �] 9 6 § � 4 : � Y
It is interesting to note that the residual vector obtained after one outer loop is related to
the previous residual by

� 037\9 ¬ � � ² :B 4�� 9 � 4 � � 0 �
where the � 4 ’s are now orthogonal projectors. In particular, in the ideal situation when
the § � 4 ’s are orthogonal to each other, and the total rank of the � 4 ’s is ¤ , then the exact
solution would be obtained in one outer step, since in this situation

� ² :B 4 � 9 � 4 ¬<;�Y
Thus, the maximum reduction in the residual norm is achieved when the � 4 ’s are § -
orthogonal to one another.

Similar to the Jacobi and Gauss-Seidel iterations, what distinguishes the additive and
multiplicative iterations is that the latter updates the component to be corrected at step- immediately. Then this updated approximate solution is used to compute the residual
vector needed to correct the next component. The Jacobi iteration uses the same previous
approximation © 0 to update all the components of the solution. Thus, the analogue of the
block Gauss-Seidel iteration can be defined as follows.
���%� �L� �3�~� �­´) � !
 � * 5�3 �+* 36-0(%5�3 �%# � &;, � #0-�5�36,2$ � &;, -	# � � &8#

1. Until convergence, Do:
2. For -v¬ O � b��ZYWYWYW��� Do:
3. Solve § 4 > ¬ � �4 6 ¨O²�§t© :
4. Set © ! ¬ © M � 4 >
5. EndDo
6. EndDo

|��O|�� � �
w|
 �Q� �����Q#O|
 + � ³
�����?�t���3�?�v�

1 Consider the linear system Q�� � � , where Q is a Symmetric Positive Definite matrix.
��� Consider the sequence of one-dimensional projection processes with

� ��� � ����� 4
	�� ��
 ,
where the sequence of indices � is selected in any fashion. Let �
����� be a new iterate after
one projection step from � and let � � � ��Q�� , � � Q J6L � ��� , and � ����� � Q J6L � ��� ����� .
Show that !GQ � ����� � � ����� ' � !GQ � � � '"� ! � � � �7' X���� � �)
Does this equality, as is, establish convergence of the algorithm?< � Assume now that � is selected at each projection step to be the index of a component of
largest absolute value in the current residual vector � � � ��Q�� . Show that

 � ����� "!$# �
�\� �

�&% X !GQA' � L9WZX � '! �

in which % !GQB' is the spectral condition number of Q . [Hint: Use the inequality (� :� ��(�)
� JTL9WKX � X .] Does this prove that the algorithm converges?

2 Consider the linear system Q�� � � , where Q is a Symmetric Positive Definite matrix. Consider
a projection step with

� �*� � ����� 4
	�+,
 where + is some nonzero vector. Let � ����� be the new
iterate after one projection step from � and let � � Q JTL � �-� , and � ����� � Q J6L � �-�.����� .
��� Show that !GQ � ����� � � ����� ' � !GQ � � � '"� ! � � + ' X � !GQ�+ � + ')

Does this equality establish convergence of the algorithm?< � In Gastinel’s method, the vector + is selected in such a way that !/+ � � ' � � L , e.g., by
defining the components of + to be + � � �3210 46!2� :� � ' , where � � � � Q�� is the current
residual vector. Show that

 � ����� ! # �
�\� �

�3% X !GQA' � L9WZX � ! �

in which % !GQB' is the spectral condition number of Q . Does this prove that the algorithm
converges?

^_� Compare the cost of one step of this method with that of cyclic Gauss-Seidel (see Example
5.1) and that of “optimal” Gauss-Seidel where at each step

� �4� � ����� 4.	�� �
 and � is a
component of largest magnitude in the current residual vector.

3 In Section 5.3.3, it was shown that taking a one-dimensional projection technique with
� �

����� 45	 Q : �
 and
�1� ���6� 4.	 QEQ : �
 is mathematically equivalent to using the usual steepest

descent algorithm applied to the normal equations Q : Q�� � Q : � . Show that an orthogonal pro-
jection method for Q : Q�� � Q : � using a subspace

�
is mathematically equivalent to applying

a projection method onto
�

, orthogonally to
� � Q � for solving the system Q�� � � .

4 Consider the matrix

Q � � �(��7 �
7 � 8
� 8 �

�)

+J'�� � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

� � Find a rectangle or square in the complex plane which contains all the eigenvalues of Q ,

without computing the eigenvalues.< � Is the Minimal Residual iteration guaranteed to converge for a linear system with the ma-
trix Q ?

5 Consider the linear system � F L � H� P � F X � � � L� X � � � � L� X �
in which F L and F X are both nonsingular matrices of size � each.
� � Define an orthogonal projection method using the set of vectors � L �*)*)+)*� � � , i.e.,

�D� � �
����� 4.	�� L �*)*)+)*� � �
 . Write down the corresponding projection step (� L is modified into

�� L).
Similarly, write the projection step for the second half of the vectors, i.e., when

� � � �
����� 4.	�� ��� L ,)*)*)�� ���6
 .< � Consider an iteration procedure which consists of performing the two successive half-steps
described above until convergence. Show that this iteration is equivalent to a (standard)
Gauss-Seidel iteration applied to the original system.

^_� Now consider a similar idea in which
�

is taken to be the same as before for each half-step
and

� � Q � . Write down the iteration procedure based on this approach. Name another
technique to which it is mathematically equivalent.

6 Consider the linear system Q�� � � , where Q is a Symmetric Positive Definite matrix. We define
a projection method which uses a two-dimensional space at each step. At a given step, take� � � � ����� 4
	 � � Q �
 , where � � � ��Q�� is the current residual.
� � For a basis of

�
use the vector � and the vector � obtained by orthogonalizing Q � against �

with respect to the Q -inner product. Give the formula for computing � (no need to normalize
the resulting vector).< � Write the algorithm for performing the projection method described above.

^_� Will the algorithm converge for any initial guess ��� ? Justify the answer. [Hint: Exploit the
convergence results for one-dimensional projection techniques.]

7 Consider projection methods which update at each step the current solution with linear combi-
nations from two directions: the current residual � and Q � .
� � Consider an orthogonal projection method, i.e., at each step

� � � � ���6� 4
	 � � Q �
 . As-
suming that Q is Symmetric Positive Definite, establish convergence of the algorithm.< � Consider a least-squares projection method in which at each step

� � ���6� 4.	 � � Q �
 and
� �

Q � . Assuming that Q is positive definite (not necessarily symmetric), establish convergence
of the algorithm.

[Hint: The convergence results for any of the one-dimensional projection techniques can be
exploited.]

8 The “least-squares” Gauss-Seidel relaxation method defines a relaxation step as �&����� � � - � � �
(same as Gauss-Seidel), but chooses

�
to minimize the residual norm of �3����� .

� � Write down the resulting algorithm.< � Show that this iteration is mathematically equivalent to a Gauss-Seidel iteration applied to
the normal equations Q : Q�� � Q : � .

9 Derive three types of one-dimensional projection algorithms in the same manner as was done in
Section 5.3, by replacing every occurrence of the residual vector � by a vector � � , a column of
the identity matrix.

|��O|�� � �
w|
 �Q� �����Q#O|
 +J' +
10 Derive three types of one-dimensional projection algorithms in the same manner as was done in

Section 5.3, by replacing every occurrence of the residual vector � by a vector Q�� � , a column of
the matrix Q . What would be an “optimal” choice for � at each projection step? Show that the
method is globally convergent in this case.

11 A minimal residual iteration as defined in Section 5.3.2 can also be defined for an arbitrary
search direction � , not necessarily related to � in any way. In this case, we still define � � Q � .
��� Write down the corresponding algorithm.< � Under which condition are all iterates defined?
^_� Under which condition on � does the new iterate make no progress, i.e.,

 ��� � L X � ��� X ?� � Write a general sufficient condition which must be satisfied by � at each step in order to
guarantee convergence.

12 Consider the following real-valued functions of the vector variable � , where Q and � are the
coefficient matrix and right-hand system of a given linear system Q�� � � and ��� � Q JTL � .

� !/�
' � � � � � XX �� !/�
' � � ��Q�� XX �
�
!/�
' � Q : � ��Q : Q�� XX �
� !/�
' � � ! � � � '"� !GQ�� � �
')

��� Calculate the gradients of all four functions above.< � How is the gradient of � related to that of
�

?
^_� How is the gradient of

�
related to that of

�
when Q is symmetric?

� � How does the function
�

relate to the Q -norm of the error � � � � when Q is Symmetric
Positive Definite?

13 The block Gauss-Seidel iteration can be expressed as a method of successive projections. The
subspace

�
used for each projection is of the form

� � ���6� 4
	�� � � � � � L �*)�)*)*� � � � �
)
What is

�
? Not too commonly used an alternative is to take

� � Q � , which amounts to solving
a least-squares problem instead of a linear system. Develop algorithms for this case. What are
the advantages and disadvantages of the two approaches (ignoring convergence rates)?

14 Let the scalars > � in the additive projection procedure satisfy the constraint

�B
��� L

> � � �) ® aTi � �=±
It is not assumed that each > � is positive but only that (> � (# � for all � . The residual vector is
given by the Formula (5.26) or, equivalently,

��� � L �
�B
��� L

> �M! C � � �9' ���)

��� Show that in the least-squares case, we have
 �	� � L X # ��� X for any choice of > � ’s which

satisfy the constraint (5.27).< � We wish to choose a set of > � ’s such that the 2-norm of the residual vector �	� � L is minimal.
Determine this set of > � ’s, assuming that the vectors ! C � � � ' � � are all linearly independent.

+J' � � � ���µ#Q|�� � ����� ��| � #�� �l���z|G#Q������

^_� The “optimal” > � ’s provided in the previous question require the solution of a � ��� Symmet-

ric Positive Definite linear system. Let � � U � ��� � be the “search directions” provided by each
of the individual projection steps. To avoid this difficulty, a simpler strategy is used which
consists of performing � successive minimal residual iterations along these search directions,
as is described below.

��� � ���
For � � � �*)�)*)+� � Do:

> � � � ! � � Q � � ' � !GQ � � � Q � � '� � � � -V> � � �
��� � � � > �GQ � �

EndDo

Show that
 � � � L X # � � X . Give a sufficient condition to ensure global convergence.

15 Consider the iteration: � � � L � � �]-
 ��� � , where � � is a vector called the direction of search,
and
 � is a scalar. It is assumed throughout that � � is a nonzero vector. Consider a method which
determines � � � L so that the residual

 �	� � L X is the smallest possible.
� � Determine
 � so that

 ��� � L X is minimal.< � Show that the residual vector �	� � L obtained in this manner is orthogonal to Q �	� .
^_� Show that the residual vectors satisfy the relation:

 ��� � L X # ��� X �3254�� ! ��� � Q � � ')
� � Assume that at each step � , we have ! �	� � Q � � '��� �

. Will the method always converge?
	�� Now assume that Q is positive definite and select at each step � � U � � . Prove that the method

will converge for any initial guess � � .
16 Consider the iteration: � � � L � � � -
 � � � , where � � is a vector called the direction of search,

and
 � is a scalar. It is assumed throughout that � � is a vector which is selected in the form
� � � Q : � � where

�
� is some nonzero vector. Let � � � Q J6L � be the exact solution. Now

consider a method which at each step � determines � � � L so that the error norm
 � � � � � � L X

is the smallest possible.
� � Determine
 � so that

 � � � � � � L X is minimal and show that the error vector � � � L �
� � � � � � L is orthogonal to � � . The expression of
 � should not contain unknown quantities
(e.g., � � or � �).< � Show that

 � � � L X # � � X �3254�� !2� � � � � ' .
^_� Establish the convergence of the algorithm for any � � , when

�
�
U ��� for all � .

NOTES AND REFERENCES. Initially, the term projection methods was used mainly to describe one-
dimensional techniques such as those presented in Section 5.3. An excellent account of what has been
done in the late 1950s and early 1960s can be found in Householder’s book [122] as well as Gastinel
[101]. For more general, including nonlinear, projection processes, a good reference is Kranoselskii
and co-authors [138].

Projection techniques are present in different forms in many other areas of scientific computing
and can be formulated in abstract Hilbert functional spaces. The terms Galerkin and Petrov-Galerkin
techniques are used commonly in finite element methods to describe projection methods on finite
element spaces. The principles are identical to those seen in this chapter.

� � � � � � �

�

������� � � ����� � ��	 � � � �������! ­�
��	�� �

#%$'&�I'&5o4.m.XP�:¢u�$'2<np.1&�*-,�&ro<n�F :<*3&}2LBx&9P�7)&9.\$4:<;=,8P)$H0 u'$�2H*3&Lu\:GI4,r0 ;�&�*3&A; u�>�*Jq*3&�Ip.\F Nz.1: SH&V2<7O:TI4K�.9$'&L7):�,/.�0J7tnH:�*J.@2�Ip.m0 .1&�*324.50 6'&C.@&\u�$�IH0 ��>'&\,t2p6'2=0MF 2<S�F &mB�:�*,1:TF 6H0JI4KLF 2H*-K=&CF 0JI'&A2H*k,/N4,/.1&�7O,Ai{#%$'&\,@&f.@&\u�$�IH0 ��>'&\,%2H*3&CS'24,@&A;~:TIVn�*3:	�_&Au9.50 :TIVnH*-:'quA&\,1,1&\,AsµSH:'.\$):�*-.9$4:HK�:TI'2�F=2�I';8:GS�F 0 ��>'&Hs':TIp./:	��*JN�F :�6f,\>�S4,\n'2'uA&\,AsHPO$H0 u�$?2H*3&O,9>�Spq,\n'2'uA&\,l,\n'2�I�I'&A;¢S9N�6'&Au9./:<*-,t:�B�.\$'&tB�:�*X7 � !GQB'�+ PO$'&�*3& � 0 ,f2 n�:TF N�I4:G7f0 2<F i �MI,\$4:�*J.As{.\$'&9,@&8.1&Au�$�IH0 ��>'&\,Q2�n�nH*-:Ao=0J7)2p.@& Q] 9 � S9N � !GQA' � sTPO$'&�*3& � 0 ,)2�
_K�:�:<;
�nH:GF N�I4:T7f0 2�FMik#%$H0 ,tu�$'2�np.@&�*�u\:'6'&�*-,z7)&9.9$4:<;=,t;�&�*�0 6'&A;LB/*-:G7msw:�*?*3&�F 2p.@&A;L./:�s+.\$'&�%*_I4:GF ;G04:�*J.\$4:�KH:GI'2<F 0 �A2p.r0 :GI<i4#Q$'&)I'&5o4.cu�$'2�np.@&'*�u9:�6'&�*-,�7)&9.\$4:<;=,�S'2',@&\;?:TI 	�2<I'urq
�\:�,tSH0 :<*J.9$4:HKH:GI'2<F 0 �A2p.r0 :GI<i

�_� 	 �?������� 	 �3���
� ¡4£

Recall from the previous chapter that a general projection method for solving the linear
system

§8© ¬ ¨`� ®
GiM°4±
is a method which seeks an approximate solution © � from an affine subspace ©
 M � � of
dimension � by imposing the Petrov-Galerkin condition

¨)² §8© � � � � �
where � � is another subspace of dimension � . Here, ©�
 represents an arbitrary initial
guess to the solution. A Krylov subspace method is a method for which the subspace � �
is the Krylov subspace

� � 6 § � �
 : ¬�� � ? ¤
� �
 �9§��
S�9§ � �
 �WYZYWYZ�9§ �] 9 �
�	J�+J' �

+J'�' � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
where �
C¬ ¨�² §t©
 . When there is no ambiguity, � � 6 § � �
 : will be denoted by � � . The
different versions of Krylov subspace methods arise from different choices of the subspace
� � and from the ways in which the system is preconditioned, a topic that will be covered
in detail in later chapters.

Viewed from the angle of approximation theory, it is clear that the approximations
obtained from a Krylov subspace method are of the form

§] 9 ¨ � © � ¬ ©
 M�� �] 9 6 § : �
 �
in which � �] 9 is a certain polynomial of degree � ² O . In the simplest case where ©
 ¬�; ,
then

§] 9 ¨ � � �] 9 6 § : ¨`Y
In other words, §] 9 ¨ is approximated by � �] 9 6 § : ¨ .Although all the techniques provide the same type of polynomial approximations, the
choice of � � , i.e., the constraints used to build these approximations, will have an im-
portant effect on the iterative technique. Two broad choices for � � give rise to the best-
known techniques. The first is simply � � ¬ � � and the minimum-residual variation
� � ¬
§ � � . A few of the numerous methods in this category will be described in this
chapter. The second class of methods is based on defining � � to be a Krylov subspace
method associated with § � , namely, � � ¬ � � 6 § � � �
 : . Methods of this class will be
covered in the next chapter. There are also block extensions of each of these methods
termed block Krylov subspace methods, which will be discussed only briefly. Note that
a projection method may have several different implementations, giving rise to different
algorithms which are all mathematically equivalent.

�}��� �c� � �?�z�l� � �����v�
� ¡��

In this section we consider projection methods on Krylov subspaces, i.e., subspaces of the
form

� � 6 § � � : � � � 0�+ � �
�\§	���9§ � �
�ZYWYZYW�9§ �] 9 � 	 ®
Ti �H±
which will be denoted simply by � � if there is no ambiguity. The dimension of the sub-
space of approximants increases by one at each step of the approximation process. A few
elementary properties of Krylov subspaces can be established, many of which need no
proof. A first property is that � � is the subspace of all vectors in ª « which can be writ-
ten as ©�¬ �

6
§ : � , where � is a polynomial of degree not exceeding � ² O . Recall that

the minimal polynomial of a vector � is the nonzero monic polynomial � of lowest degree
such that �

6
§ : � ¬ ; . The degree of the minimal polynomial of � with respect to § is often

called the grade of � with respect to § , or simply the grade of � if there is no ambiguity.
A consequence of the Cayley-Hamilton theorem is that the grade of � does not exceed ¤ .
The following proposition is easy to prove.

� � � �\��� 	`���
 ��j�

� � � |
 +J' ´
�)� �L� ��� �3� � �	� �),+

Let � be the grade of � . Then ��� is invariant under § and � � ¬
��� for all � � � .

It was mentioned above that the dimension of � � is nondecreasing. In fact, the fol-
lowing proposition determines the dimension of � � in general.

�)� �L� ��� �3� � �	� �)��
The Krylov subspace � � is of dimension � if and only if the

grade � of � with respect to § is not less than � , i.e.,
� "#$ 6 � � : ¬ � � ��� 0 ��� 6 � : � � Y

Therefore,
� "#$ 6 � � : ¬�$1"#+ ��� � ��� 0 ��� 6 � : 	SY

� $ � � �)
The vectors ���9§	���WYZYWYZ�9§ �] 9 � form a basis of � � if and only if for any set of

� scalars � 4 �A-t¬ ;��ZYWYWYW���
² O , where at least one � 4 is nonzero, the linear combination� �] 94 �
 � 4 § 4 � is nonzero. This is equivalent to the condition that the only polynomial of
degree

� � ² O for which �

6
§ : � ¬ ; is the zero polynomial. The second part of the

proposition is a consequence of the previous proposition.

�)� �L� ��� �3� � �	� �)��
Let � � be any projector onto � � and let § � be the section of§ to � � , that is, § � ¬ � � §�� � � . Then for any polynomial � of degree not exceeding

� ² O ,
�

6
§ : ��¬ � 6 § � : �
�

and for any polynomial of degree
� � ,

� � � 6 § : � ¬ � 6 § � : �
Y
� $ � � �)

First we prove that �

6
§ : � ¬ � 6 § � : � for any polynomial � of degree

� � ² O . It
is sufficient to show the property for the monic polynomials � 4 6 � : � � 4 ��-%¬<;��WYWYZY8����² O .The proof is by induction. The property is true for the polynomial �

6 � : � O . Assume that
it is true for � 4 6 � : � � 4 :

� 4 6 § : ��¬ � 4 6 § � : �
Y
Multiplying the above equation by § on both sides yields

� 4 7�9 6 § : � ¬ § � 4 6 § � : ��Y
If - M O � � ² O the vector on the left-hand side belongs to � � , and therefore if the above
equation is multiplied on both sides by � � , then

� 4 7�9 6 § : ��¬�� � § � 4 6 § � : ��Y
Looking at the right-hand side we observe that � 4 6 § � : � belongs to � � . Hence,

� 4 7�9 6 § : � ¬ � � §�� � � � 4 6 § � : �L¬ � 4 7�9 6 § � : ���
which proves that the property is true for - M O , provided - M O � � ² O . For the case- M O ¬ � , it only remains to show that � � � � 6 § : �y¬ � � 6 § � : � , which follows from

+J' � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
� �] 9 6 § : � ¬ � �] 9 6 § � : � by simply multiplying both sides by � � § .

� �m�~����� ���3�
¦��	������
� ¡��

Arnoldi’s method [9] is an orthogonal projection method onto � � for general non-
Hermitian matrices. The procedure was introduced in 1951 as a means of reducing a dense
matrix into Hessenberg form. Arnoldi presented his method in this manner but hinted that
the eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than¤ could provide accurate approximations to some eigenvalues of the original matrix. It
was later discovered that this strategy leads to an efficient technique for approximating
eigenvalues of large sparse matrices. The method will first be described theoretically, i.e.,
assuming exact arithmetic, then implementation details will be addressed.

� ���$���)�0
�2& .%* � & �
��	! *) 0 1

Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov subspace
� � . In exact arithmetic, one variant of the algorithm is as follows:

���%� �L� �3�~� � �),+"! � & $%, * �23
1. Choose a vector � 9 of norm 1
2. For
}¬ O �cb��WYWYZY8��� Do:
3. Compute � 4LK ¬ 6

§	� K � � 4 : for -�¬ O � b��WYZYWY3�8

4. Compute � K ! ¬�§�� K ² � K 4�� 9 � 4LK � 45. � K 7\9�� K ¬ �

� K � �
6. If � K 7�9 � K ¬ ; then Stop
7. � K 7�9 ¬ � K ��� K 7�9�� K8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector � K by § and then or-
thonormalizes the resulting vector � K against all previous � 4 ’s by a standard Gram-Schmidt
procedure. It will stop if the vector � K computed in line 4 vanishes. This case will be ex-
amined shortly. Now a few simple properties of the algorithm are proved.

�)� �L� ��� �D��� �	� �)L'
Assume that Algorithm 6.1 does not stop before the � -th step.

Then the vectors � 9 � � � �WYWYZYW� � � form an orthonormal basis of the Krylov subspace

� � ¬ ��� 0�+ � � 9 �9§	� 9 �WYZYWYW�\§ �] 9 � 9 	SY

� � � ��� �*� 	 �����
 �V|G#O�*��� +J'

� $ � � �)

The vectors � K �8
}¬ O � b��WYZYWY8��� , are orthonormal by construction. That they span
� � follows from the fact that each vector � K is of the form � K] 9 6 § : � 9 where � K] 9 is a
polynomial of degree
z² O . This can be shown by induction on
 as follows. The result is
clearly true for
¢¬ O , since � 9 ¬ �
 6 § : � 9 with �

6 � : � O . Assume that the result is true
for all integers

�
 and consider � K 7�9 . We have

� K 7�9 � K 7\9 ¬ §�� K ² KB 4 � 9 � 4 K � 4 ¬ § � K] 9 6 § : � 9 ² KB 4 � 9 � 4LK � 4] 9
6
§ : � 9 ®
Gi ==±

which shows that � K 7�9 can be expressed as � K 6 § : � 9 where � K is of degree
 and completes
the proof.

�)� �L� ��� �3� � �	� �) ´
Denote by � � , the ¤�¥ � matrix with column vectors � 9 , YWYWY ,

� � , by

�� � , the

6
� M O : ¥ � Hessenberg matrix whose nonzero entries � 4LK are defined by

Algorithm 6.1, and by
� � the matrix obtained from

�� � by deleting its last row. Then the
following relations hold:

§ � � ¬ � � � � M � � � �� ®
Gi ¯ ±
¬ � � 7�9 �� � � ®
Gi a=±� �� § � � ¬ � � Y ®
Gi
=±

� $ � � �)
The relation (6.5) follows from the following equality which is readily derived

from lines 4, 5, and 7 of Algorithm 6.1,

§	� K ¬ K 7�9B 4�� 9 � 4 K � 4 �
}¬ O � b��ZYWYWY3��� Y ®
Gi �=±

Relation (6.4) is a matrix reformulation of (6.7). Relation (6.6) follows by multiplying both
sides of (6.4) by � �� and making use of the orthonormality of � � 9 �WYZYWY8� � � 	 .
The result of the proposition is illustrated in Figure 6.1.

� � M � � � ��¬§

� �
� �

 �! "�#�$ % �),+
The action of § on � � gives � � � � plus a rank-

one matrix.

As was noted earlier, the algorithm may break down in case the norm of � K vanishes at
a certain step
 . In this case, the vector � K 7�9 cannot be computed and the algorithm stops.

+J' � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
Still to be determined are the conditions under which this situation occurs.

�)� �L� ��� �D��� �	� �) �
Arnoldi’s algorithm breaks down at step
 (i.e., � K 7�9 � K ¬<; in line

5 of Algorithm 6.1), if and only if the minimal polynomial of � 9 is of degree
 . Moreover,
in this case the subspace � K is invariant under § .

� $������c)
If the degree of the minimal polynomial is
 , then � K must be equal to zero.

Indeed, otherwise � K 7\9 can be defined and as a result � K 7�9 would be of dimension
 M O .Then Proposition 6.2 would imply that � �
 M O , which is a contradiction. To prove
the converse, assume that � K ¬ ; . Then the degree � of the minimal polynomial of � 9 is
such that �

�
 . Moreover, it is impossible that �

 . Otherwise, by the first part of this

proof, the vector � � would be zero and the algorithm would have stopped at the earlier
step number � . The rest of the result follows from Proposition 6.1.

A corollary of the proposition is that a projection method onto the subspace � K will
be exact when a breakdown occurs at step
 . This result follows from Proposition 5.6 seen
in Chapter 5. It is for this reason that such breakdowns are often called lucky breakdowns.

� � �$��� �$! &��)+*,��& � * 1 � ��#21 #2-$)%&%)+*,�	-�.

In the previous description of the Arnoldi process, exact arithmetic was assumed, mainly
for simplicity. In practice, much can be gained by using the Modified Gram-Schmidt or the
Householder algorithm instead of the standard Gram-Schmidt algorithm. With the Modi-
fied Gram-Schmidt alternative the algorithm takes the following form:

���%� �L� �3�~� � �)��4! � & $%, * �23 �
 , �23 �2# � � &8(� �4� -�� � 3��45
1. Choose a vector � 9 of norm 1
2. For
}¬ O �cb��WYWYZY8��� Do:
3. Compute � K ! ¬�§�� K
4. For -v¬ O �ZYWYZY8�;
 Do:
5. � 4LK ¬ 6

� K � � 4 :
6. � K ! ¬�� K ² � 4LK � 4
7. EndDo
8. � K 7\9�� K ¬ �

� K � � . If � K 7\9�� K ¬�; Stop
9. � K 7�9 ¬ � K ��� K 7�9�� K10. EndDo

In exact arithmetic, this algorithm and Algorithm 6.1 are mathematically equivalent. In
the presence of round-off the above formulation is much more reliable. However, there
are cases where cancellations are so severe in the orthogonalization steps that even the
Modified Gram-Schmidt option is inadequate. In this case, two further improvements can
be utilized.

The first improvement resorts to double orthogonalization. Whenever the final vector
� K obtained at the end of the main loop in the above algorithm has been computed, a

� � � ��� �*� 	 �����
 �V|G#O�*��� +J' ³
test is performed to compare its norm with the norm of the initial � K (which is

� §	� K � �).
If the reduction falls below a certain threshold, indicating severe cancellation might have
occurred, a second orthogonalization is made. It is known from a result by Kahan that
additional orthogonalizations are superfluous (see, for example, Parlett [160]).

The second improvement is to use a different technique altogether. From the numerical
point of view, one of the most reliable orthogonalization techniques is the Householder
algorithm. Recall from Chapter 1 that the Householder orthogonalization uses reflection
matrices of the form � 0 ¬ � ²(b � 0 � �0 to transform a matrix � into upper triangular form.
In the Arnoldi algorithm, the column vectors of the matrix � to be orthonormalized are
not available ahead of time. Instead, the next vector is obtained as §	� K , where � K is the
current basis vector. In the Householder algorithm an orthogonal column � 4 is obtained as
� 9 � � YZYWY�� 4 � 4 where � 9 �ZYWYZYW� � 4 are the previous Householder matrices. This vector is then
multiplied by § and the previous Householder transforms are applied to it. Then, the next
Householder transform is determined from the resulting vector. This procedure is described
in the following algorithm, which was originally proposed by Walker [221].

�������L���D�~� � �)��4! � , ��� # �%,2* �+#"&C� & $%,2* �23
1. Select a nonzero vector � ; Set � 9 ¬��2. For
L¬ O �WYWYZY8��� ��� M O Do:
3. Compute the Householder unit vector � K such that
4.

6
� K : 4 ¬ ;��H-v¬ O �WYZYWY8�8
V² O and

5.

6
� K � K : 4 ¬<;��A-v¬
 M O �ZYWYZY8�r¤ , where � K ¬ � ² b � K � �K

6. � K] 9 ¬�� K � K7. � K ¬�� 9 � � YWYZY � K � K8. If
 � � compute � K 7�9 ! ¬�� K � K] 9 YZYWY � 9 §�� K9. EndDo

For details regarding the determination of the Householder vector � K in the third to fifth
lines and on its use in the sixth to eight lines, see Chapter 1. Recall that the matrices � K need
not be formed explicitly. To obtain � K] 9 from � K in line 6, zero out all the components from
position
 M O through ¤ of the ¤ -vector � K and change its
 -th component, leaving all others
unchanged. Thus, the ¤ ¥ � matrix � ��
 � � 9 �ZYWYZYW� � � � will have the same structure as the
matrix � � of equation (1.22) in Chapter 1. By comparison with the Householder algorithm
seen in Chapter 1, we can infer that the above process computes the � � factorization of
the matrix �
�\§	� 9 �\§	� � �9§�� 4 �WYZYWYZ�9§	� � . Define

� K ¬�� K � K] 9 YWYWY�� 9 Y ®
Gi �=±
The definition of � K 7�9 in line 8 of the algorithm yields the relation,

� K §	� K ¬�� K 7�9 Y
After the next Householder transformation � K 7�9 is applied in line 6, � K satisfies the rela-
tion,

� K ¬�� K 7�9 � K 7�9 ¬�� K 7�9 � K §	� K ¬�� K 7�9 §�� K Y ®
Gi �=±

+ ´ � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
Now observe that since the components
 M b��WYWYZYW�9¤ of � K are zero, then � 4 � K ¬ � K for
any - �
 M b . Hence,

� K ¬�� � � �] 9 YWYZY � K 7 � � K ¬ � � §	� K �
L¬ O �WYWYZY8��� Y
This leads to the factorization,

� � � �
�\§	� 9 �9§�� � �ZYWYWYZ�9§�� � �c¬ � �
 � � 9 �WYZYWYZ� � � � ®
TiM° �H±
where the matrix � �
 �WYZYWYZ� � � � is ¤�¥

6
� M O : and is upper triangular and � � is unitary.

It is important to relate the vectors � 4 and � 4 defined in this algorithm with vectors of
the standard Arnoldi process. Let

�� � be the

6
� M O : ¥ � matrix obtained from the first

� M O rows of the ¤�¥ � matrix � � 9 �WYZYWYW� � � � . Since � K 7�9 is unitary we have �] 9K 7�9 ¬ � �K 7�9and hence, from the relation (6.9)

§�� K ¬ � �K 7�9 K 7�9B 4�� 9 � 4 K � 4 ¬
K 7\9B 4 � 9 � 4LK � �K 7�9 � 4

where each � 4 is the - -th column of the ¤�¥ ¤ identity matrix. Since � 0 � 4 ¬
� 4 for -
 9 ,
it is not difficult to see that

� �K 7\9 � 4 ¬�� 9 YZYWY�� K 7�9 � 4 ¬
� 4 � for - �
 M O Y ®
GiJ°�°4±
This yields the relation §	� K ¬ � K 7�94�� 9 � 4LK � 4 , for
 ¬ O �ZYWYZY8��� , which can be written in
matrix form as

§�� � ¬ � � 7\9 �� � Y
This is identical with the relation (6.5) obtained with the Gram-Schmidt or Modified Gram-
Schmidt implementation. The � 4 ’s form an orthonormal basis of the Krylov subspace � �
and are identical with the � 4 ’s defined by the Arnoldi process, apart from a possible sign
difference.

Although the Householder algorithm is numerically more viable than the Gram-
Schmidt or Modified Gram-Schmidt versions, it is also more expensive. The cost of each
of the outer loops, corresponding to the
 control variable, is dominated by lines 7 and 8.
These apply the reflection matrices � 4 for -}¬ O �ZYWYZY8�;
 to a vector, perform the matrix-
vector product §	� K , and then apply the matrices � 4 for -v¬
J�;
z² O �WYZYWY8� O to a vector. The
application of each � 4 to a vector is performed as6

� ² b � 4 � �4 : ��¬��z² � � 4 with ��¬<b � �4 �
Y
This is essentially the result of a dot-product of length ¤y² - M O followed by a vector
update of the same length, requiring a total of about

�
6
¤ ²�- M O : operations for each

application of � 4 . Neglecting the last step, the number of operations due to the Householder
transformations alone approximately totals�BK�� 9

KB 4 � 9 �

6
¤¢²�- M O : ¬ �

�BK�� 9
�
T¤ ²
 6
V² O :b � � � � � ¤ ² �

� � 4 Y
The table below shows the costs of different orthogonalization procedures. GS stands for
Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for Modified Gram-Schmidt
with reorthogonalization, and HO for Householder.

� � � ��� �*� 	 �����
 �V|G#O�*��� �`��� 	 �J��| ���(
 ��
T#O|k�
 ® � �8�m± + ´ +
GS MGS MGSR HO

Flops b � � ¤ b � � ¤ � � � ¤ � � � ¤ ² �

4 � 4
Storage

6
� M O : ¤ 6

� M O : ¤ 6
� M O : ¤ 6

� M O : ¤¢² 9� � �
The number of operations shown for MGSR corresponds to the worst case scenario when a
second orthogonalization is performed each time. In practice, the number of operations is
usually closer to that of the standard MGS. Regarding storage, the vectors � 4 �H-�¬ O �WYZYWY8���need not be saved. In the algorithms for solving linear systems, these vectors are needed at
the end of the process. This issue will be covered with the Householder implementations
of these algorithms. For now, assume that only the � 4 ’s are saved. The small gain in mem-
ory usage in the Householder version can be explained by the diminishing lengths of the
vectors required at each step of the Householder transformation. However, this difference
is negligible relative to the whole storage requirement of the algorithm, because ��� ¤ ,
typically.

The Householder orthogonalization may be a reasonable choice when developing gen-
eral purpose, reliable software packages where robustness is a critical criterion. This is
especially true for solving eigenvalue problems since the cost of orthogonalization is then
amortized over several eigenvalue/eigenvector calculations. When solving linear systems,
the Modified Gram-Schmidt orthogonalization, with a reorthogonalization strategy based
on a measure of the level of cancellation, is more than adequate in most cases.

���m�����R� � �3�
¦��	������ �E��� �v�X�L����� � �z� 	���
y� 	 �c�
��
� ¡5

Given an initial guess ©�
 to the original linear system §t© ¬ ¨ , we now consider an orthogo-
nal projection method as defined in the previous chapter, which takes � ¬ � ¬ � � 6 § � �
 : ,
with

� � 6 § � �
 : ¬�� � ? ¤
� �
 �9§��
 �9§ � �
 �WYZYWYZ�9§ �] 9 �
 	J� ®
TiM° �=±
in which �
 ¬ ¨8²�§t©
 . This method seeks an approximate solution © � from the affine
subspace ©
 M � � of dimension � by imposing the Galerkin condition

¨)²�§t© � � � � Y ®
TiM° ==±
If � 9 ¬
�
 � � �
 � � in Arnoldi’s method, and set 5�¬ �

�

� � , then� �� § � � ¬ � �

by (6.6) and � �� �
C¬ � �� 6 5 � 9 : ¬�5.� 9 Y
As a result, the approximate solution using the above � -dimensional subspaces is given
by

© � ¬�©
 M � � > � � ®
TiM° ¯ ±

+ ´ � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
> � ¬ �] 9� 6 5.� 9 : Y ®
TiM°3aH±

A method based on this approach and called the Full Orthogonalization Method
(FOM) is described next. Modified Gram-Schmidt is used in the Arnoldi step.

���%� �L� �3�~� � �)L'+! � � * *v� &<5 �%, �4,2$"(+* 3 �0(�5�36,2$
 #	5 �%, � 	 �E�
��
1. Compute �
C¬ ¨)²�§t©
 , 5 ! ¬ �

�

� � , and � 9 ! ¬��
 �`52. Define the � ¥ � matrix

� � ¬�� � 4 K 	 4 � K�� 9 ��������� � ; Set
� � ¬<;

3. For
}¬ O �cb��WYWYZY8��� Do:
4. Compute � K ! ¬�§�� K
5. For -v¬ O �ZYWYZY8�;
 Do:
6. � 4LK ¬ 6

� K � � 4 :
7. � K ! ¬�� K ² � 4LK � 4
8. EndDo
9. Compute � K 7\9�� K ¬ �

� K � � . If � K 7\9�� K ¬ ; set � ! ¬
 and Goto 12
10. Compute � K 7�9 ¬ � K ��� K 7�9 � K .11. EndDo
12. Compute > � ¬ �] 9� 6 5 � 9 : and © � ¬ ©�
 M � � > �

The above algorithm depends on a parameter � which is the dimension of the Krylov
subspace. In practice it is desirable to select � in a dynamic fashion. This would be pos-
sible if the residual norm of the solution © � is available inexpensively (without having to
compute © � itself). Then the algorithm can be stopped at the appropriate step using this
information. The following proposition gives a result in this direction.

�)� �L� ��� �D��� �	� �)

The residual vector of the approximate solution © � computed by

the FOM Algorithm is such that

¨)²�§t© � ¬ ² � � 7�9 � � � �� > � � � 7�9
and, therefore,

� ¨O² §8© � � � ¬ � � 7�9 � � � � �� > � � Y ®
TiM°
H±
� $������c)

We have the relations,

¨)² §8© � ¬ ¨)² §
6
©�
 M � � > � :

¬ �
t²�§ � � > �
¬<5 � 9 ² � � � � > � ² � � 7�9 � � � �� > � � � 7�9 Y

By the definition of > � ,
� � > � ¬�5.� 9 , and so 5 � 9 ² � � � � > � ¬<; from which the result

follows immediately.

A rough estimate of the cost of each step of the algorithm is determined as follows. If
� �

6
§ : is the number of nonzero elements of § , then � steps of the Arnoldi procedure will

require � matrix-vector products at the cost of b � ¥ � �
6
§ : . Each of the Gram-Schmidt

steps costs approximately
� ¥
L¥ ¤ operations, which brings the total over the � steps to

� � � ��� �*� 	 �����
 �V|G#O�*��� �`��� 	 �J��| ���(
 ��
T#O|k�
 ® � �8�m± + ´ �
approximately b � � ¤ . Thus, on the average, a step of FOM costs approximatelyb�� � 6 § : M b �¢¤[Y
Regarding storage, � vectors of length ¤ are required to save the basis � � . Additional
vectors must be used to keep the current solution and right-hand side, and a scratch vector
for the matrix-vector product. In addition, the Hessenberg matrix

� � must be saved. The
total is therefore roughly 6

� M � : ¤ M � �b Y
In most situations � is small relative to ¤ , so this cost is dominated by the first term.

� � ����� �%&+! * &%)+*,�	-����2!$#�.)%&+!%)�# 	 ��� 1

Consider now the algorithm from a practical viewpoint. As � increases, the computational
cost increases at least as

�
6
� � : ¤ because of the Gram-Schmidt orthogonalization. The

memory cost increases as
�
6
� ¤ : . For large ¤ this limits the largest value of � that can

be used. There are two remedies. The first is to restart the algorithm periodically and the
second is to “truncate” the orthogonalization in the Arnoldi algorithm. In this section we
consider the first of these two options, which is described below.

�������L���D�~� � �) ´ ! � # � 5 ('&;57# � �c�
 	 �c�
 	 ��� �
1. Compute �
�¬ ¨)² §8©�
 , 5�¬ �

�

� � , and � 9 ¬��
3�`5 .

2. Generate the Arnoldi basis and the matrix
� � using the Arnoldi algorithm

3. starting with � 9 .4. Compute > � ¬ �] 9� 5.� 9 and © � ¬ ©�
 M � � > � . If satisfied then Stop.
5. Set ©
 ! ¬ © � and go to 1.

There are many possible variations to this basic scheme. One that is generally more
economical in practice is based on the observation that sometimes a small � is sufficient
for convergence and sometimes the largest possible � is necessary. Hence, the idea of
averaging over different values of � . Start the algorithm with � ¬ O and increment � by
one in line 5 until a certain � ��� 4 is reached, after which � is reset to one, or kept the
same. These variations will not be considered here.

����� � ��
 % �),+
Table 6.1 shows the results of applying the FOM algorithm with no pre-

conditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 109 4442 0.36E-03 0.67E-04
F3D 66 11664 0.87E-03 0.35E-03
ORS 300 13558 0.26E+00 0.71E-04

+ ´ ' � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
� ����
 % �),+

A test run of FOM with no preconditioning.

The column labeled Iters shows the total actual number of matrix-vector multiplications
(matvecs) required to converge. The stopping criterion used is that the 2-norm of the resid-
ual be reduced by a factor of O ;�� relative to the 2-norm of the initial residual. A maximum
of 300 matvecs are allowed. Kflops is the total number of floating point operations per-
formed, in thousands. Residual and Error represent the two-norm of the residual and error
vectors, respectively. In this test, � was taken to be 10. Note that the method did not suc-
ceed in solving the third problem.

� � ����� �%&+! * &%)+*,�	-�� �%*,�	1 &+-
	�	
*,�	1

A second alternative to FOM is to truncate the Arnoldi recurrence. Specifically, an integer9 is selected and the following “incomplete” orthogonalization is performed.

���%� �L� �3�~� � �) � ! � $%-	, � �+* #	57# � &;5 �%, � ,2$"(* 3��	(%5�3 ,2$ � &;, -	# � �
1. For
}¬ O �cb��WYWYZY8��� Do:
2. Compute �

! ¬ §�� K
3. For -v¬ $ 0 2 � O �;
�² 9 M O 	J�ZYWYWYW�;
 Do:
4. � 4 � K ¬ 6

� � � 4 :
5. �

! ¬ ��² � 4LK � 4
6. EndDo
7. Compute � K 7\9�� K ¬ �

�
� � and � K 7�9 ¬�� � � K 7\9�� K8. EndDo

The number of directions 9 against which to orthogonalize may be dictated by mem-
ory limitations. The Incomplete Orthogonalization Method (IOM) consists of performing
the above incomplete orthogonalization procedure and computing an approximate solution
using the same formulas (6.14) and (6.15).

���%� �L� �3�~� � �)
 ! �D�
�� * � , &�3 5 � �
Run a modification of Algorithm 6.4 in which the Arnoldi process in lines 3 to 11
is replaced by the Incomplete Orthogonalization process and every other compu-
tation remains unchanged.

It is now necessary to keep only the 9 previous � 4 vectors. The others are not needed
in the above process and may be discarded. However, the difficulty remains that when
the solution is computed by formula (6.14), all the vectors � 4 for -�¬ O � b��WYZYWY8��� are
required. One option is to recompute them at the end, but essentially this doubles the cost
of the algorithm. Fortunately, a formula can be developed whereby the current approximate
solution © � can be updated from the previous approximation © �] 9 and a small number

� � � ��� �*� 	 �����
 �V|G#O�*��� �`��� 	 �J��| ���(
 ��
T#O|k�
 ® � �8�m± + ´+´
of vectors that are also updated at each step. This progressive formulation of the solution
leads to an algorithm termed Direct IOM (DIOM) which we now derive.

The Hessenberg matrix
� � obtained from the incomplete orthogonalization process

has a band structure with a bandwidth of 9 M O . For example, when 9�¬ �
and �
¬�� , it is

of the form

� � ¬
PQQQR
� 9c9 � 9 � � 9<4� � 9 � ��� � � 4 � � �

� 4 � � 4�4 � 4 � � 4 �� � 4 � � � � � �
� � � � � �

TWVVVX Y ®
TiM°��=±

The Direct version of IOM is derived from exploiting the special structure of the LU fac-
torization,

� � ¬ � � � � , of the matrix
� � . Assuming no pivoting is used, the matrix � �

is unit lower bidiagonal and � � is banded upper triangular, with 9 diagonals. Thus, the
above matrix has a factorization of the form

� � ¬
PQQQR O� � 9 O� 4 � O� � 4 O� � � O

TWVVVX ¥
PQQQR
� 9c9 � 9 � � 9<4� ��� � � 4 � � �

� 4�4 � 4 � � 4 �� � � � � �
� � �

TWVVVX Y
The approximate solution is then given by

© � ¬�©
 M � � �] 9� �] 9� 6 5.� 9 : Y
Defining

� � � � � �] 9�
and

� � ¬ �] 9� 6 5.� 9 : �
the approximate solution is given by

© � ¬ ©�
 M � � � � Y ®
TiM°��=±
Because of the structure of � � , � � can be updated easily. Indeed, equating the last

columns of the matrix relation � � � � ¬ � � yields�B4 � �] 087�9 � 4 � � 4 ¬�� � �
which allows the vector � � to be computed from the previous � 4 ’s and � � , with the help
of the relation,

� � ¬ O� � � �
� � ² �] 9B4�� �] 037�9 � 4 � � 4 � Y

In addition, because of the structure of � � , we have the relation

� � ¬ � � �] 9� � �

+ ´�� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
in which � � ¬ ² � � � �] 9 � �] 9 Y
From (6.18),

© � ¬¦©
 M � � �] 9 � � � � � � �] 9� � � ¬�©
 M � �] 9 � �] 9 M � � � � Y
Noting that ©
 M � �] 9 � �] 9 ¬¦© �] 9 , it follows that the approximation © � can be updated
at each step by the relation,

© � ¬ © �] 9 M � � � �
where � � is defined above. This gives the following algorithm, called the Direct Incom-
plete Orthogonalization Method (DIOM).

���%� �L� �3�~� � �) � ! � �D�

1. Choose ©�
 and compute �
C¬ ¨)² §8©�
 , 5 ! ¬ �

�

� � , � 9 ! ¬
�
 � 5 .

2. For �
¬ O �cb��ZYWYZY , until convergence Do:
3. Compute � 4 � , -�¬ $1032 � O ����² 9 M O 	S�WYWYZY8��� and � � 7�9 as in
4. lines 2-7 of Algorithm (6.6).
5. Update the LU factorization of

� � , i.e., obtain the last column
6. of � � using the previous 9 pivots. If � � � ¬ ; Stop.
7.

� � ¬�� if � ¬ O then 5�� else ² � � � �] 9 � �] 9 	
8. � � ¬ �] 9� � �

� � ² � �] 94 � �] 037�9 � 4 � � 4 � (for - � ; set � 4 � � 4 ��;)

9. © � ¬¦© �] 9 M � � � �10. EndDo

Note that the above algorithm is based implicitly on Gaussian elimination without
pivoting for the solution of the Hessenberg system

� � > � ¬ 5.� 9 . This may cause a pre-
mature termination in line 6. Fortunately, there is an implementation based on Gaussian
elimination with partial pivoting. The details of this variant can be found in [174]. DIOM
can also be derived by imposing the properties that are satisfied by the residual vector and
the conjugate directions, i.e., the � 4 ’s.

Observe that (6.4) is still valid and as a consequence, Proposition 6.7, which is based
on it, still holds. That is because the orthogonality properties were not used to derive the
two relations therein. Since the residual vector is a scalar multiple of � � 7�9 and since the
� 4 ’s are no longer orthogonal, IOM and DIOM are not orthogonal projection techniques.
They can, however, be viewed as oblique projection techniques onto � � and orthogonal
to an artificially constructed subspace.

�)� �L� ��� �D��� �	� �) �
IOM and DIOM are mathematically equivalent to a projection

process onto � � and orthogonally to

� � ¬ ��� 03+ � � 9 � � � �WYWYZYW� � � 	
where

� 4 ¬�� 4 ² 6
� 4 � � � 7�9 : � � 7�9 � -v¬ O �WYZYWY8��� Y

� � � �%� � |
 + ´

� $ � � �)

The proof is an immediate consequence of the fact that � � is a multiple of � � 7�9and by construction, � � 7�9 is orthogonal to all � 4 ’s defined in the proposition.

The following simple properties can be shown:
� The residual vectors � 4 , -�¬ O �WYZYWY8��� , are “locally” orthogonal,6

� K � � 4 : ¬ ;�� for � -�²
�� � 9 � - �¬
 Y
� The � K ’s are locally § -orthogonal to the Arnoldi vectors, i.e.,6

§ � K � � 4 : ¬�; for
~² 9 M O
 -

JY
� For the case 9 ¬�� (full orthogonalization) the � K ’s are semi-conjugate, i.e.,6

§ � K ��� 4 : ¬ ; for -

JY
�
��m���
� ¡ �

The Generalized Minimum Residual Method (GMRES) is a projection method based on
taking � ¬ � � and ��¬
§ � � , in which � � is the � -th Krylov subspace with � 9 ¬
�
 � � �
 � � . As seen in Chapter 5, such a technique minimizes the residual norm over all
vectors in ©
 M � � . The implementation of an algorithm based on this approach is similar
to that of the FOM algorithm. We first describe the basic idea and then discuss a few
practical variations.

� �������) 0 # �2& .%*,�
 13! #�. & �
��	! *)�0
1

There are two ways to derive the algorithm. The first way exploits the optimality property
and the relation (6.5). Any vector © in ©
 M � � can be written as

©¢¬ ©
 M � � > � ®
TiM°��=±
where > is an � -vector. Defining� 6 > : ¬ � ¨O²�§t© � � ¬ � ¨)²�§

6
©
 M � � > : � � � ®
Ti � �=±

the relation (6.5) results in

¨)² §8© ¬ ¨)²�§
6
©�
 M � � > :

¬
�
t²�§ � � >
¬ 5�� 9 ² � � 7�9 �� � >¬ � � 7�9 � 5.� 9 ² �� � > � Y ®
Ti �<°4±

Since the column-vectors of � � 7�9 are orthonormal, then� 6 > : � � ¨O² §
6
©
 M � � > : � � ¬ � 5.� 9 ² �� � > � � Y ®
Ti �Z�=±

+ ´ � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
The GMRES approximation is the unique vector of ©�
 M � � which minimizes (6.20). By
(6.19) and (6.22), this approximation can be obtained quite simply as © � ¬ ©
 M � � > �
where > � minimizes the function � 6 > : ¬ � 5.� 9 ² �� � > � � , i.e.,

© � ¬ ©�
 M � � > � � where ®
Gi �Z==±> � ¬
0 � ��$1".+�� � 5.� 9 ² �� � > � � Y ®
Ti � ¯ ±
The minimizer > � is inexpensive to compute since it requires the solution of an

6
� M O : ¥ �least-squares problem where � is typically small. This gives the following algorithm.

���%� �L� �3�~� � �) ³ ! �
��m�v�
1. Compute �
 ¬ ¨)²�§t©
 , 5 ! ¬ �

�

� � , and � 9 ! ¬��
 �`52. Define the

6
� M O : ¥ � matrix

�� � ¬ � � 4LK 	 9 � 4 � � 7�9 � 9 � K � � . Set

�� � ¬�; .
3. For
}¬ O �cb��WYWYZY8��� Do:
4. Compute � K ! ¬�§�� K
5. For -v¬ O �ZYWYZY8�;
 Do:
6. � 4LK ! ¬ 6

� K � � 4 :
7. � K ! ¬�� K ² � 4LK � 4
8. EndDo
9. � K 7\9�� K ¬ �

� K � � . If � K 7\9�� K ¬�; set � ! ¬
 and go to 12
10. � K 7�9 ¬ � K ��� K 7�9�� K11. EndDo
12. Compute > � the minimizer of

� 5.� 9 ² �� � > � � and © � ¬¦©
 M � � > � .

The second way to derive the GMRES algorithm is to use the equations (5.7) with� � ¬ §�� � . This is the subject of Exercise 4.

� �������)�0
# 0 ���$.2#20 � ��	 #2! ��#2!2.%* � -

The previous algorithm utilizes the Modified Gram-Schmidt orthogonalization in the Ar-
noldi process. Section 6.3.2 described a Householder variant of the Arnoldi process which
is numerically more robust than Gram-Schmidt. Here, we focus on a modification of GM-
RES which retrofits the Householder orthogonalization. Section 6.3.2 explained how to get
the � K and the columns of

�� � 7�9 at each step, from the Householder-Arnoldi algorithm.
Since � � and

�� � are the only items needed to extract the approximate solution at the end
of the GMRES process, the modification seems rather straightforward. However, this is
only true if the � 4 ’s are stored. In this case, line 12 would remain the same and the modifi-
cation to the algorithm would be in lines 3-11 which are to be replaced by the Householder
variant of the Arnoldi process. It was mentioned in Section 6.3.2 that it is preferable not
to store the � 4 ’s because this would double the storage requirement. In this case, a formula
must be found to generate the approximate solution in line 12, using only the � 4 ’s, i.e., the
� 4 ’s. Let > � ¬ 6 � 9 ��� � � 68696 ��� � : � �

� � � �%� � |
 + ´k³
so that the solution is of the form © � ¬ ©�
 M � 9 � 9 M 69686 M � � � � . Recall that in the
Householder variant of the Arnoldi process, each � K is defined by

� K ¬�� 9 � � YWYZY � K � K Y
Using a Horner-like scheme, we obtain

© � ¬¦©
 M � 9 � 9 � 9 M � � � 9 � � � � M YZYWY M � � � 9 � � YWYZY � � � �¬¦©
 M � 9 6 � 9 � 9 M � � 6 � � � � M YWYWY M � �] 9 6 � �] 9 � �] 9 M � � � � � � :A:c: Y
Therefore, when Householder orthogonalization is used, then line 12 of the GMRES algo-
rithm should be replaced by a step of the form

�
! ¬ ; ®
Ti �Za=±
�
! ¬�� K 6 � K � K M � : �8
}¬ � ��� ² O �WYZYWY8� O ®
Ti �
=±

© � ¬ ©�
 M ��Y ®
Ti � �=±
The above step requires roughly as many operations as computing the last Arnoldi

vector � � . Therefore, its cost is negligible relative to the cost of the Arnoldi loop.

�������L���D�~� � �),+��4! �
��m�v��� 3 5 � � , ��� # �%,2* �+#"&�,+&<5 �%, �4,2$"(+* 3 �0(�5�36,2$
1. Compute �
�¬ ¨)² §8©�
 , � ! ¬��
 .
2. For
L¬ O �WYWYZY8��� ��� M O Do:
3. Compute the Householder unit vector � K such that
4.

6
� K : 4 ¬ ;��H-v¬ O �WYZYWY8�8
V² O and

5.

6
� K � : 4 ¬<;��A-v¬
 M O �ZYWYWYW�r¤ where � K ¬ � ²�b � K � �K ;

6. � K] 9 ! ¬�� K � ; If
}¬ O then let 5 ! ¬ � � 9 ��
 .7. �
! ¬�� 9 � � YWYZY � K � K .8. If
 � � compute �

! ¬�� K � K] 9 YWYZY � 9 §�� ,9. EndDo
10. Define

�� � = the

6
� M O : ¥ � upper part of the matrix � � 9 �ZYWYZYW� � � � .11. Compute > � ¬ � � ��$1"#+ � � 5.� 9 ² �� � > � � . Let > � ¬ 6 � 9 ��� � �ZYWYZYW��� � : � .

12. z := 0
13. For
L¬ � ��� ² O �ZYWYZY8� O Do:
14. �

! ¬�� K 6 � K � K M � : ,
15. EndDo
16. Compute © � ¬�©
 M �

Note that now only the set of � K vectors needs to be saved. The scalar 5 defined in line
6 is equal to � � �
 � � . This is because � 9 �z¬<5.� 9 where 5 is defined by the equations (1.21)
seen in Chapter 1, which define the first Householder transformation. As was observed
earlier the Householder factorization actually obtains the QR factorization (6.10) with ��¬
�
 . We can also formulate GMRES directly from this factorization. Indeed, if ©�¬ ©
 M� � > � , then according to this factorization, the corresponding residual norm is equal to

�
�
 ² � 9 � 9 ² � � � � ² YWYZY<² � � � � � �

whose minimizer is the same as the one defined by the algorithm.

+ � � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
The details of implementation of the solution of the least-squares problem as well as

the estimate of the residual norm are identical with those of the Gram-Schmidt versions
and are discussed next.

� ������� �$! &��)+*,��& � * 1 � ��#21 #2-$)%&%)+*,�	- * .�.�� #�.

A clear difficulty with Algorithm 6.9 is that it does not provide the approximate solution© � explicitly at each step. As a result, it is not easy to determine when to stop. One remedy
is to compute the approximation solution © � at regular intervals and check for convergence
by a test on the residual, for example. However, there is a more elegant solution which is
related to the way in which the least-squares problem (6.24) is solved.

In order to solve the least-squares problem $1"#+ � 5.� 9 ² �� � > � , it is natural to trans-
form the Hessenberg matrix into upper triangular form by using plane rotations. Define the
rotation matrices

� 4 ¬
PQQQQQQQQQQR
O . . . O � 4 � 4² � 4 � 4 O . . . O

TWVVVVVVVVVVX
� row -
� row - M O ®
Ti � �H±

with � �4 M � �4 ¬ O . If � steps of the GMRES iteration are performed then these matrices
have dimension

6
� M O : ¥ 6 � M O : .Multiply the Hessenberg matrix

�� � and the corresponding right-hand side

�
�
�� 5.� 9by a sequence of such matrices from the left. The coefficients � 4 � � 4 are selected to eliminate

� 4 7�9 � 4 at each time. Thus, if � ¬�� we would have

�� � ¬
PQQQQQR

� 9c9 � 9 � � 9<4 � 9 � � 9 �� � 9 � ��� � � 4 � � � � � �
� 4 � � 4�4 � 4 � � 4 �� � 4 � � � � � �

� � � � � �
��� �

TWVVVVVX � �
�
 ¬

PQQQQQR
5 ;;;;;
TWVVVVVX Y

Then premultiply

�� � by

� 9 ¬
PQQQR

� 9 � 9² � 9 � 9 O O O
TWVVVX

with

� 9 ¬ � � 9� �
� 9c9 M �

�� 9 � � 9 ¬ � 9H9� �
� 9H9 M �

�� 9

� � � �%� � |
 + � +
to obtain the matrix and right-hand side

�� /,9A2� ¬

PQQQQQQR
��/,9 29H9 ��/,9 29 � ��/,9 29<4 ��/,9 29 � ��/,9 29 ���/,9 2��� ��/,9 2� 4 ��/,9 2� � ��/,9 2� �

� 4 � � 4�4 � 4 � � 4 �� � 4 � � � � � �
� � � � � �

� � �

T VVVVVVX � �
� 9 ¬

PQQQQQR
� 9 5² � 9 5;;;;

T VVVVVX Y ®
Ti � �=±
We can now premultiply the above matrix and right-hand side again by a rotation matrix� � to eliminate � 4 � . This is achieved by taking

� � ¬ � 4 �� 6
� /,9A2��� : � M �

�
4 �
� � � ¬ � /,9A2���� 6

� /,9A2��� : � M �
�
4 �
Y

This elimination process is continued until the � -th rotation is applied, which transforms
the problem into one involving the matrix and right-hand side,

�� / � 2� ¬

PQQQQQQQR
� / � 29H9 � / � 29 � � / � 29<4 � / � 29 � � / � 29 ���/ � 2��� ��/ � 2� 4 ��/ � 2� � ��/ � 2� �

� / � 24�4 � / � 24 � � / � 24 ���/ � 2� � ��/ � 2� �
��/ � 2� �;

TWVVVVVVVX � �
� � ¬

PQQQQQR
� 9� �
� 4YY
�
�

TWVVVVVX Y ®
Ti = �=±
Generally, the scalars � 4 and � 4 of the - ��� rotation � 4 are defined as

� 4 ¬ � 4 7�9 � 4� 6
��/ 4] 9A24@4 : � M �

�4 7�9 � 4 � � 4 ¬ ��/ 4] 9A24@4� 6
��/ 4] 9H24@4 : � M �

�4 7�9 � 4 Y ®
Ti =<°4±
Define � � the product of matrices � 4 ,

� � ¬ � � � �] 9 YWYZY�� 9 ®
Ti =Z�=±
and �

� � ¬ �� / � 2� ¬ � � �� � � ®
Ti =Z==±�
� � ¬ � � 6 5.� 9 : ¬ 6

� 9 �ZYWYWYZ� � � 7�9 : � Y ®
Ti = ¯ ±
Since � � is unitary, $ "#+ � 5.� 9 ² �� � > � � ¬ $1"#+ � �� � ² �

� � > � � Y
The solution to the above least-squares problem is obtained by simply solving the triangular
system resulting from deleting the last row of the matrix

�
� � and right-hand side

�
� � in

(6.30). In addition, it is clear that for the solution > � , the “residual”
� 5.� 9 ² �� � > � � is

nothing but the last element of the right-hand side, i.e., the term �
� in the above illustration.

�)� �L� ��� �3� � �	� �) ³
Let � 4 �H-m¬ O �ZYWYZY8��� be the rotation matrices used to transform

�� � into an upper triangular form and
� � ,

�
� � ¬ 6

� 9 �WYWYZYW� � � 7�9 : � the resulting matrix and
right-hand side, as defined by (6.33), (6.34). Denote by

� � the � ¥ � upper triangular

+ � � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
matrix obtained from

�
� � by deleting its last row and by � � the � -dimensional vector

obtained from

�
� � by deleting its last component. Then,� �

The rank of §�� � is equal to the rank of
� � . In particular, if � � � ¬ ; then § must

be singular.� �
The vector > � which minimizes

� 5.� 9 ² �� � > � � is given by> � ¬ �] 9� � � Y
� �

The residual vector at step � satisfies

¨O²�§t© � ¬ � � 7�9 � 5.� 9 ² �� � > � � ¬ � � 7�9 � �� 6 � � 7\9 � � 7�9 : ®
Ti = aH±
and, as a result,

� ¨O² §8© � � � ¬ � � � 7�9 �LY ®
Ti =
H±
� $������c)

To prove first part (1), use (6.5), to obtain the relation

§ � � ¬ � � 7�9 �� �¬ � � 7�9 � �� � � �� �¬ � � 7�9 � �� �� � Y
Since � � 7�9 � �� is unitary, the rank of § � � is that of

�
� � , which equals the rank of

� �
since these two matrices differ only by a zero row (the last row of

�
� �). If � � � ¬ ; then

� � is of rank
� � ² O and as a result § � � is also of rank

� �
² O . Since � � is of full
rank, this means that § must be singular.

The second part (2), was essentially proved before the proposition. For any vector > ,
� 5.� 9 ² �� � > � �� ¬ � � � 6 5.� 9 ² �� � > : � ��

¬ �
�
� � ² �

� � > � ��
¬ � � � 7�9 � � M � � � ² � � > � �� ®
Ti = �H±

The minimum of the left-hand side is reached when the second term in the right-hand side
of (6.37) is zero. Since

� � is nonsingular, this is achieved when > ¬ �] 9� � � .
To prove the third part (3), we start with the definitions used for GMRES and the

relation (6.21). For any © ¬ ©
 M � � > ,

¨O²�§t© ¬ � � 7�9 � 5.� 9 ² �� � > �
¬ � � 7�9 � �� � � � 5.� 9 ² �� � > �
¬ � � 7�9 � �� �

�
� � ² �

� � > � Y
As was seen in the proof of the second part above, the 2-norm of

�
� � ² �

� � > is minimized
when > annihilates all components of the right-hand side

�
� � except the last one, which is

equal to � � 7\9 . As a result,

¨?²�§t© � ¬ � � 7�9 � �� 6 � � 7�9 � � 7�9 :
which is (6.35). The result (6.36) follows from the orthonormality of the column-vectors
of � � 7�9 � �� .

So far we have only described a process for computing the least-squares solution > �

� � � �%� � |
 + � �
of (6.24). Note that this approach with plane rotations can also be used to solve the linear
system (6.15) for the FOM method. The only difference is that the last rotation � � must
be omitted. In particular, a single program can be written to implement both algorithms
using a switch for selecting the FOM or GMRES options.

It is possible to implement the above process in a progressive manner, i.e., at each step
of the GMRES algorithm. This approach will allow one to obtain the residual norm at every
step, with virtually no additional arithmetic operations. To illustrate this, start with (6.30),
i.e., assume that the first � rotations have already been applied. Now the residual norm is
available for © � and the stopping criterion can be applied. Assume that the test dictates that
further steps be taken. One more step of the Arnoldi algorithm must be executed to get §	� �
and the � -th column of

��
� . This column is appended to

�
� � which has been augmented by

a zero row to match the dimension. Then the previous rotations � 9 , � � �ZYWYWY , � � are applied
to this last column. After this is done the following matrix and right-hand side are obtained:

� / � 2� ¬

PQQQQQQQQQR
� / � 29H9 � / � 29 � � / � 29<4 � / � 29 � � / � 29 � � / � 29 �� / � 2��� � / � 2� 4 � / � 2� � � / � 2� � � / � 2� �

� / � 24�4 � / � 24 � � / � 24 � � / � 24 ���/ � 2� � ��/ � 2� � ��/ � 2� �
� / � 2� � � / � 2� �; � / � 2� �; � � �

TWVVVVVVVVVX � � / � 2� ¬

PQQQQQQQR
� 9� �
� 4YY
�
�;
TWVVVVVVVX Y ®
Ti = �=±

The algorithm now continues in the same way as before. We need to premultiply the matrix
by a rotation matrix � � (now of size �}¥��) with

� � ¬ � � �� 6
��/ � 2� � : � M �

�
� �
� �

� ¬ � / � 2� �� 6
��/ � 2� � : � M �

�
� �

to get the matrix and right-hand side,

�
�
�8¬

PQQQQQQQR
� 9H9 � 9 � � 954 � 9 � � 9 � � 9 �

� ��� � � 4 � � � � � � � � �
� 4�4 � 4 � � 4 � � 4 �

� � � � � � � � �
� � � � � �

� � �;
TWVVVVVVVX � �� �8¬

PQQQQQQQR
� 9� �
� 4YY
�
�

�
�² � � �
�

TWVVVVVVVX Y ®
Ti = �=±
If the residual norm as given by � � � 7�9 � is small enough, the process must be stopped.

The last rows of

�
� � and

�
� � are deleted and the resulting upper triangular system is solved

to obtain > � . Then the approximate solution © � ¬¦©�
 M � � > � is computed.
Note from (6.39) that the following useful relation for � K 7�9 results

� K 7�9 ¬ ² � K � K Y ®
Ti ¯ �=±
In particular, if � K ¬ ; then the residual norm must be equal to zero which means that the
solution is exact at step
 .

+ � ' � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
� � ��� � � ! # &+� 	 ��� - � �
 1 !$#�.

If Algorithm 6.9 is examined carefully, we observe that the only possibilities of breakdown
in GMRES are in the Arnoldi loop, when �� K 7�9 ¬ ; , i.e., when � K 7�9 � K ¬<; at a given step
 .
In this situation, the algorithm stops because the next Arnoldi vector cannot be generated.
However, in this situation, the residual vector is zero, i.e., the algorithm will deliver the
exact solution at this step. In fact, the converse is also true: If the algorithm stops at step

with ¨)² §8© K ¬ ; , then � K 7�9 � K ¬<; .

�)� �L� ��� �D��� �	� �),+��
Let § be a nonsingular matrix. Then, the GMRES algorithm

breaks down at step
 , i.e., � K 7�9 � K ¬<; , if and only if the approximate solution © K is exact.

� $������c)
To show the necessary condition, observe that if � K 7�9 � K ¬<; , then � K ¬<; . Indeed,

since § is nonsingular, then � K K ¬ �*/ K] 9 2K K is nonzero by the first part of Proposition 6.9
and (6.31) implies � K ¬<; . Then, the relations (6.36) and (6.40) imply that � K ¬<; .

To show the sufficient condition, we use (6.40) again. Since the solution is exact at step
 and not at step
m² O , then � K ¬<; . From the formula (6.31), this implies that � K 7�9 � K ¬�; .

� ����� � !$#%�'&%)+*,�	-�. � #)�� #2#2- ��� 1 &+-
	
 13!$#�.

If the last row of the least-squares system in (6.38) is deleted, instead of the one in (6.39),
i.e., before the last rotation � � is applied, the same approximate solution as FOM would
result. As a practical consequence a single subroutine can be written to handle both cases.
This observation can also be helpful in understanding the relationships between the two
algorithms.

We begin by establishing an interesting relation between the FOM and GMRES iter-
ates, which will be exploited in the next chapter. A general lemma is first shown regarding
the solutions of the triangular systems

� � > � ¬ � �
obtained from applying successive rotations to the Hessenberg matrices

�� � . As was stated
before, the only difference between the > � vectors obtained in GMRES and Arnoldi is
that the last rotation � � is omitted in FOM. In other words, the

� � matrix for the two
methods differs only in its

6
� ��� : entry while the right-hand sides differ only in their last

components.�w�2� ��� �),+
Let �

� � be the � ¥ � upper part of the matrix � �] 9 �� � and, as before,
let

� � be the � ¥ � upper part of the matrix � � �� � . Similarly, let �� � be the vector of
the first � components of � �] 9 6 5.� 9 : and let � � be the vector of the first � components
of � � 6 5.� 9 : . Define

�> � ¬ ��] 9� �� � � > � ¬ �] 9� � �
the > vectors obtained for an � -dimensional FOM and GMRES methods, respectively.

� � � �%� � |
 + �µ´
Then > � ² � > �] 9; � ¬ �

�� �
�> � ² � > �] 9; � � ®
Ti ¯ °4±

in which � � is the cosine used in the � -th rotation � � , as defined by (6.31).

� $ � � �)
The following relation holds:

� � ¬ � � �] 9 � �; . � � � �� � ¬ � � �] 9 � �; �. � � Y
Similarly, for the right-hand sides,

� � ¬ � � �] 9� � � � �� � ¬ � � �] 9
�� � �

with
� � ¬ � � �� � Y ®
Ti ¯ �=±

Denoting by 	 the scalar
�
�. �� M �

�� 7\9�� � , and using the definitions of � � and � � , we
obtain . � ¬ � � �. � M � � � � 7�9 � � ¬ �. ��	 M �

�� 7�9 � �	 ¬
	¢¬ �. �
� � Y ®
Ti ¯ ==±

Now, > � ¬ �] 9� � � ¬ � �] 9�] 9 ² 9� �
�] 9�] 9 � �; 9� � � � � �] 9� � � ®
Ti ¯�¯ ±

which, upon observing that
�] 9�] 9 � �] 9 ¬ > �] 9 , yields,> � ² � > �] 9; � ¬ � �. � � ² �] 9�] 9 � �O � Y ®
Ti ¯ a=±

Replacing > � �A. � � � � by �> � � �. � � �� � , respectively, in (6.44), a relation similar to (6.45)
would result except that � � � . � is replaced by �� � � �. � which, by (6.42) and (6.43), satisfies
the relation

� �. � ¬ �
�� �� ��. � Y

The result follows immediately.

If the FOM and GMRES iterates are denoted by the superscripts � and � , respectively,
then the relation (6.41) implies that

© �� ² © ��] 9 ¬ �
�� � © �� ² © ��] 9 � �

or,

© �� ¬�� �� © ��] 9 M �
�� © �� Y ®
Ti ¯
=±

This leads to the following relation for the residual vectors obtained by the two methods,

� �� ¬�� �� � ��] 9 M �
�� � �� ®
Ti ¯ �=±

+ ��� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
which indicates that, in general, the two residual vectors will evolve hand in hand. In par-
ticular, if � � ¬ ; , then GMRES will not progress at step � , a phenomenon known as
stagnation. However, in this situation, according to the definitions (6.31) of the rotations,
�*/ �] 9 2� � ¬ ; which implies that

� � is singular and, therefore, © �� is not defined. In fact,
the reverse of this is also true, a result due to Brown [43], which is stated without proof in
the following proposition.

�)� �L� ��� �D��� �	� �),+�+
If at any given step � , the GMRES iterates make no progress,

i.e., if © �� ¬ © ��] 9 then
� � is singular and © �� is not defined. Conversely, if

� � is
singular at step � , i.e., if FOM breaks down at step � , and § is nonsingular, then © �� ¬© ��] 9 .

Note also that the use of the above lemma is not restricted to the GMRES-FOM pair.
Some of the iterative methods defined in this chapter and the next involve a least-squares
problem of the form (6.24). In such cases, the iterates of the least-squares method and those
of the orthogonal residual (Galerkin) method will be related by the same equation.

Another important observation from (6.40) is that if � 4 is the residual norm
� ¨Q²�§t© 4 � �

obtained at step - , then

� �� ¬ � � � � � ��] 9 Y
The superscripts � and � are used again to distinguish between GMRES and FOM quan-
tities. A consequence of this is that,

� �� ¬ � � 9 � � YZYWY � � � 5�Y ®
Ti ¯ �H±
Now consider the FOM iterates, assuming that © � is defined, i.e., that

� � is nonsingular.
An equation similar to (6.48) for FOM can be derived. Using the same notation as in the
proof of the lemma, and recalling that

�
�� ¬ � � 7�9�� � � � �� �] 9� 6 5.� 9 : � �

note that � �� �] 9� 6 5.� 9 : ¬ �� �
�. � Y

Clearly, � �� � �G¬ � � �] 9 � �] 9 �G¬ 68686 ¬ � � 9 � � YWYZY � �] 9 5 �
and therefore,

�
�� ¬ � � 7�9 � �� �. � � � � 9 � � YWYZY � �] 9 5 �LY

Using (6.31), observe that � � 7\9�� � � � �. � � is the tangent of the angle defining the � -th rota-
tion, and therefore,

�
�� ¬ � � � � � �. �� M �

�� 7\9�� �� �. � � � � 9 � � YWYWY � �] 9 5 �
which, by a comparison with (6.48), yields a revealing relation between the residuals of

� � � �%� � |
 + ��

the FOM and GMRES algorithms, namely,

�
�� ¬ O� � � �� ¬ � �� � O M �

�� 7�9 � ��. �� Y
Another way to prove the above expression is to exploit the relation (6.47); see Exercise
12. These results are summarized in the following proposition (Brown [43]).

�)� �L� ��� �3� � �	� �),+ �
Assume that � steps of the Arnoldi process have been taken

and that
� � is nonsingular. Let . � 6

� �] 9 �� � : � � and � � � � 7�9 � � . Then the residual
norms produced by the FOM and the GMRES algorithms are related by the equality

�
�� ¬ O� � � �� ¬ � �� � O M �

�. � Y ®
Ti ¯ �=±

� ����� � �%&+! * &%)+*,�	- � ��!$#�.)%&+!%)+* -�

Similar to the FOM algorithm of the previous section, the GMRES algorithm becomes
impractical when � is large because of the growth of memory and computational require-
ments as � increases. These requirements are identical with those of FOM. As with FOM,
there are two remedies. One is based on restarting and the other on truncating the Arnoldi
orthogonalization. The straightforward restarting option is described here.

�������L���D�~� � �),+�+%! ��# � 5 ("&;57# � �
��m���
1. Compute �
�¬ ¨)² §8©�
 , 5�¬ �

�

� � , and � 9 ¬��
3�`52. Generate the Arnoldi basis and the matrix

�� � using the Arnoldi algorithm
3. starting with � 94. Compute > � which minimizes

� 5.� 9 ² �� � > � � and © � ¬�©
 M � � > �
5. If satisfied then Stop, else set ©
 ! ¬¦© � and GoTo 1

Note that the implementation tricks discussed in the previous section can be applied, pro-
viding the residual norm at each sub-step
 without computing the approximation © K . This
enables the program to exit as soon as this norm is small enough.

A well known difficulty with the restarted GMRES algorithm is that it can stagnate
when the matrix is not positive definite. The full GMRES algorithm is guaranteed to con-
verge in at most ¤ steps, but this would be impractical if there were many steps required
for convergence. Obviously, a preconditioner for the linear system can be used to reduce
the number of steps, or a better preconditioner if one is already in use. This issue will be
covered later along with preconditioning techniques.

����� � ��
 % �)��
Table 6.2 shows the results of applying the GMRES algorithm with no

preconditioning to three of the test problems described in Section 3.7.

+ ��� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
Matrix Iters Kflops Residual Error
F2DA 95 3841 0.32E-02 0.11E-03
F3D 67 11862 0.37E-03 0.28E-03
ORS 205 9221 0.33E+00 0.68E-04

� ����
 % �)��
A test run of GMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test, the di-
mension of the Krylov subspace is � ¬ O ; . Observe that the problem ORS, which could
not be solved by FOM(10), is now solved in 205 steps.

� � ����� � &+! * &)�* �	-�� ��) ! � - �2&%)�# 	
 1 !$#�. ��#2!%.2* �	-�.

It is possible to derive an Incomplete version of the GMRES algorithm. This algorithm
is called Quasi-GMRES (QGMRES) for the sake of notational uniformity with other al-
gorithms developed in the literature (some of which will be seen in the next chapter). A
direct version called DQGMRES using exactly the same arguments as in Section 6.4.2 for
DIOM can also be derived. We begin by defining the QGMRES algorithm, in simple terms,
by replacing the Arnoldi Algorithm with Algorithm 6.6, the Incomplete Orthogonalization
procedure.

���%� �L� �3�~� � �),+ �4!�� � (� 3 �H�
��8���
Run a modification of Algorithm 6.9 in which the Arnoldi process in lines 3 to 11
is replaced by the Incomplete Orthogonalization process and all other computa-
tions remain unchanged.

Similar to IOM, only the 9 previous � 4 vectors must be kept at any given step. How-
ever, this version of GMRES will potentially save computations but not storage. This is
because computing the solution by formula (6.23) requires the vectors � 4 for -%¬ O �WYZYWY8���to be accessed. Fortunately, the approximate solution can be updated in a progressive man-
ner, as in DIOM.

The implementation of this progressive version is quite similar to DIOM. First, note
that if

�� � is banded, as for example, when �
¬ ��� 9L¬ b ,
�� � ¬

PQQQQQR
� 9H9 � 9 �� � 9 � ��� � � 4� 4 � � 4�4 � 4 �� � 4 � � � � � �

� � � � � �
� � �

TWVVVVVX � � ¬
PQQQQQR
5 ;;;;;
TWVVVVVX ®
Ti a �H±

then the premultiplications by the rotation matrices � 4 as described in the previous section
will only introduce an additional diagonal. For the above case, the resulting least-squares

� � � �%� � |
 + �+³
system is

�
� � > ¬ �

� � with:

�
� � ¬

PQQQQQR
� 9c9 � 9 � � 9<4

� ��� � � 4 � � �
� 4�4 � 4 � � 4 �

� � � � � �
� � �;

T VVVVVX � �
� � ¬

PQQQQQR
� 9� �
� 4YY
�
�

T VVVVVX Y ®
Ti a<°4±
The approximate solution is given by

© � ¬�©
 M � � �] 9� � �
where

� � and � � are obtained by removing the last row of

�
� � and

�
� � , respectively.

Defining � � as in DIOM,

� � � � � �] 9�
then,

© � ¬�©
 M � � � � Y
Also note that similarly to DIOM,

� � ¬ � � �] 9� � �
in which

� � ¬ � � � / �] 9 2� �
where � / �] 9 2� is the last component of the vector

�
� �] 9 , i.e., the right-hand side before the

� -th rotation is applied. Thus, © � can be updated at each step, via the relation

© � ¬�© �] 9 M � � � � Y
�������L���D�~� � �),+ � ! � � �
��m���

1. Compute �
�¬ ¨)² §8©�
 , � 9 ! ¬ �
�

� � , and � 9 ! ¬��
3� � 92. For � ¬ O � b��ZYWYWY , until convergence Do:

3. Compute � 4 � , -v¬ $ 032 � O ����² 9 M O 	J�ZYWYZY8��� and � � 7�94. as in lines 2 to 6 of Algorithm 6.6
5. Update the QR factorization of

�� � , i.e.,
6. Apply � 4 , -v¬ � ² 9*�WYWYZYW��� ² O to the � -th column of

�� �
7. Compute the rotation coefficients � � , � � by (6.31)
8. Apply � � to

�� � and

�
� � , i.e., Compute:

9. � � 7�9 ! ¬ ² � � � �
10. � � ! ¬ � � � �
11. � � � ! ¬ � � � � � M � � � � 7�9 � � 6

¬ �
�
�� 7�9 � � M �

�� � :
12. � � ¬ �

� � ² � �] 94 � �] 0 � 4 � � 4 � � � � �
13. © � ¬ © �] 9 M � � � �
14. If � � � 7�9 � is small enough then Stop
15. EndDo

+
 � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
The above algorithm does not minimize the norm of the residual vector over ©	
 M � � .

Rather, it attempts to perform an approximate minimization. The formula (6.35) is still
valid since orthogonality is not used to derive it. Therefore,

¨)² §8© � ¬ � � 7\9 � �� 6 � � 7�9 � � 7�9 : Y ®
Ti a �H±
If the � 4 ’s were orthogonal to each other, then this is equivalent to GMRES and the resid-
ual norm is minimized over all vectors of the form ©
 M � � > . Since only an incomplete
orthogonalization is used then the � 4 ’s are only locally orthogonal and, as a result, only
an approximate minimization may be obtained. In addition, (6.36) is no longer valid. This
equality had been derived from the above equation by exploiting the orthogonality of the
� 4 ’s. It turns out that in practice, � � � 7�9 � remains a reasonably good estimate of the actual
residual norm because the � 4 ’s are nearly orthogonal. The following inequality provides an
actual upper bound of the residual norm in terms of computable quantities:

� ¨O² §8© � ����� � ² 9 M O � � � 7�9 � Y ®
Ti a =H±
Here, 9 is to be replaced by � when � � 9 . The proof of this inequality is a consequence
of (6.52). If the unit vector � ��� �� � � 7�9 has components � 9 ��� � �WYZYWYW��� � 7�9 , then

� ¨)²�§t© � � � ¬ � � � 7�9 � � � � 7�9 � � �
� � � � 7�9 � PR ����� 037�9B 4�� 9 � 4 � 4

����� � M ����� � 7�9B4 � 037 � � 4 � 4
����� � TX

� � � � 7�9 � PR � 037�9B 4 � 9 � �4 � 9
��� M � 7�9B4 � 037 � � � 4 � � � 4 � � TX

� � � � 7�9 � PR � 037�9B 4 � 9 � �4 � 9
��� M � � ² 9 � � 7�9B4 � 037 � � �4 � 9

��� TX
Here, the orthogonality of the first 9 M O vectors � 4 was used and the last term comes
from using the Cauchy-Schwartz inequality. The desired inequality follows from using the
Cauchy-Schwartz inequality again in the formO Y ? M � � ² 9 Y\¨ � � � ² 9 M O � ? � M ¨ �
and from the fact that the vector � is of norm unity. Thus, using � � � 7�9 � as a residual
estimate, we would make an error of a factor of

� � ² 9 M O at most. In general, this is an
overestimate and � � � 7\9 � tends to give an adequate estimate for the residual norm.

It is also interesting to observe that with a little bit more arithmetic, it is possible to
actually compute the exact residual vector and norm. This is based on the observation that,
according to (6.52), the residual vector is � � 7\9 times the vector � � 7�9 which is the last
column of the matrix � � 7�9 � � � 7�9 � �� Y ®
Ti a ¯ ±
It is an easy exercise to see that this last column can be updated from � � 7�9 and � � . Indeed,� � 7�9 ¬�� � � � � � 7\9 � � ��] 9 � �

� � � �%� � |
 +
 +
¬ � � � � ��] 9 � � � 7�9 � � �¬ �
� � � � � 7�9 � � �

where all the matrices related to the rotation are of size

6
� M O : ¥ 6

� M O : . The result is
that

� � 7\9 ¬ ² � � � � M � � � � 7�9 Y ®
Ti aZa=±
The � 4 ’s can be updated at the cost of one extra vector in memory and

� ¤ operations at
each step. The norm of � � 7�9 can be computed at the cost of b�¤ operations and the exact
residual norm for the current approximate solution can then be obtained by multiplying
this norm by � � � 7�9 � .Because this is a little expensive, it may be preferred to just “correct” the estimate
provided by � � 7�9 by exploiting the above recurrence relation,

�
� � 7�9 � � � � � � � � � � � � M � � � �LY

If
� � � �

� � � � , then the following recurrence relation holds,� � 7�9 � � � � � � � M � � � � Y ®
Ti a
=±
The above relation is inexpensive to update, yet provides an upper bound that is sharper
than (6.53); see Exercise 20.

An interesting consequence of (6.55) is a relation between two successive residual
vectors:

� � ¬ � � 7�9 � � 7�9¬ � � 7�9 �3² � � � � M � � � � 7\9 �¬ � �� � �] 9 M � � � � 7�9 � � 7�9 Y ®
Ti a �=±
This exploits the fact that � � 7\9 ¬ ² � � � � and � K ¬ � K 7�9 � K 7�9 .
����� � ��
 % �)��

Table 6.3 shows the results of applying the DQGMRES algorithm with no
preconditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 98 7216 0.36E-02 0.13E-03
F3D 75 22798 0.64E-03 0.32E-03
ORS 300 24138 0.13E+02 0.25E-02

� ����
 % �)��
A test run of DQGMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test the number9 of directions in the recurrence is 9�¬ O ; .

It is possible to relate the quasi-minimal residual norm to the actual minimal residual
norm provided by GMRES. The following result was proved by Nachtigal (1991) [152] for
the QMR algorithm to be seen in the next chapter.

+
 � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
�~�V� �L�?� � �),+

Assume that � � 7�9 , the Arnoldi basis associated with DQGMRES, is
of full rank. Let ���� and � �� be the residual norms obtained after � steps of the DQGMRES
and GMRES algorithms, respectively. Then

�
� �� � � ��� � 6 � � 7�9 : � � �� � � Y ®
Ti a �H±

� $������c)
Consider the subset of � � 7�9 defined by

� ¬ � � ! ��¬ � � 7�9 ��� � ¬�5 � 9 ² �� � > � > ��� � 	JY
Denote by > � the minimizer of

� 5 � 9 ² �� � > � � over > and
� � ¬ 5.� 9 ² �� � > � , � � ¬� � 7�9 � � � � �� . By assumption, � � 7�9 is of full rank and there is an

6
� M O : ¥ 6

� M O :nonsingular matrix � such that
� � 7�9 ¬ � � 7\9 � is unitary. Then, for any member of

�
,

�V¬ � � 7�9 �] 9 � � � ¬ � �
	� 7�9 �
and, in particular,

�
� � � � � � �] 9 � � � � � � � Y ®
Ti a �H±

Now
� � � � � is the minimum of the 2-norm of 5.� 9 ² �� � > over all > ’s and therefore,

� � � � � ¬ � � � 	� 7�9 � � ��� � � � 	� 7�9 � � � � � � ���� � � � � � � � � � � �
��� � � � � � � � � Y ®
Ti
 �H±

The result follows from (6.59), (6.60), and the fact that
� �
6 � � 7�9 : ¬ � � 6 � : .

	 �L� � �

¦� 	¢�C��� �w� �V���l� � �����C���C� 	��

� ¡ �

The symmetric Lanczos algorithm can be viewed as a simplification of Arnoldi’s method
for the particular case when the matrix is symmetric. When § is symmetric, then the Hes-
senberg matrix

� � becomes symmetric tridiagonal. This leads to a three-term recurrence
in the Arnoldi process and short-term recurrences for solution algorithms such as FOM
and GMRES. On the theoretical side, there is also much more to be said on the resulting
approximation in the symmetric case.

� � � ���)�0
& �
��	! *) 0 1

To introduce the Lanczos algorithm we begin by making the observation stated in the
following theorem.

� � � #O��|
 �)�z�z|G#��*� � 	W�Q� ��� ��
 � 	 �*���*� #Q�%� +
 �
�~�V� �L�)�2� �)��

Assume that Arnoldi’s method is applied to a real symmetric matrix§ . Then the coefficients � 4 K generated by the algorithm are such that

� 4LK ¬ ;���� ��� O � -

V² O � ®
Ti
<°4±
� K � K 7\9 ¬ � K 7�9 � K �4
L¬ O �cb��ZYWYZY8��� Y ®
Ti
Z�=±

In other words, the matrix
� � obtained from the Arnoldi process is tridiagonal and sym-

metric.

� $ � � �)
The proof is an immediate consequence of the fact that

� � ¬ � �� § � � is a
symmetric matrix which is also a Hessenberg matrix by construction. Therefore,

� � must
be a symmetric tridiagonal matrix.

The standard notation used to describe the Lanczos algorithm is obtained by setting

� K � � K K � 5 K � � K] 9 � K �
and if

� � denotes the resulting
� � matrix, it is of the form,

� � ¬
PQQQR
� 9 5 �5 � � � 5 4Y Y Y5 �] 9 � �] 9 5 �5 � � �

TWVVVX Y ®
Ti
Z==±
This leads to the following form of the Modified Gram-Schmidt variant of Arnoldi’s
method, namely, Algorithm 6.2.

�������L���D�~� � �),+J'4! 	 �%# � (+$%- ��, � � * � , &�3 5 � �
1. Choose an initial vector � 9 of norm unity. Set 5 9 � ;�� �
 �<;
2. For
L¬ O �cb��ZYWYZY8��� Do:
3. � K ! ¬ §�� K ² 5 K � K] 94. � K ! ¬ 6

� K � � K :
5. � K ! ¬�� K ² � K � K
6. 5 K 7�9 ! ¬ �

� K � � . If 5 K 7\9 ¬�; then Stop
7. � K 7�9 ! ¬�� K �`5 K 7�98. EndDo

It is rather surprising that the above simple algorithm guarantees, at least in exact
arithmetic, that the vectors � 4 �A-O¬ O � b��ZYWYWYW� are orthogonal. In reality, exact orthogonality
of these vectors is only observed at the beginning of the process. At some point the � 4 ’s
start losing their global orthogonality rapidly. There has been much research devoted to
finding ways to either recover the orthogonality, or to at least diminish its effects by partial
or selective orthogonalization; see Parlett [160].

The major practical differences with Arnoldi’s method are that the matrix
� � is tridi-

agonal and, more importantly, that only three vectors must be saved, unless some form of
reorthogonalization is employed.

+
 ' � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
� � � ��� !$#%�'&%)+*,�	- � *) 0��	!%)�0 �
��	- & � �2�	�
	�- �	1 * & � .

In exact arithmetic, the core of Algorithm 6.14 is a relation of the form5 K 7�9 � K 7�9 ¬ §	� K ² � K � K ² 5 K] 9 � K] 9 Y
This three-term recurrence relation is reminiscent of the standard three-term recurrence
relation of orthogonal polynomials. In fact, there is indeed a strong relationship between
the Lanczos algorithm and orthogonal polynomials. To begin, recall that if the grade of � 9is � � , then the subspace � � is of dimension � and consists of all vectors of the form
�

6
§ : � 9 , where � is a polynomial with

��� ��� � �
6
�
: � � ² O . In this case there is even an

isomorphism between � � and � �] 9 , the space of polynomials of degree
� � ² O , which

is defined by

� ��� �] 9 � © ¬ �
6
§ : � 9 � � � Y

Moreover, we can consider that the subspace � �] 9 is provided with the inner product

��� � �
 E ¬ 6

�

6
§ : � 9 � � 6 § : � 9 : Y ®
Ti
 ¯ ±

This is indeed a nondegenerate bilinear form under the assumption that � does not exceed
� , the grade of � 9 . Now observe that the vectors � 4 are of the form

� 4 ¬ � 4] 9 6 § : � 9
and the orthogonality of the � 4 ’s translates into the orthogonality of the polynomials with
respect to the inner product (6.64). It is known that real orthogonal polynomials satisfy a
three-term recurrence. Moreover, the Lanczos procedure is nothing but the Stieltjes algo-
rithm; (see, for example, Gautschi [102]) for computing a sequence of orthogonal poly-
nomials with respect to the inner product (6.64). It is known [180] that the characteristic
polynomial of the tridiagonal matrix produced by the Lanczos algorithm minimizes the
norm

� Y �
 E over the monic polynomials. The recurrence relation between the characteris-
tic polynomials of tridiagonal matrices also shows that the Lanczos recurrence computes
the sequence of vectors � � � 6 § : � 9 , where � � � is the characteristic polynomial of

� � .

	 �L� �l���C� �~�8��	�� �}�)� � �X�?� 	������C���C� 	��

� ¡��

The Conjugate Gradient algorithm is one of the best known iterative techniques for solving
sparse Symmetric Positive Definite linear systems. Described in one sentence, the method
is a realization of an orthogonal projection technique onto the Krylov subspace � � 6 �
J�\§ :
where �
 is the initial residual. It is therefore mathematically equivalent to FOM. How-
ever, because § is symmetric, some simplifications resulting from the three-term Lanczos
recurrence will lead to more elegant algorithms.

� � � #O��| � �l� � � ���+#O| �\�������J|+� # � 	 �*���*� #Q�%� +
µ´
� ���$��� 	 #2! * �%&)�* �	- &+-)�0
# �	! 	

We first derive the analogue of FOM, or Arnoldi’s method, for the case when § is sym-
metric. Given an initial guess ©�
 to the linear system §t© ¬ ¨ and the Lanczos vectors
� 4 �A-�¬ O �WYZYWY8��� together with the tridiagonal matrix

� � , the approximate solution ob-
tained from an orthogonal projection method onto � � , is given by

© � ¬ ©�
 M � � > � � > � ¬ �] 9� 6 5.� 9 : Y ®
Ti
Za=±
�������L���D�~� � �),+ ´ ! � (+$%- ��, �
 #�5 �%, ��� ,+&L�+3 $%#0('&8� � � 57#�� �

1. Compute �
�¬ ¨)² §8©�
 , 5 ! ¬ �
�

� � , and � 9 ! ¬��
3�`52. For
L¬ O �cb��ZYWYZY8��� Do:

3. � K ¬ §	� K ² 5 K � K] 9 (If
L¬ O set 5 9 �
��<;)
4. � K ¬ 6

� K � � K :
5. � K ! ¬�� K ² � K � K
6. 5 K 7�9 ¬ �

� K � � . If 5 K 7�9 ¬<; set � ! ¬
 and go to 9
7. � K 7�9 ¬ � K � 5 K 7�98. EndDo
9. Set

� � ¬ �
� " � "#0 � 6 5 4 � � 4 �H5 4 7�9 : , and � � ¬�� � 9 �WYZYWY8� � � � .10. Compute > � ¬ �] 9� 6 5.� 9 : and © � ¬ ©�
 M � � > �

Many of the results obtained from Arnoldi’s method for linear systems are still valid. For
example, the residual vector of the approximate solution © � is such that

¨)² §8© � ¬ ²�5 � 7�9 � �� > � � � 7�9 Y ®
Ti

=±
The Conjugate Gradient algorithm can be derived from the Lanczos algorithm in the

same way DIOM was derived from IOM. In fact, the Conjugate Gradient algorithm can be
viewed as a variation of DIOM(2) for the case when § is symmetric. We will follow the
same steps as with DIOM, except that the notation will be simplified whenever possible.

First write the LU factorization of
� � as

� � ¬ � � � � . The matrix � � is unit lower
bidiagonal and � � is upper bidiagonal. Thus, the factorization of

� � is of the form

� � ¬
PQQQR O	 � O	 4 O	 � O	 � O

TWVVVX ¥
PQQQR
� 9 5 �� � 5 4� 4 5 �� � 5 �� �

TWVVVX Y
The approximate solution is then given by,

© � ¬�©
 M � � �] 9� �] 9� 6 5.� 9 : Y
Letting

� � � � � �] 9�
and

� � ¬ �] 9� 5.� 9 �

+
�� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
then,

© � ¬ ©�
 M � � � � Y
As for DIOM, � � , the last column of � � , can be computed from the previous � 4 ’s and � �
by the simple update

� � ¬ ��] 9� � � � ² 5 � � �] 9 � Y
Note that 5 � is a scalar computed from the Lanczos algorithm, while � � results from the
� -th Gaussian elimination step on the tridiagonal matrix, i.e.,	 � ¬ 5 �� �] 9 � ®
Ti
 �H±� � ¬ � � ² 	 � 5 � Y ®
Ti
 �H±
In addition, following again what has been shown for DIOM,

� � ¬ � � �] 9� � � �
in which

� � ¬ ² 	 � � �] 9 . As a result, © � can be updated at each step as

© � ¬ © �] 9 M � � � �
where � � is defined above.

This gives the following algorithm, which we call the direct version of the Lanczos
algorithm for linear systems.

���%� �L� �3�~� � �),+ � ! �C�<�'($%- �	, �
1. Compute �
 ¬ ¨)²�§t©
 , � 9 ! ¬�5 ! ¬ �

�

� � , and � 9 ! ¬ �
 �`52. Set 	 9 ¬�5 9 ¬ ; , �
 ¬<;

3. For �
¬ O �cb��ZYWYZY , until convergence Do:
4. Compute �

! ¬ §�� � ² 5 � � �] 9 and � � ¬ 6
� � � � :

5. If � � O then compute 	 � ¬ � �
� � � E and

� � ¬ ² 	 � � �] 9
6. � � ¬ � � ² 	 � 5 �
7. � � ¬ �] 9� 6

� � ² 5 � � �] 9 :8. © � ¬¦© �] 9 M � � � �9. If © � has converged then Stop
10. �

! ¬
��² � � � �
11. 5 � 7�9 ¬ �

�
� � , � � 7�9 ¬
� � 5 � 7�912. EndDo

This algorithm computes the solution of the tridiagonal system
� � > � ¬ 5 � 9 pro-

gressively by using Gaussian elimination without pivoting. However, as was explained for
DIOM, partial pivoting can also be implemented at the cost of having to keep an extra
vector. In fact, Gaussian elimination with partial pivoting is sufficient to ensure stability
for tridiagonal systems. The more complex LQ factorization has also been exploited in this
context and gave rise to an algorithm known as SYMMLQ [159].

The two algorithms 6.15 and 6.16 are mathematically equivalent, that is, they deliver
the same approximate solution if they are both executable. However, since Gaussian elimi-

� � � #O��| � �l� � � ���+#O| �\�������J|+� # � 	 �*���*� #Q�%� +
�

nation without pivoting is being used implicitly to solve the tridiagonal system

� � > ¬�5.� 9 ,the direct version may be more prone to breakdowns.
Observe that the residual vector for this algorithm is in the direction of � � 7�9 due to

equation (6.66). Therefore, the residual vectors are orthogonal to each other as in FOM.
Likewise, the vectors � 4 are § -orthogonal, or conjugate. These results are established in
the next proposition.

�)� �L� ��� �3� � �	� �),+ �
Let � � ¬ ¨¢²�§t© � , � ¬ ;�� O �ZYWYZY , be the residual vec-

tors produced by the Lanczos and the D-Lanczos algorithms (6.15 and 6.16) and � � ,
� ¬<;�� O �ZYWYZY8� the auxiliary vectors produced by Algorithm 6.16. Then,���

Each residual vector � � is such that � � ¬ � � � � 7�9 where � � is a certain scalar.
As a result, the residual vectors are orthogonal to each other.�	�
The auxiliary vectors � 4 form an § -conjugate set, i.e.,

6
§ � 4 ��� K : ¬<; , for - �¬
 .

� $ � � �)
The first part of the proposition is an immediate consequence of the relation

(6.66). For the second part, it must be proved that � �� §�� � is a diagonal matrix, where
� � ¬ � � �] 9� . This follows from

� �� §�� � ¬ �] �� � �� § � � �] 9�
¬ �] �� � � �] 9�
¬ �] �� � � Y

Now observe that �] �� � � is a lower triangular which is also symmetric since it is equal
to the symmetric matrix � �� §�� � . Therefore, it must be a diagonal matrix.

A consequence of the above proposition is that a version of the algorithm can be
derived by imposing the orthogonality and conjugacy conditions. This gives the Conjugate
Gradient algorithm which we now derive. The vector © K 7�9 can be expressed as

© K 7�9 ¬ © K M � K � K Y ®
Ti
 �=±
Therefore, the residual vectors must satisfy the recurrence

� K 7�9 ¬�� K ² � K § � K Y ®
Ti � �=±
If the � K ’s are to be orthogonal, then it is necessary that

6
� K ² � K § � K � � K : ¬ ; and as a

result

� K ¬ 6
� K � � K :6
§ � K � � K : Y ®
Ti �<°4±

Also, it is known that the next search direction � K 7\9 is a linear combination of � K 7�9 and
� K , and after rescaling the � vectors appropriately, it follows that

� K 7�9 ¬ � K 7�9 M 5 K � K Y ®
Ti �Z�=±
Thus, a first consequence of the above relation is that6

§ � K � � K : ¬ 6
§ � K � � K ² 5 K] 9 � K] 9 : ¬ 6

§ � K ��� K :

+
�� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
because § � K is orthogonal to � K] 9 . Then, (6.71) becomes � K ¬ 6

� K � � K : � 6 § � K � � K : . In
addition, writing that � K 7�9 as defined by (6.72) is orthogonal to § � K yields5 K ¬ ²

6
� K 7�9 �9§ � K :6
� K �\§ � K : Y

Note that from (6.70)

§ � K ¬ ² O� K 6 � K 7�9 ² � K : ®
Ti � =H±
and therefore, 5 K ¬ O� K

6
� K 7\9 � 6 � K 7�9 ²
� K :H:6

§ � K � � K : ¬
6
� K 7�9 � � K 7�9 :6
� K � � K : Y

Putting these relations together gives the following algorithm.

���%� �L� �3�~� � �),+
 ! � , $ � � �4(%57#�� &)(��236#"$�5
1. Compute �

! ¬ ¨)² §8©
 , �
 ! ¬ �
 .
2. For
}¬�;�� O �WYWYZY , until convergence Do:
3. � K ! ¬ 6

� K � � K : � 6 § � K ��� K :
4. © K 7�9 ! ¬ © K M � K � K5. � K 7�9 ! ¬ � K ² � K § � K6. 5 K ! ¬ 6

� K 7�9 � � K 7\9 : � 6 � K � � K :7. � K 7�9 ! ¬ � K 7�9 M 5 K � K
8. EndDo

It is important to note that the scalars � K �A5 K in this algorithm are different from those of
the Lanczos algorithm. The vectors � K are multiples of the � K ’s of Algorithm 6.16.

In terms of storage, in addition to the matrix § , four vectors (© , � , § � , and �) must be
saved in Algorithm 6.17, versus five vectors (� � , � �] 9 , � , � , and ©) for Algorithm 6.16.

� ���$��� & �>)�#2!$- &%)+* ��# ���	!$1 � �'&)�* � -$.

Algorithm 6.17 is the best known formulation of the Conjugate Gradient algorithm. There
are, however, several alternative formulations. Here, only one such formulation is shown,
which can be derived once more from the Lanczos algorithm.

The residual polynomial � � 6 � : associated with the � -th CG iterate must satisfy a
three-term recurrence, implied by the three-term recurrence of the Lanczos vectors. Indeed,
these vectors are just the scaled versions of the residual vectors. Therefore, we must seek
a three-term recurrence of the form

� � 7�9 6 � : ¬ � � 6 � � 6 � : ² � � � � � 6 � :A: M : � � �] 9 6 � : Y
In addition, the consistency condition � � 6 ; : ¬ O must be maintained for each � , leading
to the recurrence,

� � 7�9 6 � : ¬ � � 6 � � 6 � : ² � � � � � 6 � :A: M 6 O ² � � : � �] 9 6 � : Y ®
Ti � ¯ ±

� � � #O��| � �l� � � ���+#O| �\�������J|+� # � 	 �*���*� #Q�%� +
+³
Observe that if � � 6 ; : ¬ O and � �] 9 6 ; : ¬ O , then � � 7\9 6 ; : ¬ O , as desired. Translating
the above relation into the sequence of residual vectors yields

� � 7�9 ¬ � � 6 � � ² � � §	� � : M 6 O ² � � : � �] 9 Y ®
Ti �Za=±
Recall that the vectors � 4 ’s are multiples of the Lanczos vectors � 4 ’s. As a result, � � should
be the inverse of the scalar � � of the Lanczos algorithm. In terms of the � -vectors this
means

� � ¬ 6
� � � � � :6
§	� � � � � : Y

Equating the inner products of both sides of (6.75) with � �] 9 , and using the orthogonality
of the � -vectors, gives the following expression for � � , after some algebraic calculations,

� � ¬ � O ² � �
� �] 9

6
� � � � � :6

� �] 9 � � �] 9 : O
� �] 9 �] 9 Y ®
Ti �
=±

The recurrence relation for the approximate solution vectors can be extracted from
the recurrence relation for the residual vectors. This is found by starting from (6.74) and
using the relation � � 6 � : ¬ O ² � � �] 9 6 � : between the solution polynomial � �] 9 6 � : and the
residual polynomial � � 6 � : . Thus,

� � 6 � : ¬ O ²
� � 7�9 6 � :�
¬ � � � O ²
� � 6 � :� ² � � � � 6 � : � M 6 O ² � � : O ² � �] 9

6 � :�
¬ � � 6

� �] 9 6 � : ² � � � � 6 � :A: M 6 O ² � � : � �] � 6 � : Y
This gives the recurrence,

© � 7�9 ¬ � � 6 © � ² � � � � : M 6 O ² � � : © �] 9 Y ®
Ti � �=±
All that is left for the recurrence to be determined completely is to define the first two
iterates. The initial iterate ©�
 is given. The first vector should be of the form

© 9 ¬ ©�
t² �
 �
S�
to ensure that � 9 is orthogonal to �
 . This means that the two-term recurrence can be started
with �
C¬ O , and by setting ©] 9 ��; . Putting these relations and definitions together gives
the following algorithm.

�������L���D�~� � �),+ � ! �8��� 	 �+&;#0#<� 	 #"&�����#	- � &�&8#'$%-	# � ('&�3 (+$�5
1. Compute �
�¬ ¨)² §8©�
 . Set ©] 9 � ; and �
m¬ O .2. For
L¬�;�� O �ZYWYZY , until convergence Do:
3. Compute §	� K and � K ¬ / � C � � C 2/ � � C � � C 2
4. If

6
 � ; : compute � K ¬ � O ²��
C
�
C
� E / � C � � C 2/ � C � E � � C � E 2 9� C � E��] 9

5. © K 7�9 ¬ � K 6 © K ² � K � K : M 6 O ² � K : © K] 96. Compute � K 7�9 ¬ � K 6 � K ² � K §�� K : M 6 O ² � K : � K] 97. EndDo

+ � � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
The residual � K 7�9 could also be computed directly as � K 7�9 ¬�¨l²�§8© K 7�9 in line 6 of the
algorithm, but this would require an additional matrix-vector product.

� ���$��� #%*�
 #2-��%& � � # #�.�)+* 1 &%)�#�. �/!��	1) 0 #3�
� � #�� � *,� * #2-$) .

Sometimes, it is useful to be able to obtain the tridiagonal matrix
� � related to the un-

derlying Lanczos iteration from the coefficients of the Conjugate Gradient algorithm 6.17.
This tridiagonal matrix can provide valuable eigenvalue information on the matrix § . For
example, the largest and smallest eigenvalues of the tridiagonal matrix can approximate
the smallest and largest eigenvalues of § . This could be used to compute an estimate of
the condition number of § which in turn can help provide estimates of the error norm from
the residual norm. Since the Greek letters � 4 and 5 4 have been used in both algorithms,
notations must be changed. Denote by

� � ¬ �
� " � "#0 � � � K � : K ��� K 7�9 � �

the tridiagonal matrix (6.63) associated with the � -th step of the Lanczos algorithm. We
must seek expressions of the coefficients � K � :3K in terms of the coefficients � K �A5 K , obtained
from the CG algorithm. The key information regarding the correspondence between the
two pairs of coefficients resides in the correspondence between the vectors generated by
the two algorithms. From (6.66) it is known that

� K ¬ scalar ¥ � K 7\9 Y ®
Ti � �H±
As a result, : K 7�9 ¬

6
§�� K 7�9 � � K 7�9 :6
� K 7\9 � � K 7�9 : ¬

6
§	� K � � K :6
� K � � K : Y

The denominator

6
� K � � K : is readily available from the coefficients of the CG algorithm, but

the numerator

6
§	� K � � K : is not. The relation (6.72) can be exploited to obtain

� K ¬ � K ² 5 K] 9 � K] 9 ®
Ti � �H±
which is then substituted in

6
§	� K � � K : to get6

§�� K � � K : ¬ 6
§
6
� K ² 5 K] 9 � K] 9 : ��� K ² 5 K] 9 � K] 9 : Y

Note that the terms 5 K] 9 � K] 9 are defined to be zero when
}¬ ; . Because the � vectors are§ -orthogonal, 6
§	� K � � K : ¬ 6

§ � K � � K : M 5 �K] 9 6 § � K] 9 � � K] 9 : �
from which we finally obtain for
 � ; ,: K 7\9 ¬

6
§ � K ��� K :6
� K � � K : M 5 �K] 9

6
§ � K] 9 ��� K] 9 :6
� K � � K : ¬ O� K M 5 K] 9� K] 9 Y ®
Ti � �H±

The above expression is only valid for
 � ; . For
}¬<; , the second term in the right-hand
side should be omitted as was observed above. Therefore, the diagonal elements of

� � are

� � � #O��| � �l� � � ���+#O|	� |

�L� ��� 	}�z|G#Q����� + � +
given by : K 7�9 ¬ � 9� C for
L¬<;��9� C M �

C
� E

�

C
� E for
 � ;�Y ®
Ti �<°4±

Now an expression for the co-diagonal elements � K 7�9 is needed. From the definitions
in the Lanczos algorithm, � K 7�9 ¬ 6

§	� K � � K 7�9 : ¬ � 6 §	� K] 9 � � K : ��
� K] 9 � � � � K � � Y

Using (6.79) again and the relation (6.73) as well as orthogonality properties of the CG
algorithm, the following sequence of equalities results:6

§	� K] 9 � � K : ¬ 6
§
6
� K] 9 ² 5 K] � � K] � : � � K :¬

6
§ � K] 9 � � K : ² 5 K] � 6 § � K] � � � K :

¬ ² O� K] 9
6
� K ²
� K] 9 � � K : M 5 K] �� K] �

6
� K] 9 ²
� K] � � � K :

¬ ² O� K] 9
6
� K � � K : Y

Therefore, � K 7�9 ¬ O� K] 9
6
� K � � K :�

� K] 9 � � � � K � � ¬ O� K] 9 �
� K � ��
� K] 9 � � ¬ � 5 K] 9� K] 9 Y

This finally gives the general form of the � -dimensional Lanczos tridiagonal matrix in
terms of the CG coefficients,

� � ¬
PQQQQQQQR

9� 5 � � 5
� 5� � 5

� 5 9� E M � 5
� 5 � � E

� EY Y YY Y � � � �

� � �
� � � �

� � �
 9� � � E M � � �

� � �

T VVVVVVVX Y ®
Ti �Z�=±

	��}� �l� ��� ���8� 	����m�v�f�_���t���
¦��	������
� ¡��

In the previous section we derived the Conjugate Gradient algorithm as a special case of
FOM for Symmetric Positive Definite matrices. Similarly, a new algorithm can be derived
from GMRES for the particular case where § is Hermitian. In this case, the residual vectors
should be § -orthogonal, i.e., conjugate. In addition, the vectors § � 4 ’s -}¬U;�� O �ZYWYWYW� are
orthogonal. When looking for an algorithm with the same structure as CG, but satisfying
these conditions, we find the Conjugate Residual algorithm. Notice that the residual vectors
are now conjugate to each other, hence, the name of the algorithm.

+ � � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
���%� �L� �3�~� � �),+ ³ ! � , $ � � �4(%57#���# � 3 � � (*�� * �4,+&�3 5 � �

1. Compute �

! ¬ ¨)² §8©�
 , ��
 ! ¬ �

2. For
}¬�;�� O �WYWYZY8� until convergence Do:
3. � K ! ¬ 6

� K �\§	� K : � 6 § � K �\§ � K :
4. © K 7�9 ! ¬ © K M � K � K5. � K 7�9 ! ¬ � K ² � K § � K6. 5 K ! ¬ 6

� K 7�9 �9§	� K 7�9 : � 6 � K �9§	� K :7. � K 7�9 ! ¬ � K 7�9 M 5 K � K
8. Compute § � K 7�9 ¬ §	� K 7\9 M 5 K § � K
9. EndDo

The last line in the above algorithm computes § � K 7�9 from §�� K 7�9 without an additional
matrix-vector product. Five vectors of storage are needed in addition to the matrix § : © , � ,§ � , � , §	� . The algorithm requires one more vector update, i.e., b�¤ more operations than
the Conjugate Gradient method and one more vector of storage. Since the two methods
exhibit typically a similar convergence behavior, the Conjugate Gradient method is often
preferred over the Conjugate Residual algorithm.

�~���m�O��� 	 �~�
��X�L��� �}����� 	 �~� � � �
� ¡��

All algorithms developed in this chapter are strongly related to, as well as defined by,
the choice of a basis of the Krylov subspace. The GMRES algorithm uses an orthogonal
basis. In the Conjugate Gradient algorithm, the � ’s are § -orthogonal, i.e., conjugate. In
the Conjugate Residual method just described, the § � 4 ’s are orthogonal, i.e., the � 4 ’s are§ � § -orthogonal. A number of algorithms can be developed using a basis of this form in
the nonsymmetric case as well. The main result that is exploited in all these algorithms is
the following lemma.�w�2� ��� �)��

Let ��
J��� 9 �WYZYWYW� � �] 9 be a basis of the Krylov subspace � � 6 § � �
 : which
is § � § -orthogonal, i.e., such that6

§ � 4 �\§ � K : ¬<;�� for - �¬
JY
Then the approximate solution © � which has the smallest residual norm in the affine space©
 M � � 6 § � �
 : is given by

© � ¬ ©
 M �] 9B 4 �

6
�
J�\§ � 4 :6
§ � 4 �\§ � 4 : � 4 Y ®
Ti � =H±

In addition, © � can be computed from © �] 9 by

© � ¬�© �] 9 M
6
� �] 9 �9§ � �] 9 :6
§ � �] 9 �\§ � �] 9 : � �] 9 Y ®
Ti � ¯ ±

� � � � � � sF���+#O�*�8� �J��sS�Q� � ���+#Q������� � + � �
� $ � � �)

The approximate solution and the associated residual vector can be written in the
form

© � ¬¦©�
 M �] 9B 4 �
 � 4 � 4 � � � ¬
�
m²
�] 9B 4 �
 � 4 § � 4 Y ®
Ti �Za=±

According to the optimality result of Proposition 5.3, in order for
�
� � � � to be minimum,

the orthogonality relations 6
� � �\§ � 4 : ¬ ;�� -�¬ ;��ZYWYWYW��� ² O

must be enforced. Using (6.85) and the orthogonality of the § � 4 ’s gives immediately,

� 4 ¬ 6
�
J�\§ � 4 : � 6 § � 4 �\§ � 4 : Y

This proves the first part of the lemma. Assume now that © �] 9 is known and that © �
must be determined. According to formula (6.83), © � ¬ © �] 9 M � �] 9 � �] 9 with � �] 9defined above. Note that from the second part of (6.85),

� �] 9 ¬��
 ² �] �BK��
 � K § � K
so that 6

� �] 9 �\§ � �] 9 : ¬ 6
�
 �9§ � �] 9 : ² �] �BK��
 � K 6 § � K �9§ � �] 9 : ¬ 6

�
 �9§ � �] 9 :
exploiting, once more, the orthogonality of the vectors § � K ,
}¬ ;��ZYWYZY8��� ² O . Thus,

� �] 9 ¬
6
� �] 9 �9§ � �] 9 :6
§ � �] 9 �9§ � �] 9 : �

which proves the expression (6.84).

This lemma opens up many different ways to obtain algorithms that are mathemati-
cally equivalent to the full GMRES. The simplest option computes the next basis vector
� � 7�9 as a linear combination of the current residual � � and all previous � 4 ’s. The approxi-
mate solution is updated by using (6.84). This is called the Generalized Conjugate Residual
(GCR) algorithm.

�������L���D�~� � �)�� �4! �~���
1. Compute �
�¬ ¨)² §8©�
 . Set �
m¬
�
 .
2. For
L¬�;�� O � b��ZYWYWY3� until convergence Do:
3. � K ¬ / � C � � : C 2/ � : C � � : C 24. © K 7�9 ¬ © K M � K � K5. � K 7�9 ¬ � K ² � K § � K
6. Compute 5 4LK ¬ ² / � � C � E � � : I 2/ � : I � � : I 2 , for -�¬ ;�� O �ZYWYWY3�8

7. � K 7�9 ¬�� K 7�9 M � K 4 �
 5 4LK � 4
8. EndDo

+ � ' � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
To compute the scalars 5 4LK in the above algorithm, the vector §	� K and the previous § � 4 ’s
are required. In order to limit the number of matrix-vector products per step to one, we
can proceed as follows. Follow line 5 by a computation of §	� K 7�9 and then compute § � K 7�9after line 7 from the relation

§ � K 7�9 ¬ §	� K 7\9 M KB 4��
 5 4 K § � 4 Y
Both the set of � 4 ’s and that of the § � 4 ’s need to be saved. This doubles the storage re-
quirement compared with GMRES. The number of arithmetic operations per step is also
roughly 50% higher than GMRES.

The above version of GCR suffers from the same practical limitations as GMRES
and FOM. A restarted version called GCR(m) can be trivially defined. Also, a truncation
of the orthogonalization of the § � 4 ’s, similar to IOM, leads to an algorithm known as
ORTHOMIN(k). Specifically, lines 6 and 7 of Algorithm 6.20 are replaced by

6a. Compute 5 4 K ¬ ² / � � C � E � � : I 2/ � : I � � : I 2 , for -�¬
~² 9 M O �WYWYZYW�8

7a. � K 7�9 ¬ � K 7�9 M � K 4���K] 037�9 5 4LK � 4 .

Another class of algorithms is defined by computing the next basis vector � K 7�9 as

� K 7�9 ¬ § � K M KB 4 �
 5 4LK � 4 ®
Ti �
H±

in which, as before, the 5 4LK ’s are selected to make the § � 4 ’s orthogonal, i.e.,5 4 K ¬ ²
6
§ � � K �\§ � 4 :6
§ � 4 �9§ � 4 : Y

The resulting algorithm is called ORTHODIR [127]. Restarted and truncated versions of
ORTHODIR can also be defined.

	 �L� �G�����f�%�
�� � 	¢�)� � �%�f� 	��}�%���m�

� ¡'£��

As was seen in Section 6.6 when § is symmetric, the Arnoldi algorithm simplifies into the
Lanczos procedure, which is defined through a three-term recurrence. As a consequence,
FOM is mathematically equivalent to the Conjugate Gradient algorithm in this case. Simi-
larly, the full GMRES algorithm gives rise to the Conjugate Residual algorithm. It is clear
that the CG-type algorithms, i.e., algorithms defined through short-term recurrences, are
more desirable than those algorithms which require storing entire sequences of vectors as
in the GMRES process. These algorithms require less memory and operations per step.

Therefore, the question is: Is it possible to define algorithms which are based on op-
timal Krylov subspace projection and which give rise to sequences involving short-term
recurrences? An optimal Krylov subspace projection means a technique which minimizes
a certain norm of the error, or residual, on the Krylov subspace. Such methods can be de-

� ����� #Q��| �c�Qj�|��{q9���Q� #O|�� � �{|�	�#Q��|J��� |k� + �µ´
fined from the Arnoldi process. If the Arnoldi process simplifies into an � -term recurrence,
i.e., if � 4LK ¬<; for -

l² � M O , then the conjugate directions � 4 in DIOM are also defined
from an � -term recurrence. Similarly, the full GMRES would also simplify into a DQGM-
RES algorithm involving a short recurrence. Therefore, for all purposes, it is sufficient to
analyze what happens to the Arnoldi process (or FOM). We start by generalizing the CG
result in a simple way, by considering the DIOM algorithm.

�)� �L� ��� �3� � �	� �),+J'
Let § be a matrix such that

§ � � � � � 6 § � � :
for any vector � . Then, DIOM(s) is mathematically equivalent to the FOM algorithm.

� $ � � �)
The assumption is equivalent to the statement that, for any � , there is a polyno-

mial �

of degree
�
�C² O , such that § � ��¬ �
 6 § : � . In the Arnoldi process, the scalars

� 4LK are defined by � 4 K ¬ 6
§	� K � � 4 : and therefore

� 4 K ¬ 6
§	� K � � 4 : ¬ 6

� K �\§ � � 4 : ¬ 6
� K � �
 C 6 § : � 4 : Y ®
Ti � �=±

Since �

 C

is a polynomial of degree
�
�m² O , the vector �

 C 6 § : � 4 is a linear combination
of the vectors � 4 � � 4 7�9 �WYWYZYW� � 4 7 �] 9 . As a result, if -

z² � M O , then � 4 K ¬ ; . Therefore,
DIOM(k) will give the same approximate solution as FOM.

In particular, if

§ � ¬ � 6 § :
where � is a polynomial of degree

�
�}² O , then the result holds. However, the above

relation implies that each eigenvector of § is also an eigenvector of § � . According to
Theorem 1.2, this can be true only if § is a normal matrix. As it turns out, the reverse is
also true. That is, when § is normal, then there is a polynomial of degree

� ¤ ² O such
that § 	 ¬ �

6
§ : . Proving this is easy because when § ¬ ��� � 	 where � is unitary and

� diagonal, then �

6
§ : ¬ � �

6
�
: � 	 . By choosing the polynomial � so that

�

6 	 K : ¬ �	 K �+
}¬ O �ZYWYWYW�r¤
we obtain �

6
§ : ¬ �

�
� � 	 ¬ § 	 which is the desired result.

Let �
6
§ : be the smallest degree of all polynomials � such that § 	 ¬ �

6
§ : . Then the

following lemma due to Faber and Manteuffel [85] states an interesting relation between �
and �

6
§ : .�w�2� ��� �)��

A nonsingular matrix § is such that

§ 	 � � � � 6 § � � :
for every vector � if and only if § is normal and �

6
§ :�� �t² O .� $ � � �)

The sufficient condition is trivially true. To prove the necessary condition, assume
that, for any vector � , § 	 �¢¬ �

6
§ : � where �

is a polynomial of degree

�
�m² O . Then

it is easily seen that any eigenvector of § is also an eigenvector of § 	 . Therefore, from
Theorem 1.2, § is normal. Let � be the degree of the minimal polynomial for § . Then,
since § has � distinct eigenvalues, there is a polynomial � of degree ��² O such that

+ ��� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
�

6 	 4 : ¬ �	 4 for -l¬ O �WYWYZY8� � . According to the above argument, for this � , it holds § 	 ¬
�

6
§ : and therefore �

6
§ : � ��² O . Now it must be shown that �

�
� . Let � be a (nonzero)

vector whose grade is � . By assumption, § 	 � � � � 6 § � � : . On the other hand, we also
have § 	 � ¬ �

6
§ : � . Since the vectors � �9§�� �WYZYWY �9§ �] 9 � are linearly independent, �l² Omust not exceed �m² O . Otherwise, two different expressions for § 	 � with respect to the

basis � �\§	� �ZYWYWY �9§ �] 9 � would result and this would imply that § 	 �
¬ ; . Since § is
nonsingular, then � ¬ ; , which is a contradiction.

Proposition 6.14 gives a sufficient condition for DIOM(s) to be equivalent to FOM.
According to Lemma 6.3, this condition is equivalent to § being normal and �

6
§ : �

�t² O . Now consider the reverse result. Faber and Manteuffel define CG(s) to be the class
of all matrices such that for every � 9 , it is true that

6
§	� K � � 4 : ¬ ; for all -c�8
 such that- M � �
 � � 6 � 9 : ² O . The inner product can be different from the canonical Euclidean

dot product. With this definition it is possible to show the following theorem [85] which is
stated without proof.

�~�V� �L�?� � �)�� § � � � 6 � : , if and only if �

6
§ : � � or § is normal and �

6
§ :�� �µ² O .

It is interesting to consider the particular case where �
6
§ : � O , which is the case of

the Conjugate Gradient method. In fact, it is easy to show that in this case § either has a
minimal degree

� O , or is Hermitian, or is of the form

§ ¬ � 4�� 6 � � M � :
where

�
and � are real and � is skew-Hermitian, i.e., � 	 ¬ ² � . Thus, the cases in

which DIOM simplifies into an (optimal) algorithm defined from a three-term recurrence
are already known. The first is the Conjugate Gradient method. The second is a version
of the CG algorithm for skew-Hermitian matrices which can be derived from the Lanczos
algorithm in the same way as CG. This algorithm will be seen in Chapter 9.

�l� �����?�t�z�?�V��� � �C� � �z�f�-�
� ¡'£V£

The convergence behavior of the different algorithms seen in this chapter can be analyzed
by exploiting optimality properties whenever such properties exist. This is the case for
the Conjugate Gradient and the GMRES algorithms. On the other hand, the non-optimal
algorithms such as FOM, IOM, and QGMRES will be harder to analyze.

One of the main tools used in the analysis of these methods is Chebyshev polynomials.
These polynomials are useful both in theory, when studying convergence, and in practice,
as a means of accelerating single-vector iterations or projection processes. In the following,
real and complex Chebyshev polynomials are discussed separately.

� ��� � � �t���O|�� �v|+� � | �Q� � 	 ��

�
 + ��

� ���2����� !$# & � � 0
#%� 	 .20
# � ��� � 	�- �	1 * & � .

The Chebyshev polynomial of the first kind of degree 9 is defined by� 0 6 � : ¬ � � � � 9 � � �] 9 6 � : � for ² O � � � O Y ®
Gi � �=±
That this is a polynomial with respect to

�
can be shown easily by induction from the

trigonometric relation
� � � �

6 9 M O : � � M � � � �
6 9L² O : � �c¬ b � � � �

� � � 9 � �
and the fact that � 9 6 � : ¬ � � �
 6 � : ¬ O . Incidentally, this also shows the important three-
term recurrence relation � 037�9 6 � : ¬ b � � 0 6 � : ² � 0] 9 6 � : Y
The definition (6.88) can be extended to cases where � � � � O with the help of the following
formula: � 0 6 � : ¬ � � ��� � 9 � � ���] 9 6 � : � � � � � � O Y ®
Ti � �=±
This is readily seen by passing to complex variables and using the definition � � � � ¬6 � 4 � M �] 4�� : � b . As a result of (6.89) the following expression can be derived:� 0 6 � : ¬ Ob � � � M � � � ² O � 0 M � � M � � � ² O �] 0 � � ®
Ti � �=±
which is valid for � � � � O but can also be extended to the case of � � �
 O . The following
approximation, valid for large values of 9 , will be sometimes used:� 0 6 � :�� Ob � � M � � � ² O � 0 for � � � � O Y ®
Gi �G°4±

In what follows we denote by � 0 the set of all polynomials of degree 9 . An important
result from approximation theory is the following theorem.

�~�V� �L�)�2� �)L'
Let � � �A5 � be a non-empty interval in ª and let � be any real scalar

outside the interval � � �H5 � . Then the minimum$1"#+
: 7���� � :`/ � 2 � 9 $ 0 2� 7	� � � ��
 � � 6 � : �

is reached by the polynomial

�� 0 6 � : � � 0 � O M b �] �

�] � �� 0 � O M b �] �

�] � � Y ®
Ti �Z�=±
For a proof, see Cheney [52]. The maximum of � 0 for

�
in �-² O � O � is O and a corollary

of the above result is$1".+
: 7���� � : / � 2 � 9 $1032� 7	� � � �

 � � 6 � : ��¬ O� � 0 6 O M b �] �

�] � : � ¬ O� � 0 6 b �] ��] � : �

+ ��� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
in which � �

6
�^M 5 : � b is the middle of the interval. The absolute values in the denomi-

nator are needed only when � is to the left of the interval, i.e., when � � � . For this case,
it may be more convenient to express the best polynomial as

�� 0 6 � : � � 0 � O M b �] ��] � �� 0 � O M b �] ��] � � Y
which is obtained by exchanging the roles of � and 5 in (6.92).

� ���2��� � � � 1 � ��# (�� 0
#%� 	 .20
# � ��� � 	�-�� 1 * & � .

The standard definition of real Chebyshev polynomials given by equation (6.88) extends
without difficulty to complex variables. First, as was seen before, when

�
is real and � � � � O ,the alternative definition, � 0 6 � : ¬ � � ��� � 9 � � ���] 9 6 � : � , can be used. These definitions can

be unified by switching to complex variables and writing� 0 6 � : ¬ � � � �
6 9 � : � where � � ���

6 � : ¬�� Y
Defining the variable � ¬ � �

, the above formula is equivalent to� 0 6 � : ¬ Ob � � 0 M �] 0 � where �z¬ Ob � � M �] 9 �&Y ®
Ti � =H±
The above definition for Chebyshev polynomials will be used in � . Note that the equation9� 6 � M �] 9 : ¬ � has two solutions � which are inverse of each other. As a result, the value
of � 0 6 � : does not depend on which of these solutions is chosen. It can be verified directly
that the � 0 ’s defined by the above equations are indeed polynomials in the � variable and
that they satisfy the three-term recurrence� 037�9 6 � : ¬<b � � 0 6 � : ² � 0] 9 6 � : � ®
Ti � ¯ ±�
 6 � : � O � � 9 6 � : � �
Y

As is now explained, Chebyshev polynomials are intimately related to ellipses in the
complex plane. Let � � be the circle of radius � centered at the origin. Then the so-called
Joukowski mapping � 6 � : ¬ Ob � � M �] 9 �
transforms � � into an ellipse of center the origin, foci ² O � O , major semi-axis 9� � � M �] 9 �
and minor semi-axis 9� � �z² �] 9 � . This is illustrated in Figure 6.2.

There are two circles which have the same image by the mapping � 6 � : , one with the
radius � and the other with the radius �] 9 . So it is sufficient to consider only those circles
with radius ��� O . Note that the case ��¬ O is a degenerate case in which the ellipse� 6 ;�� O �'² O : reduces to the interval �3² O � O � traveled through twice.

An important question is whether or not a generalization of the min-max result of The-
orem 6.4 holds for the complex case. Here, the maximum of � � 6 � : � is taken over the ellipse
boundary and � is some point not enclosed by the ellipse. The answer to the question is no;
Chebyshev polynomials are only optimal in some cases. However, Chebyshev polynomials
are asymptotically optimal, which is all that is needed in practice.

� ��� � � �t���O|�� �v|+� � | �Q� � 	 ��

�
 + �+³

�

�

���������

	�
������

��
���� ����

�
� �����

�

�

���������

	�
������

��
 � � � � EX�

 �! "�#�$ % �)��
The Joukowski mapping transforms a circle into

an ellipse in the complex plane.

To prove the asymptotic optimality, we begin with a lemma due to Zarantonello, which
deals with the particular case where the ellipse reduces to a circle. This particular case is
important in itself.�w�2� ��� �)L'�� � $ ����� � � %

 �

Let � 6 ;���� : be a circle of center the origin and radius �
and let � be a point of � not enclosed by � 6 ;�� � : . Then

$1"#+
: 7���� � : / � 2 � 9 $ 032 7"! /
 � � 2 � �

6
�
: �C¬ �

�� � � � 0 � ®
Ti �Za=±
the minimum being achieved for the polynomial

6
� � � : 0 .

� $ � � �)
See reference [168] for a proof.

Note that by changing variables, shifting, and rescaling the polynomial, then for any
circle centered at � and for any scalar � such that � � � � � , the following min-max result
holds: $1".+

: 7���� : / � 2 � 9 $ 0 2 7#! /�$�� � 2 � �
6
�
: �8¬ �

�� � ² � � � 0 Y
Now consider the case of an ellipse centered at the origin, with foci O �'² O and semi-

major axis ? , which can be considered as mapped by � from the circle � 6 ;���� : , with the
convention that � � O . Denote by � � such an ellipse.

�~�V� �L�)�2� �) ´
Consider the ellipse � � mapped from � 6 ;���� : by the mapping � and

let � be any point in the complex plane not enclosed by it. Then

� 0� � � � 0 � $1".+
: 7�� � : / � 2 � 9 $ 032 7#%'& � � 6 � : � � � 0 M �] 0� � 0� M �] 0� � ®
Ti �
=±

in which � � is the dominant root of the equation � 6 � : ¬ � .

� $ � � �)
We start by showing the second inequality. Any polynomial � of degree 9 satis-

+ ³ � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
fying the constraint �

6
� : ¬ O can be written as

�

6
�
: ¬ � 0K��
 . K � K

� 0K��
 . K � K Y
A point � on the ellipse is transformed by � from a certain � in � 6 ;�� � : . Similarly, let � �be one of the two inverse transforms of � by the mapping, namely, the one with largest
modulus. Then, � can be rewritten as

�

6
�
: ¬ � 0K��
 . K 6 � K M �] K :

� 0K��
 . K 6 � K� M �] K� : Y ®
Ti � �H±

Consider the particular polynomial obtained by setting . 0 ¬ O and . K ¬ ; for
 �¬ 9 ,

� �
6
�
: ¬ � 0 M �] 0

� 0� M �] 0�
which is a scaled Chebyshev polynomial of the first kind of degree 9 in the variable � . It
is apparent that the maximum modulus of this polynomial is reached in particular when
� ¬ ��� 4 � is real, i.e., when � ¬ � . Thus,$ 0 2 7 %�& � � � 6 � : �T¬ � 0 M �] 0� � 0� M �] 0� �
which proves the second inequality.

To prove the left inequality, we rewrite (6.97) as

�

6
�
: ¬ �

�] 0
�] 0� � � 0K��
 . K 6 � 037 K M � 0] K :

� 0K��
 . K 6 � 037 K� M � 0] K� :
and take the modulus of �

6
�
:
,

� � 6 � : �G¬ �] 0� � � �] 0
�
�
�
�
�

� 0K��
 . K 6 � 037 K M � 0] K :
� 0K��
 . K 6 � 037 K� M � 0] K� : �

�
�
�
�
Y

The polynomial in � of degree b�9 inside the large modulus bars in the right-hand side is
such that its value at � � is one. By Lemma 6.4, the modulus of this polynomial over the
circle � 6 ;���� : is not less than

6
� � � � � � : � 0 , i.e., for any polynomial, satisfying the constraint

�

6
� : ¬ O , $1032 7 % & � � 6 � : � � �] 0� � � �] 0 �

� 0� � � � � 0 ¬ � 0� � � � 0 Y
This proves that the minimum over all such polynomials of the maximum modulus on the
ellipse � � is � 6

� � � � � � : 0 .
The difference between the left and right bounds in (6.96) tends to zero as 9 increases

to infinity. Thus, the important point made by the theorem is that for large 9 , the Chebyshev
polynomial

� �
6
�
: ¬ � 0 M �] 0

� 0� M �] 0� � where �z¬ � M �] 9b

� ��� � � �t���O|�� �v|+� � | �Q� � 	 ��

�
 + ³ +
is close to the optimal polynomial. More specifically, Chebyshev polynomials are asymp-
totically optimal.

For a more general ellipse � 6 � � �
� ? : centered at � , and with focal distance � and semi-
major axis ? , a simple change of variables shows that the near-best polynomial is given
by

�� 0 6 � : ¬ � 0 � $] � �� 0 � $] �� � Y ®
Ti � �=±

In addition, by examining the expression

6
� 0 M �] 0 : � b for � ¬ �0� 4 � it is easily seen that

the maximum modulus of �� 0 6 � : , i.e., the infinity norm of this polynomial over the ellipse,
is reached at the point � M ? located on the real axis. From this we get,$ 0 2 7 % /�$�� � � � 2 � �� 0 6 � : �G¬ � 0 � � � �� � 0 � $] �� � �
Here, we point out that � and ? both can be purely imaginary [for an example, see part
(B) of Figure 6.3]. In this case ? � � is real and the numerator in the above expression is
always real. Using the definition for � 0 we obtain the following useful expression and
approximation:

� 0 � � � �� 0 � $] �� � ¬
�
� � M �

� � � � � ² O � 0 M �
� � M �

� � � � � ² O �] 0�
$] �� M �

� $] �� � � ² O/� 0 M �
$] �� M �

� $] �� � � ² O/�] 0 ®
Ti � �=±

� � ? M � ? � ² � �
� ² � M��

6
� ² � : � ² � � � 0 ®
TiM° � �=±

Finally, we note that an alternative and more detailed result has been proven by Fischer
and Freund in [89].

� ���2����� � �	-���#2!
 #2- � #3� �) 0
#3�
 & �
��	! *)�0
1

As usual,
� © � � denotes the norm defined by

� © � ��¬
6
§t©��9© : 9 ��� Y

The following lemma characterizes the approximation obtained from the Conjugate Gra-
dient algorithm.�w�2� ��� �) ´

Let © � be the approximate solution obtained from the � -th step of the
CG algorithm, and let � � ¬ ©��m²y© � where © � is the exact solution. Then, © � is of the
form

© � ¬ ©�
 M � � 6 § : �

where � � is a polynomial of degree � ² O such that

�
6
� ²�§ � � 6 § :A: �
 � � ¬ $1".+

� 7 � � � E � 6 � ²�§ � 6 § :A: �
 � � Y

+ ³ � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
� $������c)

This is a consequence of the fact that © � minimizes the § -norm of the error in
the affine subspace ©
 M � � , a result of Proposition 5.2, and the fact that � � is the set of
all vectors of the form ©�
 M�� 6 § : �
 , where � is a polynomial of degree

� � ² O .
From this, the following theorem can be proved.

�~�V� �L�?� � �) �
Let © � be the approximate solution obtained at the � -th step of the

Conjugate Gradient algorithm, and © � the exact solution and define� ¬ 	 � 4 «	 ��� 4 ²�	 � 4 « Y ®
GiM° �G°p±
Then,

� ©��f² © � � � �
� © �?² ©�
 � �� � 6 O M b � : � ®
GiM° � �H±

in which � � is the Chebyshev polynomial of degree � of the first kind.

� $������c)
From the previous lemma, it is known that

� © � ²�© � � � minimizes § -norm of
the error over polynomials �

6 � :
which take the value one at ; , i.e.,

� © � ² © � � � ¬ $1"#+�&7 � � � � /
 2 � 9 � �
6
§ : �
 � � Y

If 	 4 �H-�¬ O �WYZYWY8�9¤ are the eigenvalues of § , and . 4 �H-�¬ O �ZYWYWYW�r¤ the components of the
initial error �
 in the eigenbasis, then

�
�

6
§ : �
 � �� ¬ «B 4�� 9 	 4 �

6 	 4 : � 6 . 4 : � � $ 0 24 6
�

6 	 4 :A: � � �
 � ��
� $ 032� 7	� ��� I : � � � � �

6
�

6 	 :A: � � �
 � �� Y
Therefore,

� © � ² © � � � � $1".+�/7 � � � � /
 2 � 9 $ 032� 7	� � � I : � � ��� �
 � �
6 	 : � � �
 � � Y

The result follows immediately by using the well known result of Theorem 6.4 from ap-
proximation theory. This gives the polynomial � which minimizes the right-hand side.

A slightly different formulation of inequality (6.102) can be derived. Using the rela-
tion, � � 6 � : ¬ Ob � � � M � � � ² O � � M � � M � � � ² O �] � ��UOb � � M � � � ² O � �
then � � 6 O M b � : � Ob � O M b � M �

6 O M b � : � ² O � �� Ob � O M b � M b � � 6 � M O : � � Y

� ��� � � �t���O|�� �v|+� � | �Q� � 	 ��

�
 + ³ �
Now notice that O M b � M b � � 6 � M O : ¬ � � � M � � M O � � ®
TiM° �Z==±

¬ � � 	 � 4 « M � 	 ��� 4 � �	 ��� 4 ²�	 � 4 « ®
TiM° � ¯ ±

¬
� 	 ��� 4 M � 	 � 4 «� 	 ��� 4 ² � 	 � 4 « ®
TiM° �Za=±

¬
� � M O� � ² O ®
TiM° �
=±

in which
�

is the spectral condition number
� ¬
	 ��� 4 �3	 � 4 « .

Substituting this in (6.102) yields,

� © � ² © � � � � b � � � ² O� � M O � � � © � ² ©
 � ��Y ®
TiM° � �=±
This bound is similar to that of the steepest descent algorithm except that the condition
number of § is now replaced by its square root.

� ���2��� � � �	-���#2!
 #2- � # � �
 1 !$#�.

We begin by stating a global convergence result. Recall that a matrix § is called positive
definite if its symmetric part

6
§ M § � : � b is Symmetric Positive Definite. This is equivalent

to the property that

6
§8©��9© : � ; for all nonzero real vectors © .

�~�V� �L�)�2� �)

If § is a positive definite matrix, then GMRES(m) converges for any

� � O .� $ � � �)
This is true because the subspace � � contains the initial residual vector at each

restart. Since the algorithm minimizes the residual norm in the subspace � � , at each outer
iteration, the residual norm will be reduced by as much as the result of one step of the
Minimal Residual method seen in the previous chapter. Therefore, the inequality (5.18) is
satisfied by residual vectors produced after each outer iteration and the method converges.

Next we wish to establish a result similar to the one for the Conjugate Gradient
method, which would provide an upper bound on the convergence rate of the GMRES
iterates. We begin with a lemma similar to Lemma 6.5.�w�2� ��� �) �

Let © � be the approximate solution obtained from the � -th step of the
GMRES algorithm, and let � � ¬ ¨)² §8© � . Then, © � is of the form

© � ¬ ©�
 M � � 6 § : �

and

�
� � � � ¬ �

6
� ² § � � 6 § :A: �
 � � ¬ $1".+

� 7 � � � E � 6 � ²�§ � 6 § :A: �
 � � Y

+ ³ ' � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
� $������c)

This is true because © � minimizes the b -norm of the residual in the affine sub-
space ©�
 M � � , a result of Proposition 5.3, and the fact that � � is the set of all vectors of
the form ©
 M � 6 § : �
 , where � is a polynomial of degree

� � ² O .
Unfortunately, it not possible to prove a simple result such as Theorem 6.6 unless § is
normal.

�)� �L� ��� �D��� �	� �),+ ´
Assume that § is a diagonalizable matrix and let § ¬ � � �] 9

where � ¬ � " 0 � � 	 9 � 	 � �WYZYWYZ� 	 « 	 is the diagonal matrix of eigenvalues. Define,
� / � 2 ¬ $1".+

: 7�� � � : /
 2 � 9 $10324 � 9 ��������� « � �
6 	 4 : � Y

Then, the residual norm achieved by the � -th step of GMRES satisfies the inequality
�
� � � � � � � 6 � : � / � 2 � �
 � � Y

where
� �
6 � : � � � � � � �] 9 � � .

� $������c)
Let � be any polynomial of degree

� � which satisfies the constraint �

6 ; : ¬ O ,and © the vector in � � to which it is associated via ¨)²�§t© ¬ �

6
§ : �
 . Then,

� ¨O²�§t© � � ¬ � � � 6 � : �] 9 �
 � � ��� � � � � �] 9 � � � �
 � � � � 6 � : � �
Since � is diagonal, observe that

�
�

6
�
: � � ¬ $ 0 24�� 9���������� « � �

6 	 4 : � Y
Since © � minimizes the residual norm over ©�
 M � � , then for any consistent polynomial
� ,

� ¨Q²�§t© � ��� � ¨)²�§t© � � � � � � � � �] 9 � � � �
 � � $10324 � 9 ������� � « � �
6 	 4 : �LY

Now the polynomial � which minimizes the right-hand side in the above inequality can be
used. This yields the desired result,

� ¨)²�§t© � ��� � ¨O² §8© � � � � � � � � �] 9 � � � �
 � � � / � 2 Y
The results of Section 6.11.2 on near-optimal Chebyshev polynomials in the complex

plane can now be used to obtain an upper bound for � / � 2 . Assume that the spectrum of §
in contained in an ellipse � 6 � � ��� ? : with center � , focal distance � , and major semi axis ? .
In addition it is required that the origin lie outside this ellipse. The two possible cases are
shown in Figure 6.3. Case (B) corresponds to the situation when � is purely imaginary, i.e.,
the major semi-axis is aligned with the imaginary axis.

��� � � � �{�~��� �),+
Let § be a diagonalizable matrix, i.e, let § ¬!� � �] 9 where

� ¬ � "#0 � � 	 9 � 	 � �WYWYZY8� 	 « 	 is the diagonal matrix of eigenvalues. Assume that all the
eigenvalues of § are located in the ellipse � 6 � � ��� ? : which excludes the origin. Then, the

� ��� � � �t���O|�� �v|+� � | �Q� � 	 ��

�
 + ³µ´
residual norm achieved at the � -th step of GMRES satisfies the inequality,

�
� � � � ��� � 6 � : � � � � � �

�
� � � � $� � �

�

�
�

� � Y

�

�

���������

	
������

c �
���

���
�

�
���

���
�

�

(A)

�

�

��� �����

	
������

c

�
���

���
�

�
�	�

���
�

(B)

 �! "�#�$ % �)��
Ellipses containing the spectrum of § . Case (A):

real � ; case (B): purely imaginary � .
� $ � � �)

All that is needed is an upper bound for the scalar � / � 2 under the assumptions.
By definition,

� / � 2 ¬ $1"#+
: 7�� � � : /
 2 � 9 $ 0 24�� 9�������� � « � �

6 	 4 : �
� $1"#+
: 7�� � � : /
 2 � 9 $ 0 2� 7"% /�$�� � � � 2 � �

6 	 : �LY
The second inequality is due to the fact that the maximum modulus of a complex analytical
function is reached on the boundary of the domain. We can now use as a trial polynomial

�� � defined by (6.98), with � ¬<; :
� / � 2 � $1".+

: 7�� � � :`/
 2 � 9 $1032� 7 % /�$�� � � � 2 � �
6 	 : �

� $ 0 2� 7"% /�$�� � � � 2 � �� � 6 	 : ��¬ � � � � � �
�
� � � � $� � �

�
Y

This completes the proof.

+ ³�� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
An explicit expression for the coefficient � � � � � � � � � � $� � and an approximation are
readily obtained from (6.99-6.100) by taking � ¬ ; :

� � � � � �� � � $� � ¬
�
� � M �

� � � � � ² O � 0 M �
� � M �

� � � � � ² O �] 0�
$� M �

� $� � � ² O � 0 M �
$� M �

� $� � � ² O/�] 0
� � ? M � ? � ² � �� M � � � ² � � � 0 Y

Since the condition number
� �
6 � : of the matrix of eigenvectors � is typically not

known and can be very large, results of the nature of the corollary are of limited practical
interest. They can be useful only when it is known that the matrix is nearly normal, in
which case,

� �
6 � : � O .

�~�E� � � �}�����E� �
¦��	������V�
� ¡'£ �

In many circumstances, it is desirable to work with a block of vectors instead of a single
vector. For example, out-of-core finite-element codes are more efficient when they are
programmed to exploit the presence of a block of the matrix § in fast memory, as much as
possible. This can be achieved by using block generalizations of Krylov subspace methods,
for which § always operates on a group of vectors instead of a single vector. We begin by
describing a block version of the Arnoldi algorithm.

���%� �L� �3�~� � �)���+"! ��* ,.-'/�� &�$%,2* �23
1. Choose a unitary matrix � 9 of dimension ¤ ¥ � .
2. For
}¬ O �cb��WYWYZY8��� Do:
3. Compute

� 4 K ¬ � �4 §�� K -�¬ O � b��WYZYWY8�8

4. Compute

� K ¬ § � K ² � K 4�� 9 � 4 � 4 K5. Compute the Q-R factorization of
� K : � K ¬ � K 7�9 � K 7\9�� K6. EndDo

The above algorithm is a straightforward block analogue of Algorithm 6.1. By con-
struction, the blocks generated by the algorithm are orthogonal blocks that are also orthog-
onal to each other. In the following we denote by � 0 the 9 ¥ 9 identity matrix and use the
following notation:

� � ¬ � � 9 � � � �WYZYWYW� � � �&�� � ¬ 6 � 4 K : 9 � 4 � K � � � � 4 K �<;�� for - �
 M O �� � ¬ matrix of the last � columns of � « Y

� ���6� j 	 � � � �\��� 	 ���¦�V|G#O������
 + ³�

Then, the following analogue of the relation (6.4) is easily proved:

§ � � ¬ � � � � M � � 7�9 � � 7�9 � � � �� Y ®
TiM° � �=±
Here, the matrix

� � is no longer Hessenberg, but band-Hessenberg, meaning that it has
� subdiagonals instead of only one. Note that the dimension of the subspace in which the
solution is sought is not � but � Y � .

A second version of the algorithm uses a modified block Gram-Schmidt procedure
instead of the simple Gram-Schmidt procedure used above. This leads to a block general-
ization of Algorithm 6.2, the Modified Gram-Schmidt version of Arnoldi’s method.

�������L���D�~� � �)���� ! ��* ,.-'/ � & $%,2* �23 � 3 5 ����* , -"/
 �m�
1. Choose a unitary matrix � 9 of size ¤ ¥ �
2. For
L¬ O �cb��ZYWYZY8��� Do:
3. Compute

� K ! ¬ § � K
4. For -v¬ O � b��WYZYWY3�8
 do:
5.

� 4LK ! ¬ � �4 � K
6.

� K ! ¬ � K ² � 4 � 4 K
7. EndDo
8. Compute the Q-R decomposition

� K ¬ � K 7�9 � K 7�9 � K9. EndDo

Again, in practice the above algorithm is more viable than its predecessor. Finally, a third
version, developed by A. Ruhe [170] for the symmetric case (block Lanczos), yields a vari-
ant that is quite similar to the original Arnoldi algorithm. Assume that the initial block of
� orthonormal vectors, � 9 �ZYWYWYZ� � : is available. The first step of the algorithm is to multiply
� 9 by § and orthonormalize the resulting vector � against � 9 �ZYWYZYW� � : . The resulting vector
is defined to be � :W7�9 . In the second step it is � � that is multiplied by § and orthonormalized
against all available � 4 ’s. Thus, the algorithm works similarly to Algorithm 6.2 except for
a delay in the vector that is multiplied by § at each step.

�������L���D�~� � �)���� ! ��* ,.-'/ � & $%,2* �23 �)� � �%# � � �"('&�36($�5
1. Choose � initial orthonormal vectors � � 4 	 4�� 9 ������� � : .2. For
L¬ ����� M O �WYZYWY8��� Do:
3. Set 9 ! ¬
z² � M O ;4. Compute �

! ¬ §	� 0 ;5. For -v¬ O � b��WYZYWY3�8
 Do:
6. � 4 � 0 ! ¬ 6

� � � 4 :
7. �

! ¬���² � 4 � 0 � 48. EndDo
9. Compute � K 7�9 � 0 ! ¬ �

�
� � and � K 7�9 ! ¬
� � � K 7\9�� 0 .10. EndDo

Observe that the particular case � ¬ O coincides with the usual Arnoldi process. Also, the
dimension � of the subspace of approximants, is no longer restricted to being a multiple

+ ³�� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
of the block-size � as in the previous algorithms. The mathematical equivalence of Algo-
rithms 6.22 and 6.23 when � is a multiple of � is straightforward to show. The advantage
of the above formulation is its simplicity. A slight disadvantage is that it gives up some
potential parallelism. In the original version, the columns of the matrix § � K can be com-
puted in parallel whereas in the new algorithm, they are computed in sequence. This can
be remedied, however, by performing � matrix-by-vector products every � steps.

At the end of the loop consisting of lines 5 through 8 of Algorithm 6.23, the vector �
satisfies the relation

� ¬ §	� 0 ² KB 4�� 9 � 4 0 � 4 �
where 9 and
 are related by 9�¬
m² � M O . Line 9 gives � ¬ � K 7�9 � 0 � K 7�9 which results in

§�� 0 ¬ 037%:B 4�� 9 � 4 0 � 4 Y
As a consequence, the analogue of the relation (6.5) for Algorithm 6.23 is

§ � � ¬ � � 7 : �� � Y ®
GiM° � �H±
As before, for any
 the matrix � K represents the ¤ ¥�
 matrix with columns � 9 �WYZYWY � K . The
matrix

�� � is now of size

6
� M � : ¥ � .

Now the block generalizations of FOM and GMRES can be defined in a straightfor-
ward way. These block algorithms can solve linear systems with multiple right-hand sides,

§t© / 4 2 ¬ ¨ / 4 2 � -%¬ O � 68696 ����� ®
GiM°H° �H±
or, in matrix form

§ � ¬ �	� ®
GiM°H°H°p±
where the columns of the ¤�¥ � matrices � and � are the ¨ / 4 2 ’s and © / 4 2 ’s, respectively.
Given an initial block of initial guesses ©\/ 4 2
 for -~¬ O �WYWYZY8��� , we define

�

 the block of

initial residuals
�

 ��� � /,9A2
 � � / � 2
 �ZYWYZYW� � / :W2
 �&�

where each column is � / 4 2
 ¬­¨ / 4 2 ² §t© / 4 2
 . It is preferable to use the unified notation
derived from Algorithm 6.23. In this notation, � is not restricted to being a multiple of the
block-size � and the same notation is used for the � 4 ’s as in the scalar Arnoldi Algorithm.
Thus, the first step of the block-FOM or block-GMRES algorithm is to compute the QR
factorization of the block of initial residuals:

�

C¬�� � 9 � � � �WYZYWYW� � : � � Y

Here, the matrix � � 9 �ZYWYZY8� � : � is unitary and
�

is ��¥ � upper triangular. This factorization
provides the first � vectors of the block-Arnoldi basis.

Each of the approximate solutions has the form

© / 4 2 ¬ © / 4 2
 M � � > / 4 2 � ®
GiM°H°3�H±
and, grouping these approximations © / 4 2 in a block � and the > / 4 2 in a block � , we can

� ���6� j 	 � � � �\��� 	 ���¦�V|G#O������
 + ³+³
write � ¬��
 M � � � Y ®
TiM°H° ==±
It is now possible to imitate what was done for the standard FOM and GMRES algorithms.
The only missing link is the vector 5.� 9 in (6.21) which now becomes a matrix. Let � 9 be
the

6
� M � : ¥ � matrix whose upper � ¥ � principal block is an identity matrix. Then, the

relation (6.109) results in

� ²�§ � ¬ � ²�§
6 �
 M � � �

:
¬ �

 ²�§ � � �
¬�� � 9 �ZYWYZYW� � : � � ² � � 7 : �� � �
¬ � � 7 : � � 9 � ²

�� � � � Y ®
TiM°H° ¯ ±
The vector �

� / 4 2 � � 9 � � 4
is a vector of length � M � whose components are zero except those from 1 to - which
are extracted from the - -th column of the upper triangular matrix

�
. The matrix

�� � is an
6
� M � : ¥ � matrix. The block-FOM approximation would consist of deleting the last �

rows of

�
� / 4 2 and

�� � and solving the resulting system,� � > / 4 2 ¬ � / 4 2 Y
The approximate solution © / 4 2 is then computed by (6.112).

The block-GMRES approximation © / 4 2 is the unique vector of the form © / 4 2
 M � � > / 4 2
which minimizes the 2-norm of the individual columns of the block-residual (6.114). Since
the column-vectors of � � 7 : are orthonormal, then from (6.114) we get,

� ¨ / 4 2 ²y§8© / 4 2 � � ¬ �
�
� / 4 2 ² �� � > / 4 2 � � Y ®
TiM°H° a=±

To minimize the residual norm, the function on the right hand-side must be minimized over> / 4 2 . The resulting least-squares problem is similar to the one encountered for GMRES.
The only differences are in the right-hand side and the fact that the matrix is no longer
Hessenberg, but band-Hessenberg. Rotations can be used in a way similar to the scalar
case. However, � rotations are now needed at each new step instead of only one. Thus, if
� ¬ � and �¢¬<b , the matrix

��
� and block right-hand side would be as follows:

���� ¬

PQQQQQQQQQR
� 9H9 � 9 � � 954 � 9 � � 9 � � 9 �� � 9 � ��� � � 4 � � � � � � � � �
� 4 9 � 4 � � 4�4 � 4 � � 4 � � 4 �� � � � � 4 � � � � � � � � �

� � 4 � � � � � � � � �
��� � � � � � � �

� �
� � � �� � �

T VVVVVVVVVX
�
� ¬

PQQQQQQQQQR
� 9c9 � 9 �� ��� T VVVVVVVVVX Y

For each new column generated in the block-Arnoldi process, � rotations are required to
eliminate the elements � 0 � K , for 9 ¬
 M � down to 9 ¬
 M O . This backward order is
important. In the above example, a rotation is applied to eliminate � 4 � 9 and then a second
rotation is used to eliminate the resulting � � � 9 , and similarly for the second, third step, etc.

� ��� � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
This complicates programming slightly since two-dimensional arrays must now be used
to save the rotations instead of one-dimensional arrays in the scalar case. After the first
column of

�� � is processed, the block of right-hand sides will have a diagonal added under
the diagonal of the upper triangular matrix. Specifically, the above two matrices will have
the structure,

���� ¬

PQQQQQQQQQR
�����������
���������
���������
���������
�������
�����
���
�

TWVVVVVVVVVX
�
� ¬

PQQQQQQQQQR
���
���
� TWVVVVVVVVVX �

where a � represents a nonzero element. After all columns are processed, the following
least-squares system is obtained.

���� ¬

PQQQQQQQQQQR

�����������
���������
�������
�����
���
�

TWVVVVVVVVVVX
�
� ¬

PQQQQQQQQQQR

���
���
���
���
���
���
���
�

TWVVVVVVVVVVX Y
To obtain the least-squares solutions for each right-hand side, ignore anything below the
horizontal lines in the above matrices and solve the resulting triangular systems. The resid-
ual norm of the - -th system for the original problem is the 2-norm of the vector consisting
of the components � M O , through � M - in the - -th column of the above block of right-hand
sides.

Generally speaking, the block methods are of great practical value in applications in-
volving linear systems with multiple right-hand sides. However, they are not as well studied
from the theoretical point of view. Perhaps, one of the reasons is the lack of a convincing
analogue for the relationship with orthogonal polynomials, established in subsection 6.6.2
for the single-vector Lanczos algorithm. The block version of the Lanczos algorithm has
not been covered but the generalization is straightforward.

� ���f�l�~�-�?�v�

1 In the Householder implementation of the Arnoldi algorithm, show the following points of detail:
� ��� � � L is unitary and its inverse is � :� � L .< ��� :� � L � � L � X)*)*) � � � L .

|��O|�� � �
w|
 �Q� �����Q#O|
 � � +
^_��� :� � L � � � + � for ��� # .
� � � � � L Q � � � � ��� L 0 � L � � X �*)+)*)*� � � � L 8��
 � , where � � is the � -th column of the ��� � identity

matrix.
	�� The + � ’s are orthonormal.� � The vectors + L �*)�)*)*� + � are equal to the Arnoldi vectors produced by the Gram-Schmidt ver-

sion, except possibly for a scaling factor.

2 Rewrite the Householder implementation of the Arnoldi algorithm with more detail. In particu-
lar, define precisely the Householder vector � � used at step # (lines 3-5).

3 Consider the Householder implementation of the Arnoldi algorithm. Give a detailed operation
count of the algorithm and compare it with the Gram-Schmidt and Modified Gram-Schmidt
algorithm.

4 Derive the basic version of GMRES by using the standard formula (5.7) with � � � � and� � Q � � .

5 Derive a version of the DIOM algorithm which includes partial pivoting in the solution of the
Hessenberg system.

6 Show how the GMRES and FOM methods will converge on the linear system Q�� � � when

Q �
PQQR

�
�

�
�

�

TWVVX � � �
PQQR
�
�
�
�
�

TWVVX
and with � � � �

.

7 Give a full proof of Proposition 6.11.

8 Let a matrix Q have the form
Q � � C��

� C �)
Assume that (full) GMRES is used to solve a linear system, with the coefficient matrix Q . What
is the maximum number of steps that GMRES would require to converge?

9 Let a matrix Q have the form:
Q � � C��

� R �)
Assume that (full) GMRES is used to solve a linear system with the coefficient matrix Q . Let

� � �
� �
	 L���
�
	 X
�� �

be the initial residual vector. It is assumed that the degree of the minimal polynomial of � 	 X
��
with respect to

R
(i.e., its grade) is � . What is the maximum number of steps that GMRES

would require to converge for this matrix? [Hint: Evaluate the sum
� �� ����� � !GQ � � L � Q � ' � �

where
� ���� � � ��� � is the minimal polynomial of � 	 X
�� with respect to

R
.]

� � � � � ���µ#Q|���� ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �
10 Let

Q �

PQQQQQR
C�� XC � �

C . . .C �
� JTLC �

�C

TWVVVVVX)

� � Show that ! C �VQA' � � �
.< � Assume that (full) GMRES is used to solve a linear system with the coefficient matrix Q .

What is the maximum number of steps that GMRES would require to converge?

11 Show that if
 � is nonsingular, i.e., �
Y
� is defined, and if ���� � � Y� , then � �� � �

Y
�

� �
, i.e.,

both the GMRES and FOM solutions are exact. [Hint: use the relation (6.46) and Proposition
6.11 or Proposition 6.12.]

12 Derive the relation (6.49) from (6.47). [Hint: Use the fact that the vectors on the right-hand side
of (6.47) are orthogonal.]

13 In the Householder-GMRES algorithm the approximate solution can be computed by formulas
(6.25-6.27). What is the exact cost of this alternative (compare memory as well as arithmetic
requirements)? How does it compare with the cost of keeping the + � ’s?

14 An alternative to formulas (6.25-6.27) for accumulating the approximate solution in the House-
holder-GMRES algorithm without keeping the + � ’s is to compute � � as

� � � � � - � L � X)*)�) � � �

where � is a certain � -dimensional vector to be determined. (1) What is the vector � for the
above formula in order to compute the correct approximate solution � � ? [Hint: Exploit (6.11).]
(2) Write down an alternative to formulas (6.25-6.27) derived from this approach. (3) Compare
the cost of this approach with the cost of using (6.25-6.27).

15 Obtain the formula (6.76) from (6.75).

16 Show that the determinant of the matrix
� � in (6.82) is given by

����� ! � � ' � �
� � JTL� ���
 �

17 The Lanczos algorithm is more closely related to the implementation of Algorithm 6.18 of the
Conjugate Gradient algorithm. As a result the Lanczos coefficients

� �
� L and � � � L are easier

to extract from this algorithm than from Algorithm 6.17. Obtain formulas for these coefficients
from the coefficients generated by Algorithm 6.18, as was done in Section 6.7.3 for the standard
CG algorithm.

18 Show that if the rotations generated in the course of the GMRES (and DQGMRES) algorithm
are such that

(� ()
	�� � �
then GMRES, DQGMRES, and FOM will all converge.

19 Show the exact expression of the residual vector in the basis + L � + X �*)*)�)*� + ��� L for either GMRES
or DQGMRES. [Hint: A starting point is (6.52).]

20 Prove that the inequality (6.56) is sharper than (6.53), in the sense that
 ��� L #�� � � ��- � �
(for �) �). [Hint: Use Cauchy-Schwarz inequality on (6.56).]

|��O|�� � �
w|
 �Q� �����Q#O|
 � � �

21 Denote by
R � the unit upper triangular matrix

R
in the proof of Theorem 6.1 which is ob-

tained from the Gram-Schmidt process (exact arithmetic assumed) applied to the incomplete
orthogonalization basis � � . Show that the Hessenberg matrix �
��� obtained in the incomplete
orthogonalization process is related to the Hessenberg matrix �
 �� obtained from the (complete)
Arnoldi process by �
 �� � R J6L� � L �
 �� R �)

NOTES AND REFERENCES. Lemma 6.1 was proved by Roland Freund [95] in a slightly different
form. Proposition 6.12 is due to Brown [43] who proved a number of other theoretical results, includ-
ing Proposition 6.11. Recently, Cullum and Greenbaum [63] discussed further relationships between
FOM and GMRES and other Krylov subspace methods.

The Conjugate Gradient method was developed independently and in different forms by Lanc-
zos [142] and Hesteness and Stiefel [120]. The method was essentially viewed as a direct solu-
tion technique and was abandoned early on because it did not compare well with other existing
techniques. For example, in inexact arithmetic, the method does not terminate in � steps as is
predicted by the theory. This is caused by the severe loss of of orthogonality of vector quantities
generated by the algorithm. As a result, research on Krylov-type methods remained dormant for
over two decades thereafter. This changed in the early 1970s when several researchers discovered
that this loss of orthogonality did not prevent convergence. The observations were made and ex-
plained for eigenvalue problems [158, 106] as well as linear systems [167]. The early to the middle
1980s saw the development of a new class of methods for solving nonsymmetric linear systems
[13, 14, 127, 172, 173, 185, 218]. The works of Faber and Manteuffel [85] and Voevodin [219]
showed that one could not find optimal methods which, like CG, are based on short-term recur-
rences. Many of the methods developed are mathematically equivalent, in the sense that they realize
the same projection process, with different implementations.

The Householder version of GMRES is due to Walker [221]. The Quasi-GMRES algorithm
described in Section 6.5.7 was initially described by Brown and Hindmarsh [44], although the direct
version DQGMRES was only discussed recently in [187]. The proof of Theorem 6.1 can be found in
[152] for the QMR algorithm.

The non-optimality of the Chebyshev polynomials on ellipses in the complex plane was estab-
lished by Fischer and Freund [90]. Prior to this, a 1963 paper by Clayton [59] was believed to have
established the optimality for the special case where the ellipse has real foci and � is real.

Until recently, little attention has been given to block Krylov methods. In addition to their at-
traction for solving linear systems with several right-hand sides [177, 196], these techniques can also
help reduce the effect of the sequential inner products in parallel environments and minimize I/O
costs in out-of-core implementations. The block-GMRES algorithm is analyzed by Simoncini and
Gallopoulos [197] and in [184]. Alternatives to GMRES which require fewer inner products have
been proposed by Sadok [188] and Jbilou [125]. Sadok investigated a GMRES-like method based
on the Hessenberg algorithm [227], while Jbilou proposed a multi-dimensional generalization of
Gastinel’s method seen in Exercise 2 of Chapter 5.

� � � � � � �

�

��������� � � ��� � ��	 � � � �������! ­�
� 	�� �
�

#%$'&�n�*3&96H0 :T>4,}u�$'2�np.@&�*fu\:TI4,50 ;�&�*3&A;�2 I�>�78SH&�*?:�B ��*JN�F :'6 ,\>�S4,\n'2'uA& 7)&9.\$4:<;=,PO$H0 u�$ *D&'F 0 &A;�:TI ,1:G7?&zB�:�*X7�:'Bl:�*-.9$4:HK�:TI'2�F 0 �A2p.r0 :TI :'Bf.\$'& ��*JN�F :'6�6'&\u9.1:�*-,}0JI:�*3;�&�*).1:�u\:G78n�>p.1& 2<I¢2�n�nH*-:Ao=0J7)24.1& ,1:TF >p.50 :TI<i�#%$H0 ,zu�$'2<np.1&�*?P%0JF F ;�&\,@u�*�0JSH& 2u'F 2',/,m:'B �R*-N�F :�6 ,\>�S4,\n'2'uA&�7)&9.\$4:<;=,8P)$H0 u'$ 2H*3&�0MI4,/.@&A2'; S'2',@&\;¢:TI�2 SH0 :�*-.9$4:�qK�:TI'2�F 0 �\24.50 :TI82�F KH:�*�0 .9$�7¦;�>'&f.1:�	�2�I'u �\:�,Ai+#Q$'&9,@&m2H*3&�nH*-:	�_&Au9.r0 :TIz7?&r.\$4:<;=,Q.\$'2p.2H*3&80JIp.9*�0JI4,r0 uA2�F F NCI4:TIpq_:�*-.9$4:HK�:TI'2�FMi�#%$'&9Nz$'246'&l,1:G7)&m2�n�n=&\2<F 0MI4K}nH*-:Gn=&�*J.50 &\,AskS�>p.2H*3&m$'2H*3;�&�*k.1:C2<I'2�F N �\&?.\$'&\:�*3&9.r0 uA2<F F Npi

�k� �z� �l� � �~�3��� 	���� �C� �C� �v� �?� 	¢�3���
� ¡4£

The Lanczos biorthogonalization algorithm is an extension to nonsymmetric matrices of
the symmetric Lanczos algorithm seen in the previous chapter. One such extension, the
Arnoldi procedure, has already been seen. However, the nonsymmetric Lanczos algorithm
is quite different in concept from Arnoldi’s method because it relies on biorthogonal se-
quences instead of orthogonal sequences.

�$�������)�0
& �
��	! *) 0 1

The algorithm proposed by Lanczos for nonsymmetric matrices builds a pair of biortho-
gonal bases for the two subspaces

� � 6 § � � 9 : ¬ � � 03+ � � 9 �9§�� 9 �ZYWYWYZ�9§ �] 9 � 9 	
and

� � 6 § � � � 9 : ¬ ��� 03+ � � 9 �9§ � � 9 �WYWYZYW� 6 § � : �] 9 � 9 	SY� ��'

� ��� 	Z�Q� ��� ��
 j�� ���+#Q��� �*�l� � 	J� � �+#�� �l� � � ´

The algorithm that achieves this is the following.

�������L���D�~� �
),+"! 	 �%#�� (+$%- ��, � � 36,+&;5 �%, �4,2$"(+* 3��	(�5�36,2$ � &8,.-0# � � &;#
1. Choose two vectors � 9 � � 9 such that

6
� 9 � � 9 : ¬ O .2. Set 5 9 ¬ : 9 ��; , ��
C¬��
 � ;

3. For
L¬ O �cb��ZYWYZY8��� Do:
4. � K ¬ 6

§	� K � � K :
5. �� K 7�9 ¬ §	� K ² � K � K ² 5 K � K] 96. �� K 7\9 ¬ § � � K ² � K � K ² : K � K] 9
7. : K 7�9 ¬ � 6 �� K 7�9 � �� K 7�9 : � 9 ��� . If : K 7�9 ¬<; Stop
8. 5 K 7�9 ¬ 6

�� K 7�9 � �� K 7\9 : � : K 7\99. � K 7\9 ¬ �� K 7�9 �`5 K 7�910. � K 7�9 ¬ �� K 7�9 � : K 7�911. EndDo

Note that there are numerous ways to choose the scalars :ZK 7�9 �H5 K 7�9 in lines 7 and 8.
These two parameters are scaling factors for the two vectors � K 7�9 and � K 7�9 and can be
selected in any manner to ensure that

6
� K 7�9 � � K 7�9 : ¬ O . As a result of lines 9 and 10 of the

algorithm, it is only necessary to choose two scalars 5 K 7\9 � : K 7�9 that satisfy the equality: K 7�9 5 K 7\9 ¬ 6
�� K 7�9 � �� K 7�9 : Y ® �GiM°4±

The choice taken in the above algorithm scales the two vectors so that they are divided
by two scalars which have the same modulus. Both vectors can also be scaled by their
2-norms. In that case, the inner product of � K 7�9 and � K 7�9 is no longer equal to 1 and the
algorithm must be modified accordingly; see Exercise 3.

Consider the case where the pair of scalars : K 7\9 �H5 K 7�9 is any pair that satisfies the
relation (7.1). Denote by

� � the tridiagonal matrix

� � ¬
PQQQR
� 9 5 �: � � � 5 4Y Y Y: �] 9 � �] 9 5 �: � � �

TWVVVX Y ® �Gi �=±
If the determinations of 5 K 7�9 � : K 7\9 of lines 7–8 are used, then the :WK ’s are positive and5 K ¬ � : K .

Observe from the algorithm that the vectors � 4 belong to � � 6 § � � 9 : , while the � K ’s
are in � � 6 § � � � 9 : . In fact, the following proposition can be proved.

�)� �L� ��� �3� � �	�
),+
If the algorithm does not break down before step � , then the

vectors � 4 �A-�¬ O �WYWYZY8��� , and � K �8
}¬ O �WYZYWY8��� , form a biorthogonal system, i.e.,6
� K � � 4 : ¬ :W4LK O � - �
 � � Y

Moreover, � � 4 	 4 � 9 � � ������� � � is a basis of � � 6 § � � 9 : and � � 4 	 4�� 9 � � ������� � � is a basis of
� � 6 § � � � 9 : and the following relations hold,

§�� � ¬ � � � � M : � 7�9 � � 7�9 � �� � ® �Gi ==±

� � � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
§ �2� � ¬ � � ���� M 5 � 7�9 � � 7\9 � �� � ® �Ti ¯ ±� �� § � � ¬ � � Y ® �Ti aH±

� $������c)
The biorthogonality of the vectors � 4 � � 4 will be shown by induction. By assump-

tion

6
� 9 � � 9 : ¬ O . Assume now that the vectors � 9 �WYZYWY � K and � 9 �ZYWYZY � K are biorthogonal,

and let us prove that the vectors � 9 �WYZYWY � K 7\9 and � 9 �WYZYWY � K 7�9 are biorthogonal.
First, we show that

6
� K 7�9 � � 4 : ¬�; for - �
 . When -v¬
 , then6

� K 7�9 � � K : ¬ :] 9K 7�9 � 6 §	� K � � K : ² � K 6 � K � � K : ² 5 K 6 � K] 9 � � K : � Y
The last inner product in the above expression vanishes by the induction hypothesis. The
two other terms cancel each other by the definition of � K and the fact that

6
� K � � K : ¬ O .Consider now the inner product

6
� K 7�9 � � 4 : with -

 ,6

� K 7�9 � � 4 : ¬ :] 9K 7�9 � 6 §	� K � � 4 : ² � K 6 � K � � 4 : ² 5 K 6 � K] 9 � � 4 : �¬ :] 9K 7�9 � 6 � K �9§ � � 4 : ² 5 K 6 � K] 9 � � 4 : �¬ :] 9K 7�9 � 6 � K �A5 4 7�9 � 4 7�9 M
� 4 � 4 M :Z4 � 4] 9 : ² 5 K 6 � K] 9 � � 4 : �&Y
For -

 ² O , all of the inner products in the above expression vanish, by the induction
hypothesis. For -v¬
V² O , the inner product is6

� K 7�9 � � K] 9 : ¬ :] 9K 7�9 � 6 � K �A5 K � K M � K] 9 � K] 9 M : K] 9 � K] � : ² 5 K 6 � K] 9 � � K] 9 : �¬ :] 9K 7�9 � 5 K 6 � K � � K : ² 5 K 6 � K] 9 � � K] 9 : �¬ ;�Y
It can be proved in exactly the same way that

6
� 4 � � K 7�9 : ¬ ; for - �
 . Finally,

by construction

6
� K 7�9 � � K 7\9 : ¬ O . This completes the induction proof. The proof of the

matrix relations (7.3–7.5) is similar to that of the relations (6.4–6.6) in Arnoldi’s method.

The relations (7.3–7.5) allow us to interpret the algorithm. The matrix
� � is the pro-

jection of § obtained from an oblique projection process onto � � 6 § � � 9 : and orthogo-
nally to � � 6 § � � � 9 : . Similarly,

� �� represents the projection of § � on � � 6 § � � � 9 : and
orthogonally to � � 6 § � � 9 : . Thus, an interesting new feature here is that the operators §
and § � play a dual role because similar operations are performed with them. In fact, two
linear systems are solved implicitly, one with § and the other with § � . If there were two
linear systems to solve, one with § and the other with § � , then this algorithm is suitable.
Otherwise, the operations with § � are essentially wasted. Later a number of alternative
techniques developed in the literature will be introduced that avoid the use of § � .

From a practical point of view, the Lanczos algorithm has a significant advantage over
Arnoldi’s method because it requires only a few vectors of storage, if no reorthogonali-
zation is performed. Specifically, six vectors of length ¤ are needed, plus some storage for
the tridiagonal matrix, no matter how large � is.

On the other hand, there are potentially more opportunities for breakdown with the
nonsymmetric Lanczos method. The algorithm will break down whenever : K 7�9 as defined
in line 7 vanishes. This is examined more carefully in the next section. In practice, the
difficulties are more likely to be caused by the near occurrence of this phenomenon. A
look at the algorithm indicates that the Lanczos vectors may have to be scaled by small

� ��� 	Z�Q� ��� ��
 j�� ���+#Q��� �*�l� � 	J� � �+#�� �l� � �

quantities when this happens. After a few steps the cumulated effect of these scalings may
introduce excessive rounding errors.

Since the subspace from which the approximations are taken is identical to that of
Arnoldi’s method, the same bounds for the distance

�
6
� ²�� � : � � � are valid. However,

this does not mean in any way that the approximations obtained by the two methods are
likely to be similar in quality. The theoretical bounds shown in Chapter 5 indicate that the
norm of the projector may play a significant role.

�$������� �$! &��)+*,�2& � * 1 � ��#21 #2-$)%&%)+*,�	-�.

There are various ways to improve the standard nonsymmetric Lanczos algorithm which
we now discuss briefly. A major concern here is the potential breakdowns or “near break-
downs” in the algorithm. There exist a number of approaches that have been developed to
avoid such breakdowns. Other approaches do not attempt to eliminate the breakdown, but
rather try to deal with it. The pros and cons of these strategies will be discussed after the
various existing scenarios are described.

Algorithm 7.1 will abort in line 7 whenever,6
�� K 7\9 � �� K 7\9 : ¬ ;�Y ® �Gi
=±

This can arise in two different ways. Either one of the two vectors �� K 7�9 or �� K 7�9 van-
ishes, or they are both nonzero, but their inner product is zero. The first case is the “lucky
breakdown” scenario which has been seen for symmetric matrices. Thus, if �� K 7�9 ¬<; then
� � 0�+ ��� K 	 is invariant and, as was seen in Chapter 5, the approximate solution is exact.
If �� K 7�9 ¬ ; then � � 03+ � � K 	 is invariant. However, in this situation nothing can be said
about the approximate solution for the linear system with § . If the algorithm is being used
to solve a pair of linear systems, one with § and a dual system with § � , then the approxi-
mate solution for the dual system will be exact in this case. The second scenario in which
(7.6) can occur is when neither of the two vectors is zero, but their inner product is zero.
Wilkinson (see [227], p. 389) called this a serious breakdown. Fortunately, there are cures
for this problem which allow the algorithm to continue in most cases. The corresponding
modifications of the algorithm are often put under the denomination Look-Ahead Lanczos
algorithms. There are also rare cases of incurable breakdowns which will not be discussed
here (see references [161] and [206]).

The main idea of Look-Ahead variants of the Lanczos algorithm is that the pair
� K 7 � � � K 7 � can often be defined even though the pair � K 7�9 � � K 7�9 is not defined. The al-
gorithm can be pursued from that iterate as before until a new breakdown is encountered.
If the pair � K 7 � � � K 7 � cannot be defined then the pair � K 7�4 � � K 7�4 can be tried, and so on.
To better explain the idea, it is best to refer to the connection with orthogonal polyno-
mials mentioned earlier for the symmetric case. The relationship can be extended to the
nonsymmetric case by defining the bilinear form on the subspace � �] 9

��� � � ¬ 6
�

6
§ : � 9 � � 6 § � : � 9 : Y ® �Gi �=±

Unfortunately, this is now an “indefinite inner product” in general since

��� � � can be

zero or even negative. Note that there is a polynomial � K of degree
 such that �� K 7�9 ¬� K 6 § : � 9 and, in fact, the same polynomial intervenes in the equivalent expression of � K 7�9 .

� � � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
More precisely, there is a scalar � K such that �� K 7�9 ¬ � K � K 6 § � : � 9 . Similar to the symmetric
case, the nonsymmetric Lanczos algorithm attempts to compute a sequence of polynomials
that are orthogonal with respect to the indefinite inner product defined above. If we define
the moment matrix � 0 ¬��
 © 4] 9 �r© K] 9 � 	 4 � K�� 9 ������� � 0
then this process is mathematically equivalent to the computation of the factorization� 0 ¬ � 0 � 0
of the moment matrix

� 0 , in which � 0 is upper triangular and � 0 is lower triangular. Note
that

� 0 is a Hankel matrix, i.e., its coefficients � 4LK are constant along anti-diagonals, i.e.,
for - M
}¬ ��� ¤ � � ? ¤ � .

Because

� K ��� K � ¬ � K 6 � K 6 § : � 9 ��� K 6 § � : � 9 : �

we observe that there is a serious breakdown at step
 if and only if the indefinite norm of
the polynomial � K at step
 vanishes. If this polynomial is skipped, it may still be possible
to compute � K 7�9 and continue to generate the sequence. To explain this simply, consider

� K 6 � : ¬�© � K] 9 6 � : and � K 7�9 6 � : ¬¦© � � K] 9 6 � : Y
Both � K and � K 7\9 are orthogonal to the polynomials � 9 �WYZYWYW� � K] � . We can define (some-
what arbitrarily) � K ¬ � K , and then � K 7�9 can be obtained by orthogonalizing � K 7�9 against
� K] 9 and � K . It is clear that the resulting polynomial will then be orthogonal against all
polynomials of degree

�
 ; see Exercise 5. Therefore, the algorithm can be continued
from step
 M O in the same manner. Exercise 5 generalizes this for the case where 9 poly-
nomials are skipped rather than just one. This is a simplified description of the mechanism
which underlies the various versions of Look-Ahead Lanczos algorithms proposed in the
literature. The Parlett-Taylor-Liu implementation [161] is based on the observation that
the algorithm breaks because the pivots encountered during the LU factorization of the
moment matrix

� 0 vanish. Then, divisions by zero are avoided by performing implicitly a
pivot with a bL¥^b matrix rather than using a standard O ¥ O pivot.

The drawback of Look-Ahead implementations is the nonnegligible added complexity.
Besides the difficulty of identifying these near breakdown situations, the matrix

� � ceases
to be tridiagonal. Indeed, whenever a step is skipped, elements are introduced above the
superdiagonal positions, in some subsequent step. In the context of linear systems, near
breakdowns are rare and their effect generally benign. Therefore, a simpler remedy, such
as restarting the Lanczos procedure, may well be adequate. For eigenvalue problems, Look-
Ahead strategies may be more justified.

� � � #O��| 	Z�Q� � � ��
 � 	 �����*� #O��� �`��� 	 �-�v| ���	
 ��
T#O|k�
 � � ³

	��}� �k� �z� �l� � ��� �C���m� 	 �
 �E��� ���_�}�v��� � �z��	¢�
y�
��¡��

We present in this section a brief description of the Lanczos method for solving nonsym-
metric linear systems. Consider the (single) linear system:

§t© ¬ ¨ ® �Gi �=±
where § is ¤y¥ ¤ and nonsymmetric. Suppose that a guess ©�
 to the solution is available
and let its residual vector be �
z¬ ¨?² §8©�
 . Then the Lanczos algorithm for solving (7.8)
can be described as follows.

�������L���D�~� �
)��4! 	 ��,w� � 3 �+# � � (+$%- ��, � � * � , &�3 5 � � � ,+&}� 3 $%#�('&8� � � 57#�� �
1. Compute �
�¬ ¨)² §8©�
 and 5 ! ¬ �

�

� �

2. Run � steps of the nonsymmetric Lanczos Algorithm, i.e.,
3. Start with � 9 ! ¬ �
3�`5 , and any � 9 such that

6
� 9 � � 9 : ¬ O4. Generate the Lanczos vectors � 9 �WYZYWYW� � � , � 9 �WYZYWYZ� � �5. and the tridiagonal matrix

� � from Algorithm 7.1.
6. Compute > � ¬ �] 9� 6 5.� 9 : and © � ! ¬�©
 M � � > � .

Note that it is possible to incorporate a convergence test when generating the Lanczos
vectors in the second step without computing the approximate solution explicitly. This is
due to the following formula, which is similar to Equation (6.66) for the symmetric case,

� ¨)²�§t© K � � ¬ � : K 7\9 � �K > K � � � K 7�9 � � � ® �Gi �=±
and which can be proved in the same way, by using (7.3). This formula gives us the residual
norm inexpensively without generating the approximate solution itself.

	��}� �m�8��� �L� �
�� ��� �C���m� 	 �
y�
��¡��

The Biconjugate Gradient (BCG) algorithm can be derived from Algorithm 7.1 in exactly
the same way as the Conjugate Gradient method was derived from Algorithm 6.14. The
algorithm was first proposed by Lanczos [142] in 1952 and then in a different form (Con-
jugate Gradient-like version) by Fletcher [92] in 1974. Implicitly, the algorithm solves not
only the original system §t© ¬�¨ but also a dual linear system § � © � ¬ ¨ � with § � . This
dual system is often ignored in the formulations of the algorithm.

��+�� � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
�$� �$���)�0
# ��*,� �	- � �
 &%)�#
 ! & 	
* #2-) & �
��	! *)�0
1

The Biconjugate Gradient (BCG) algorithm is a projection process onto

� � ¬�� � ? ¤
� � 9 �9§	� 9 � 69686 �\§ �] 9 � 9 	
orthogonally to

� � ¬�� � ? ¤
� � 9 �\§ � � 9 � 69686 � 6 § � : �] 9 � 9 	
taking, as usual, � 9 ¬ �
3� � �
 � � . The vector � 9 is arbitrary, provided

6
� 9 � � 9 : �¬ ; , but it

is often chosen to be equal to � 9 . If there is a dual system § � © � ¬�¨ � to solve with § � ,
then � 9 is obtained by scaling the initial residual ¨ � ²�§ � © �
 .

Proceeding in the same manner as for the derivation of the Conjugate Gradient al-
gorithm from the symmetric Lanczos algorithm, we write the LDU decomposition of

� �
as

� � ¬ � � � � ® �TiM° �H±
and define

� � ¬ � � �] 9� Y ® �TiM°H°p±
The solution is then expressed as

© � ¬ ©�
 M � � �] 9� 6 5.� 9 :¬ ©
 M � � �] 9� �] 9� 6 5.� 9 :¬ ©
 M � � �] 9� 6 5.� 9 : Y
Notice that the solution © � is updatable from © �] 9 in a similar way to the Conjugate
Gradient algorithm. Like the Conjugate Gradient algorithm, the vectors � K and � �K are in the
same direction as � K 7�9 and � K 7\9 , respectively. Hence, they form a biorthogonal sequence.
Define similarly the matrix

� �� ¬ � � ��] �� Y ® �TiM°3�H±
Clearly, the column-vectors � �4 of � �� and those � 4 of � � are A-conjugate, since,6

� �� : � §�� � ¬ ��] 9� � �� § � � �] 9� ¬ ��] 9� � � �] 9� ¬ � Y
Utilizing this information, a Conjugate Gradient–like algorithm can be easily derived from
the Lanczos procedure.

���%� �L� �3�~� �
)��4! � 36-	,2$ � � �+(%57# � &8(�23 #'$�5 	=�m�8� �
1. Compute �

! ¬ ¨)² §8©�
 . Choose � �
 such that

6
�
S� � �
 : �¬<; .

2. Set, �

! ¬
�
 , � �
 ! ¬
� �

3. For
}¬�;�� O �WYWYZY , until convergence Do:
4. � K ! ¬ 6

� K � � �K : � 6 § � K ��� �K :
5. © K 7�9 ! ¬ © K M � K � K6. � K 7�9 ! ¬ � K ² � K § � K7. �

�K 7�9 ! ¬ � �K ² � K § � � �K8. 5 K ! ¬ 6
� K 7�9 � � �K 7\9 : � 6 � K � � �K :

� � � #O��|¢j � �^�Q� ���t� � � 	 �����*� #O���
 ��+�+
9. � K 7�9 ! ¬
� K 7�9 M 5 K � K

10. � �K 7�9 ! ¬
� �K 7�9 M 5 K � �K
11. EndDo

If a dual system with § � is being solved, then in line 1 � �
 should be defined as � �
 ¬¨ � ² § � © �
 and the update © �K 7\9 ! ¬ © �K M � K � �K to the dual approximate solution must
beinserted after line 5. The vectors produced by this algorithm satisfy a few biorthogonality
properties stated in the following proposition.

�)� �L� ��� �3� � �	�
)��
The vectors produced by the Biconjugate Gradient algorithm sat-

isfy the following orthogonality properties:6
� K � � �4 : ¬ ;�� for - �¬
J� ® �GiM°3==±6

§ � K ��� �4 : ¬ ;�� for - �¬
JY ® �GiM° ¯ ±
� $ � � �)

The proof is either by induction or by simply exploiting the relations between the
vectors � K , � �K , � K , � �K , and the vector columns of the matrices � � ,

� � , � � , � �� . This is
left as an exercise.

����� � ��
 %
),+
Table 7.1 shows the results of applying the BCG algorithm with no pre-

conditioning to three of the test problems described in Section 3.7. See Example 6.1 for the
meaning of the column headers in the table. Recall that Iters really represents the number
of matrix-by-vector multiplications rather the number of Biconjugate Gradient steps.

Matrix Iters Kflops Residual Error
F2DA 163 2974 0.17E-03 0.86E-04
F3D 123 10768 0.34E-04 0.17E-03
ORS 301 6622 0.50E-01 0.37E-02� ����
 %
),+

A test run of BCG without preconditioning.

Thus, the number 163 in the first line represents 81 steps of BCG, which require
� O ¥ bmatrix-by-vector products in the iteration, and an extra one to compute the initial residual.

�$� �$��� � � & .%* �>1 * - * 1 & �3!$#�.%*�	�� & � & �
��	! *) 0 1

The result of the Lanczos algorithm is a relation of the form

§�� � ¬ � � 7�9 �� � ® �TiM° a=±
in which

�
� � is the

6
� M O : ¥ � tridiagonal matrix�

� � ¬ � � �: � 7�9 � �� � Y

��+ � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
Now (7.15) can be exploited in the same way as was done to develop GMRES. If � 9 is
defined as a multiple of �
 , i.e., if � 9 ¬ 5 �
 , then the residual vector associated with an
approximate solution of the form

© ¬�©
 M � � >
is given by

¨)²�§t© ¬ ¨)² §
6
©
 M � � > :

¬ �
 ²�§ � � >
¬<5 � 9 ² � � 7�9 �� � >¬ � � 7�9 � 5.� 9 ² �

� � > � Y ® �TiM°
H±
The norm of the residual vector is therefore

� ¨O²�§t© � ¬ � � � 7�9 � 5.� 9 ² �
� � > � � � Y ® �TiM° �H±

If the column-vectors of � � 7�9 were orthonormal, then we would have
� ¨L² §t© � ¬� 5.� 9 ² �

� � > � � , as in GMRES. Therefore, a least-squares solution could be obtained from
the Krylov subspace by minimizing

� 5.� 9 ² �
� � > � � over > . In the Lanczos algorithm, the

� 4 ’s are not orthonormal. However, it is still a reasonable idea to minimize the function� 6 > : � � 5.� 9 ² �
� � > � �

over > and compute the corresponding approximate solution ©
 M � � > . The resulting so-
lution is called the Quasi-Minimal Residual approximation.

Thus, the Quasi-Minimal Residual (QMR) approximation from the � -th Krylov sub-
space is obtained as ©�
 M � � > � , where > � minimizes the function � 6 > : ¬ � 5.� 9 ² �

� � > � � ,
i.e., just as in GMRES, except that the Arnoldi process is replaced by the Lanczos process.
Because of the simple structure of the matrix

�
� � , the following algorithm is obtained,

which is adapted from the DQGMRES algorithm (Algorithm 6.13).

���%� �L� �3�~� �
)L'+! �
��
1. Compute �
C¬ ¨)²�§t©
 and � 9 ! ¬ �

�

� � , � 9 ! ¬ � 9 ! ¬ �
3� � 92. For �
¬ O �cb��ZYWYZY , until convergence Do:

3. Compute � � � : � 7�9 and � � 7\9 � � � 7�9 as in Algorithm 7.1
4. Update the QR factorization of

�
� � , i.e.,

5. Apply � 4 , -�¬ � ² b�����² O to the � -th column of

�
� �

6. Compute the rotation coefficients � � , � � by (6.31)
7. Apply rotation � � , to

�
� � and

�
� � , i.e., compute:

8. � � 7�9 ! ¬ ² � � � � ,
9. � � ! ¬ � � � � , and,

10. � � ! ¬ � � � � M � � : � 7�9 � ¬ � : �� 7�9 M
� �� �
11. � � ¬ �

� � ² � �] 94 � �] � � 4 � � 4 � � � � �
12. © � ¬¦© �] 9 M � � � �
13. If � � � 7�9 � is small enough then Stop
14. EndDo

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 ��+ �
The following proposition establishes a result on the residual norm of the solution. It

is similar to Proposition 6.9.

�)� �L� ��� �3� � �	�
)��
The residual norm of the approximate solution © � satisfies the

relation
� ¨)²�§t© � ��� � � � 7�9 � � � � 9 � � YWYZY � � � � �
 � � Y ® �TiM°��=±

� $ � � �)
According to (7.16) the residual norm is given by

¨)² §8© � ¬ � � 7�9 � 5.� 9 ² �
� � > � � ® �TiM°��=±

and using the same notation as in Proposition 6.9, referring to (6.37)
� 5 � 9 ² �� � > � �� ¬ � � � 7�9 � � M � � � ² � � > � ��

in which � � ² � � > ¬<; by the minimization procedure. In addition, by (6.40) we have
� � 7�9 ¬�� 9 YWYZY � � � 9 Y

The result follows immediately using (7.19).

The following simple upper bound for
� � � 7�9 � � can be used to estimate the residual

norm:

� � � 7�9 � � � � � 7�9B 4 � 9 � � 4 � �� � 9
��� Y

Observe that ideas similar to those used for DQGMRES can be exploited to obtain
a better estimate of the residual norm. Also, note that the relation (6.57) for DQGMRES
holds. More interestingly, Theorem 6.1 is also valid and it is now restated for QMR.

�~�V� �L�)�2�
),+
Assume that the Lanczos algorithm does not break down on or before

step � and let � � 7�9 be the Lanczos basis obtained at step � . Let � �� and � �� be the residual
norms obtained after � steps of the QMR and GMRES algorithms, respectively. Then,

�
� �� � � � � � 6 � � 7\9 : � � �� � � Y

The proof of this theorem is essentially identical with that of Theorem 6.1. Note that � � 7�9is now known to be of full rank, so we need not make this assumption as in Theorem 6.1.

	 �O� ��� � � �?�R� �Q�m�?� �O���m�-� � 	L�
��¡5

Each step of the Biconjugate Gradient algorithm and QMR requires a matrix-by-vector
product with both § and § � . However, observe that the vectors � �4 or � K generated with§ � do not contribute directly to the solution. Instead, they are used only to obtain the
scalars needed in the algorithm, e.g., the scalars � K and 5 K for BCG. The question arises

��+J' � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
as to whether or not it is possible to bypass the use of the transpose of § and still generate
iterates that are related to those of the BCG algorithm. One of the motivations for this ques-
tion is that, in some applications, § is available only through some approximations and not
explicitly. In such situations, the transpose of § is usually not available. A simple exam-
ple is when a CG-like algorithm is used in the context of Newton’s iteration for solving� 6 � : ¬�; . The linear system that arises at each Newton step can be solved without having
to compute the Jacobian � 6 � 0 : at the current iterate � 0 explicitly, by using the difference
formula � 6 � 0 : � ¬ � 6 � 0 M � � : ² � 6 � 0 :� Y
This allows the action of this Jacobian to be computed on an arbitrary vector � . Unfortu-
nately, there is no similar formula for performing operations with the transpose of � 6 � 0 : .

�$� ����� � �	- � �
 &%)�#
 ! & 	
* #2-$)�. ��� &+! # 	

The Conjugate Gradient Squared algorithm was developed by Sonneveld in 1984 [201],
mainly to avoid using the transpose of § in the BCG and to gain faster convergence for
roughly the same computational cost. The main idea is based on the following simple
observation. In the BCG algorithm, the residual vector at step
 can be expressed as

� K ¬ , K 6 § : �
 ® �Ti � �H±
where

, K is a certain polynomial of degree
 satisfying the constraint
, K 6 ; : ¬ O . Similarly,

the conjugate-direction polynomial � K 6 � : is given by

� K ¬�� K 6 § : �
J� ® �Ti �G°p±
in which � K is a polynomial of degree
 . From the algorithm, observe that the directions
�
�K and � �K are defined through the same recurrences as � K and � K in which § is replaced by§ � and, as a result,

�
�K ¬ , K 6 § � : � �
 � � �K ¬ � K 6 § � : � �
 Y

Also, note that the scalar � K in BCG is given by

� K ¬ 6 , K 6 § : �
 � , K 6 § � : � �
 :6
§ � K 6 § : �
S� � K 6 § � : � �
 : ¬

6 , �K 6 § : �
 � � �
 :6
§ � �K 6 § : �
F� � �
 :

which indicates that if it is possible to get a recursion for the vectors
, �K 6 § : �
 and � �K 6 § : �
 ,

then computing � K and, similarly, 5 K causes no problem. Hence, the idea of seeking an
algorithm which would give a sequence of iterates whose residual norms � �K satisfy

� �K ¬ , �K 6 § : �
JY ® �Ti � �H±
The derivation of the method relies on simple algebra only. To establish the desired

recurrences for the squared polynomials, start with the recurrences that define
, K and � K ,

which are, , K 7\9 6 � : ¬ , K 6 � : ² � K � � K 6 � : � ® �Ti � =H±
� K 7\9 6 � : ¬ , K 7�9 6 � : M 5 K � K 6 � : Y ® �Ti � ¯ ±

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 ��+ ´
If the above relations are squared we get, �K 7�9 6 � : ¬ , �K 6 � : ² b � K � � K 6 � : , K 6 � : M
� �K � � � �K 6 � : �

�
�K 7\9 6 � : ¬ , �K 7�9 6 � : M b 5 K , K 7�9 6 � : � K 6 � : M 5 �K � K 6 � : � Y

If it were not for the cross terms � K 6 � : , K 6 � : and
, K 7�9 6 � : � K 6 � : on the right-hand sides, these

equations would form an updatable recurrence system. The solution is to introduce one of
these two cross terms, namely,

, K 7�9 6 � : � K 6 � : , as a third member of the recurrence. For the
other term, i.e., � K 6 � : , K 6 � : , we can exploit the relation, K 6 � : � K 6 � : ¬ , K 6 � : 6 , K 6 � : M 5 K] 9 � K] 9 6 � :H: ¬ , �K 6 � : M 5 K] 9 , K 6 � : � K] 9 6 � : Y
By putting these relations together the following recurrences can be derived, in which the
variable

6 � :
is omitted where there is no ambiguity:, �K 7�9 ¬ , �K ² � K � � b , �K M b 5 K] 9 , K � K] 9 ² � K � � �K � ® �Ti �Za=±, K 7�9 � K ¬ , �K M 5 K] 9 , K � K] 9 ² � K � � �K ® �Ti �
=±

�
�K 7�9 ¬ , �K 7�9 M b 5 K , K 7�9 � K M 5 �K � �K Y ® �Ti � �=±

These recurrences are at the basis of the algorithm. If we define

� K ¬ , �K 6 § : �
F� ® �Ti � �=±
� K ¬�� �K 6 § : �
 � ® �Ti � �=±
� K ¬ , K 7�9 6 § : � K 6 § : �
 � ® �Ti = �=±

then the above recurrences for the polynomials translate into

� K 7�9 ¬�� K ² � K § 6 b � K M b 5 K] 9 � K] 9 ² � K § � K : � ® �Ti =<°4±
� K ¬�� K M 5 K] 9 � K] 9 ² � K § � K � ® �Ti =Z�=±

� K 7�9 ¬�� K 7�9 M b 5 K � K M 5 �K � K Y ® �Ti =Z==±
It is convenient to define the auxiliary vector� K ¬ b � K M b 5 K] 9 � K] 9 ² � K § � K Y
With this we obtain the following sequence of operations to compute the approximate
solution, starting with �

! ¬ ¨O²�§t©
 , ��
 ! ¬��
 , �
 ! ¬<; , 5�
 ! ¬<; .
� � K ¬ 6

� K � � �
 : � 6 § � K � � �
 :
� � K ¬ b � K M b 5 K] 9 � K] 9 ² � K § � K� � K ¬ � K M 5 K] 9 � K] 9 ² � K § � K� © K 7\9 ¬¦© K M
� K � K�
� K 7\9 ¬
� K ² � K § � K� 5 K ¬ 6

� K 7\9 � � �
 : � 6 � K � � �
 :� � K 7\9 ¬
� K 7�9 M 5 K 6 b � K M 5 K � K : .
A slight simplification to the algorithm can be made by using the auxiliary vector

� K ¬�� K M 5 K] 9 � K] 9 . This definition leads to the relations� K ¬ � K M�� K �

��+ � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
� K ¬ � K ² � K § � K �

� K 7�9 ¬ � K 7\9 M 5 K 6 � K M 5 K � K : �
and as a result the vector � K is no longer needed. The resulting algorithm is given below.

���%� �L� �3�~� �
) ´ ! � , $ � � �4(%57# � &8(�23 #'$�5�� � � ('&8# �
1. Compute �

! ¬ ¨)² §8©�
 ; � �
 arbitrary.
2. Set �

! ¬ �

! ¬ �
 .

3. For
}¬�;�� O �cb�YZYWY , until convergence Do:
4. � K ¬ 6

� K � � �
 : � 6 § � K � � �
 :
5. � K ¬ � K ² � K § � K
6. © K 7�9 ¬�© K M � K 6 � K M � K :7. � K 7�9 ¬�� K ² � K § 6 � K M�� K :8. 5 K ¬ 6

� K 7�9 � � �
 : � 6 � K � � �
 :9. � K 7\9 ¬
� K 7�9 M 5 K � K
10. � K 7�9 ¬ � K 7�9 M 5 K 6 � K M 5 K � K :
11. EndDo

Observe that there are no matrix-by-vector products with the transpose of § . Instead, two
matrix-by-vector products with the matrix § are now performed at each step. In general,
one should expect the resulting algorithm to converge twice as fast as BCG. Therefore,
what has essentially been accomplished is to replace the matrix-by-vector products with§ � by more useful work.

The Conjugate Gradient Squared algorithm works quite well in many cases. However,
one difficulty is that, since the polynomials are squared, rounding errors tend to be more
damaging than in the standard BCG algorithm. In particular, very high variations of the
residual vectors often cause the residual norms computed from the result of line 7 of the
above algorithm to become inaccurate.

�$� ����� ��*,�
$.�)%& �

The CGS algorithm is based on squaring the residual polynomial, and, in cases of irregular
convergence, this may lead to substantial build-up of rounding errors, or possibly even
overflow. The Biconjugate Gradient Stabilized (BICGSTAB) algorithm is a variation of
CGS which was developed to remedy this difficulty. Instead of seeking a method which
delivers a residual vector of the form � �K defined by (7.22), BICGSTAB produces iterates
whose residual vectors are of the form

� �K ¬ 	 K 6 § : , K 6 § : �
S� ® �Ti = ¯ ±
in which, as before,

, K 6 � : is the residual polynomial associated with the BCG algorithm
and 	 K 6 � : is a new polynomial which is defined recursively at each step with the goal of
“stabilizing” or “smoothing” the convergence behavior of the original algorithm. Specifi-
cally, 	 K 6 � : is defined by the simple recurrence,

	 K 7�9 6 � : ¬ 6 O ² � K � : 	 K 6 � : ® �Ti = aH±

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 ��+

in which the scalar � K is to be determined. The derivation of the appropriate recurrence
relations is similar to that of CGS. Ignoring the scalar coefficients at first, we start with a
relation for the residual polynomial 	 K 7�9 , K 7�9 . We immediately obtain

	 K 7�9 , K 7�9 ¬ 6 O ² � K � : 	 K 6 � : , K 7�9 ® �Ti =
=±
¬
6 O ² � K � : 6 	 K , K ² � K � 	 K � K : ® �Ti = �=±

which is updatable provided a recurrence relation is found for the products 	 K � K . For this,
write

	 K � K ¬ 	 K 6 , K M 5 K] 9 � K] 9 : ® �Ti = �=±
¬ 	 K , K M 5 K] 9 6 O ² � K] 9 � : 	 K] 9 � K] 9 Y ® �Ti = �=±

Define,

� K ¬ , K 6 § : 	 K 6 § : �
S�
� K ¬ 	 K 6 § : � K 6 § : �
FY

According to the above formulas, these vectors can be updated from a double recurrence
provided the scalars � K and 5 K were computable. This recurrence is

� K 7�9 ¬ 6
� ² � K § : 6 � K ² � K § � K : ® �Ti ¯ �=±

� K 7�9 ¬�� K 7�9 M 5 K 6 � ² � K § : � K Y
Consider now the computation of the scalars needed in the recurrence. According to

the original BCG algorithm, 5 K ¬ � K 7�9 � � K with

� K ¬ 6 , K 6 § : �
S� , K 6 § � : � �
 : ¬ 6 , K 6 § : � �
 � � �
 :
Unfortunately, � K is not computable from these formulas because none of the vectors, K 6 § : �
 , , K 6 § � : � �
 or

, K 6 § : � �
 is available. However, � K can be related to the scalar

�� K ¬ 6 , K 6 § : �
F� 	 K 6 § � : � �
 :
which is computable via

�� K ¬ 6 , K 6 § : �
F� 	 K 6 § � : � �
 : ¬ 6
	 K 6 § : , K 6 § : �
S� � �
 : ¬ 6

� K � � �
 : Y
To relate the two scalars � K and �� K , expand 	 K 6 § � : � �
 explicitly in the power basis, to
obtain

�� K ¬ � , K 6 § : �
 �2� / K 29 6
§ � : K � �
 M � / K 2� 6

§ � : K] 9 � �
 M YWYWY � Y
Since

, K 6 § : �
 is orthogonal to all vectors

6
§ � : 0 � �
 , with 9

 , only the leading power is

relevant in the expansion on the right side of the above inner product. In particular, if � / K 29is the leading coefficient for the polynomial
, K 6 � : , then

�� K ¬ � , K 6 § : �
F� ��/ K 29
� / K 29 , K 6 § � : �
 � ¬ ��/ K 29

� / K 29 � K Y
When examining the recurrence relations for

, K 7�9 and 	 K 7\9 , leading coefficients for these
polynomials are found to satisfy the relations�
/ K 7�9H29 ¬ ² � K ��/ K 29 � � / K 7�9H29 ¬ ² � K � / K 29 �

��+ � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
and as a result

�� K 7�9
�� K ¬ � K

� K � K 7�9� K
which yields the following relation for 5 K :5 K ¬ �� K 7�9

�� K ¥ � K� K Y ® �Ti ¯ °p±
Similarly, a simple recurrence formula for � K can be derived. By definition,

� K ¬ 6 , K 6 § : �
J� , K 6 § � : � �
 :6
§�� K 6 § : �
J� � K 6 § � : � �
 :

and as in the previous case, the polynomials in the right sides of the inner products in both
the numerator and denominator can be replaced by their leading terms. However, in this
case the leading coefficients for

, K 6 § � : � �
 and � K 6 § � : � �
 are identical, and therefore,

� K ¬ 6 , K 6 § : �
 � , K 6 § � : � �
 :6
§ � K 6 § : �
F� , K 6 § � : � �
 :

¬
6 , K 6 § : �
F� 	 K 6 § � : � �
 :6
§ � K 6 § : �
 � 	 K 6 § � : � �
 :

¬
6
	 K 6 § : , K 6 § : �
 � � �
 :6
§ 	 K 6 § : � K 6 § : �
F� � �
 : Y

Since � K ¬ 	 K 6 § : � K 6 § : �
 , this yields,

� K ¬ �� K6
§ � K � � �
 : Y ® �Ti ¯ �H±

Next, the parameter � K must be defined. This can be thought of as an additional free
parameter. One of the simplest choices, and perhaps the most natural, is to select � K to
achieve a steepest descent step in the residual direction obtained before multiplying the
residual vector by

6
� ² � K § : in (7.40). In other words, � K is chosen to minimize the 2-

norm of the vector

6
� ² � K § : 	 K 6 § : , K 7�9 6 § : �
 . Equation (7.40) can be rewritten as

� K 7�9 ¬ 6
� ² � K § : � K

in which

� K ��� K ² � K § � K Y
Then the optimal value for � K is given by

� K ¬ 6
§ � K � � K :6
§ � K �\§ � K : Y ® �Ti ¯ =H±

Finally, a formula is needed to update the approximate solution © K 7�9 from © K . Equa-
tion (7.40) can be rewritten as

� K 7�9 ¬�� K ² � K § � K ¬�� K ² � K § � K ² � K § � K
which yields

© K 7�9 ¬ © K M � K � K M � K � K Y

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 ��+ ³
After putting these relations together, we obtain the final form of the BICGSTAB

algorithm, due to van der Vorst [210].

�������L���D�~� �
) � ! �~���m�m��	f���
1. Compute �

! ¬ ¨O²�§t©
 ; � �
 arbitrary;
2. ��

! ¬
�
 .
3. For
L¬�;�� O �ZYWYZY , until convergence Do:
4. � K ! ¬ 6

� K � � �
 : � 6 § � K � � �
 :
5. � K ! ¬
� K ² � K § � K
6. � K ! ¬ 6

§ � K � � K : � 6 § � K �9§ � K :
7. © K 7�9 ! ¬ © K M
� K � K M � K � K8. � K 7�9 ! ¬�� K ² � K § � K
9. 5 K ! ¬ / � C � E � ���5 2/ � C � � �5 2 ¥ �

C
�
C

10. � K 7�9 ! ¬
� K 7�9 M 5 K 6 � K ² � K § � K :
11. EndDo

����� � ��
 %
)��
Table 7.2 shows the results of applying the BICGSTAB algorithm with no

preconditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 96 2048 0.14E-02 0.77E-04
F3D 64 6407 0.49E-03 0.17E-03
ORS 208 5222 0.22E+00 0.68E-04� ����
 %
)��

A test run of BICGSTAB with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The number of
matrix-by-vector multiplications required to converge is larger than with BCG. Thus, us-
ing the number of matrix-by-vector products as a criterion, BCG is more expensive than
BICGSTAB in all three examples. For problem 3, the number of steps for BCG exceeds
the limit of 300. If the number of steps is used as a criterion, then the two methods come
very close for the second problem [61 steps for BCG versus 64 for BICGSTAB]. However,
BCG is slightly faster for Problem 1. Observe also that the total number of operations fa-
vors BICGSTAB. This illustrates the main weakness of BCG as well as QMR, namely, the
matrix-by-vector products with the transpose are essentially wasted unless a dual system
with § � must be solved simultaneously.

�$� ��� �)�! &+-�. ��� .2# � �/!$#2# �	13! ��) � �	13! �

The Transpose-Free QMR algorithm of Freund [95] is derived from the CGS algorithm.
Observe that © K can be updated in two half-steps in line 6 of Algorithm 7.5, namely,© K 7 E
 ¬ © K M � K � K and © K 7\9 ¬ © K 7 E
 M � K � K . This is only natural since the actual up-
date from one iterate to the next involves two matrix-by-vector multiplications, i.e., the

��� � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
degree of the residual polynomial is increased by two. In order to avoid indices that are
multiples of 9� , it is convenient when describing TFQMR to double all subscripts in the
CGS algorithm. With this change of notation, the main steps of the Algorithm 7.5 (CGS)
become

� � K ¬ 6
� � K � � �
 : � 6 § � � K � � �
 : ® �Ti ¯H¯ ±

� � K ¬ � � K ² � � K § � � K ® �Ti ¯ aH±
© � K 7 � ¬¦© � K M
� � K 6 � � K M � � K : ® �Ti ¯
H±
� � K 7 � ¬
� � K ² � � K § 6 � � K M � � K : ® �Ti ¯ �H±5 � K ¬ 6

� � K 7 � � � �
 : � 6 � � K � � �
 : ® �Ti ¯ �H±
� � K 7 � ¬
� � K 7 � M 5 � K � � K ® �Ti ¯ �H±
� � K 7 � ¬ � � K 7 � M 5 � K 6 � � K M 5 � � K : Y ® �Ti a �H±

The initialization is identical with that of Algorithm 7.5. The update of the approxi-
mate solution in (7.46) can now be split into the following two half-steps:

© � K 7\9 ¬ © � K M � � K � � K ® �Ti aG°p±
© � K 7 � ¬ © � K 7�9 M � � K � � K Y ® �Ti a �H±

This can be simplified by defining the vectors � � for odd � as � � K 7�9 ¬ � � K . Similarly, the
sequence of � � is defined for odd values of � as � � K 7�9 ¬ � � K . In summary,

for � odd define:

� � � � � �] 9� � � � �] 9 Y ® �Ti a =H±
With these definitions, the relations (7.51–7.52) are translated into the single equation

© � ¬¦© �] 9 M
� �] 9 � �] 9 �
which is valid whether � is even or odd. The intermediate iterates © � , with � odd, which
are now defined do not exist in the original CGS algorithm. For even values of � the
sequence © � represents the original sequence or iterates from the CGS algorithm. It is
convenient to introduce the � ¥ � matrix,

� � ¬ � �
 �ZYWYWYW� � �] 9 �
and the � -dimensional vector

� � ¬ 6
�
 � � 9 �WYWYZY8� � �] 9 : � Y

The general iterate © � satisfies the relation

© � ¬¦©
 M � � � � ® �Ti a ¯ ±
¬¦© �] 9 M
� �] 9 � �] 9 Y ® �Ti a aH±

From the above equation, it is clear that the residual vectors � � are related to the � -vectors
by the relations

� � ¬��
t²�§ � � � � ® �Ti a
H±
¬�� �] 9 ² � �] 9 § � �] 9 Y ® �Ti a �H±

Next, a relation similar to the relation (6.5) seen for FOM and GMRES will be ex-

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 ����+
tracted using the matrix § � � . As a result of (7.57), the following relation holds:

§ � 4 ¬ O� 4 6 � 4 ²
� 4 7�9 : Y
Translated in matrix form, this relation becomes

§ � � ¬ � � 7\9 �� � ® �Ti a �=±
where

� 0 ¬ � �
 � � 9 �WYWYZYW� � 0] 9 � ® �Ti a �=±
and where

�
� � is the

6
� M O : ¥ � matrix,

�
� � ¬

PQQQQQQQR
O ; YZYWY YZYWY ;
² O O ...; ² O O YZYWY
...

. . .
. . .

...
... ² O O; YWYWY ² O

T VVVVVVVX ¥ � "#0 � � O�
 � O� 9 �WYZYWY O� �] 9�� Y ® �Ti
 �=±

The columns of
� � 7�9 can be rescaled, for example, to make each of them have a 2-norm

equal to one, by multiplying
� � 7\9 to the right by a diagonal matrix. Let this diagonal

matrix be the inverse of the matrix

� � 7�9 ¬ � "#0 � � :
J� : 9 �WYZYWYW� : � �JY
Then,

§ � � ¬ � � 7�9 �] 9� 7�9 � � 7\9 �� � Y ® �Ti
<°4±
With this, equation (7.56) becomes

� � ¬
�
t² § � � � � ¬ � � 7�9 � � 9 ² �
� � � � � ® �Ti
Z�=±

¬ � � 7�9 �] 9� 7�9 � :
 � 9 ² � � 7�9 �� � � � � Y ® �Ti
Z==±
By analogy with the GMRES algorithm, define�� � � � � 7�9 �� � Y
Similarly, define

� � to be the matrix obtained from

�� � by deleting its last row. It is easy
to verify that the CGS iterates © � (now defined for all integers �
¬<;�� O �cb��WYZYWY) satisfy the
same definition as FOM, i.e.,

© � ¬�©
 M � � �] 9� 6 :
 � 9 : Y ® �Ti
 ¯ ±
It is also possible to extract a GMRES-like solution from the relations (7.61) and

(7.63), similar to DQGMRES. In order to minimize the residual norm over the Krylov
subspace, the 2-norm of the right-hand side of (7.63) would have to be minimized, but
this is not practical since the columns of

� � 7�9 �] 9� 7�9 are not orthonormal as in GMRES.
However, the 2-norm of :
 � 9 ² � � 7\9 �� � � can be minimized over � , as was done for the
QMR and DQGMRES algorithms.

This defines the TFQMR iterates theoretically. However, it is now necessary to find a
formula for expressing the iterates in a progressive way. There are two ways to proceed.

����� � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
The first follows DQGMRES closely, defining the least-squares solution progressively and
exploiting the structure of the matrix

� � to obtain a formula for © � from © �] 9 . Because
of the special structure of

�� � , this is equivalent to using the DQGMRES algorithm with9¢¬ O . The second way to proceed exploits Lemma 6.1 seen in the previous chapter. This
lemma, which was shown for the FOM/GMRES pair, is also valid for the CGS/TFQMR
pair. There is no fundamental difference between the two situations. Thus, the TFQMR
iterates satisfy the relation

© � ² © �] 9 ¬ �
�� 6

�© � ² © �] 9 : ® �Ti
 aH±
where the tildes are now used to denote the CGS iterate. Setting� � � O� �] 9

6
�© � ² © �] 9 : ¬ O� �� � �] 9

6
© � ² © �] 9 : ® �Ti

H±

� � � �
�� � �] 9 �

the above expression for © � becomes

© � ¬�© �] 9 M � � � � Y ® �Ti
 �H±
Now observe from (7.55) that the CGS iterates �© � satisfy the relation

�© � ¬	�© �] 9 M
� �] 9 � �] 9 Y ® �Ti
 �H±
From the above equations, a recurrence relation from � � can be extracted. The definition
of � � and the above relations yield� � ¬ O� �] 9

6
�© � ² �© �] 9 M �© �] 9 ² © �] 9 :

¬ � �] 9 M O� �] 9
6
�© �] 9 ² © �] � ² 6

© �] 9 ² © �] � :A:
¬ � �] 9 M O ² � ��] 9� �] 9

6
�© �] 9 ² © �] � : Y

Therefore, � � ¬ � �] 9 M
6 O ² � ��] 9 : � �] 9� ��] 9 � �] 9 � �] 9 Y

The term

6 O ² � ��] 9 : � � ��] 9 is the squared tangent of the angle used in the

6
� ² O : ² � �rotation. This tangent will be denoted by

� �] 9 , and we have

� � ¬ � �� � � �
�� ¬ OO M � �� � � � 7�9 ¬ � � M � �� � �

� � � � Y
The angle used in the � -th rotation, or equivalently � � , can be obtained by examining the

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 �����

matrix

�� � :

�� � ¬

PQQQQQQQR
:
 ; YWYWY YZYWY ;
² : 9 : 9 ...; ² : � : � YZYWY

...
. . .

. . .
...

... ² : � : �; YZYWY ² : � 7\9
T VVVVVVVX ¥ � " 0 � � O� 4 � 4��
 ������� � �] 9 Y ® �Ti
 �=±

The diagonal matrix in the right-hand side scales the columns of the matrix. It is easy to see
that it has no effect on the determination of the rotations. Ignoring this scaling, the above
matrix becomes, after
 rotations,PQQQQQQQQQQQR

���
� �

. . .
. . .) K ;² : K 7\9 : K 7�9. . .

. . .
² : � : �² : � 7�9

T VVVVVVVVVVVX
Y

The next rotation is then determined by,

� K 7�9 ¬ ² : K 7\9�) �K M : �K 7�9 � � K 7�9 ¬) K�) �K M : �K 7\9 � � K 7�9 ¬ ² : K 7\9) K Y
In addition, after this rotation is applied to the above matrix, the diagonal element :`K 7\9which is in position

6
 M O �;
 M O : is transformed into) K 7�9 ¬ : K 7\9 ¥ � K 7�9 ¬) K : K 7�9�) �K M : �K 7�9 ¬ ²) K � K 7\9 ¬ ²) K � K 7�9 � K 7�9 Y ® �Ti � �=±

The above relations enable us to update the direction � � and the required quantities � � and� � . Since only the squares of these scalars are invoked in the update of the direction � � 7\9 ,a recurrence for their absolute values is sufficient. This gives the following recurrences
which will be used in the algorithm:� � 7�9 ¬ � � M 6

� �� � � � : � � � �
� � 7�9 ¬ : � 7�9 �) �
� � 7�9 ¬ � O M � �� 7�9 �] E
) � 7�9 ¬) � � � 7�9 � � 7�9� � 7�9 ¬ �

�� 7�9 � � Y
Before writing down the algorithm, a few relations must be exploited. Since the vectors

� � are no longer the actual residuals in the algorithm, we change the notation to � � . These
residual vectors can be updated by the formula

� � ¬ � �] 9 ² � �] 9 § � �] 9 Y

����' � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
The vectors § � 4 can be used to update the vectors

� � K � § � � K
which are needed in the CGS algorithm. Multiplying (7.50) by § results in

§ � � K ¬ § � � K M 5 � K] � 6 § � � K] � M 5 K § � � K] � :
which, upon substituting the relation

� � K ¬ � � K 7\9
translates into

� � K ¬�§ � � K M 5 � K] � 6 § � � K] 9 M 5 � K] � � � K] � : Y
Also, observe that the recurrences in (7.45) and (7.49) for � � K and � � K 7 � , respectively,
become

� � K 7�9 ¬ � � K ² � � K � � K
� � K 7 � ¬ � � K 7 � M 5 � K � � K 7\9 Y

The first equation should be used to compute � � 7�9 when � is even, and the second when
� is odd. In the following algorithm, the normalization : � ¬ �

� � � � , which normalize
each column of

� � to have 2-norm unity, is used.

���%� �L� �3�~� �
)
 ! 	�&)(+$ � �4, � #G� �.&;#0# �
�� 	 	 � �
����
1. Compute �
 ¬ �
 ¬ �
 ¬ ¨)² §8©
 , �
 ¬ § �
 , �
 ¬ ; ;
2.)
 ¬ �

�

� � , �

 ¬ �
 ¬ ; .
3. Choose � �
 such that �
 �

6
�
�
 � �
 :��¬<; .

4. For �
¬�;�� O � b��ZYWYWY3� until convergence Do:
5. If � is even then
6. � � 7�9 ¬ � � ¬ � � � 6 � � � � �
 :
7. � � 7�9 ¬ � � ² � � � �
8. EndIf
9. � � 7\9 ¬
� � ² � � § � �10. � � 7�9 ¬ � � M 6

� �� � � � : � � � �
11.

� � 7\9 ¬ �
� � 7�9 � � �) � ; � � 7\9 ¬ � O M � �� 7�9 �] E
12.) � 7�9 ¬) � � � 7�9 � � 7�9 ; � � 7�9 ¬ � �� 7�9 � �13. © � 7�9 ¬�© � M � � 7�9 � � 7\914. If � is odd then

15. � � 7�9 ¬ 6
� � 7\9 � � �
 : ; 5 �] 9 ¬ � � 7�9 � � �] 916. � � 7�9 ¬ � � 7\9 M 5 �] 9 � �17. � � 7\9 ¬ § � � 7�9 M 5 �] 9 6 § � � M 5 �] 9 � �] 9 :18. EndIf

19. EndDo

Notice that the quantities in the odd � loop are only defined for even values of � . The
residual norm of the approximate solution © � is not available from the above algorithm
as it is described. However, good estimates can be obtained using similar strategies to

� � � #����Q�*
�����
k|�q �S� |k| �����*� �Q� #�
 ��� ´

those used for DQGMRES. Referring to GMRES, an interesting observation is that the
recurrence (6.40) is identical with the recurrence of the scalars) K ’s. In addition, these two
sequences start with the same values, :
 for the) ’s and 5 for the � ’s. Therefore,

� � 7\9 ¬) � Y
Recall that � � 7�9 is the residual for the

6
� M O : ¥ � least-squares problem$1"#+ � :
 � 9 ² �� � � � � Y

Hence, a relation similar to that for DQGMRES holds, namely,
� ¨O²�§t© � � � � � M O) � Y ® �Ti �<°4±

This provides a readily computable estimate of the residual norm. Another point that should
be made is that it is possible to use the scalars � � , � � in the recurrence instead of the pair
� � � � � , as was done above. In this case, the proper recurrences are� � 7\9 ¬ � � M 6

�
�� � � � : � �] 9 � �

� � 7\9 ¬ : � 7\9 � �) �� M : �� 7�9
� � 7\9 ¬) � � �) �� M : �� 7�9) � 7�9 ¬) � � � 7�9� � 7\9 ¬ �

�� 7�9 � � Y
����� � ��
 %
)��

Table 7.3 shows the results when TFQMR algorithm without precondi-
tioning is applied to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 112 2736 0.46E-04 0.68E-04
F3D 78 8772 0.52E-04 0.61E-03
ORS 252 7107 0.38E-01 0.19E-03� ����
 %
)��

A test run of TFQMR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The number of
steps is slightly higher than that of BICGSTAB. Comparing with BCG, we note that each
step of BCG requires two matrix-by-vector products compared with one for TFQMR and
BICGSTAB. Thus, using the number of matrix-by-vector products as a criterion, BCG is
more expensive than TFQMR in all cases, as is shown in the “Iters” columns. If the num-
ber of steps is used as a criterion, then BCG is just slightly better for Problems 1 and 2. A
comparison is not possible for Problem 3, since the number of matrix-by-vector products
required for convergence exceeds the limit of 300. In general, the number of steps required
for convergence is similar for BICGSTAB and TFQMR. A comparison with the methods
seen in the previous chapter indicates that in many cases, GMRES will be faster if the
problem is well conditioned, resulting in a moderate number of steps required to converge.
If many steps (say, in the hundreds) are required, then BICGSTAB and TFQMR may per-
form better. If memory is not an issue, GMRES or DQGMRES, with a large number of
directions, is often the most reliable choice. The issue then is one of trading ribustness for

��� � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
memory usage. In general, a sound strategy is to focus on finding a good preconditioner
rather than the best accelerator.

� ���f�l�~�-�?�v�

1 Consider the following modification of the Lanczos algorithm, Algorithm 7.1. We replace line 6
by �

� � � L � QE: � � �
�B
��� L

� � � � �

where the scalars
� � � are arbitrary. Lines 5 and 7 through 10 remain the same but line 4 in which
 � is computed must be changed.

� � Show how to modify line 4 to ensure that the vector

�
+ � � L is orthogonal against the vectors

� � , for � � � �*)�)*)+� # .< � Prove that the vectors + � ’s and the matrix
� � do not depend on the choice of the

� � � ’s.
^_� Consider the simplest possible choice, namely,

� � ��U �
for all � � # . What are the advantages

and potential difficulties with this choice?

2 Assume that the Lanczos algorithm does not break down before step � , i.e., that it is possible
to generate + L �*)*)�) + ��� L . Show that � ��� L and

� � � L are both of full rank.

3 Develop a modified version of the non-Hermitian Lanczos algorithm that produces a sequence
of vectors + � � � � such that each + � is orthogonal to every � � with # �� � and

 + � X � � � X � �
for all � . What does the projected problem become?

4 Develop a version of the non-Hermitian Lanczos algorithm that produces a sequence of vectors+ � � � � which satisfy !/+ � � � � ' ��� � � � �
but such that the matrix

� � is Hermitian tridiagonal. What does the projected problem become
in this situation?

5 Using the notation of Section 7.1.2 prove that / � � � ! �M' � � � � � ! �M' is orthogonal to the poly-
nomials � L � � X ��)*)*)*� � � J � , assuming that �

. Show that if / � � � is orthogonalized against
� L � � X �*)*)�)*� � � J � , the result would be orthogonal to all polynomials of degree � # - � . Derive a
general Look-Ahead non-Hermitian Lanczos procedure based on this observation.

6 Consider the matrices � � �10 + L ��)*)+)*� + � 8 and
� � �10 � L �*)*)*)*� � � 8 obtained from the Lanczos

biorthogonalization algorithm. (a) What are the matrix representations of the (oblique) projector
onto

� � !GQ � + L ' orthogonal to the subspace
� � !GQ : � � L ' , and the projector onto

� � !GQ : � � L '
orthogonally to the subspace

� � !GQ � + L ' ? (b) Express a general condition for the existence of
an oblique projector onto � , orthogonal to � . (c) How can this condition be interpreted using
the Lanczos vectors and the Lanczos algorithm?

7 Show a three-term recurrence satisfied by the residual vectors � � of the BCG algorithm. Include
the first two iterates to start the recurrence. Similarly, establish a three-term recurrence for the
conjugate direction vectors � � in BCG.

|��O|�� � �
w|
 �Q� �����Q#O|
 ���

8 Let � � ! �M' and , � ! �M' be the residual polynomial and the conjugate direction polynomial, respec-
tively, for the BCG algorithm, as defined in Section 7.4.1. Let � � ! �M' be any other polynomial
sequence which is defined from the recurrence

� � ! �3' � � � � L ! �M' � ![�]��� � �M' � � ! �M'
� � � L ! �3' � ![� - � � ��� � �M' � � ! �M'6� � � � � J6L ! �3'

��� Show that the polynomials � � are consistent, i.e., � � ! � ' � � for all #) �
.< � Show the following relations

� � � L � � � L � � � � � � L � � � ! � � JTL � � � ' � � � L ��� � � � � � � � L
� � � � � L � � � � � ��
 � � � � , �
! � � JTL � � � ' � � � L � � � JTL � � � � � � � � L �V
 � � � � JTL , �
� � � L , � � L � � � � L � � � L � � � � � � � JTL , � - � � ![� - � � ' � � , � � � � � � � � � , �
� � , � � L � � � � � � L - � � � � , �)

^_� Defining,

� � � � � !GQB' � � � L !GQA' � � � � � � ! � � JTL !GQA'6� � � !GQA'3' � � � L !GQA' � � �
� � � � � !GQA' , � !GQB' � � � � � � � � J6L !GQB' , � !GQB' � �

show how the recurrence relations of the previous question translate for these vectors.
� � Find a formula that allows one to update the approximation � � � L from the vectors � � JTL � � �

and � � � � � � � � ��� � defined above.
	�� Proceeding as in BICGSTAB, find formulas for generating the BCG coefficients
 � and � �

from the vectors defined in the previous question.

9 Prove the expression (7.64) for the CGS approximation defined by (7.54–7.55). Is the relation
valid for any choice of scaling � ��� L ?

10 Prove that the vectors � � and � �� produced by the BCG algorithm are orthogonal to each other
when � �� # , while the vectors � � and �

��
are Q -orthogonal, i.e., !GQ � � � � �� ' � �

for � �� # .

11 The purpose of this exercise is to develop block variants of the Lanczos algorithm. Consider a
two-sided analogue of the Block-Arnoldi algorithm, in its variant of Algorithm 6.23. Formally,
the general step that defines the biorthogonalization process, for #) � , is as follows:

1. Orthogonalize Q�+ � J � � L versus � L � � X �*)*)+)�� � � (by subtracting a linear combination
of + L �*)�)*)*� + � from Q�+ � J � � L). Call + the resulting vector.

2. Orthogonalize Q : � � J � � L versus + L � + X �*)*)*)+� + � (by subtracting a linear combination
of � L �*)*)*)*� � � from Q : � � J � � L). Call � the resulting vector.

3. Normalize the two vectors + and � so that !/+ � � ' � � to get + � � L and � � � L .
Here, � is the block size and it is assumed that the initial blocks are biorthogonal: !/+ � � � � ' � � � �
for � � # # � .
��� Show that Q�+ � J � � L needs only to be orthogonalized against the � � previous � � ’s instead of

all of them. Similarly, Q : � � J � � L must be orthogonalized only against the � � previous + � ’s.< � Write down the algorithm completely. Show the orthogonality relations satisfied by the vec-
tors + � and � � . Show also relations similar to (7.3) and (7.4).

^_� We now assume that the two sets of vectors + � and � � have different block sizes. Call / the
block-size for the � ’s. Line 2 of the above formal algorithm is changed into:

2a. Orthogonalize Q : � � J	� � L versus + L � + X ��)*)+)*� + � (
�
�
). Call � the resulting vector.

��� � � � ���µ#Q|�� � ����� 	`���
 ��j

�� � � |¢�V|G#O�*����
 �Z���+# �1�
and the rest remains unchanged. The initial vectors are again biorthogonal: !/+ � � � � ' � � � �
for � # � and # # / . Show that now Q�+ � J � � L needs only to be orthogonalized against the/ - � previous � � ’s instead of all of them. Show a simlar result for the � � ’s.

� � Show how a block version of BCG and QMR can be developed based on the algorithm
resulting from question (c).

NOTES AND REFERENCES. At the time of this writing there is still much activity devoted to the class
of methods covered in this chapter. Two of the starting points in this direction are the papers by Son-
neveld [201] and Freund and Nachtigal [97]. The more recent BICGSTAB [210] has been developed
to cure some of the numerical problems that plague CGS. There have been a few recent additions
and variations to the basic BCG, BICGSTAB, and TFQMR techniques; see [42, 47, 113, 114, 192],
among many others. A number of variations have been developed to cope with the breakdown of
the underlying Lanczos or BCG algorithm; see, for example, [41, 20, 96, 192, 231]. Finally, block
methods have also been developed [5].

Many of the Lanczos-type algorithms developed for solving linear systems are rooted in the
theory of orthogonal polynomials and Padé approximation. Lanczos himself certainly used this view-
point when he wrote his breakthrough papers [140, 142] in the early 1950s. The monogram by
Brezinski [38] gives an excellent coverage of the intimate relations between approximation theory
and the Lanczos-type algorithms. Freund [94] establishes these relations for quasi-minimal resid-
ual methods. A few optimality properties for the class of methods presented in this chapter can be
proved using a variable metric, i.e., an inner product which is different at each step [21]. A recent
survey by Weiss [224] presents a framework for Krylov subspace methods explaining some of these
optimality properties and the interrelationships between Krylov subspace methods. Several authors
discuss a class of techniques known as residual smoothing; see for example [191, 234, 224, 40].
These techniques can be applied to any iterative sequence � � to build a new sequence of iterates � �
by combining � � JTL with the difference � � � � � JTL . A remarkable result shown by Zhou and Walker
[234] is that the iterates of the QMR algorithm can be obtained from those of the BCG as a particular
case of residual smoothing.

A number of projection-type methods on Krylov subspaces, other than those seen in this chapter
and the previous one are described in [1]. The group of rank- � update methods discussed by Eirola
and Nevanlinna [79] and Deufflhard et al. [70] is closely related to Krylov subspace methods. In
fact, GMRES can be viewed as a particular example of these methods. Also of interest and not
covered in this book are the vector extrapolation techniques which are discussed, for example, in the
books Brezinski [38], Brezinski and Radivo Zaglia [39] and the articles [199] and [126]. Connections
between these methods and Krylov subspace methods, have been uncovered, and are discussed by
Brezinski [38] and Sidi [195].

� � � � � � �

�

� 	�

������� ��	�����

	��
��

��	
������� �
� 	! �"#��

$%�����

&('*),+-)(./+-)0.21434576/),+98,:%;<)>=,'41/? @%3*)BAC:D8E+%=B891GF*),+H;I?H1KJ2.21K8L1GMNAPO45Q5R)S;S+T? =RU ?H1*)>./+EAVOKAPM;<),5�?H1G;P8W.XAVO4575R)S;S+Y? =Z8L1*)/[%\Z1*)]AB3*=,'Q;<)B=,'41/? @%3*)RAP8LU F*)BA(;S'*)Z)>@%3/? F*.4U),1G;^U ?H1*)>./+APOKAP;_),5a`Rbc`^dfeg`Rbih,jk=>.4U U)Blm;B'*)n1K84+o5R.EUp)B@%3*.K;q? 8L1KA>[r\0:D;_),1Ejp;B'/? A2.4s4s/+t8/.,=,'? A7.KFK84? l4)>lu?H1vs,+D.*=S;q? =>)m6/)>=>.43KA<)W;B'*)w=B8E)IxW=K?),1G;W5R.K;S+Y? yn` b `z? AW5Q3*=,'|{}84+-A_)=B8L1*l9? ;I? 891*)>lX;B'*.41Q`7[r~k8K{i)IF*),+NjL;B'*)71K8E+o5R.4U4)>@%3*.G;I? 891KA0.4s4s/+t8�.*=,'w5R.BOw6/)Z.,l4)IM@%3*.K;_)7?H17A_8L5R)QAI? ;S3*.K;q? 8L1KA>[p��1*l4)>)>l�j9;B'*),+-)Q./+-)Q)SF*),1�.Es4s4U ? =>.K;q? 8L1KA(?H1Q{R'/? =,'W? ;R? As/+-)S:Y),+o+D)Blm;_8|;B'*)W3KAB3*.4Ur�c+HO4U 8,F|AS346KABs*.,=B)Q;_)>=,'41/? @%3*)BAB[�&('/? A]=*'*.EsG;_),+}=B8*F*),+tA7? ;PM),+-.K;q? F*)75R)S;S'K8El�Ai{^'/? =,'Z./+-)R)K? ;B'*),+pl9?�+D)B=S;BU OR84+k?H5Qs4U ? =K? ;BU O2+-),U .G;<)Bl7;_82;S'*)Q1K84+o5R.EU)>@%3*.G;I? 891KA>[

���m���W���X�������(�f�Q�����-�����
�u�K�

In order to solve the linear system �7���� when � is nonsymmetric, we can solve the
equivalent system

� b �¡���¢� b £N¤ [�¥K¦
which is Symmetric Positive Definite. This system is known as the system of the normal
equations associated with the least-squares problem,

minimize §* R¨©�7�ª§*«9¬ £N¤ [­�¦
Note that (8.1) is typically used to solve the least-squares problem (8.2) for over-
determined systems, i.e., when � is a rectangular matrix of size ®°¯�± , ±�²³® .

A similar well known alternative sets �f�¢� bi´ and solves the following equation for´
:

�7� b ´ �! �¬ £N¤ [µ�¦
¶p¶p·

¶���� � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
Once the solution

´
is computed, the original unknown � could be obtained by multiplying´

by � b . However, most of the algorithms we will see do not invoke the
´

variable explic-
itly and work with the original variable � instead. The above system of equations can be
used to solve under-determined systems, i.e., those systems involving rectangular matrices
of size ®°¯v± , with ®°² ± . It is related to (8.1) in the following way. Assume that ®"! ±
and that � has full rank. Let ��# be any solution to the underdetermined system �Q�³� .
Then (8.3) represents the normal equations for the least-squares problem,

minimize §G��#Z¨�� b ´ § « ¬ £N¤ [$�¦
Since by definition � bi´ � � , then (8.4) will find the solution vector � that is closest to� # in the 2-norm sense. What is interesting is that when ® ²!± there are infinitely many
solutions � # to the system �Q�¡� , but the minimizer

´
of (8.4) does not depend on the

particular � # used.
The system (8.1) and methods derived from it are often labeled with NR (N for “Nor-

mal” and R for “Residual”) while (8.3) and related techniques are labeled with NE (N
for “Normal” and E for “Error”). If � is square and nonsingular, the coefficient matrices
of these systems are both Symmetric Positive Definite, and the simpler methods for sym-
metric problems, such as the Conjugate Gradient algorithm, can be applied. Thus, CGNE
denotes the Conjugate Gradient method applied to the system (8.3) and CGNR the Conju-
gate Gradient method applied to (8.1).

There are several alternative ways to formulate symmetric linear systems having the
same solution as the original system. For instance, the symmetric linear system%'& �� b (*) %,+

�) � % -) £N¤ [./¦
with

+ �¢ 0¨f�Q� , arises from the standard necessary conditions satisfied by the solution of
the constrained optimization problem,

minimize /0 § + ¨� 9§ «« £N¤ [1/¦
subject to � b + � - ¬ £N¤ [2/¦

The solution � to (8.5) is the vector of Lagrange multipliers for the above problem.
Another equivalent symmetric system is of the form% (�� b () % �Q��)!� % � b) ¬

The eigenvalues of the coefficient matrix for this system are 3,4�5 , where 4 5 is an arbitrary
singular value of � . Indefinite systems of this sort are not easier to solve than the origi-
nal nonsymmetric system in general. Although not obvious immediately, this approach is
similar in nature to the approach (8.1) and the corresponding Conjugate Gradient iterations
applied to them should behave similarly.

A general consensus is that solving the normal equations can be an inefficient approach
in the case when � is poorly conditioned. Indeed, the 2-norm condition number of � b � is
given by 687�9;:

«�<V� b �>=���§K� b �m§*«�§?<N� b �>=A@�BL§K«4¬
Now observe that §K� b �m§ « �C4 «D�EAF <N�,= where 4 D�EAF <V�>= is the largest singular value of �

��� �
r\�� ��
r\�� 	 � &^� \��
 	9&�~}\���� ¶����
which, incidentally, is also equal to the 2-norm of � . Thus, using a similar argument for
the inverse <V� b �>= @�B yields687�9;:

«�<N� b �>=R�z§K�n§ «« §K� @�BE§ «« � 687�9;: «« <V�>=K¬ £N¤ [¤ ¦
The 2-norm condition number for � b � is exactly the square of the condition number of� , which could cause difficulties. For example, if originally

687?9 :
« <V�>=v� / -
	 , then an

iterative method may be able to perform reasonably well. However, a condition number of/ - B�� can be much more difficult to handle by a standard iterative method. That is because
any progress made in one step of the iterative procedure may be annihilated by the noise
due to numerical errors. On the other hand, if the original matrix has a good 2-norm condi-
tion number, then the normal equation approach should not cause any serious difficulties.
In the extreme case when � is unitary, i.e., when ��
X�¢� &

, then the normal equations are
clearly the best approach (the Conjugate Gradient method will converge in zero step!).

�Z��� �X�Z��� ���]���-�f�����ª�u�w���|�
�u���

When implementing a basic relaxation scheme, such as Jacobi or SOR, to solve the linear
system

� b �7���¢� b �� £N¤ [��¦
or

�7� b ´ �! �� £N¤ [�¥���¦
it is possible to exploit the fact that the matrices � b � or �7� b need not be formed explic-
itly. As will be seen, only a row or a column of � at a time is needed at a given relaxation
step. These methods are known as row projection methods since they are indeed projection
methods on rows of � or � b . Block row projection methods can also be defined similarly.

�! #"! %$ &�')(+*,*.-/*1032#4503687:9<;>=?0@9�7:A!BC'56D0FEG(�'�;>2H7�9!*

It was stated above that in order to use relaxation schemes on the normal equations, only
access to one column of � at a time is needed for (8.9) and one row at a time for (8.10).
This is now explained for (8.10) first. Starting from an approximation to the solution of
(8.10), a basic relaxation-based iterative procedure modifies its components in a certain
order using a succession of relaxation steps of the simple form´3I
JLK � ´NMPO 5RQ 5 £N¤ [�¥,¥K¦
where Q 5 is the S -th column of the identity matrix. The scalar

O 5 is chosen so that the S -th
component of the residual vector for (8.10) becomes zero. Therefore,<V R¨©�X� b < ´NMPO 5 Q 5 =T� Q 5 =�� - £N¤ [�¥>­�¦

¶��p¶ � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
which, setting

+ �! R¨©�X� bc´ , yields,

O 5 � < + � Q 5 =
§K� b Q 5S§ «« ¬ £N¤ [�¥Gµ/¦

Denote by � 5 the S -th component of . Then a basic relaxation step consists of taking

O 5i� � 5 ¨ <N� bi´ �S� b Q 5 =
§K� b Q 5 § «« ¬ £N¤ [�¥ $�¦

Also, (8.11) can be rewritten in terms of � -variables as follows:

� I
JLK ��� M O 5N� b Q 5q¬ £N¤ [�¥A./¦
The auxiliary variable

´
has now been removed from the scene and is replaced by the

original variable ����� bi´ .
Consider the implementation of a forward Gauss-Seidel sweep based on (8.15) and

(8.13) for a general sparse matrix. The evaluation of
O 5 from (8.13) requires the inner prod-

uct of the current approximation ����� b ´ with � b Q 5 , the S -th row of � . This inner product
is inexpensive to compute because � b Q 5 is usually sparse. If an acceleration parameter �
is used, we only need to change

O 5 into � O 5 . Therefore, a forward SOR sweep would be as
follows.

�������n�	�-�w��

���#����������������� �n���K�(���a� ������
1. Choose an initial � .
2. For Sª� / � 0 �*¬*¬,¬T�I® Do:

3.
O 5c�!�#"%$ @'&)(�* J $,+ F.-/ (*

J
$ /100

4. � � ��� MPO 5P� b Q 5
5. EndDo

Note that � b Q 5 is a vector equal to the transpose of the S -th row of � . All that is needed is
the row data structure for � to implement the above algorithm. Denoting by ®�2�5 the number
of nonzero elements in the S -th row of � , then each step of the above sweep requires0 ®�2 5 M 0

operations in line 3, and another
0 ®�2 5 operations in line 4, bringing the total to3 ®�2 5 M 0

. The total for a whole sweep becomes
3 ®�2 M 0 ® operations, where ®�2 represents

the total number of nonzero elements of � . Twice as many operations are required for the
Symmetric Gauss-Seidel or the SSOR iteration. Storage consists of the right-hand side, the
vector � , and possibly an additional vector to store the 2-norms of the rows of � . A better
alternative would be to rescale each row by its 2-norm at the start.

Similarly, a Gauss-Seidel sweep for (8.9) would consist of a succession of steps of the
form

� I
J/K ��� MPO 5 Q 5S¬ £N¤ [�¥A1/¦
Again, the scalar

O 5 is to be selected so that the S -th component of the residual vector for
(8.9) becomes zero, which yields<N� b R¨�� b � <N� M O 5 Q 5 = � Q 5 =^� - ¬ £N¤ [�¥A2/¦

��� �
r\�� ��
r\�� 	 � &^� \��
 	9&�~}\���� ¶����
With

+��]¨©�7� , this becomes <V� b < + ¨ O 5 � Q 5 = � Q 5 =�� - � which yields

O 5 � < + �B� Q 5 =
§K� Q 5 § «« ¬ £N¤ [�¥ ¤ ¦

Then the following algorithm is obtained.

��� � �n� �D�w��

���t¶�������� �����1� � � �K�(���a� � � ��
1. Choose an initial � , compute

+ � �� R¨��Q� .
2. For S0� / � 0 �,¬*¬,¬ �I® Do:
3.

O 5i� � & � + (
J
$ -/ (

J
$ /100

4. � � ��� M O 5%Q 5
5.

+ � � + ¨ O 5V� Q 5
6. EndDo

In contrast with Algorithm 8.1, the column data structure of � is now needed for the imple-
mentation instead of its row data structure. Here, the right-hand side can be overwritten
by the residual vector

+
, so the storage requirement is essentially the same as in the previ-

ous case. In the NE version, the scalar ��5 ¨ <o� ��� 5 = is just the S -th component of the current
residual vector

+ �a]¨ �Q� . As a result, stopping criteria can be built for both algorithms
based on either the residual vector or the variation in the solution. Note that the matrices�7� b and � b � can be dense or generally much less sparse than � , yet the cost of the
above implementations depends only on the nonzero structure of � . This is a significant
advantage of relaxation-type preconditioners over incomplete factorization preconditioners
when using Conjugate Gradient methods to solve the normal equations.

One question remains concerning the acceleration of the above relaxation schemes
by under- or over-relaxation. If the usual acceleration parameter � is introduced, then we
only have to multiply the scalars

O 5 in the previous algorithms by � . One serious difficulty
here is to determine the optimal relaxation factor. If nothing in particular is known about
the matrix �X� b , then the method will converge for any � lying strictly between

-
and0

, as was seen in Chapter 4, because the matrix is positive definite. Moreover, another
unanswered question is how convergence can be affected by various reorderings of the
rows. For general sparse matrices, the answer is not known.

�! "! #" ��2 BDB 2 9�7�� * BD0 ;>=�7:4

In a Jacobi iteration for the system (8.9), the components of the new iterate satisfy the
following condition: <N� b R¨�� b ��<o� M O 5%Q 5 =T� Q 5 =R� - ¬ £N¤ [�¥���¦
This yields <P ^¨ ��<o� MPO 5RQ 5 = �B� Q 5 =�� -

or < + ¨ O 5 � Q 5 �S� Q 5 =^� -

¶���� � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
in which

+
is the old residual (¨��7� . As a result, the S -component of the new iterate � I
J/K

is given by

� I
JLK + 5 ��� 5 M O 5 Q 5 � £N¤ [­ �/¦
O 5 � < + �B� Q 5 =

§K� Q 5B§ «« ¬ £N¤ [­9¥G¦
Here, be aware that these equations do not result in the same approximation as that pro-
duced by Algorithm 8.2, even though the modifications are given by the same formula.
Indeed, the vector � is not updated after each step and therefore the scalars

O 5 are different
for the two algorithms. This algorithm is usually described with an acceleration param-
eter � , i.e., all

O 5 ’s are multiplied uniformly by a certain � . If � denotes the vector with
coordinates

O 5 � Sª� / �*¬,¬*¬T�S® , the following algorithm results.

�������n�	�-�w��

��� ��� ���������
	 � �4� �
1. Choose initial guess ��� . Set �����
�
� + �! R¨©�7���
2. Until convergence Do:
3. For Sª� / �,¬*¬,¬T�I® Do:
4.

O 5c� � & � + (
J
$ -/ (

J
$ /100

5. EndDo
6. � � ��� M � where �m��� I5�� B O 5 Q 57.

+ � � + ¨����
8. EndDo

Notice that all the coordinates will use the same residual vector
+

to compute the
updates

O 5 . When �³� / , each instance of the above formulas is mathematically equivalent
to performing a projection step for solving �Q�°�� with � �������

9��
Q 5�� , and �!� ��� . It

is also mathematically equivalent to performing an orthogonal projection step for solving� b �Q���¢� b with �z� �����
9!�
Q 5"� .

It is interesting to note that when each column � Q?5 is normalized by its 2-norm, i.e., if§K� Q 5 §K«7� / ��S0� / �*¬*¬,¬T�I® , then
O 5 � � < + �S� Q 5 =�� � <N� b + � Q 5 = . In this situation,

�m� �^� b + � �^� b <V R¨��Q� =
and the main loop of the algorithm takes the vector form

� � � �^� b +
� � ��� M �+ � � + ¨����C¬

Each iteration is therefore equivalent to a step of the form

� I
JLK ��� M �$#V� b R¨�� b �Q��%
which is nothing but the Richardson iteration applied to the normal equations (8.1). In
particular, as was seen in 4.1, convergence is guaranteed for any � which satisfies,- ² � ²

0& D�EAF £N¤ [­/­/¦

��� �
r\�� ��
r\�� 	 � &^� \��
 	9&�~}\���� ¶����
where

& D�EAF is the largest eigenvalue of � b � . In addition, the best acceleration parameter
is given by

�������0� 0& D 5 I�M & D�EAF
in which, similarly,

& D 5 I is the smallest eigenvalue of � b � . If the columns are not nor-
malized by their 2-norms, then the procedure is equivalent to a preconditioned Richardson
iteration with diagonal preconditioning. The theory regarding convergence is similar but
involves the preconditioned matrix or, equivalently, the matrix �	� obtained from � by nor-
malizing its columns.

The algorithm can be expressed in terms of projectors. Observe that the new residual
satisfies + I
JLK � + ¨ I
 5�� B � < + �S� Q 5 =§K� Q 5 § «« � Q 5S¬ £N¤ [­,µ�¦
Each of the operators � 5 � + ¨
� < + �S� Q 5 =

§K� Q 5B§ «« � Q 5 �
� 5 + £N¤ [­�$4¦

is an orthogonal projector onto � Q?5 , the S -th column of � . Hence, we can write+ I
J/K ��� & ¨ � I
 5�� B
� 5�� + ¬ £N¤ [­ .�¦

There are two important variations to the above scheme. First, because the point Jacobi
iteration can be very slow, it may be preferable to work with sets of vectors instead. Let� B � � « �*¬,¬*¬T� � � be a partition of the set

� / � 0 �*¬,¬*¬ �S® � and, for each ��� , let � � be the matrix
obtained by extracting the columns of the identity matrix whose indices belong to ��� .
Going back to the projection framework, define � 5 � ��� 5 . If an orthogonal projection
method is used onto � � to solve (8.1), then the new iterate is given by

� I
J/K ��� M �
�
 5 � 5 � 5 £N¤ [­ 1�¦

� 5 � <�� b5 � b ��� 5 = @�B�� b5 � b + � <N� b5 � 5 =A@�BG� b5 + ¬ £N¤ [­ 2�¦
Each individual block-component � 5 can be obtained by solving a least-squares problem��� 9� § + ¨©� 5 � §K«9¬
An interpretation of this indicates that each individual substep attempts to reduce the resid-
ual as much as possible by taking linear combinations from specific columns of ��5 . Similar
to the scalar iteration, we also have+ I
JLK � � & ¨ � I
 5�� B

� 5 � +
where

� 5 now represents an orthogonal projector onto the span of � 5 .
Note that � B �B�7«
�*¬*¬,¬ �B� � is a partition of the column-set

�
� Q 5 � 5�� B +������ + I and this parti-

tion can be arbitrary. Another remark is that the original Cimmino method was formulated

¶���� � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
for rows instead of columns, i.e., it was based on (8.1) instead of (8.3). The alternative
algorithm based on columns rather than rows is easy to derive.

�2�f�:� ���7�^�u���m�R�8�v�o�]�X� � �N�#�w�����������0���Q�����-�f�W�
�v���

A popular combination to solve nonsymmetric linear systems applies the Conjugate Gra-
dient algorithm to solve either (8.1) or (8.3). As is shown next, the resulting algorithms can
be rearranged because of the particular nature of the coefficient matrices.

�! ��! $ �+&)9?A

We begin with the Conjugate Gradient algorithm applied to (8.1). Applying CG directly
to the system and denoting by 2 5 the residual vector at step S (instead of

+ 5) results in the
following sequence of operations:

	�
 � � � <�2 � � 2 � =
��<N� b ��� � ��� � =�� < 2 � � 2 � =���<V��� � �B��� � =
	 � �
� B � ��� � M
 � � �
	 2 �
� B � � 2 � ¨
 � � b ��� �
	 � � � � < 2 �
� B � 2 �
� B =���<�2 � � 2 � =	 � �
� B � �#2 �
� B M � � � � .

If the original residual
+ 5 � �¨��Q� 5 must be available at every step, we may compute

the residual 2 5 � B in two parts:
+ �
� B � � + � ¨
 � ��� � and then 2 5 � B � � b + 5 � B which is

the residual for the normal equations (8.1). It is also convenient to introduce the vector� 5 ����� 5 . With these definitions, the algorithm can be cast in the following form.

�������n�	�-�w��

��� ��� ��� �n�
1. Compute

+ ���¢ R¨��Q�
� , 2 �X�¢� b + � , ���X� 2 � .
2. For Sª� - �*¬,¬*¬ , until convergence Do:
3. � 5 ����� 5
4.
 5ª�z§ 2 5B§ « �r§ � 5S§ ««
5. � 5 � B ��� 5 M
 5�� 5
6.

+ 5 � B � + 5 ¨
 5 � 5
7. 2 5 � B �¢� b + 5 � B
8. � 5c��§ 2 5 � B § «« �p§ 2 5I§ «« ,
9. � 5 � B � 2 5 � B M � 5 � 5

10. EndDo

In Chapter 6, the approximation � D produced at the ± -th step of the Conjugate Gra-
dient algorithm was shown to minimize the energy norm of the error over an affine Krylov

��� � � \��3� ��� �p&�	��
������ 	�� &"��� � �}\�
�
 ��� 	���� �p&�� \���� ¶����
subspace. In this case, � D minimizes the function

� <N� = � <N� b ��<o� # ¨©� = � <o� # ¨©� = =
over all vectors � in the affine Krylov subspace

� � M � D <V� b ���B� b + � =R��� � M ����� 9!� � b + � �S� b �7� b + � �,¬*¬,¬T� <V� b �>= D @�B � b + � � �
in which

+ � �! }¨��Q� � is the initial residual with respect to the original equations �Q���! ,
and � b + � is the residual with respect to the normal equations � b �7� � � b . However,
observe that

� <o� =R� <V� <o��#Z¨©� =T�S� <N��#7¨©� = =R�z§* R¨��Q�0§ «« ¬
Therefore, CGNR produces the approximate solution in the above subspace which has the
smallest residual norm with respect to the original linear system �Q� � . The difference
with the GMRES algorithm seen in Chapter 6, is the subspace in which the residual norm
is minimized.

���
	���
���� ���#�
Table 8.1 shows the results of applying the CGNR algorithm with no pre-

conditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 300 4847 0.23E+02 0.62E+00
F3D 300 23704 0.42E+00 0.15E+00
ORS 300 5981 0.30E+02 0.60E-02

��	���� � ���#�
A test run of CGNR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The method
failed to converge in less than 300 steps for all three problems. Failures of this type, char-
acterized by very slow convergence, are rather common for CGNE and CGNR applied to
problems arising from partial differential equations. Preconditioning should improve per-
formance somewhat but, as will be seen in Chapter 10, normal equations are also difficult
to precondition.

�! ��! #" ��&)9?0

A similar reorganization of the CG algorithm is possible for the system (8.3) as well.
Applying the CG algorithm directly to (8.3) and denoting by � 5 the conjugate directions,
the actual CG iteration for the

´
variable would be as follows:

	
 � � � < + � � + � =���<N�X� b � � ��� � =�� < + � � + � =���<V� b � � �S� b � � =	 ´ �
� B � � ´ � M
 � � �
	 + �
� B � � + � ¨
 � �X� b � �
	 � � � � < + �
� B � + �
� B =
��< + � � + � =

¶���� � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
	 � �
� B � � + �
� B M � � � � .

Notice that an iteration can be written with the original variable � 5 �a��� M � b < ´ 5 ¨ ´ � =
by introducing the vector � 5 ��� b � 5 . Then, the residual vectors for the vectors � 5 and´ 5 are the same. No longer are the � 5 vectors needed because the � 5 ’s can be obtained as
� �
� B � ��� b + �
� B M � � � � . The resulting algorithm described below, the Conjugate Gradient
for the normal equations (CGNE), is also known as Craig’s method.

�������n�	�-�w��

��� ��� ��� �m��� � �,� ��������� �	��
��'�
�
1. Compute

+ � �¢ R¨��Q� � , � � ��� b + � .
2. For Sª� - � / �*¬*¬,¬T� until convergence Do:
3.
 5ª� < + 5 � + 5 =
��< � 5/��� 5 =
4. � 5 � B ��� 5 M
 5�� 5
5.

+ 5 � B � + 5 ¨
 5V��� 5
6. � 5 � < + 5 � B � + 5 � B =���< + 5 � + 5 =
7. � 5 � B �¢� b + 5 � B M � 5 � 5
8. EndDo

We now explore the optimality properties of this algorithm, as was done for CGNR.
The approximation

´ D related to the variable � D by � D �a� bi´ D is the actual ± -th CG
approximation for the linear system (8.3). Therefore, it minimizes the energy norm of the
error on the Krylov subspace � D . In this case,

´ D minimizes the function
� < ´ = � <V�7� b < ´ # ¨ ´ =T� < ´ # ¨ ´ = =

over all vectors
´

in the affine Krylov subspace,´ � M � D <V�7� b � + � =�� ´ � M ����� 9 � + � �S�X� b + � �*¬*¬,¬ � <N�7� b = D @�B + � �%¬
Notice that

+ � �¢ R¨��7� bc´ � �� R¨©�7� � . Also, observe that
� < ´ =�� <N� b < ´ #2¨ ´ = �B� b < ´ #]¨ ´ = =R�z§G��#Z¨©�ª§ «« �

where ����� bc´ . Therefore, CGNE produces the approximate solution in the subspace

��� M � b � D <N�X� b � + � =^����� M � D <V� b ���S� b + � =
which has the smallest 2-norm of the error. In addition, note that the subspace �!� M� D <N� b � �S� b + � = is identical with the subspace found for CGNR. Therefore, the two meth-
ods find approximations from the same subspace which achieve different optimality prop-
erties: minimal residual for CGNR and minimal error for CGNE.

��� � ���������?	4M �p\Q� � & ��
r\�����	;
 � ¶��p·
�ª�8� �v�c�����]���o��� ���]���w�i�Z� �
�u���

Now consider the equivalent system% & �� b (*) % +
�) � % -)

with
+ �! �¨©�Q� . This system can be derived from the necessary conditions applied to the

constrained least-squares problem (8.6–8.7). Thus, the 2-norm of ¨ + ���Q� is minimized
implicitly under the constraint � b + � -

. Note that � does not have to be a square matrix.
This can be extended into a more general constrained quadratic optimization problem

as follows:

minimize
� <o� = � /0 <N�7� �S� =(¨ <o���B = £N¤ [­ ¤ ¦

subject to � b ���	�4¬ £N¤ [­ ��¦
The necessary conditions for optimality yield the linear system% � �

� b () % �
) � %
�) £N¤ [µ ��¦

in which the names of the variables
+ �I� are changed into � �
 for notational convenience.

It is assumed that the column dimension of � does not exceed its row dimension. The
Lagrangian for the above optimization problem is

� <o� �
 =�� /0 <V�Q���I� =^¨ <o� �> = M <
 � <�� b �v¨
� = =
and the solution of (8.30) is the saddle point of the above Lagrangian. Optimization prob-
lems of the form (8.28–8.29) and the corresponding linear systems (8.30) are important and
arise in many applications. Because they are intimately related to the normal equations, we
discuss them briefly here.

In the context of fluid dynamics, a well known iteration technique for solving the linear
system (8.30) is Uzawa’s method, which resembles a relaxed block SOR iteration.

��� � �n� �D�w��

������� ��� � ��� � ��� � ��
�� �
1. Choose �
� �
 �
2. For � � - � / �*¬,¬*¬T� until convergence Do:
3. ��� � B ��� @�B <P]¨
�
 � =
4.

� � B �
 � M � <�� b ��� � B ¨
� =

5. EndDo

The algorithm requires the solution of the linear system

�7� � � B �¢ R¨��
 � £N¤ [µE¥K¦
at each iteration. By substituting the result of line 3 into line 4, the � � iterates can be

¶���� � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
eliminated to obtain the following relation for the

� ’s,

� � B �
 � M � # � b � @�B <V R¨��
 � =ª¨�� %
which is nothing but a Richardson iteration for solving the linear system

� b � @�B �
 � � b � @�B R¨��4¬ £N¤ [µ/­/¦
Apart from a sign, this system is the reduced system resulting from eliminating the � vari-
able from (8.30). Convergence results can be derived from the analysis of the Richardson
iteration.

� � � � � ���w� � ���#�
Let � be a Symmetric Positive Definite matrix and � a matrix of

full rank. Then � �	� b � @�B � is also Symmetric Positive Definite and Uzawa’s algorithm
converges, if and only if - ² ��² 0& D�EAF <���= ¬ £N¤ [µ/µ/¦
In addition, the optimal convergence parameter � is given by

� ����� � 0& D 5 I <���= M & D�EAF <���= ¬
�����	��
 �

The proof of this result is straightforward and is based on the results seen in
Example 4.1.

It is interesting to observe that when �2� -
and � is Symmetric Positive Definite, then

the system (8.32) can be regarded as the normal equations for minimizing the � @�B -norm
of (¨ �
 . Indeed, the optimality conditions are equivalent to the orthogonality conditions<P]¨
�
 � � � = (
� � � - ��� � �
which translate into the linear system � b � @�B �
 � � b � @�B . As a consequence, the prob-
lem will tend to be easier to solve if the columns of � are almost orthogonal with respect
to the � @�B inner product. This is true when solving the Stokes problem where � represents
the discretization of the gradient operator while � b discretizes the divergence operator,
and � is the discretization of a Laplacian. In this case, if it were not for the boundary
conditions, the matrix � b � @�B � would be the identity. This feature can be exploited in de-
veloping preconditioners for solving problems of the form (8.30). Another particular case
is when � is the identity matrix and �Q� -

. Then, the linear system (8.32) becomes the sys-
tem of the normal equations for minimizing the 2-norm of c¨ �
 . These relations provide
insight in understanding that the block form (8.30) is actually a form of normal equations
for solving �

 �! in the least-squares sense. However, a different inner product is used.
In Uzawa’s method, a linear system at each step must be solved, namely, the system

(8.31). Solving this system is equivalent to finding the minimum of the quadratic function

minimize
� � <o��= � /0 <V�Q� �S� =�¨ <N� �B]¨��
 � =G¬ £N¤ [µ $�¦

Apart from constants,
� � <N� = is the Lagrangian evaluated at the previous

iterate. The

solution of (8.31), or the equivalent optimization problem (8.34), is expensive. A common
alternative replaces the � -variable update (8.31) by taking one step in the gradient direction

��� � ���������?	4M �p\Q� � & ��
r\�����	;
 � ¶��3�
for the quadratic function (8.34), usually with fixed step-length � . The gradient of

� � <o��= at
the current iterate is �Q� ��¨ <P R¨
�
 � = . This results in the Arrow-Hurwicz Algorithm.

��� � �n� �D�w��

��� ��� �
�� � � ��� � ����� � � � � � ��� � ��� � ��
 �
1. Select an initial guess ��� �
 � to the system (8.30)
2. For � � - � / �*¬,¬*¬T� until convergence Do:
3. Compute ��� � B ����� M � <V R¨��Q����¨
�
 � =
4. Compute

� � B �
 � M � <�� b ��� � B ¨
� =

5. EndDo

The above algorithm is a block-iteration of the form% & (
¨ � � b &) % � � � B

� � B)¢�
% & ¨��>� ¨�� �(&) % � �

�) M % �G ¨ � �) ¬
Uzawa’s method, and many similar techniques for solving (8.30), are based on solving

the reduced system (8.32). An important observation here is that the Schur complement
matrix �

� � b � @�B � need not be formed explicitly. This can be useful if this reduced
system is to be solved by an iterative method. The matrix � is typically factored by a
Cholesky-type factorization. The linear systems with the coefficient matrix � can also be
solved by a preconditioned Conjugate Gradient method. Of course these systems must then
be solved accurately.

Sometimes it is useful to “regularize” the least-squares problem (8.28) by solving the
following problem in its place:

minimize
� <o��= � /0 <V�Q� �S� =�¨ <N� �B �= M	� <�

 �
 =

subject to � b ��� �
in which

�
is a scalar parameter. For example,
 can be the identity matrix or the matrix

� b � . The matrix resulting from the Lagrange multipliers approach then becomes% � �
� b �
) ¬

The new Schur complement matrix is

��� �
�¨�� b � @�B �v¬
���
	���
���� ���t¶

In the case where
g�	� b � , the above matrix takes the form

� �	� b < � & ¨�� @�B�=��u¬
Assuming that � is SPD, � is also positive definite when

�
� /& D 5 I <V�>= ¬
However, it is also negative definite for

� ! /& D�EAF <V�>= �

¶��r¶ � ~���� &�	�
��
�	9&^~ \�����
�	����p&�	���&ª\³&^~�	��}\�
�
�����	���� �p&^� \����
a condition which may be easier to satisfy on practice.

�����Z�5�w�t�]�ª�

1 Derive the linear system (8.5) by expressing the standard necessary conditions for the problem
(8.6–8.7).

2 It was stated in Section 8.2.2 that when � `������ �
	 e�� for
 e������
�
�
���
, the vector � defined in

Algorithm 8.3 is equal to � ` ��� .��� What does this become in the general situation when � `������ �
	��e�� ?� � Is Cimmino’s method still equivalent to a Richardson iteration? !� Show convergence results similar to those of the scaled case.

3 In Section 8.2.2, Cimmino’s algorithm was derived based on the Normal Residual formulation,
i.e., on (8.1). Derive an “NE” formulation, i.e., an algorithm based on Jacobi’s method for (8.3).

4 What are the eigenvalues of the matrix (8.5)? Derive a system whose coefficient matrix has the
form "$#&%(' e %*) %�+ ``,� -) �
and which is also equivalent to the original system

`Rd e�h
. What are the eigenvalues of

".#&%('
?

Plot the spectral norm of

"$#&%('
as a function of

%
.

5 It was argued in Section 8.4 that when / e10
the system (8.32) is nothing but the normal

equations for minimizing the
`3254

-norm of the residual
� e�h76 "98

.��� Write the associated CGNR approach for solving this problem. Find a variant that requires
only one linear system solution with the matrix

`
at each CG step [Hint: Write the CG

algorithm for the associated normal equations and see how the resulting procedure can be
reorganized to save operations]. Find also a variant that is suitable for the case where the
Cholesky factorization of

`
is available.� � Derive a method for solving the equivalent system (8.30) for the case when / e:0 and then

for the general case wjen /;�e<0 . How does this technique compare with Uzawa’s method?

6 Consider the linear system (8.30) in which / e=0 and

"
is of full rank. Define the matrix> e + 6 ".#?" � "�' 2�4 " � �

��� Show that
>

is a projector. Is it an orthogonal projector? What are the range and null spaces
of
>

?� � Show that the unknown
d

can be found by solving the linear system> ` > dWe > h�� £N¤ [µ ./¦
in which the coefficient matrix is singular but the system is consistent, i.e., there is a nontriv-
ial solution because the right-hand side is in the range of the matrix (see Chapter 1). !� What must be done toadapt the Conjugate Gradient Algorithm for solving the above linear
system (which is symmetric, but not positive definite)? In which subspace are the iterates
generated from the CG algorithm applied to (8.35)?

	���	�
 � � � 	?����� � �}\�&�	?� ¶��;�
� � Assume that the QR factorization of the matrix

"
is computed. Write an algorithm based on

the approach of the previous questions for solving the linear system (8.30).

7 Show that Uzawa’s iteration can be formulated as a fixed-point iteration associated with the
splitting � e�� 6��

with

� e % ` -6 �
" � +) ���ze % - 6 "- +) �

Derive the convergence result of Corollary 8.1 .

8 Show that each new vector iterate in Cimmino’s method is such thatd
	���
ue�d�� � ` 254
 � > �&� �
where

> �
is defined by (8.24).

9 In Uzawa’s method a linear system with the matrix
`

must be solved at each step. Assume that
these systems are solved inaccurately by an iterative process. For each linear system the iterative
process is applied until the norm of the residual

����� 4 e # h�6 "98 � ' 6°`Rd ��� 4 is less than a
certain threshold � ��� 4 .� � Assume that � is chosen so that (8.33) is satisfied and that � � converges to zero as � tends to

infinity. Show that the resulting algorithm converges to the solution.� � Give an explicit upper bound of the error on

8 �
in the case when � � is chosen of the form

� e
% �

, where

%
� �

.

10 Assume � h36�`Rd �
	 is to be minimized, in which
`

is
�����

with
�����

. Let
d��

be the
minimizer and

� e h36�`Rd �
. What is the minimizer of �

# h � % � ' 6 `^d � 	 , where

%
is an

arbitrary scalar?

NOTES AND REFERENCES. Methods based on the normal equations have been among the first to
be used for solving nonsymmetric linear systems [130, 58] by iterative methods. The work by Bjork
and Elfing [27], and Sameh et al. [131, 37, 36] revived these techniques by showing that they have
some advantages from the implementation point of view, and that they can offer good performance
for a broad class of problems. In addition, they are also attractive for parallel computers. In [174], a
few preconditioning ideas for normal equations were described and these will be covered in Chapter
10. It would be helpful to be able to determine whether or not it is preferable to use the normal
equations approach rather than the “direct equations” for a given system, but this may require an
eigenvalue/singular value analysis.

It is sometimes argued that the normal equations approach is always better, because it has a
robust quality which outweighs the additional cost due to the slowness of the method in the generic
elliptic case. Unfortunately, this is not true. Although variants of the Kaczmarz and Cimmino algo-
rithms deserve a place in any robust iterative solution package, they cannot be viewed as a panacea. In
most realistic examples arising from Partial Differential Equations, the normal equations route gives
rise to much slower convergence than the Krylov subspace approach for the direct equations. For
ill-conditioned problems, these methods will simply fail to converge, unless a good preconditioner is
available.

� � � � � � �

�

����	������ � $4

$%����	��
$4

	�� ��

$%�����

�(U ;S'K8L3KJL'Q;S'*)w5R)S;S'K8El�A�A<)>),1w?H1|s/+-)SF/? 893KA^=,'*.EsG;_),+tA^./+D)Z{i),U U4:Y8L341*l4)Bl|;S'*)B84+D)I;I? M=B.EU U OGj/;B'*)IO7./+D)].EU ULU ?��S),U O^;_8XAB3��r),+p:P+t895 ABU 8K{�=B8L1GF*)*+-J/),1*=>)]:D8E+is/+t8964U),5^Ac{^'/? =,'./+Y? A_)X:P+t8L5!;oO4s/? =>.4U .4s4s4U ? =>.G;I? 891KARAS3*=,'m.*A	�p3/? l l/O41*.45Z? =BA284+ª),U)>=S;S+t8L1/? =Wl4)IF/? =>)Aq?H5Q34U .K;q? 8L1E[��k+-)>=B8L1*l9? ;I? 891/?H1KJ�? AW.
�S)SO�?H1KJL+-)>l9?),1G;Q:Y84+R;S'*)mAB3*=B=>)BA_A|8,:��c+HO4U 8*FAS346KABs*.,=B)Q5R)S;S'K8El�A�?H1R;B'*)BA<)R.Es4s4U ? =>.G;I? 891KA>[�&('/? A0=*'*.EsG;_),+pl9? A<=*3KA_A<)BAª;S'*)Qs,+-)>=B8L1GMl9? ;I? 891*)>lWF*),+tAI? 8L1KAR8,:};B'*)�? ;_),+-.K;q? F*)W5])I;B'K8El�AR.EU +-)>.*l/OWA_)>),1Ejk643G;({(? ;B'K893G;26�)G?H1KJASs�)>=G? �L=�.46/893G;^;S'*) s*./+H;I? =,34U ./+is/+-)>=B891*l9? ;I? 891*),+tA73KA_)>l�[r&�'*)7AP;<.41*l4./+-lus/+-)>=S8L1*l9? M;q? 8L1/?�1KJ7;_)>=,'41/? @%3*)BAi{�?�U U%6/)Z=B8*F*),+-)>l ?�12;B'*)X1*)IyK;0=,'*.4sG;<),+N[

�o�����Z�����:�Z���-���
�v�K�

Lack of robustness is a widely recognized weakness of iterative solvers, relative to direct
solvers. This drawback hampers the acceptance of iterative methods in industrial applica-
tions despite their intrinsic appeal for very large linear systems. Both the efficiency and
robustness of iterative techniques can be improved by using preconditioning. A term intro-
duced in Chapter 4, preconditioning is simply a means of transforming the original linear
system into one which has the same solution, but which is likely to be easier to solve with
an iterative solver. In general, the reliability of iterative techniques, when dealing with
various applications, depends much more on the quality of the preconditioner than on the
particular Krylov subspace accelerators used. We will cover some of these precondition-
ers in detail in the next chapter. This chapter discusses the preconditioned versions of the
Krylov subspace algorithms already seen, using a generic preconditioner.

¶�� �

� � � ��
�	 � \����^� &�� \�� 	�� � \��1� � � �p&�	���
������ 	�� & ¶�� �
���7���2���C�v�t���D�f�n� � �2���G� � �7���u� �m�R�8�v�o�]�X�

�u���

Consider a matrix � that is symmetric and positive definite and assume that a precondi-
tioner � is available. The preconditioner � is a matrix which approximates � in some
yet-undefined sense. It is assumed that � is also Symmetric Positive Definite. From a
practical point of view, the only requirement for � is that it is inexpensive to solve linear
systems �g�¡� . This is because the preconditioned algorithms will all require a linear
system solution with the matrix � at each step. Then, for example, the following precon-
ditioned system could be solved:

� @�BK�Q����� @�B* £ �9[�¥K¦
or

��� @�B ´ �! �� ����� @�B ´ ¬ £ �9[­�¦
Note that these two systems are no longer symmetric in general. The next section considers
strategies for preserving symmetry. Then, efficient implementations will be described for
particular forms of the preconditioners.

�! "! $ �!A!0,*101A�� 2 9�&P*
	>B BD0 ;>A�	

When � is available in the form of an incomplete Cholesky factorization, i.e., when

� � � � b �
then a simple way to preserve symmetry is to “split” the preconditioner between left and
right, i.e., to solve

� @�BK� � @ b ´ � � @�BK �� ��� � @ b ´ � £ �9[µ�¦
which involves a Symmetric Positive Definite matrix.

However, it is not necessary to split the preconditioner in this manner in order to
preserve symmetry. Observe that � @�B � is self-adjoint for the � -inner product,<N� �
 =�� � <
�g� �
 =�� <N� ���
 =
since <
� @�BK�Q���
 = � � <V�Q� �
 =^� <N� �S�
 =^� <N� ��� <
� @�BK�>=
 =R� <N� ��� @�BG�
 = � ¬
Therefore, an alternative is to replace the usual Euclidean inner product in the Conjugate
Gradient algorithm by the � -inner product.

If the CG algorithm is rewritten for this new inner product, denoting by
+ � �! 0¨��7� �

the original residual and by 2 � ��� @�B + � the residual for the preconditioned system, the
following sequence of operations is obtained, ignoring the initial step:

���
 � � � < 2 � � 2 � =�� ��<
� @�B ��� � ��� � =����� � �
� B � ��� � M
 � � �

¶�� � � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
� � + �
� B � � + � ¨
 � ��� � and 2 �
� B � ��� @�B + �
� B� � � � � � < 2 �
� B � 2 �
� B = � ��<�2 � � 2 � = �
� � � �
� B � � 2 �
� B M � � � �

Since <�2 � � 2 � = � � < + � � 2 � = and <
� @�B ��� � ��� � = � � <N��� � � � � = , the � -inner products do
not have to be computed explicitly. With this observation, the following algorithm is ob-
tained.

�������n�	�-�w��
 ·��#��� � ��� � � 	 � � � � � 	 � � � � 	�� � � � � � � �,��� � � 	 �
1. Compute

+ � � �! R¨©�7� � , 2 � ��� @�B + � , and � � � � 2 �
2. For �m� - � / �*¬*¬,¬ , until convergence Do:
3.
 � � � < + � � 2 � =���<N��� � � � � =
4. � �
� B � ��� � M
 � � �
5.

+ �
� B � � + � ¨
 � ��� �
6. 2 �
� B � � � @�B + �
� B
7. � � � � < + �
� B � 2 �
� B =
��< + � � 2 � =
8. � �
� B � � 2 �
� B M � � � �
9. EndDo

It is interesting to observe that � @�B � is also self-adjoint with respect to the � inner-
product. Indeed,<
� @�B �Q���
 = (� <V� � @�B �Q���
 =^� <o� �B� � @�B �
 =�� <o����� @�B �
 = (
and a similar algorithm can be written for this dot product (see Exercise 1).

In the case where � is a Cholesky product � � � � b
, two options are available,

namely, the split preconditioning option (9.3), or the above algorithm. An immediate ques-
tion arises about the iterates produced by these two options: Is one better than the other?
Surprisingly, the answer is that the iterates are identical. To see this, start from Algorithm
9.1 and define the following auxiliary vectors and matrix from it:

�� � � � b � �´ � � � b � �
�+ � � � b 2 � � � @�B + ���¢� � @�B � � @ b ¬

Observe that < + � � 2 � =�� < + � � � @ b � @�B + � =�� < � @�B + � � � @�B + � =^� < �+ � � �+ � =K¬
Similarly, <N��� � ��� � =R� <N� � @ b �� � � � @ b �� � =�< � @�B � � @ b �� � � �� � =^� < �� �� � � �� � =G¬
All the steps of the algorithm can be rewritten with the new variables, yielding the follow-
ing sequence of operations:

� �
 � � � < �+ � � �+ � =���< �� �� � � �� � =� � ´ �
� B � � ´ � M
 � �� �

� � � ��
�	 � \����^� &�� \�� 	�� � \��1� � � �p&�	���
������ 	�� & ¶�� �
� � �+ �
� B � � �+ � ¨
 � �� �� �
� � � � � � < �+ �
� B � �+ �
� B =���< �+ � � �+ � =� � �� �
� B � � �+ �
� B M � � �� � .

This is precisely the Conjugate Gradient algorithm applied to the preconditioned system
�� ´ � � @�B

where
´ � � b � . It is common when implementing algorithms which involve a right pre-

conditioner to avoid the use of the
´

variable, since the iteration can be written with the
original � variable. If the above steps are rewritten with the original � and � variables, the
following algorithm results.

��� � �n� �D�w��
 ·��t¶�� � � � � � ��� � � 	 � � � � � 	 ��� � � 	�� � � � � � � �,��� � � 	 �
1. Compute

+ � � �¢ ^¨��Q� � ; �+ � � � @�B + � ; and � � � � � @ b �+ � .
2. For �n� - � / �,¬*¬,¬ , until convergence Do:
3.
 � � � < �+ � � �+ � =
��<N��� � ��� � =
4. � �
� B � ��� � M
 � � �
5.

�+ �
� B � � �+ � ¨
 � � @�B ��� �
6. � � � � < �+ �
� B � �+ �
� B =���< �+ � � �+ � =
7. � �
� B � � � @ b �+ �
� B M � � � �
8. EndDo

The iterates � � produced by the above algorithm and Algorithm 9.1 are identical, provided
the same initial guess is used.

Consider now the right preconditioned system (9.2). The matrix � � @�B is not Hermi-
tian with either the Standard inner product or the � -inner product. However, it is Hermi-
tian with respect to the � @�B -inner product. If the CG-algorithm is written with respect to
the

´
-variable and for this new inner product, the following sequence of operations would

be obtained, ignoring again the initial step:
���
 � � � < + � � + � = � � � ��<N��� @�B � � ��� � = � � ���� ´ �
� B � � ´ � M
 � � �
� � + �
� B � � + � ¨
 � ��� @�B � �
� � � � � � < + �
� B � + �
� B = � � � ��< + � � + � = � � �� � � �
� B � � + �
� B M � � � � .

Recall that the
´

vectors and the � vectors are related by ��� � @�B ´ . Since the
´

vectors
are not actually needed, the update for

´ �
� B in the second step can be replaced by � �
� B � �� � M
 � � @�B � � . Then observe that the whole algorithm can be recast in terms of � � �
� @�B � � and 2 � ��� @�B + � .

���
 � � � < 2 � � + � =���<N� � � ��� � =��� � �
� B � ��� � M
 � � �
� � + �
� B � � + � ¨
 � � � � and 2 �
� B ��� @�B + �
� B� � � � � � <�2 �
� B � + �
� B =
��< 2 � � + � =

¶���� � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
� � � �
� B � � 2 �
� B M � � � � .
Notice that the same sequence of computations is obtained as with Algorithm 9.1, the

left preconditioned Conjugate Gradient. The implication is that the left preconditioned CG
algorithm with the � -inner product is mathematically equivalent to the right precondi-
tioned CG algorithm with the � @�B -inner product.

�! #"! #" 0���� 2 ��2#019+; 2#B �+6,01BD019+;3'3; 2 7:9 *

When applying a Krylov subspace procedure to a preconditioned linear system, an opera-
tion of the form

� � � ��� @�BG� �
or some similar operation is performed at each step. The most natural way to perform this
operation is to multiply the vector � by � and then apply � @�B to the result. However,
since � and � are related, it is sometimes possible to devise procedures that are more
economical than this straightforward approach. For example, it is often the case that

���¢��¨��
in which the number of nonzero elements in � is much smaller than in � . In this case, the
simplest scheme would be to compute � ��� @�B � � as

� ��� @�B � � ��� @�B <
� M � = � � � M � @�B � � ¬
This requires that � be stored explicitly. In approximate

���
factorization techniques, �

is the matrix of the elements that are dropped during the incomplete factorization. An
even more efficient variation of the preconditioned Conjugate Gradient algorithm can be
derived for some common forms of the preconditioner in the special situation where � is
symmetric. Write � in the form

�¢�	� �2¨ � ¨ � b £ �L[$�¦
in which ¨ � is the strict lower triangular part of � and � � its diagonal. In many cases,
the preconditioner � can be written in the form

� � <
� ¨ � =�� @�B <�� ¨ � b = £ �L[./¦
in which � is the same as above and � is some diagonal, not necessarily equal to � � .
For example, in the SSOR preconditioner with ��� / , � �

� � . Also, for certain types
of matrices, the IC(0) preconditioner can be expressed in this manner, where � can be
obtained by a recurrence formula.

Eisenstat’s implementation consists of applying the Conjugate Gradient algorithm to
the linear system

�� ´ � <
� ¨ � = @�B* £ �L[1/¦
with

�� � <
� ¨ � = @�BK��<
� ¨ � b =A@�B ��� � <���¨ � b = @�B ´ ¬ £ �L[2/¦

� � � ��
�	 � \����^� &�� \�� 	�� � \��1� � � �p&�	���
������ 	�� & ¶��r·
This does not quite correspond to a preconditioning with the matrix (9.5). In order to pro-
duce the same iterates as Algorithm 9.1, the matrix

�� must be further preconditioned with
the diagonal matrix � @�B . Thus, the preconditioned CG algorithm, Algorithm 9.1, is ac-
tually applied to the system (9.6) in which the preconditioning operation is � @�B � � .
Alternatively, we can initially scale the rows and columns of the linear system and precon-
ditioning to transform the diagonal to the identity. See Exercise 6.

Now note that
��!� <�� ¨ ��= @�B*� <�� ¨ � b = @�B
� <�� ¨ ��= @�B?<
� � ¨ � ¨ � b = <�� ¨ � b =A@�B
� <�� ¨ ��= @�B #�� �Q¨ 0 � M <
� ¨ � = M <
� ¨ � b =�%�<
� ¨ � b = @�B
� <�� ¨ ��= @�B � B <���¨ � b = @�B M <�� ¨ � =A@�B M <
� ¨ � b = @�B��

in which � B � � �7¨ 0 � . As a result,
�� � � <�� ¨ ��= @�B � � M � B <
� ¨ � b = @�B ��� M <�� ¨ � b = @�B � ¬

Thus, the vector � � �� � can be computed by the following procedure:

2 � � <
� ¨ � b = @�B �� � � <
� ¨ � = @�B < � M � B 2 =� � � � M 2 .

One product with the diagonal � can be saved if the matrices � @�B � and � @�B � b
are stored. Indeed, by setting

�
� B � � @�B � B and

�� � � @�B � , the above procedure can be
reformulated as follows.

��� � �n� �D�w��
 ·�� ��� � � � � � � � � � 	 �����	�
�
�

1.
�� � � � @�B �

2. 2 � � < & ¨ � @�B � b = @�B ��
3. � � � < & ¨ � @�B ��= @�B < �� M �

� B 2 =
4. � � � � M 2 .

Note that the matrices � @�B � and � @�B � b are not the transpose of one another, so we
actually need to increase the storage requirement for this formulation if these matrices
are stored. However, there is a more economical variant which works with the matrix
� @�B�� « � � @�B�� « and its transpose. This is left as Exercise 7.

Denoting by ��� <��"= the number of nonzero elements of a sparse matrix � , the total
number of operations (additions and multiplications) of this procedure is ® for (1),

0 �
��< � =
for (2),

0 ��� <�� b = M 0 ® for (3), and ® for (4). The cost of the preconditioning operation by
� @�B , i.e., ® operations, must be added to this, yielding the total number of operations:

� � � ��® M 0 ����< � = M 0 ���?<�� b = M 0 ® M ® M ®
���E® M 0 <�� � <���= M � � < � b = M ®�=
���E® M 0 � � <N�>=K¬

For the straightforward approach,
0 � � <N�,= operations are needed for the product with � ,

¶���� � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
0 ���?<���= for the forward solve, and ® M 0 � � <�� b = for the backward solve giving a total of0 � ��<N�>= M 0 � ��<�� = M ® M 0 � ��<�� b =�� 3 � ��<N�>=(¨°®(¬
Thus, Eisenstat’s scheme is always more economical, when � � is large enough, although
the relative gains depend on the total number of nonzero elements in � . One disadvantage
of this scheme is that it is limited to a special form of the preconditioner.

���
	��
 � ��·��#�
For a 5-point finite difference matrix, � � <N�>= is roughly

� ® , so that with
the standard implementation / � ® operations are performed, while with Eisenstat’s imple-
mentation only / �9® operations would be performed, a savings of about B� . However, if the
other operations of the Conjugate Gradient algorithm are included, for a total of about / - ®operations, the relative savings become smaller. Now the original scheme will require

0�� ®
operations, versus

0 �E® operations for Eisenstat’s implementation.

�X�X���Q�f�N�v�H���D�f�n� � �m���X�ª�
�v���

In the case of GMRES, or other nonsymmetric iterative solvers, the same three options for
applying the preconditioning operation as for the Conjugate Gradient (namely, left, split,
and right preconditioning) are available. However, there will be one fundamental difference
– the right preconditioning versions will give rise to what is called a flexible variant, i.e.,
a variant in which the preconditioner can change at each step. This capability can be very
useful in some applications.

�! ��! $ 6,0��.; -��+A!0 �+7:9?4?2 ;>2H7:9?014P&)BDA!0,*

As before, define the left preconditioned GMRES algorithm, as the GMRES algorithm
applied to the system,

� @�BK�Q����� @�B* �¬ £ �L[¤ ¦
The straightforward application of GMRES to the above linear system yields the following
preconditioned version of GMRES.

�������n�	�-�w��
 ·�� ��� �m���X�ª� � � ��
 � ��� � � �1� � � 	 � � � � � 	���	 �
1. Compute

+ ����� @�B <V]¨��Q�
� = , �°�z§ + � §K« and � B � + � �%�
2. For �m� / �*¬,¬*¬T�S± Do:
3. Compute � � ��� @�B � � �
4. For Sª� / �,¬*¬,¬T� � , Do:
5 . � 5 + � � � < � � � 5 =
6. � � � � ¨�� 5 + � � 5

� � � ��
�	 � \����^� &�� \�� 	�� �

�	?� ¶��3�
7. EndDo
8. Compute � �
� B + � ��§ � §K« and � �
� B � � � � �
� B + �9. EndDo

10. Define
� D � ��� � B �*¬*¬,¬T� � D�� , �� D � � � 5 + � � B	� 5 � �
� B�
 B	� � � D

11. Compute

 D � �
��� ��� 9 � § � Q B ¨��� D
 §K« , and � D ���
� M � D
 D

12. If satisfied Stop, else set ��� � ��� D and GoTo 1

The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov
subspace �

���
9 � + �
��� @�BG� + �.�*¬*¬,¬T� < � @�BK�>= D @�B + � �L¬

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonalized
is obtained from the previous vector in the process. All residual vectors and their norms
that are computed by the algorithm correspond to the preconditioned residuals, namely,
2 D � � @�B <V Z¨¡�Q� D = , instead of the original (unpreconditioned) residuals Z¨ �Q� D . In
addition, there is no easy access to these unpreconditioned residuals, unless they are com-
puted explicitly, e.g., by multiplying the preconditioned residuals by � .This can cause
some difficulties if a stopping criterion based on the actual residuals, instead of the precon-
ditioned ones, is desired.

Sometimes a Symmetric Positive Definite preconditioning � for the nonsymmetric
matrix � may be available. For example, if � is almost SPD, then (9.8) would not take ad-
vantage of this. It would be wiser to compute an approximate factorization to the symmetric
part and use GMRES with split preconditioning. This raises the question as to whether or
not a version of the preconditioned GMRES can be developed, which is similar to Algo-
rithm 9.1, for the CG algorithm. This version would consist of using GMRES with the
� -inner product for the system (9.8).

At step � of the preconditioned GMRES algorithm, the previous � � is multiplied by �
to get a vector

� � ��� � � ¬ £ �9[��¦
Then this vector is preconditioned to get

2 � ��� @�B � � ¬ £ �L[�¥���¦
This vector must be � -orthogonalized against all previous � 5 ’s. If the standard Gram-
Schmidt process is used, we first compute the inner products

� 5 � � <�2 � � � 5 = � � <
� 2 � � � 5 =�� < � � � � 5 = �+S0� / �,¬*¬*¬ � � � £ �L[�¥,¥K¦
and then modify the vector 2 � into the new vector

�2 � � � 2 � ¨ �
 5�� B � 5 � � 5I¬ £ �L[�¥>­�¦
To complete the orthonormalization step, the final

�2 � must be normalized. Because of the
orthogonality of

�2 � versus all previous � 5 ’s, observe that< �2 � � �2 � = � � <�2 � � �2 � = � � < � @�B � � � �2 � = � � < � � � �2 � =K¬ £ �L[�¥>µ�¦

¶��r¶ � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
Thus, the desired � -norm could be obtained from (9.13), and then we would set

� �
� B + � � � < �2 � � � � = B�� « and � �
� B � �2 � � � �
� B + � ¬ £ �L[�¥ $�¦
One serious difficulty with the above procedure is that the inner product < �2 � � �2 � = � as

computed by (9.13) may be negative in the presence of round-off. There are two remedies.
First, this � -norm can be computed explicitly at the expense of an additional matrix-vector
multiplication with � . Second, the set of vectors � � 5 can be saved in order to accumulate
inexpensively both the vector

�2 � and the vector � �2 � , via the relation

� �2 � � � � ¨ �
 5�� B � 5 � � � 5 ¬
A modified Gram-Schmidt version of this second approach can be derived easily. The
details of the algorithm are left as Exercise 12.

�! ��! #" A+2 &)=!; -��+A!0 �+7:9?4?2 ;>2H7:9?014P&)BDA!0,*

The right preconditioned GMRES algorithm is based on solving

��� @�B ´ �¢ �� ´ ���g�i¬ £ �L[�¥A./¦
As we now show, the new variable

´
never needs to be invoked explicitly. Indeed, once

the initial residual X¨¡�7�
�f� 7¨ � � @�B ´ � is computed, all subsequent vectors of the
Krylov subspace can be obtained without any reference to the

´
-variables. Note that

´ � is
not needed at all. The initial residual for the preconditioned system can be computed from+ �°� �¨��Q��� , which is the same as �¨���� @�B ´ � . In practice, it is usually ��� that is
available, not

´ � . At the end, the
´

-variable approximate solution to (9.15) is given by,

´ D � ´ � M
D
 5�� B � 5��?5

with
´ � � �g� � . Multiplying through by � @�B yields the desired approximation in terms

of the � -variable,

� D ���
� M � @�B � D
 5�� B � 5��?5�� ¬
Thus, one preconditioning operation is needed at the end of the outer loop, instead of at the
beginning in the case of the left preconditioned version.

�������n�	�-�w��
 ·�� ��� �m���X�ª� � � ��
 ��� �
 � � ��� � � 	 � � � � � 	��
	 �
1. Compute

+ � �¢ R¨��Q� � , ����§ + � § « , and � B � + � � �
2. For �m� / �*¬,¬*¬T�S± Do:
3. Compute � � ����� @�B � �
4. For Sª� / �,¬*¬,¬T� � , Do:
5. � 5 + � � � < � � � 5 =
6. � � � � ¨�� 5 + � � 5
7. EndDo

� � � ��
�	 � \����^� &�� \�� 	�� �

�	?� ¶��;�
8. Compute � �
� B + � ��§ � §K« and � �
� B � � � � �
� B + �
9. Define

� D � � � � B �,¬*¬*¬ � � D�� , �� D �
�
� 5 + � � B	� 5 � �
� B�
 B � � � D10. EndDo

11. Compute

 D � �
��� ��� 9 � § � Q B ¨��� D
 §K« , and � D ���
� M � @�B � D
 D .

12. If satisfied Stop, else set ��� � ��� D and GoTo 1.

This time, the Arnoldi loop builds an orthogonal basis of the right preconditioned
Krylov subspace �

���
9 � + �
�S��� @�B + �.�*¬*¬,¬T� <V� � @�B = D @�B + � �L¬

Note that the residual norm is now relative to the initial system, i.e., 7¨³�7� D , since the
algorithm obtains the residual 2¨��7� D �z Z¨ ��� @�B ´ D , implicitly. This is an essential
difference with the left preconditioned GMRES algorithm.

�! �! � * �+6 2 ;��!A!0 ��7�9)4?2 ; 2 7:9)2#9 &

In many cases, � is the result of a factorization of the form

� � ��� ¬
Then, there is the option of using GMRES on the split-preconditioned system

� @�B � � @�B ´ � � @�B �� ��� � @�B ´ ¬
In this situation, it is clear that we need to operate on the initial residual by

� @�B at the start
of the algorithm and by

� @�B on the linear combination
� D
 D in forming the approximate

solution. The residual norm available is that of
� @�B <V R¨��Q� D = .

A question arises on the differences between the right, left, and split preconditioning
options. The fact that different versions of the residuals are available in each case may
affect the stopping criterion and may cause the algorithm to stop either prematurely or with
delay. This can be particularly damaging in case � is very ill-conditioned. The degree
of symmetry, and therefore performance, can also be affected by the way in which the
preconditioner is applied. For example, a split preconditioner may be much better if �
is nearly symmetric. Other than these two situations, there is little difference generally
between the three options. The next section establishes a theoretical connection between
left and right preconditioned GMRES.

�! ��! �� �+7:B � ' A+2 *F7�9 7 �@A+2 &)=+; ' 9?4 6,0�� ;
�!A!0 ��7�9)4?2 ; 2 7:9)2#9 &

When comparing the left, right, and split preconditioning options, a first observation to
make is that the spectra of the three associated operators � @�B � , � � @�B , and

� @�B � � @�B
are identical. Therefore, in principle one should expect convergence to be similar, although,
as is known, eigenvalues do not always govern convergence. In this section, we compare
the optimality properties achieved by left- and right preconditioned GMRES.

¶�� � � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
For the left preconditioning option, GMRES minimizes the residual norm

§ � @�B R¨ � @�B �Q�0§K« �
among all vectors from the affine subspace

� � M ���D ��� � M � ��� 9 � 2 � ��� @�B � 2 � �,¬*¬*¬ � < � @�B �,= D @�B 2 � � £ �L[�¥A1/¦
in which 2 � is the preconditioned initial residual 2 � � � @�B + � . Thus, the approximate
solution can be expressed as

� D ��� � M � @�B�� D @�B <
� @�BG�>= 2 �
where � D @�B is the polynomial of degree ± ¨ / which minimizes the norm

§ 2 �2¨ � @�B ��� <
� @�B �>= 2 ��§K«
among all polynomials � of degree !¢± ¨ / . It is also possible to express this optimality
condition with respect to the original residual vector

+ � . Indeed,

2 �2¨ � @�BG��� <
� @�BK�>= 2 �W� � @�B � + �7¨���� < � @�BG�,=�� @�B + � � ¬
A simple algebraic manipulation shows that for any polynomial � ,

� <
� @�B �>=�� @�B + � � @�B � <N� � @�B = + � £ �L[�¥A2/¦
from which we obtain the relation

2 � ¨ � @�BG��� <
� @�BK�>= 2 � � � @�B � + � ¨�� � @�B�� <N��� @�B = + � � ¬ £ �L[�¥ ¤ ¦
Consider now the situation with the right preconditioned GMRES. Here, it is necessary

to distinguish between the original � variable and the transformed variable
´

related to �
by ��� � @�B ´ . For the

´
variable, the right preconditioned GMRES process minimizes

the 2-norm of
+ ��]¨�� � @�B ´ where

´
belongs to´ � M � �D � ´ � M � �
� 9 � + � �S� � @�B + �
�*¬,¬*¬ � <N��� @�B�= D @�B + � � £ �L[�¥ �/¦

in which
+ � is the residual

+ ��� Q¨�� � @�B ´ � . This residual is identical to the residual
associated with the original � variable since � @�B ´ � �g�
� . Multiplying (9.19) through to
the left by � @�B and exploiting again (9.17), observe that the generic variable � associated
with a vector of the subspace (9.19) belongs to the affine subspace

� @�B ´ � M � @�B � �D ��� � M � ��� 9 � 2 � ��� @�B � 2 � ¬*¬,¬T� < � @�B �,= D @�B 2 � �%¬
This is identical to the affine subspace (9.16) invoked in the left preconditioned variant. In
other words, for the right preconditioned GMRES, the approximate � -solution can also be
expressed as

� D ����� M � D @�B <N��� @�B = + �%¬
However, now � D @�B is a polynomial of degree ± ¨ / which minimizes the norm

§ + �Q¨©��� @�B � <N� � @�B = + � §K« £ �L[­ �/¦
among all polynomials � of degree !�± ¨ / . What is surprising is that the two quantities
which are minimized, namely, (9.18) and (9.20), differ only by a multiplication by � @�B .
Specifically, the left preconditioned GMRES minimizes � @�B + , whereas the right precon-
ditioned variant minimizes

+
, where

+
is taken over the same subspace in both cases.

� � � � ��	��^� ����	�����
 � ��� &�� ¶�� �
�R� �n� ��� �-��� ��� ·��#�

The approximate solution obtained by left or right preconditioned
GMRES is of the form

� D ����� M � D @�B < � @�BK�>= 2 �X����� M � @�B � D @�B <V� � @�B�= + �
where 2 ��� � @�B + � and � D @�B is a polynomial of degree ±�¨ / . The polynomial � D @�B
minimizes the residual norm §* 2¨¡�Q� D § « in the right preconditioning case, and the pre-
conditioned residual norm § � @�B <V R¨ �Q� D =,§ « in the left preconditioning case.

In most practical situations, the difference in the convergence behavior of the two
approaches is not significant. The only exception is when � is ill-conditioned which could
lead to substantial differences.

� �c� �����w�i���R� ���H� ���m�
�u���

In the discussion of preconditioning techniques so far, it is implicitly assumed that the pre-
conditioning matrix � is fixed, i.e., it does not change from step to step. However, in some
cases, no matrix � is available. Instead, the operation � @�B � is the result of some unspeci-
fied computation, possibly another iterative process. In such cases, it may well happen that
� @�B is not a constant operator. The previous preconditioned iterative procedures will not
converge if � is not constant. There are a number of variants of iterative procedures devel-
oped in the literature that can accommodate variations in the preconditioner, i.e., that allow
the preconditioner to vary from step to step. Such iterative procedures are called “flexible”
iterations. One of these iterations, a flexible variant of the GMRES algorithm, is described
next.

�! �� %$ �F6,0
	 2�� 6,0D&)BDA!0,*

We begin by examining the right preconditioned GMRES algorithm. In line 11 of Algo-
rithm 9.5 the approximate solution � D is expressed as a linear combination of the precon-
ditioned vectors 2 5X� � @�B � 5�� SW� / �,¬*¬*¬ �I± . These vectors are also computed in line 3,
prior to their multiplication by � to obtain the vector � . They are all obtained by applying
the same preconditioning matrix � @�B to the � 5 ’s. As a result it is not necessary to save
them. Instead, we only need to apply � @�B to the linear combination of the � 5 ’s, i.e., to� D
 D in line 11. Suppose now that the preconditioner could change at every step, i.e., that
2 � is given by

2 � ��� @�B� � � ¬
Then it would be natural to compute the approximate solution as

� D ����� M�
 D
 D

¶�� � � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
in which

 D � � 2 B �,¬*¬,¬ � 2 D�� , and

 D is computed as before, as the solution to the least-

squares problem in line 11. These are the only changes that lead from the right precondi-
tioned algorithm to the flexible variant, described below.

�������n�	�-�w��
 ·�������� � ��� ��� � � �m���7�0� � � �m���X�ª� �
1. Compute

+ ���¢ R¨��Q�
� , ����§ + �%§K« , and � B � + � � �
2. For �m� / �*¬,¬*¬T�S± Do:
3. Compute 2 � � � � @�B� � �
4. Compute � � ��� 2 �
5. For Sª� / �,¬*¬,¬T� � , Do:
6. � 5 + � � � < � � � 5 =
7. � � � � ¨�� 5 + � � 5
8. EndDo
9. Compute � �
� B + � �z§ � §K« and � �
� B � � ��� �
� B + �

10. Define

 D � � � 2 B �*¬*¬,¬ � 2 D�� , �� D � � � 5 + � � B	� 5 � �
� B�
 B � � � D11. EndDo

12. Compute

 D � � ��� � � 9 � § � Q B ¨ �� D
 § « , and � D ��� � M�
 D
 D .

13. If satisfied Stop, else set �����#� D and GoTo 1.

As can be seen, the main difference with the right preconditioned version, Algorithm
9.5, is that the preconditioned vectors 2 � ��� @�B� � � must be saved and the solution updated
using these vectors. It is clear that when � � � � for � � / �,¬*¬,¬ �I± , then this method
is equivalent mathematically to Algorithm 9.5. It is important to observe that 2 � can be
defined in line 3 without reference to any preconditioner. That is, any given new vector
2 � can be chosen. This added flexibility may cause the algorithm some problems. Indeed,
2 � may be so poorly selected that a breakdown could occur, as in the worst-case scenario
when 2 � is zero.

One difference between FGMRES and the usual GMRES algorithm is that the action
of � � @�B� on a vector � of the Krylov subspace is no longer in the span of

� D � B . Instead,
it is easy to show that

�
 D � � D � B �� D £ �L[­9¥G¦
in replacement of the simpler relation <N� � @�B = � D � � D � B �� D which holds for the
standard preconditioned GMRES; see (6.5). As before,

� D denotes the ±�¯�± matrix
obtained from �� D by deleting its last row and

�� �
� B is the vector � which is normalized
in line 9 of Algorithm 9.6 to obtain � �
� B . Then, the following alternative formulation of
(9.21) is valid, even when � D � B + D � -

:

�
 D � � D � D M �� D � B Q bD ¬ £ �L[­/­/¦
An optimality property similar to the one which defines GMRES can be proved.

Consider the residual vector for an arbitrary vector 2�� � � M
 D
 in the affine space� � M �
� �%®
�

 D � . This optimality property is based on the relations

 R¨�� 2m�! R¨©��<o�
� M
 D
 =
� + �7¨©�
 D
 £ �L[­/µ/¦

� � � � ��	��^� ����	�����
 � ��� &�� ¶�� �
� � � B ¨ � D � B �� D
� � D � B � � Q B ¨ �� D
 � ¬ £ �L[­�$4¦

If � D <
 = denotes the function

� D <
 =���§, �¨�� � � � M
 D
 � § « �
observe that by (9.24) and the fact that

� D � B is unitary,

� D <
 =���§ � Q B ¨ �� D
 § « ¬ £ �L[­ .�¦
Since the algorithm minimizes this norm over all vectors

´
in �

D
to yield

 D , it is clear
that the approximate solution � D ���
� M
 D
 D has the smallest residual norm in ��� M�
���
9��

 D � . Thus, the following result is proved.

�R� �n� ��� �-��� ��� ·��t¶
The approximate solution � D obtained at step ± of FGMRES

minimizes the residual norm §, ^¨��Q� D §*« over �
� M
�
���
9 �

 D � .

Next, consider the possibility of breakdown in FGMRES. A breakdown occurs when
the vector � �
� B cannot be computed in line 9 of Algorithm 9.6 because � �
� B + � � -

. For
the standard GMRES algorithm, this is not a problem because when this happens then the
approximate solution � � is exact. The situation for FGMRES is slightly different.

�R� �n� ��� �-��� ��� ·�� �
Assume that �!��§ + � § «��� -

and that �v¨ / steps of FGMRES
have been successfully performed, i.e., that ��5 � B + 5 �� -

for SZ² � . In addition, assume that
the matrix

� � is nonsingular. Then � � is exact, if and only if � �
� B + � � -
.

��� � �
 �
If � �
� B + � � -

, then �
 � � � � � � , and as a result

� � <
 =^��§ � � B ¨��
 �
 � §K«7��§ � � B ¨ � � � �
 � §K«7��§ � Q B ¨ � �
 � §K«4¬
If
� � is nonsingular, then the above function is minimized for

 � � � @�B� < � Q B = and the
corresponding minimum norm reached is zero, i.e., � � is exact.

Conversely, if � � is exact, then from (9.22) and (9.23),- �! ^¨��Q� � � � � � � Q B ¨ � �
 � � M �� �
� B Q b�
 � ¬ £ �L[­ 1�¦
We must show, by contraction, that

�� �
� B � -
. Assume that

�� �
� B �� -
. Since

�� �
� B , � B ,� « , ¬*¬*¬ , � D , form an orthogonal system, then it follows from (9.26) that � Q B ¨ � �
 � � -
and Q b�
 � � -

. The last component of

 � is equal to zero. A simple back-substitution for

the system
� �
 � � � Q B , starting from the last equation, will show that all components of
 � are zero. Because

� D is nonsingular, this would imply that ��� -
and contradict the

assumption.

The only difference between this result and that of Proposition 6.10 for the GMRES
algorithm is that the additional assumption must be made that

� � is nonsingular since it is
no longer implied by the nonsingularity of � . However,

� D is guaranteed to be nonsingu-
lar when all the 2 � ’s are linearly independent and � is nonsingular. This is a consequence
of a modification of the first part of Proposition 6.9. That same proof shows that the rank of�
 D is equal to the rank of the matrix � D therein. If � D is nonsingular and � D � B + D � -

,
then

� D is also nonsingular.

¶���� � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
A consequence of the above proposition is that if � 2 � � � � , at a certain step, i.e., if

the preconditioning is “exact,” then the approximation � � will be exact provided that
� �

is nonsingular. This is because � �z� 2 � would depend linearly on the previous � 5 ’s (it is
equal to � �), and as a result the orthogonalization process would yield

�� �
� B � -
.

A difficulty with the theory of the new algorithm is that general convergence results,
such as those seen in earlier chapters, cannot be proved. That is because the subspace of
approximants is no longer a standard Krylov subspace. However, the optimality property
of Proposition 9.2 can be exploited in some specific situations. For example, if within each
outer iteration at least one of the vectors 2 � is chosen to be a steepest descent direction
vector, e.g., for the function � <o� =R�z§* (¨��Q�0§ «« , then FGMRES is guaranteed to converge
independently of ± .

The additional cost of the flexible variant over the standard algorithm is only in the
extra memory required to save the set of vectors

�
2 � � � � B +������ + D . Yet, the added advantage of

flexibility may be worth this extra cost. A few applications can benefit from this flexibility,
especially in developing robust iterative methods or preconditioners on parallel computers.
Thus, any iterative technique can be used as a preconditioner: block-SOR, SSOR, ADI,
Multi-grid, etc. More interestingly, iterative procedures such as GMRES, CGNR, or CGS
can also be used as preconditioners. Also, it may be useful to mix two or more precondi-
tioners to solve a given problem. For example, two types of preconditioners can be applied
alternatively at each FGMRES step to mix the effects of “local” and “global” couplings in
the PDE context.

�! �� " 4�E &)B A!0,*

Recall that the DQGMRES algorithm presented in Chapter 6 uses an incomplete orthogo-
nalization process instead of the full Arnoldi orthogonalization. At each step, the current
vector is orthogonalized only against the � previous ones. The vectors thus generated are
“locally” orthogonal to each other, in that < � 5 � � � =�� O 5 � for � SL¨ ���%² � . The matrix �� D be-
comes banded and upper Hessenberg. Therefore, the approximate solution can be updated
at step � from the approximate solution at step � ¨ / via the recurrence

� � � /+ � � � �� � � ¨ � @�B
5�� � @ � � B + 5 � � 5���@� � � ��� � @�B M	� � � � £ �L[­ 2/¦
in which the scalars

� � and
+ 5 � are obtained recursively from the Hessenberg matrix �� � .

An advantage of DQGMRES is that it is also flexible. The principle is the same as
in FGMRES. In both cases the vectors 2 � � � @�B� � � must be computed. In the case of
FGMRES, these vectors must be saved and this requires extra storage. For DQGMRES, it
can be observed that the preconditioned vectors 2 � only affect the update of the vector � �
in the preconditioned version of the update formula (9.27), yielding

� � � /+ � � ��
� @�B� � � ¨ � @�B
5�� � @ � � B + 5 � � 5 ��f¬

As a result, � @�B� � � can be discarded immediately after it is used to update � � . The same

� � � ��
�	 � \����^� &�� \�� 	�� � � ��\�
v&^~�	��}\�
�
 ��� 	���� �p&^� \���� ¶��r·
memory locations can store this vector and the vector � � . This contrasts with FGMRES
which requires additional vectors of storage.

���7���2���C�v�t���D�f�n� � � � � ���z�u�n�z�W���X�������(�f�Q�^���-�����
�u���

There are several versions of the preconditioned Conjugate Gradient method applied to
the normal equations. Two versions come from the NR/NE options, and three other varia-
tions from the right, left, or split preconditioning options. Here, we consider only the left
preconditioned variants.

The left preconditioned CGNR algorithm is easily derived from Algorithm 9.1. Denote
by

+ � the residual for the original system, i.e.,
+ � � W¨��Q� � , and by �

+ � � � b + � the
residual for the normal equations system. The preconditioned residual 2 � is 2 � � � @�B �+ � .
The scalar
 � in Algorithm 9.1 is now given by

 � � <��+ � � 2 � =<N� b ��� � ��� � = � <��+ � � 2 � =<V��� � �S��� � = ¬
This suggests employing the auxiliary vector � � �z��� � in the algorithm which takes the
following form.

��� � �n� �D�w��
 ·�� ��� � � � � ��� �1� � � 	 � � � � � 	 ��� � � � �
1. Compute

+ �W�� R¨©�7��� , �
+ ����� b + � , 2 �X��� @�B �+ � , ���X�#2 � .

2. For �n� - �*¬*¬,¬ , until convergence Do:
3. � � �¢��� �
4.
 � � < 2 � ���+ � =��p§ � � § ««
5. � �
� B ��� � M
 � � �
6.

+ �
� B � + � ¨
 � � �
7. �

+ �
� B �¢� b + �
� B
8. 2 �
� B ��� @�B �+ �
� B
9. � � � <�2 �
� B ���+ �
� B =
��<�2 � ���+ � =

10. � �
� B �#2 �
� B M � � � �
11. EndDo

Similarly, the linear system �7� bi´ � , with � � � bi´ , can also be preconditioned
from the left, and solved with the preconditioned Conjugate Gradient algorithm. Here, it is
observed that the update of the

´
variable, the associated � variable, and two residuals take

the form

 � � < + � � 2 � =<N�X� b � � � � � = � < + � � 2 � =<V� b � � �B� b � � =´ �
� B � ´ � M
 � � � � � �
� B ��� � M
 � � b � �+ �
� B � + � ¨
 � �7� b � �
2 �
� B ��� @�B + �
� B

¶���� � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
Thus, if the algorithm for the unknown � is to be written, then the vectors � b � � can be
used instead of the vectors � � , which are not needed. To update these vectors at the end
of the algorithm the relation � �
� B � 2 �
� B M � �
� B � � in line 8 of Algorithm 9.1 must
be multiplied through by � b . This leads to the left preconditioned version of CGNE, in
which the notation has been changed to denote by � � the vector � b � � invoked in the above
derivation.

�������n�	�-�w��
 ·�� ��� � ��� � ��� �1� � � 	 � � � � � 	 � � ��� �m�
1. Compute

+ � �¢ R¨��Q� � , 2 � ��� @�B + � , � � ��� b 2 � .
2. For �m� - � / �*¬*¬,¬T� until convergence Do:
3. � � �¢��� �
4.
 � � <�2 � � + � =
��<�� � � � � =
5. � �
� B ��� � M
 � � �
6.

+ �
� B � + � ¨
 � � �
7. 2 �
� B � � @�B + �
� B
8. � � � < 2 �
� B � + �
� B =
��<�2 � � + � =
9. � �
� B ��� b 2 �
� B M � � � �

10. EndDo

Not shown here are the right and split preconditioned versions which are considered in
Exercise 3.

�u�n� � �5� ��� �����X�t�u� �
�v���

When the matrix is nearly symmetric, we can think of preconditioning the system with the
symmetric part of � . This gives rise to a few variants of a method known as the CGW
method, from the names of the three authors Concus and Golub [60], and Widlund [225]
who proposed this technique in the middle of the 1970s. Originally, the algorithm was not
viewed from the angle of preconditioning. Writing �!� �
¨ � , with � � B« <V� M �>
 = ,
the authors observed that the preconditioned matrix

� @�B �¢� & ¨ � @�B �
is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect to the
� -inner product. It is not too difficult to show that the tridiagonal matrix corresponding to
the Lanczos algorithm, applied to � with the � -inner product, has the form

� D �
����
�
/ ¨ � «
� « / ¨ � �¬ ¬ ¬

� D @�B / ¨ � D
� D /

�����
	 ¬ £ �L[­ ¤ ¦

	���	�
 � � � 	?����� � �}\�&�	?� ¶����

As a result, a three-term recurrence in the Arnoldi process is obtained, which results in a
solution algorithm that resembles the standard preconditioned CG algorithm (Algorithm
9.1).

A version of the algorithm can be derived easily. From the developments in Section
6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, it is known that� �
� B can be expressed as

� �
� B ��� � M
 � � � ¬
The preconditioned residual vectors must then satisfy the recurrence

2 �
� B �#2 � ¨
 � � @�B ��� �
and if the 2 � ’s are to be � -orthogonal, then we must have <�2 � ¨
 � � @�B ��� � � 2 � = � � -

.
As a result,

 � � < 2 � � 2 � = �<
� @�B ��� � � 2 � =�� � < + � � 2 � =<V��� � � 2 � = ¬
Also, the next search direction � �
� B is a linear combination of 2 �
� B and � � ,

� �
� B � 2 �
� B M � � � � ¬
Thus, a first consequence is that<N��� � � 2 � = � � < � @�BK��� � � � � ¨ � � @�B � � @�B = � � <
� @�BK��� � ��� � = � � <N��� � ��� � =
because � @�B ��� � is orthogonal to all vectors in � � @�B . In addition, writing that � �
� B is
� -orthogonal to � @�B ��� � yields

� � �a¨ <�2 �
� B ��� @�B ��� � = �< � � ��� @�B ��� � = � ¬
Note that � @�B ��� � � ¨ B��� <�2 �
� B ¨ 2 � = and therefore we have, just as in the standard PCG
algorithm,

� � � <�2 �
� B � 2 �
� B = �< 2 � � 2 � =�� � <�2 �
� B � + �
� B =<�2 � � + � = ¬

� ���]� �W�-�]�ª�

1 Let a matrix
`

and its preconditioner
�

be SPD. Observing that
� 2�4q`

is self-adjoint with
respect to the

`
inner-product, write an algorithm similar to Algorithm 9.1 for solving the pre-

conditioned linear system
� 2�4 `Rd e�� 2�4 h

, using the
`

-inner product. The algorithm should
employ only one matrix-by-vector product per CG step.

2 In Section 9.2.1, the split-preconditioned Conjugate Gradient algorithm, Algorithm 9.2, was de-
rived from the Preconditioned Conjugate Gradient Algorithm 9.1. The opposite can also be done.
Derive Algorithm 9.1 starting from Algorithm 9.2, providing a different proof of the equivalence
of the two algorithms.

¶��p¶ � ~���� &�	�
 � �
�	 � \�� ��� &�� \�� 	��³� &�	�
��p&^� \����
3 Six versions of the CG algorithm applied to the normal equations can be defined. Two versions

come from the NR/NE options, each of which can be preconditioned from left, right, or on
two sides. The left preconditioned variants have been given in Section 9.5. Describe the four
other versions: Right P-CGNR, Right P-CGNE, Split P-CGNR, Split P-CGNE. Suitable inner
products may be used to preserve symmetry.

4 When preconditioning the normal equations, whether the NE or NR form, two options are avail-
able in addition to the left, right and split preconditioners. These are “centered” versions:` � 254 ` ��� e�h�� d e � 254 ` ���
for the NE form, and ` � � 254 `^d|e ` � � 254 h
for the NR form. The coefficient matrices in the above systems are all symmetric. Write down
the adapted versions of the CG algorithm for these options.

5 Let a matrix
`

and its preconditioner
�

be SPD. The standard result about the rate of conver-
gence of the CG algorithm is not valid for the Preconditioned Conjugate Gradient algorithm,
Algorithm 9.1. Show how to adapt this result by exploiting the

�
-inner product. Show how to

derive the same result by using the equivalence between Algorithm 9.1 and Algorithm 9.2.

6 In Eisenstat’s implementation of the PCG algorithm, the operation with the diagonal
�

causes
some difficulties when describing the algorithm. This can be avoided.��� Assume that the diagonal

�
of the preconditioning (9.5) is equal to the identity matrix.

What are the number of operations needed to perform one step of the PCG algorithm with
Eisenstat’s implementation? Formulate the PCG scheme for this case carefully.� � The rows and columns of the preconditioning matrix

�
can be scaled so that the matrix

�

of the transformed preconditioner, written in the form (9.5), is equal to the identity matrix.
What scaling should be used (the resulting

�
should also be SPD)? !� Assume that the same scaling of question b is also applied to the original matrix

`
. Is the

resulting iteration mathematically equivalent to using Algorithm 9.1 to solve the system (9.6)
preconditioned with the diagonal

�
?

7 In order to save operations, the two matrices
� 254��

and
� 2�4�� �

must be stored when comput-
ing

�`��
by Algorithm 9.3. This exercise considers alternatives.��� Consider the matrix

"
	 � �` �

. Show how to implement an algorithm similar to 9.3 for
multiplying a vector

�
by

"
. The requirement is that only

� � 254
must be stored.� � The matrix

"
in the previous question is not the proper preconditioned version of

`
by

the preconditioning (9.5). CG is used on an equivalent system involving

"
but a further

preconditioning by a diagonal must be applied. Which one? How does the resulting algorithm
compare in terms of cost and storage with an Algorithm based on 9.3? !� It was mentioned in Section 9.2.2 that

�`
needed to be further preconditioned by

� 254
. Con-

sider the split-preconditioning option: CG is to be applied to the preconditioned system as-
sociated with � e � 4�
 	 �` � 4�
 	 . Defining

�� e � 2�4�
 	 � � 254�
 	 show that,

� e
#&+ 6 ��

' 2�4 � 	
#&+ 6 ��

' 2 � � #&+ 6 ��
' 254 � #&+ 6 ��

' 2 �
where

� 	 is a certain matrix to be determined. Then write an analogue of Algorithm 9.3
using this formulation. How does the operation count compare with that of Algorithm 9.3?

8 Assume that the number of nonzero elements of a matrix
`

is parameterized by
�
� # � ' e % �

.
How small should

%
be before it does not pay to use Eisenstat’s implementation for the PCG

algorithm? What if the matrix
`

is initially scaled so that
�

is the identity matrix?

	���	�
 � � � 	?����� � �}\�&�	?� ¶����
9 Let

��e����
be a preconditioner for a matrix

`
. Show that the left, right, and split precondi-

tioned matrices all have the same eigenvalues. Does this mean that the corresponding precon-
ditioned iterations will converge in (a) exactly the same number of steps? (b) roughly the same
number of steps for any matrix? (c) roughly the same number of steps, except for ill-conditioned
matrices?

10 Show that the relation (9.17) holds for any polynomial � and any vector
�
.

11 Write the equivalent of Algorithm 9.1 for the Conjugate Residual method.

12 Assume that a Symmetric Positive Definite matrix
�

is used to precondition GMRES for solv-
ing a nonsymmetric linear system. The main features of the P-GMRES algorithm exploiting
this were given in Section 9.2.1. Give a formal description of the algorithm. In particular give a
Modified Gram-Schimdt implementation. [Hint: The vectors

� � �
’s must be saved in addition to

the
���

’s.] What optimality property does the approximate solution satisfy? What happens if the
original matrix

`
is also symmetric? What is a potential advantage of the resulting algorithm?

NOTES AND REFERENCES. The preconditioned version of CG described in Algorithm 9.1 is due
to Meijerink and van der Vorst [149]. Eisenstat’s implementation was developed in [80] and is of-
ten referred to as Eisenstat’s trick. A number of other similar ideas are described in [153]. Several
flexible variants of nonsymmetric Krylov subspace methods have been developed by several authors
simultaneously; see, e.g., [18], [181], and [211]. There does not seem to exist a similar technique
for left preconditioned variants of the Krylov subspace methods. This is because the preconditioned
operator

� 2�4
�
`

now changes at each step. Similarly, no flexible variants have been developed for the
BCG-based methods, because the short recurrences of these algorithms rely on the preconditioned
operator being constant.

The CGW algorithm can be useful in some instances, such as when the symmetric part of
`

can
be inverted easily, e.g., using fast Poisson solvers. Otherwise, its weakness is that linear systems with
the symmetric part must be solved exactly. Inner-outer variations that do not require exact solutions
have been described by Golub and Overton [109].

� � � � � � �

���

����	������ � $4

$%����$C���

	�� ��� $% �"�	¢�

�9?�1*l9?H1KJ7.QJ,848El s/+-)>=B891*l9? ;I? 891*),+�;P8�A_89U F*)Z.QJE? F*),1ZABs*./+tA<)XU ?H1*)B./+ APOKAP;_),5�? Aª8,:-;<),1F/?)S{i)>lf.KA|.�=B89576/?�1*.K;q? 8L1n8,:7./+H;w.41*l A<=K?)*1*=>)/[c&�'*)B84+-)S;q? =>.4U0+-)BAB34U ;PA|./+D)u+D./+-).41*lfA_8L5R)f5R)S;B'K8El�Aw{}84+ �vAB34+os/+Y? AI?H1KJ9U Ov{i),U U�jc8,:-;<),1�l4)BABs/? ;_)�)IyEs/)>=S;<.G;I? 8L1KA>[�s,+-)>=B8L1*l9? ;I? 891*),+i=>.41u6/)Wl4) �p1*)>lv.KAQ.E1GO AB346KAq? l9? ./+HO .Es4s,+t8Gy�?�5].G;<)XA_8LU F*)*+c{^'/? =,'? A]=B895Q6/?H1*)>l {(? ;S'w.41W8L3G;_),+ª? ;_),+-.K;q? 8L17;<)>=*'41/? @%3*)/j%;oO4s/? =>.4U U O7891*)X8,:c;B'*)|�c+HO4U 8*FAS346KABs*.,=B)7? ;<),+-.G;I? 891KA(A<)>),1w?H1ws,+D)IF/? 8L3KA^=,'*.4sG;<),+tA>[%&�'/? AR=*'*.EsG;_),+ =S8,F*),+tA^A_8L5R)Q8,:;S'*)75^8/AV;(AB3*=>=>)SA_AP:P34UE;_)>=,'41/? @%3*)BA�3KA<)>lW;P8ms/+-)>=S8L1*l9? ;q? 8L1Q.QJ�)*1*),+-.EU4ASs*./+-A_)�U ?H1*)>./+AVOKAP;<),57[� 8*;<)m.K;Q;B'*)w893G;_A<)S;Q;S'*.K;2;S'*),+-)m./+-) F/?�+t;S3*.EU U Ov1K8�U ?H5Z? ;_A2;_8u.GF*.�?�U .E64U)89sG;I? 891KAX:D8E+]8L6G;_.�?H1/?�1KJuJ,848El�s/+-)>=B891*l9? ;I? 891*),+tA>[�,84+R)Iy,.45Qs4U)/j�s/+-)>=B891*l9? ;I? 891*),+tA=B.E126/)(l4),+Y? F*)>lZ:P+t895 �/1K8G{^U)>l�J/)08,: ;B'*)c8E+Y? J4?H1*.4U�s4'GOKAI? =>.4U/s,+t8L64U),5^A :V+-895©{^'/? =,';S'*)QU ?H1*)>./+�AVOKAP;<),5¡./+Y? A<)SA>[p~ 8G{i)SF*),+Nj9.7=S8L5Q5^8L12:T)B.K;S34+D)^8,:r;B'*)Qs/+-)>=B891*l9? ;I? 891*),+tAl9? A<=,3KA_A<)Bln?�17;S'/? A�=,'*.4sG;<),+ ? A(;B'*.G;0;S'*)SOX./+D)W643/?HU ;ª:P+t895�;B'*)Z84+Y? JE?�1*.EUE=S8E)SxW=G?),1G;5R.G;B+Y? y9[

�o�����Z�����:�Z���-���
���u�K�

Roughly speaking, a preconditioner is any form of implicit or explicit modification of an
original linear system which makes it “easier” to solve by a given iterative method. For
example, scaling all rows of a linear system to make the diagonal elements equal to one
is an explicit form of preconditioning. The resulting system can be solved by a Krylov
subspace method and may require fewer steps to converge than with the original system
(although this is not guaranteed). As another example, solving the linear system

� @�BG�Q� � � @�B*
where � @�B is some complicated mapping that may involve FFT transforms, integral cal-
culations, and subsidiary linear system solutions, may be another form of preconditioning.
Here, it is unlikely that the matrix � and � @�B � can be computed explicitly. Instead,

¶����

��� �H� �A� � \��}�Hj �%\�
 j ��� �"� ��\�
 ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
the iterative processes operate with � and with � @�B whenever needed. In practice, the
preconditioning operation � @�B should be inexpensive to apply to an arbitrary vector.

One of the simplest ways of defining a preconditioner is to perform an incomplete fac-
torization of the original matrix � . This entails a decomposition of the form �!� � � ¨ �
where

�
and

�
have the same nonzero structure as the lower and upper parts of � respec-

tively, and � is the residual or error of the factorization. This incomplete factorization
known as ILU(0) is rather easy and inexpensive to compute. On the other hand, it of-
ten leads to a crude approximation which may result in the Krylov subspace accelerator
requiring many iterations to converge. To remedy this, several alternative incomplete fac-
torizations have been developed by allowing more fill-in in

�
and

�
. In general, the more

accurate ILU factorizations require fewer iterations to converge, but the preprocessing cost
to compute the factors is higher. However, if only because of the improved robustness,
these trade-offs generally favor the more accurate factorizations. This is especially true
when several systems with the same matrix must be solved because the preprocessing cost
can be amortized.

This chapter considers the most common preconditioners used for solving large sparse
matrices and compares their performance. It begins with the simplest preconditioners (SOR
and SSOR) and then discusses the more accurate variants such as ILUT.

�p�:�2���w�����(�����0�n�N� �0�0��� �X�X���2�f�N�v�H���-���m�Z�R�
���v� �

As was seen in Chapter 4, a fixed-point iteration for solving a linear system

�Q���¢
takes the general form

� � � B ��� @�B �f� � M � @�BK £ ¥ �9[�¥K¦
where � and � realize the splitting of � into

�¢���
¨ ��¬ £ ¥ �9[­�¦
The above iteration is of the form

��� � B ���W��� M � £ ¥ �9[µ�¦
where

� ��� @�B and

� ��� @�B � ��� @�B <
�
¨©�,=
� & ¨ � @�B � ¬ £ ¥ �9[$4¦

Thus, for Jacobi and Gauss Seidel it has been shown that

�	� (<N�,=^� & ¨ � @�BG� £ ¥ �9[.�¦
��

� <N�,=^� & ¨ <�� ¨ � =A@�B*��� £ ¥ �9[1�¦

where �¢� � ¨ �g¨ � is the splitting defined in Chapter 4.

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
The iteration (10.3) is attempting to solve< & ¨ ��=<��� � £ ¥ �9[2/¦

which, because of the expression (10.4) for � , can be rewritten as

� @�B �Q����� @�B �¬ £ ¥ �9[¤ ¦
The above system is the preconditioned system associated with the splitting �¢� �
¨ � ,
and the iteration (10.3) is nothing but a fixed-point iteration on this preconditioned system.
Similarly, a Krylov subspace method, e.g., GMRES, can be used to solve (10.8), leading
to a preconditioned version of the Krylov subspace method, e.g., preconditioned GMRES.
The preconditioned versions of some Krylov subspace methods have been discussed in the
previous chapter with a generic preconditioner � . In theory, any general splitting in which
� is nonsingular can be used. Ideally, � should be close to � in some sense. However,
note that a linear system with the matrix � must be solved at each step of the iterative
procedure. Therefore, a practical and admittedly somewhat vague requirement is that these
solutions steps should be inexpensive.

As was seen in Chapter 4, the SSOR preconditioner is defined by

� � � � � � <�� ¨ � ��=�� @�B <
� ¨ � ��=G¬
Typically, when this matrix is used as a preconditioner, it is not necessary to choose � as
carefully as for the underlying fixed-point iteration. Taking � � / leads to the Symmetric
Gauss-Seidel (SGS) iteration,

� �
 �u� <�� ¨ � = � @�B <
� ¨	��=G¬ £ ¥ �9[�/¦
An interesting observation is that �¢¨ � is the lower part of � , including the diagonal, and
� ¨ � is, similarly, the upper part of � . Thus,

� �

� � ��� �
with

� � <���¨ � = � @�BQ� & ¨ � � @�B�� � � � ¨ �Z¬
The matrix

�
is unit lower triangular and

�
is upper triangular. One question that may arise

concerns the implementation of the preconditioning operation. To compute � � � @�B�

� � ,
proceed as follows:

solve < & ¨ � � @�B�= 2m��� �
solve <
� ¨ ��= � � 2r¬

A FORTRAN implementation of this preconditioning operation is illustrated in the follow-
ing code, for matrices stored in the MSR format described in Chapter 3.

FORTRAN CODE
�������
	�����
��
��������	�������������������	���������
!����"����#�	���������$����%����$����'&
����!���(*)+��	������'&,�-�������.�/&,�0���� �!����1(
&

�������2��*�3�4�5����$������1(�&,�6��$����%���/&

#�7
#98
����:
	*��;<�=!>:
	*��?
!*��@�!���@A!B�
!�#�C�?�!���@D��	��* ��E:
	*��!��GF�H�IG	*�
#3J�J�K�L+:
!�#���	*��
�M
!���
�	��4�N
�O���O��P��	��� ��
�Q��H*I<&R��	��TSR�����U?��
�����VH�I
#=
��V�*�
�+F�H*IW	*�3�*�
�+J�J�K�LX:
!�#���	*��
�M
!���
�	��YO-Z
	���J�J�K�L��[HG!���@VI

��� �H� �A� � \��}�Hj �%\�
 j ��� �"� ��\�
 ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
#=���
	����*@G#*	����
!�
������
�U;/!�����
�#*���VH+S�FV7=	 ;'��2�! �
��� %���/&,�5!���@RI
#RS��A7 	 ;'��2
! Z�� ������$
�
#��

� ������ ?�
���� 7 � SX������
�#�����	�?
���
#V���

�!���2��
��!*�=$�!*����	*:��%� 7*Z+S=������
�#��=��$�$
�*�=����
�!���2�����!���$
!*���
#3	*:	���-!���@
��SV@�
�!*2
	���!��+	*:���O
#�7
#98��*L���
 ����� L�J��
#9� S���
 ;'�*����
�	�� 	*:V$��
	����*��;
#V����� S9L�
�2����=�
!���@G��
�@����6�����=
��9����#���!���2���@G	��+���*�������
#=��	�� S3J�	������

�	�� 	*: �.H�I<&R��	��3S3������O
#3����
!��3S���!����
���=	*:=���
�VH�IV;/!�����
��4O[H�!���@RI�!*��������	*����@
�
	2�����
���
�����J�L+:
	���;/!*�4O � �
�3@�
�!�2
	���!��=������;'�*�����=	*:
ID!*����
��� ���������@4O0F�����!�#��+�
	�?4�6���
�VH=
!����
�
�=!*���
:
	�����	�?
��@+���3�*�
�3@�
�!�2
	���!��=������;'�*��� �1
��� ��*������@'&R!���@
���
�*�������+	*���
�*�RI+
!����
�
��O
#3����#�	��3S���	�����;
�
���@�
�#��
�=	*:G#�	������
��$
	���@�
���2D������;'�*�����+
�������
!��
#3����$����+S���	����
!�
����R$�	�
����������R�
	9���
�R����2�
�����
���2G	*:+��!�#��+�
	�?D
��
���
�RH�IV;/!*����
��4O
#9��$���� S9$�	�
��������+�
	R�����3@�
�!*2�	���!��=���*��;'�*���
�+
��G���� �!����5����#�	��
#�7

�������2����D
�� C
#
Z
K�L�����L��GJ�K�H�� � O J�	��* �� H O5��	��3SR�����
#

@
	3
RS��<� �
#
# #�	 ;�$������A��	����1

&���S3��������

&V7+����;GH4�1
�����& �G��	����!��&
#

��	����1
�&9S3����� �1

&
@
	UC�S�����$����%�1

&,����$������1
�&�7"�
��	����1

&VS=��	����1
�&R73���� �!����.C<&�(G�*	���������#�	����.C/&�&

�*��@�@
	
�*��@�@�	

#
# #�����$�����L��DJ�K�H�� � O%��	 ;�$������A��	��&��S�
��� �� I<&R��	��
#

@
	3
RSV�4�'�<�57"�
#
# #�	 ;�$������A��	����1

&���S���	�����

&V7+����;�IY�1
�����& �G��	����!��&
#

@
	UC�S���$�������

&�()�<�P����$������1
�()��&�7"�
��	����1

&VS=��	����1
�&R73���� �!����.C<&�(���	����"����#�	����.C<&�&

�*��@�@
	
#
# #�	 ;�$������A��	����1

&���S���	�����

&�*VIY�1
 �1

&
#

��	����1
�&9S+���� �!�������$������1

&�&*(���	����1

&
�*��@�@�	
�����������
�*��@

As was seen above, the SSOR or SGS preconditioning matrix is of the form � � ���
where

�
and

�
have the same pattern as the

�
-part and the

�
-part of � , respectively. Here,�

-part means lower triangular part and, similarly, the
�

-part is the upper triangular part. If
the error matrix ��¨ � � is computed, then for SGS, for example, we would find

��¨ ��� � � ¨ �g¨ �!¨ < & ¨ � � @�B = <
� ¨ ��=��z¨ � � @�B �Z¬
If
�

is restricted to have the same structure as the
�

-part of � and
�

is to have the same

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
structure as the

�
-part of � , the question is whether or not it is possible to find

�
and

�

that yield an error that is smaller in some sense than the one above. We can, for example,
try to find such an incomplete factorization in which the residual matrix ��¨ ��� has zero
elements in locations where � has nonzero entries. This turns out to be possible in general
and yields the ILU(0) factorization to be discussed later. Generally, a pattern for

�
and

�

can be specified and
�

and
�

may be sought so that they satisfy certain conditions. This
leads to the general class of incomplete factorization techniques which are discussed in the
next section.

���
	��
 � �������#�
Table 10.1 shows the results of applying the GMRES algorithm with

SGS (SSOR with � � /) preconditioning to the five test problems described in Section
3.7.

Matrix Iters Kflops Residual Error
F2DA 38 1986 0.76E-03 0.82E-04
F3D 20 4870 0.14E-02 0.30E-03
ORS 110 6755 0.31E+00 0.68E-04
F2DB 300 15907 0.23E+02 0.66E+00
FID 300 99070 0.26E+02 0.51E-01

� 	������ �����#�
A test run of GMRES with SGS preconditioning.

See Example 6.1 for the meaning of the column headers in the table. Notice here that the
method did not converge in 300 steps for the last two problems. The number of iterations
for the first three problems is reduced substantially from those required by GMRES with-
out preconditioning shown in Table 6.2. The total number of operations required is also
reduced, but not proportionally because each step now costs more due to the precondition-
ing operation.

�N�c� � �:�]� �������]�����-�f� ���7���2���C�v�t���D�f�n�]�]�
���u���

Consider a general sparse matrix � whose elements are � 5 � ��S�� ��� / �*¬,¬*¬T�S® . A general
Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix

�
and a sparse upper triangular matrix

�
so the residual matrix � � ��� ¨ � satisfies cer-

tain constraints, such as having zero entries in some locations. We first describe a general
ILU preconditioner geared toward � -matrices. Then we discuss the ILU(0) factorization,
the simplest form of the ILU preconditioners. Finally, we will show how to obtain more
accurate factorizations.

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶��p·
$��! �! %$ 2 9 �+7:B ��6,0 ; 0�6 (� ' � ;)7:A+2���'3; 2 7:9 *

A general algorithm for building Incomplete LU factorizations can be derived by perform-
ing Gaussian elimination and dropping some elements in predetermined nondiagonal posi-
tions. To analyze this process and establish existence for � -matrices, the following result
of Ky-Fan [86] is needed.

�w�|���n�R�
 � ���#�
Let � be an � -matrix and let � B be the matrix obtained from the

first step of Gaussian elimination. Then � B is an � -matrix.

��� � �
 �
Theorem 1.17 will be used to establish that properties 1, 2, and 3 therein are

satisfied. First, consider the off-diagonal elements of � B :
��B5 � � � 5 � ¨ � 5 B � B �

� B B ¬
Since � 5 � � � 5 B ��� B � are nonpositive and � B B is positive, it follows that � B5 � ! -

for S �� � .
Second, the fact that � B is nonsingular is a trivial consequence of the following stan-

dard relation of Gaussian elimination

�¢� � B � B where
� B � � �,# + B

� B B � Q «
� Q � �,¬*¬,¬ Q I�� ¬ £ ¥ �L[�¥���¦
Finally, we establish that � @�BB is nonnegative by examining � @�BB Q � for ��� / �*¬,¬*¬T�S® .

For � � / , it is clear that � @�BB Q B � BE ��� Q B because of the structure of � B . For the case
� �� / , (10.10) can be exploited to yield

� @�BB Q � �¢� @�B � @�BB Q � ��� @�BTQ � � - ¬
Therefore, all the columns of � @�BB are nonnegative by assumption and this completes the
proof.

Clearly, the <N®�¨ / =]¯"<N®�¨ / = matrix obtained from � B by removing its first row and first
column is also an � -matrix.

Assume now that some elements are dropped from the result of Gaussian Elimination
outside of the main diagonal. Any element that is dropped is a nonpositive element which
is transformed into a zero. Therefore, the resulting matrix �� B is such that

�� B ��� B M �N�
where the elements of � are such that

+ 5 5 � - � + 5 � � -
. Thus,

� B ! �� B
and the off-diagonal elements of �� B are nonpositive. Since � B is an � -matrix, theorem
1.18 shows that �� B is also an � -matrix. The process can now be repeated on the matrix
�� < 0 � ® � 0 � ®�= , and then continued until the incomplete factorization of � is obtained. The

above arguments shows that at each step of this construction, we obtain an � -matrix and
that the process does not break down.

The elements to drop at each step have not yet been specified. This can be done stat-
ically, by choosing some non-zero pattern in advance. The only restriction on the zero
pattern is that it should exclude diagonal elements because this assumption was used in the

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
above proof. Therefore, for any zero pattern set

�
, such that��� � <%S � � = � S �� ��� / !<S�� � ! ® � � £ ¥��L[�¥/¥G¦

an Incomplete LU factorization,
& � ���

, can be computed as follows.

�������n�	�-�w��
 �����#��� � � 	 ���,� � � � � � � �<� � � � ��� 	��N�c�
1. For � � / �,¬*¬*¬ �I® ¨ / Do:
2. For Sª� � M / �I® and if <%S � ��= �� � Do:
3. � 5 � � � � 5 � � � � �
4. For �m� � M / �*¬,¬*¬T�S® and for < S�� � = ��

�
Do:

5. � 5 � � � � 5 � ¨ � 5 ��� � � �
6. EndDo
7. EndDo
8. EndDo

The For loop in line 4 should be interpreted as follows: For �n�	� M / �,¬*¬*¬ �I® and only for
those indices � that are not in

�
execute the next line. In practice, it is wasteful to scan �

from � M / to ® because there is an inexpensive mechanism for identifying those in this set
that are in the complement of

�
.

Using the above arguments, the following result can be proved.

�w�|���n�]�
 �����t¶
Let � be an � -matrix and

�
a given zero pattern defined as in

(10.11). Then Algorithm 10.1 is feasible and produces an incomplete factorization,

�¢� � � ¨�� £ ¥��L[�¥G­/¦
which is a regular splitting of � .

�����	��
 �
At each step of the process, we have

�� � ��� � M � � � � � � � � �� � @�B
where, using

(� to denote a zero vector of dimension � , and � D�	 I + � to denote the vector
of components � 5 + � ��Sª��± �,¬*¬,¬T�I® ,

� �W� & ¨ /
� & � -� �

% (���<�� M / � ® � ��=)@Q b � ¬
From this follow the relations

�� � ��� � M � � � � � �� � @�B M � � ¬
Applying this relation recursively, starting from � ��® ¨ / up to ��� / , it is found that

�� I @�B � � I @�B ¬,¬*¬ � B � M � I @�B ¬,¬*¬ � « � B M ¬,¬*¬ M � I @�B � I @ « M � I @�B ¬ £ ¥��L[�¥Gµ/¦
Now define

� � < � I @�B ¬*¬,¬ � B = @�B�� � � �� I @�B ¬

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����

Then,
� � � @�B � M �

with

� � � I @�B ¬*¬,¬ � « � B M ¬*¬,¬ M � I @�B � I @ « M � I @�B ¬
Observe that at stage � , elements are dropped only in the <o® ¨ ��=Z¯ <o® ¨��;= lower part of� � . Hence, the first � rows and columns of � � are zero and as a result

� I @�B ¬*¬,¬ � � � B � � � � I @�B ¬,¬*¬ � B � �
so that � can be rewritten as

� � � I @�B ¬,¬*¬ � «?<�� B M ��« M ¬,¬*¬ M � I @�B =G¬
If � denotes the matrix

�!�	� B M ��« M ¬*¬,¬ M � I @�B �
then we obtain the factorization

�!� ��� ¨ �N�
where < � � = @�B � � @�B � @�B is a nonnegative matrix, � is nonnegative. This completes the
proof.

Now consider a few practical aspects. An ILU factorization based on the form of Al-
gorithm 10.1 is difficult to implement because at each step � , all rows � M / to ® are being
modified. However, ILU factorizations depend on the implementation of Gaussian elimi-
nation which is used. Several variants of Gaussian elimination are known which depend on
the order of the three loops associated with the control variables S , � , and � in the algorithm.
Thus, Algorithm 10.1 is derived from what is known as the �1��S�� � variant. In the context of
Incomplete LU factorization, the variant that is most commonly used for a row-contiguous
data structure is the S�� �3� � variant, described next for dense matrices.

��� � �n� �D�w��
 �����t¶ � � � � � � � � 	�� � �
���
	 � � � � 	�� ���G� � ��� � � 	 �
1. For S0� 0 �*¬*¬,¬T�I® Do:
2. For � � / �*¬*¬,¬T��Sc¨ / Do:
3. � 5 � � � � 5 � � � � �
4. For �m� � M / �*¬*¬,¬T�I® Do:
5. � 5 � � � � 5 � ¨ � 5 � � � � �
6. EndDo
7. EndDo
8. EndDo

The above algorithm is in place meaning that the S -th row of � can be overwritten by
the S -th rows of the

�
and

�
matrices of the factorization (since

�
is unit lower triangular,

its diagonal entries need not be stored). Each step S of the algorithm generates the S -th row

¶��p¶ � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
of
�

and the S -th row of
�

at the same time. The previous rows / � 0 �*¬,¬*¬ ��Sª¨ / of
�

and
�

are accessed at step S but they are not modified. This is illustrated in Figure 10.1.

Not accessed

Accessed but not

Accessed and
modified

modified

��� ��� � �@�����#�
IKJvariant of the LU factorization.

Adapting this version for sparse matrices is easy because the rows of
�

and
�

are
generated in succession. These rows can be computed one at a time and accumulated in a
row-oriented data structure such as the CSR format. This constitutes an important advan-
tage. Based on this, the general ILU factorization takes the following form.

�������n�	�-�w��
 ����� ��� � � 	 ���,� � �N�c� � � � � ��� � � � � � � 	 �v� ��� � ��� � � � 	
1. For Sª� 0 �*¬,¬*¬T�S® Do:
2. For ��� / �*¬,¬*¬T� Si¨ / and if <%S � ��= �� � Do:
3. � 5 � � � � 5 � � � � �
4. For �m�	� M / �*¬,¬*¬T�S® and for < S�� � = �� � , Do:
5. � 5 � � � � 5 � ¨ � 5 � � � � .
6. EndDo
7. EndDo
8. EndDo

It is not difficult to see that this more practical IKJvariant of ILU is equivalent to the
KIJversion which can be defined from Algorithm 10.1.

�R� �n� ��� �D��� ��� �����#�
Let

�
be a zero pattern satisfying the condition (10.11). Then

the ILU factors produced by the KIJ-based Algorithm 10.1 and the IKJ-based Algorithm
10.3 are identical if they can both be computed.

�����	��
 �
Algorithm (10.3) is obtained from Algorithm 10.1 by switching the order of the

loops � and S . To see that this gives indeed the same result, reformulate the first two loops
of Algorithm 10.1 as

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
For ��� / �I® Do:

For Sª� / �I® Do:
if �u² S and for < S�� �;=��� � Do:

ope(row(i),row(k))¬,¬*¬,¬*¬*¬
in which ope(row(i),row(k)) is the operation represented by lines 3 through 6 of both

Algorithm 10.1 and Algorithm 10.3. In this form, it is clear that the � and S loops can be
safely permuted. Then the resulting algorithm can be reformulated to yield exactly Algo-
rithm 10.3.

Note that this is only true for a static pattern ILU. If the pattern is dynamically determined
as the Gaussian elimination algorithm proceeds, then the patterns obtained with different
versions of GE may be different.

It is helpful to interpret the result of one incomplete elimination step. Denoting by � 5 # ,´ 5 # , and ��5 # the S -th rows of
�

,
�

, and � , respectively, then the � -loop starting at line 2
of Algorithm 10.3 can be interpreted as follows. Initially, we have

´ 5 # � � 5 # . Then, each
elimination step is an operation of the form´ 5 # � � ´ 5 # ¨�� 5 � ´ � # ¬
However, this operation is performed only on the nonzero pattern, i.e., the complement of
�

. This means that, in reality, the elimination step takes the form´ 5 # � � ´ 5 #]¨�� 5 � ´ � # M + & � -5 # �
in which

+ & � -5 � is zero when < S�� � = ��
�

and equals � 5 � ´ � � when <%S � � = � �
. Thus, the row+ & � -5 # cancels out the terms � 5 � ´ � � that would otherwise be introduced in the zero pattern. In

the end the following relation is obtained:

´ 5 #X� � 5 #2¨ 5 @�B

� � B
� � 5 � ´ � #]¨ + & � -5 #�� ¬

Note that � 5 �W� -
for < S�� ��= � �

. We now sum up all the
+ & � -5 # ’s and define+ 5 # � 5 @�B

� � B + & � -5 # ¬ £ ¥ �L[�¥ $4¦
The row

+ 5 # contains the elements that fall inside the

�
pattern at the completion of the

� -loop. Using the fact that � 5 5c� / , we obtain the relation,

� 5 #X� 5

� � B � 5 � ´ � #Z¨ + 5 #E¬ £ ¥ �L[�¥ .�¦

Therefore, the following simple property can be stated.

�R� �n� ��� �-��� ��� �����t¶
Algorithm (10.3) produces factors

�
and

�
such that

�¢� ��� ¨��
in which ¨ � is the matrix of the elements that are dropped during the incomplete elimina-
tion process. When <%S � � = � �

, an entry
+ 5 � of � is equal to the value of ¨ ��5 � obtained at

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
the completion of the � loop in Algorithm 10.3. Otherwise,

+ 5 � is zero.

$��! ��! #" �!01A 7 � 2 6 6�-�2 9 2 6 (�� 2 6 (��������

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), consists of
taking the zero pattern

�
to be precisely the zero pattern of � . In the following, we denote

by 5 + # the S -th row of a given matrix � , and by �
 <���= , the set of pairs <%S � � = � / ! S�� � ! ®
such that 5 + � �� -

.

�

� �

� �
��� ��� � �@�����t¶

The ILU(0) factorization for a five-point matrix.

The incomplete factorization ILU(0) factorization is best illustrated by the case for
which it was discovered originally, namely, for 5-point and 7-point matrices related to finite
difference discretization of PDEs. Consider one such matrix � as illustrated in the bottom
left corner of Figure 10.2. The � matrix represented in this figure is a 5-point matrix of
size ®�� � 0 corresponding to an ® F ¯X® � ���Z¯ 3 mesh. Consider now any lower triangular
matrix

�
which has the same structure as the lower part of � , and any matrix

�
which has

the same structure as that of the upper part of � . Two such matrices are shown at the top of
Figure 10.2. If the product

���
were performed, the resulting matrix would have the pattern

shown in the bottom right part of the figure. It is impossible in general to match � with
this product for any

�
and

�
. This is due to the extra diagonals in the product, namely, the

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
diagonals with offsets ® F ¨ / and ¨2® F M / . The entries in these extra diagonals are called
fill-in elements. However, if these fill-in elements are ignored, then it is possible to find

�
and

�
so that their product is equal to � in the other diagonals. This defines the ILU(0)

factorization in general terms: Any pair of matrices
�

(unit lower triangular) and
�

(upper
triangular) so that the elements of ��¨ ��� are zero in the locations of �
 <V�>= . These
constraints do not define the ILU(0) factors uniquely since there are, in general, infinitely
many pairs of matrices

�
and

�
which satisfy these requirements. However, the standard

ILU(0) is defined constructively using Algorithm 10.3 with the pattern

�
equal to the zero

pattern of � .

��� � �n� �D�w��
 ����� ��� �N�c� ��� �
1. For S0� 0 �*¬*¬,¬T�I® Do:
2. For � � / �*¬*¬,¬T��Sc¨ / and for <%S � ��= � �
 <V�>= Do:
3. Compute � 5 �|� � 5 � � � � �
4. For �m� � M / �*¬*¬,¬T�I® and for < S�� � = � �
 <N�>= , Do:
5. Compute � 5 � � � � 5 � ¨ � 5 � � � � .
6. EndDo
7. EndDo
8. EndDo

In some cases, it is possible to write the ILU(0) factorization in the form

� � <
� ¨ � =�� @�B <�� ¨ ��=T� £ ¥ �L[�¥ 1�¦
where ¨ � and ¨ � are the strict lower and strict upper triangular parts of � , and � is a
certain diagonal matrix, different from the diagonal of � , in general. In these cases it is
sufficient to find a recursive formula for determining the elements in � . A clear advantage
is that only an extra diagonal of storage is required. This form of the ILU(0) factorization is
equivalent to the incomplete factorizations obtained from Algorithm 10.4 when the product
of the strict-lower part and the strict-upper part of � consists only of diagonal elements
and fill-in elements. This is true, for example, for standard 5-point difference approxima-
tions to second order partial differential operators; see Exercise 4. In these instances, both
the SSOR preconditioner with � � / and the ILU(0) preconditioner can be cast in the form
(10.16), but they differ in the way the diagonal matrix � is defined. For SSOR(��� /),� is the diagonal of the matrix � itself. For ILU(0), it is defined by a recursion so that
the diagonal of the product of matrices (10.16) equals the diagonal of � . By definition,
together the

�
and

�
matrices in ILU(0) have the same number of nonzero elements as the

original matrix � .

���
	���
����������t¶
Table 10.2 shows the results of applying the GMRES algorithm with

ILU(0) preconditioning to the five test problems described in Section 3.7.

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
Matrix Iters Kflops Residual Error
F2DA 28 1456 0.12E-02 0.12E-03
F3D 17 4004 0.52E-03 0.30E-03
ORS 20 1228 0.18E+00 0.67E-04
F2DB 300 15907 0.23E+02 0.67E+00
FID 206 67970 0.19E+00 0.11E-03

� 	������ �����t¶
A test run of GMRES with ILU(0) precondition-

ing.

See Example 6.1 for the meaning of the column headers in the table. Observe that for the
first two problems, the gains compared with the performance of the SSOR preconditioner in
Table 10.1 are rather small. For the other three problems, which are a little harder, the gains
are more substantial. For the last problem, the algorithm achieves convergence in 205 steps
whereas SSOR did not convergence in the 300 steps allowed. The fourth problem (F2DB)
is still not solvable by ILU(0) within the maximum number of steps allowed.

For the purpose of illustration, below is a sample FORTRAN code for computing the
incomplete

�
and

�
factors for general sparse matrices stored in the usual CSR format. The

real values of the resulting
� � � factors are stored in the array luval, except that entries of

ones of the main diagonal of the unit lower triangular matrix
�

are not stored. Thus, one
matrix is needed to store these factors together. This matrix is denoted by

� � � . Note that
since the pattern of

� � � is identical with that of � , the other integer arrays of the CSR
representation for the LU factors are not needed. Thus, � ��<��;= , which is the column position
of the element ��< ��= in the input matrix, is also the column position of the element � ´ � � � <���=
in the

� � � matrix. The code below assumes that the nonzero elements in the input matrix� are sorted by increasing column numbers in each row.

FORTRAN CODE
�������
	�����
��
�D
������ ���4�5!�� ��!��-
�!��5����
!����6��$������0
�?��0
�#�	*@���&

�������2��*�=�4� ��!���(
&,�0
�!���� ()��&<�6��$������.�/&,�P
�?4�.�/&
����!���(*)�!��1(
&,�5����
!�����(
&

#�7
#3J����
7���$+�
	�����
��
�=:
	��AF�H�I4����& $����
#�	���@

���
�	������4O � ��
��9�
	�����
��
�
#=#�	 ;�$������
�R�����RH�!���@ I�:
!�#��
	*���R	*:=���
�+F�H�IY����&9:
!�#��
	���
�M
!*�

�	��
#3	*:+!V2��*�
����!�����$�!*�
�*�U;/!*����
�� � ���
	���@D
�� ��J�L=:
	*��;/!��4O-J�
���#*�
#9HG
��U����
��T����
�!���2�����!*�%�0�*�
�RH�!���@RIX:�!�#��
	*�
�+#�!��=�
�=���
	*����@
#3!��R!=��
���2
�*�U;/!*���

��=?���
�#��G	�#�#���$�
*�
�T�����+��! ;��G���
	*�
!�2��+!�� ��O
� �
� ��!3!���@X
�!=!*���
!����=!*���R��	*� �
����@��*@E:
	*�3���
�TH�I9;/!*���

��
#=��
���#�� �����T$�!*���������G	*:3���
� H*I ;/!*����
��D
��R
�@��*���

�#�!��3?�
��*�
#V����!*�+	*:
�4O
#�7
#=F���8�I � �
#37�7�7�7�7�7
#9� SV@�
 ;'������
�	�� 	*: ;/!*���

��
#3!�� ��!��0
�!3S=��$�!*�
�*�9;/!*���

��D
��=2��*�
���
!�����$�!*�����G���
	*�
!�2��3:
	��;/!�
#=
�? S=
������*2����=?�	*��CD!*���
!��G	*:+������2����+�
#3K�I � 8*I � �
#37�7�7�7�7�7�7
#3����
!�� S9H *�IR;'!*����
�#��
�+���
	*����@+�
	2�����
���4O5K��+�����������G���� �!����
��!��0
*!+
��V������#�	 ;���
��
��@ ��J�L=@
!*��!���������#��������=:
	��
���
�RH*I�:
!�#���	*���

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
#U��$���� SV$�	�
��������+�
	V���
�3@�
*!*2
	���!��=������;'�������+
��3���
����J�L
@
!*��!+��������#��������G����
!���� ��!��0
�!
#3
�#*	*@�� S+
�������2����D
���@�
�#�!*�

���2�������	*�D#�	*@��=	��+�����*�����

�#�	�@��+S � � ��	*��;/!��R�����������

�#�	�@��+S9C �[�*��#�	������������*@G!RM����
	9$�
�
	�+!�G������$3C
#
#�7

���
��

�!���
�M��E?�	*�*CD!����
!��D
�?3�
	RM��*�
	=!���@+����
!��3!*���
!��+��	3!

@
	 � �+
VS �<�-
�!�����()��&�7"�
����
!�����

&VS+!��1
�&

� � #�	����

����
�
@
	 � �9
*S)�<�[�

�?4�1

&VS �
� � #�	����

����
�
#�7
�!�
��G��	�	�$

@
	�� � �VC�S �/�[�
�"� S+
�!�� C<&
���RS+
�!�� C ()��&�7 �
@
	 � � � ��S��"�<� ���

�?4�!��!��!��&�&VS
�

� � � #�	�����
������
��S��"�

��� � �*��	�?�S ��!��!��&
#�7 � ��
��G
�:3@�
�!�2
	���!��+���*��;'�*����
��V����!�#��
��@

�: �!�*�
	�? O�2���O C/&U2
	*�
	�� � �
#�7���	 ;�$������3���
� ;����*��
�$���
*����:
	�� �*�
	�?4O

�
�RS=���� �!����!��&�(�����
!�������$������!�*�
	�?/&�&
����
!����!�
&VS3�
�

#�7�8
����:
	���; ��
�����!*�D#�	 ;
��
���!*�

�	��
@
	 �	��� ���VSR��$������!�*�
	�?/&�()�<�N
�!��!�*�
	�?�()��&�7"�
��?+S�
�?4�!��!�������&�&

�: �!��? O.�
��O ��&V���� �!����!��?'&�S����� �!����!��?'&�7*�
��(*����
!���� ����&

�	��� #�	�����
������
��S���()�

�: �!��O"�*��O ����& 2
	*�
	 ��� �

#�7 J*�
	*���V$�	�
��������+�
	R@�
*!*2
	���!��=������;'�����
� � � ��$������.C<&VS
�

�: �!�*�
	�? O.�
��O C O"	*�4O-����
!�������&QO���
4O ��O ��@���&92
	*�
	�� � �
����
!����!�
&VS �,O ��@ ��*����� �!����!��&

#�7�L
��:��������G!����R�*������
��
�=	*:G
�?=�
	VM��*�
	%O
@
	�� �)�V
9S �"�<�%���

�?4�!��!��1

&�&VS �

� �)� #�	�����
������
� � � #�	����

����
�
#�7 ��	*��;/!��R�����������

�#�	*@��+S �
�����������

#�7 � ���
	*� �[M����
	9$�
�
	*�
� � �
�#�	*@��+S9C

�����������
�*��@

$��! �! �� 6,0
�>03687 � �F2 6 6C' 9?4 2 6 (��
�
�

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an ade-
quate rate of convergence as shown in Example 10.2. More accurate Incomplete LU fac-
torizations are often more efficient as well as more reliable. These more accurate factoriza-

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
tions will differ from ILU(0) by allowing some fill-in. Thus, ILU(1) keeps the “first order
fill-ins,” a term which will be explained shortly.

To illustrate ILU(�) with the same example as before, the ILU(1) factorization results
from taking

�
to be the zero pattern of the product

���
of the factors

� � � obtained from
ILU(0). This pattern is shown at the bottom right of Figure 10.2. Pretend that the original
matrix has this “augmented” pattern �
 B <V�>= . In other words, the fill-in positions created
in this product belong to the augmented pattern �
 B <N�,= , but their actual values are zero.
The new pattern of the matrix � is shown at the bottom left part of Figure 10.3. The factors� B and

� B of the ILU(1) factorization are obtained by performing an ILU(0) factorization
on this “augmented pattern” matrix. The patterns of

� B and
� B are illustrated at the top

of Figure 10.3. The new LU matrix shown at the bottom right of the figure has now two
additional diagonals in the lower and upper parts.

Augmented �

� B � B

� B � B
��� ��� � �@����� �

The ILU(1) factorization.

One problem with the construction defined in this illustration is that it does not extend
to general sparse matrices. It can be generalized by introducing the concept of level of
fill. A level of fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the value of the level of fill. Algorithm 10.2 will be used
as a model, although any other form of GE can be used. The rationale is that the level of
fill should be indicative of the size: the higher the level, the smaller the elements. A very
simple model is employed to justify the definition: A size of � � is attributed to any element
whose level of fill is � , where �w² / . Initially, a nonzero element has a level of fill of one

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶��p·

(this will be changed later) and a zero element has a level of fill of � . An element � 5 � is
updated in line 5 of Algorithm 10.2 by the formula

� 5 � � � 5 � ¨ � 5 �n¯ � � � ¬ £ ¥ �L[�¥ 2�¦
If � Q � 5 � is the current level of the element � 5 � , then our model tells us that the size of the
updated element should be

� 5 � � � � � J�� $ � ¨�� � J�� $ � ¯ � � J�� � � � � � J�� $ � ¨�� � J�� $ � � � J�� � � ¬
Therefore, roughly speaking, the size of �;5 � will be the maximum of the two sizes � � J�� $ �
and � � J�� $ � � � J�� � � , and it is natural to define the new level of fill as,

� Q � 5 � � � ��� 9 � � Q � 5 � � � Q � 5 � M � Q � � � �L¬
In the common definition used in the literature, all the levels of fill are actually shifted
by ¨ / from the definition used above. This is purely for convenience of notation and to
conform with the definition used for ILU(0). Thus, initially � Q � 5 � � -

if � 5 � �� -
, and� Q � 5 � ��� otherwise. Thereafter, define recursively

� Q � 5 � � ��� 9 � � Q � 5 � � � Q � 5 � M � Q � � � M / �L¬� � � � ���D��� ��� �����#�
The initial level of fill of an element ��5 � of a sparse matrix � is

defined by

� Q � 5 � � � - �
	 � 5 � �� - � 7 � S0� �� 7���
��
��� � � � ¬

Each time this element is modified in line 5 of Algorithm 10.2, its level of fill must be
updated by

� Q � 5 � � ��� 9 � � Q � 5 � � � Q � 5 � M � Q � � � M / �L¬ £ ¥ �L[�¥ ¤ ¦
Observe that the level of fill of an element will never increase during the elimination. Thus,
if � 5 � �� -

in the original matrix � , then the element in location S�� � will have a level of
fill equal to zero throughout the elimination process. The above systematic definition gives
rise to a natural strategy for discarding elements. In ILU < ��= , all fill-in elements whose level
of fill does not exceed � are kept. So using the definition of zero patterns introduced earlier,
the zero pattern for ILU(�) is the set� �w� � <%S�� � = � � Q � 5 ��� �!�.�
where � Q � 5 � is the level of fill value after all updates (10.18) have been performed. The case
�v� -

coincides with the ILU(0) factorization and is consistent with the earlier definition.
In practical implementations of the ILU(�) factorization it is common to separate the

symbolic phase (where the structure of the
�

and
�

factors are determined) from the nu-
merical factorization, when the numerical values are computed. Here, a variant is described
which does not separate these two phases. In the following description, � 5 # denotes the S -th
row of the matrix � , and � 5 � the < S�� � = -th entry of � .

��� � �n� �D�w��
 ����� ��� �N�c� ��� �
1. For all nonzero elements � 5 � define � Q � < � 5 � =�� -
2. For S0� 0 �*¬*¬,¬T�I® Do:

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
3. For each ��� / �,¬*¬,¬T��Sc¨ / and for � Q � < � 5 � = ! � Do:
4. Compute � 5 � � � � 5 � � � � �
5. Compute � 5 # � � � 5 # ¨ � 5 � � � # .
6. Update the levels of fill of the nonzero � 5 + � ’s using (10.18)
7. EndDo
8. Replace any element in row S with � Q � < ��5 � = � � by zero
9. EndDo

There are a number of drawbacks to the above algorithm. First, the amount of fill-in and
computational work for obtaining the ILU(�) factorization is not predictable for � � -

.
Second, the cost of updating the levels can be quite high. Most importantly, the level of
fill-in for indefinite matrices may not be a good indicator of the size of the elements that
are being dropped. Thus, the algorithm may drop large elements and result in an inaccurate
incomplete factorization, in the sense that � � ��� ¨ � is not small. Experience reveals
that on the average this will lead to a larger number of iterations to achieve convergence,
although there are certainly instances where this is not the case. The techniques which will
be described in Section 10.4 have been developed to remedy these three difficulties, by
producing incomplete factorizations with small error � and a controlled number of fill-ins.

O B � « � D � B�k« O « � �
� � O �

� D � B� 5 � 5 O 5 � 5 � B � 5 � D
�
I

� I � I O I
��I

��� ��� � �@����� �
Matrix resulting from the discretization of an el-

liptic problem on a rectangle.

$��! �! � BC'�; A�2 ��0,*�� 2 ; = A!0F& (�6�' A *,;>A+(� ; ()A+0

Often, the original matrix has a regular structure which can be exploited to formulate the
ILU preconditioners in a simpler way. Historically, incomplete factorization precondition-
ers were developed first for such matrices, rather than for general sparse matrices. Here, we
call a regularly structured matrix a matrix consisting of a small number of diagonals. As an

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����

example, consider the diffusion-convection equation, with Dirichlet boundary conditions

¨�� ´8M�� /¬�� ´ � � � 9 �´ � - 7?9 � �
where

�
is simply a rectangle. As seen in Chapter 2, if the above problem is discretized

using centered differences, a linear system is obtained whose coefficient matrix has the
structure shown in Figure 10.4. In terms of the stencils seen in Chapter 4, the representation
of this matrix is rather simple. Each row expresses the coupling between unknown S and
unknowns S M / , Sk¨ / which are in the horizontal, or � direction, and the unknowns S M ±
and S�¨w± which are in the vertical, or

direction. This stencil is represented in Figure 10.5.

� 5 � BO 5� 5

�?5

� 5 � D

��� ��� � ������� �
Stencil associated with the 5-point matrix shown

in Figure 10.4.

The desired
�

and
�

matrices in the ILU(0) factorization are shown in Figure 10.6.

/ G«

 I /

Q D � B

Q I

� B � «

� I
� I

� D � B

� I

� �

��� ��� � ��������� �
and

�
factors of the ILU(0) factorization for

the 5-point matrix shown in Figure 10.4.

Now the respective stencils of these
�

and
�

matrices can be represented at a mesh
point S as shown in Figure 10.7.

¶��p¶ � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�

Q 5
/ 5

� 5 � D
� 5 � 5 � B

��� ��� � �@����� �
Stencils associated with the

�
and

�
factors

shown in Figure 10.6.

The stencil of the product
���

can be obtained easily by manipulating stencils directly
rather than working with the matrices they represent. Indeed, the S -th row of

� �
is obtained

by performing the following operation:+�� � 5 < ��� =�� / ¯ +�� � 5 < � = M 5 ¯ +�� � 5 @�B < � = M Q 5 ¯ +�� � 5 @ D < � =G¬
This translates into a combination of the stencils associated with the rows:

� � Q ® � S � 5 < ��� =�� / ¯ � � Q ® � S � 5 < � = M 5 ¯ � � Q ® �TS � 5 @�B < � = M Q 5 ¯ � � Q ® � S � 5 @ D < � =
in which � � Q ® � S � � <��"= represents the stencil of the matrix � based at the mesh point labeled
� . This gives the stencil for the

���
matrix represented in Figure 10.8.

� 5 � B� 5 M 5 � 5 M Q 5 � 5�

 5 � 5 @�B

� 5 � D

Q 5 � 5 @ D

 5 � 5 � D @�B

Q 5 � 5 @ D � B
��� ��� � �@����� �

Stencil associated with the product of the
�

and�
factors shown in Figure 10.6.

In the figure, the fill-in elements are represented by squares and all other nonzero elements
of the stencil are filled circles. The ILU(0) process consists of identifying

���
with � in

locations where the original � 5 � ’s are nonzero. In the Gaussian eliminations process, this
is done from S�� / to S���® . This provides the following equations obtained directly from
comparing the stencils of LU and � (going from lowest to highest indices)

Q 5 � 5 @ D � �?5

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
 5 � 5 @�B � � 5� 5 M 5 � 5 M Q 5 � 5 � O 5
� 5 � B � � 5 � B� 5 � D � � 5 � D ¬

Observe that the elements � 5 � B and
� 5 � D are identical with the corresponding elements of

the � matrix. The other values are obtained from the following recurrence:

Q 5i� �?5� 5 @ D A5i� � 5� 5 @�B� 5 � O 5 ¨� 5 � 5 ¨ Q 5 � 5 ¬
The above recurrence can be simplified further by making the observation that the quan-
tities ��5 � � 5 @ D and � 5 � � 5 @�B need not be saved since they are scaled versions of the corre-
sponding elements in � . With this observation, only a recurrence for the diagonal elements� 5 is needed. This recurrence is:

� 5 � O 5 ¨ � 5 � 5� 5 @�B ¨ �?5 � 5��5 @ D � S(� / �,¬*¬,¬T�I® � £ ¥ �L[�¥���¦
with the convention that any � � with a non-positive index � is replaced by / and any other
element with a negative index is zero. The factorization obtained takes the form

��� <
� ¨ � =�� @�B <
� ¨	��= £ ¥ �L[­ ��¦
in which ¨ � is the strict lower diagonal of � , ¨ � is the strict upper triangular part of � ,
and � is the diagonal obtained with the above recurrence. Note that an ILU(0) based on
the IKJversion of Gaussian elimination would give the same result.

For a general sparse matrix � with irregular structure, one can also determine a pre-
conditioner in the form (10.20) by requiring only that the diagonal elements of � match
those of � (see Exercise 10). However, this will not give the same ILU factorization as the
one based on the IKJvariant of Gaussian elimination seen earlier. Why the ILU(0) factor-
ization gives rise to the same factorization as that of (10.20) is simple to understand: The
product of

�
and

�
does not change the values of the existing elements in the upper part,

except for the diagonal. This also can be interpreted on the adjacency graph of the matrix.
This approach can now be extended to determine the ILU(1) factorization as well as

factorizations with higher levels of fill. The stencils of the
�

and
�

matrices in the ILU(1)
factorization are the stencils of the lower part and upper parts of the LU matrix obtained
from ILU(0). These are shown in Figure 10.9. In the illustration, the meaning of a given
stencil is not in the usual graph theory sense. Instead, all the marked nodes at a stencil
based at node S represent those nodes coupled with unknown S by an equation. Thus, all
the filled circles in the picture are adjacent to the central node. Proceeding as before and
combining stencils to form the stencil associated with the LU matrix, we obtain the stencil
shown in Figure 10.10.

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�

Q 5
/ 5

� 5

� 5 � D
� 5 � 5 � B

�;5 � D @�B

��� ��� � �@�����t·
Stencils associated with the

�
and

�
factors of

the ILU(0) factorization for the matrix associated with the sten-
cil of Figure 10.8.

 5 � 5 � D @ «� 5 � D @�B M 5 � 5 � D @�B�

� 5 � D

 5 � 5 @�B M Q 5 � 5 @�B
��5 M A5 � 5 M Q 5 � 5 M � 5 � 5

�
� 5 � B M � 5 � 5 � B

Q 5 � 5 @ D Q 5 � 5 @ D � B M � 5 � 5 @ D � B� � 5 � 5 @ D � B
��� ��� � �@�����#���

Stencil associated with the product of the
�

and
�

matrices whose stencils are shown in Figure 10.9.

As before, the fill-in elements are represented by squares and all other elements are
filled circles. A typical row of the matrix associated with the above stencil has nine nonzero
elements. Two of these are fill-ins, i.e., elements that fall outside the original structure of
the

�
and

�
matrices. It is now possible to determine a recurrence relation for obtaining

the entries of
�

and
�

. There are seven equations in all which, starting from the bottom,
are

Q 5 � 5 @ D � �?5
Q 5 � 5 @ D � B M � 5 ��5 @ D � B � -

 A5 � 5 @�B M Q 5 � 5 @�B � � 5� 5 M A5 � 5 M Q 5 � 5 M � 5 � 5i� O 5
� 5 � B M � 5 � 5 � B � � 5 � B

� 5 � D @�B M 5 � 5 � D @�B � -
� 5 � D � � 5 � D ¬

��� ��� � �?� � � � &ª\�
 � ���p&�� \�� ��
�	 � \�� ��� &^� \�� 	�
�� ¶����
This immediately yields the following recurrence relation for the entries of the

�
and

�

factors:

Q 5 � �?5 � � 5 @ D� 5 �a¨ Q 5 � 5 @ D � B � � 5 @ D � B 5i� <�� 5 ¨ Q 5 � 5 @�B = � ��5 @�B��5ª� O 5 ¨� 5 � 5 ¨ Q 5 � 5 ¨�� 5 �;5
� 5 � B � � 5 � B ¨
��5 � 5 � B

� 5 � D @�B �a¨7 A5 � 5 � D @�B� 5 � D � � 5 � D ¬
In proceeding from the nodes of smallest index to those of largest index, we are in effect
performing implicitly the IKJversion of Gaussian elimination. The result of the ILU(1)
obtained in this manner is therefore identical with that obtained by using Algorithms 10.1
and 10.3.

$��! ��! �� B 7:4?2 �F2#014 2 6 (�� B 2 6 (�

In all the techniques thus far, the elements that were dropped out during the incomplete
elimination process are simply discarded. There are also techniques which attempt to re-
duce the effect of dropping by compensating for the discarded entries. For example, a
popular strategy is to add up all the elements that have been dropped at the completion of
the � -loop of Algorithm 10.3. Then this sum is subtracted from the diagonal entry in

�
.

This diagonal compensation strategy gives rise to the Modified ILU (MILU) factorization.
Thus, in equation (10.14), the final row

´ 5 # obtained after completion of the � -loop of
Algorithm 10.3 undergoes one more modification, namely,´ 5 5 � � ´ 5 5 ¨ < + 5 # Q =
in which Q � < / � / �*¬,¬*¬T� / = b . Note that

+ 5 # is a row and
+ 5 # Q is the sum of the elements

in this row, i.e., its row sum. The above equation can be rewritten in row form as
´ 5 # � �´ 5 # ¨ < + 5 # Q = Q b5 and equation (10.15) becomes

� 5 #Q� 5

� � B � 5 � ´ � # M < + 5 # Q = Q b5 ¨ + 5 #9¬ £ ¥ �L[­E¥K¦

Observe that

� 5 # Q � 5

� � B � 5 � ´ � # Q M < + 5 # Q = Q b5 Q ¨ + 5 # Q � 5 @�B

� � B � 5 � ´ � # Q � ��� Q ¬
This establishes that � Q � ��� Q . As a result, this strategy guarantees that the row sums of� are equal to those of

���
. For PDEs, the vector of all ones represents the discretization

of a constant function. This additional constraint forces the ILU factorization to be exact
for constant functions in some sense. Therefore, it is not surprising that often the algorithm
does well for such problems. For other problems or problems with discontinuous coeffi-
cients, MILU algorithms usually are not better than their ILU counterparts, in general.

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
���
	��
 � ������� �

For regularly structured matrices there are two elements dropped at the
S -th step of ILU(0). These are 5 � 5 � D @�B and Q 5 � 5 @ D � B located on the north-west and south-
east corners of the stencil, respectively. Thus, the row sum

+ 5 + # Q associated with step S is

� 5ª� � 5�� 5 � D @�B� 5 @�B M �?5 � D @ 5 � B� 5 @ D
and the MILU variant of the recurrence (10.19) is

� 5i� � 5 � 5 � D @�B� 5 @�B M � 5 � D @ 5 � B� 5 @ D��5ª� O 5 ¨ � 5 � 5� 5 @�B ¨ � 5 � 5� 5 @ D ¨ � 5S¬
The new ILU factorization is now such that � � ��� ¨ � in which according to (10.21)
the S -th row of the new remainder matrix � is given by+ & I JLK -5 + # � < + 5 # Q = Q b5 ¨ + 5 #
whose row sum is zero.

This generic idea of lumping together all the elements dropped in the elimination pro-
cess and adding them to the diagonal of

�
can be used for any form of ILU factorization.

In addition, there are variants of diagonal compensation in which only a fraction of the
dropped elements are added to the diagonal. Thus, the term � 5 in the above example would
be replaced by � � 5 before being added to

´ 5 5 , where � is typically between 0 and 1. Other
strategies distribute the sum � 5 among nonzero elements of

�
and

�
, other than the diago-

nal.

�u� �7�0�]�W��� � �ª���R���u���m�o�0��� �C� �N�c�Q�
���u���

Incomplete factorizations which rely on the levels of fill are blind to numerical values be-
cause elements that are dropped depend only on the structure of � . This can cause some
difficulties for realistic problems that arise in many applications. A few alternative methods
are available which are based on dropping elements in the Gaussian elimination process
according to their magnitude rather than their locations. With these techniques, the zero
pattern

�
is determined dynamically. The simplest way to obtain an incomplete factor-

ization of this type is to take a sparse direct solver and modify it by adding lines of code
which will ignore “small” elements. However, most direct solvers have a complex imple-
mentation which involves several layers of data structures that may make this approach
ineffective. It is desirable to develop a strategy which is more akin to the ILU(0) approach.
This section describes one such technique.

��� � � &�~
�	?�C~ \��?�*�L&�
��p&�	
�ª� 	?� ��� �³� ���k& ¶����
$��! �� $; =)0@2 6 (+; ' � �!A 7�' ��=

A generic ILU algorithm with threshold can be derived from the IKJversion of Gaussian
elimination, Algorithm 10.2, by including a set of rules for dropping small elements. In
what follows, applying a dropping rule to an element will only mean replacing the element
by zero if it satisfies a set of criteria. A dropping rule can be applied to a whole row by
applying the same rule to all the elements of the row. In the following algorithm, � is a
full-length working row which is used to accumulate linear combinations of sparse rows in
the elimination and � � is the � -th entry of this row. As usual, � 5 # denotes the S -th row of� .

��� � �n� �D�w��
 ������� � �N�c�Q�
1. For S0� / �*¬*¬,¬T�I® Do:
2. � � � � 5 #
3. For � � / �*¬*¬,¬T��Sc¨ / and when � � �� -

Do:
4. � � � � � � � � � �
5. Apply a dropping rule to � �
6. If � � �� -

then
7. � � � � ¨ � � � ´ � #
8. EndIf
9. EndDo

10. Apply a dropping rule to row �
11. � 5 + � � � � � for �m� / �,¬*¬,¬T��Sc¨ /12.

´ 5 + � � � � � for �m� S �,¬*¬,¬T�I®
13. � � � -
14. EndDo

Now consider the operations involved in the above algorithm. Line 7 is a sparse update
operation. A common implementation of this is to use a full vector for � and a companion
pointer which points to the positions of its nonzero elements. Similarly, lines 11 and 12 are
sparse-vector copy operations. The vector � is filled with a few nonzero elements after the
completion of each outer loop S , and therefore it is necessary to zero out those elements at
the end of the Gaussian elimination loop as is done in line 13. This is a sparse set-to-zero
operation.

ILU(0) can be viewed as a particular case of the above algorithm. The dropping rule
for ILU(0) is to drop elements that are in positions not belonging to the original structure
of the matrix.

In the factorization ILUT(� ���), the following rule is used.
���

In line 5, an element � � is dropped (i.e., replaced by zero) if it is less than the
relative tolerance � 5 obtained by multiplying � by the original norm of the S -th row
(e.g., the 2-norm).���
In line 10, a dropping rule of a different type is applied. First, drop again any
element in the row with a magnitude that is below the relative tolerance � 5 . Then,

¶���� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
keep only the � largest elements in the

�
part of the row and the � largest elements

in the
�

part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row. Roughly
speaking, � can be viewed as a parameter that helps control memory usage, while � helps
to reduce computational cost. There are several possible variations on the implementation
of dropping step 2. For example we can keep a number of elements equal to ® ´ < S = M � in
the upper part and ® � < S = M � in the lower part of the row, where ® � < S = and ® ´ <%S = are the
number of nonzero elements in the

�
part and the

�
part of the S -th row of � , respectively.

This variant is adopted in the ILUT code used in the examples.
Note that no pivoting is performed. Partial (column) pivoting may be incorporated at

little extra cost and will be discussed later. It is also possible to combine ILUT with one of
the many standard reorderings, such as the ordering and the nested dissection ordering, or
the reverse Cuthill-McKee ordering. Reordering in the context of incomplete factorizations
can also be helpful for improving robustness, provided enough accuracy is used. For ex-
ample, when a red-black ordering is used, ILU(0) may lead to poor performance compared
with the natural ordering ILU(0). On the other hand, if ILUT is used by allowing gradually
more fill-in, then the performance starts improving again. In fact, in some examples, the
performance of ILUT for the red-black ordering eventually outperforms that of ILUT for
the natural ordering using the same parameters � and � .

$��! �� " ' 9�'56�	 *32H*

Existence theorems for the ILUT factorization are similar to those of other incomplete
factorizations. If the diagonal elements of the original matrix are positive while the off-
diagonal elements are negative, then under certain conditions of diagonal dominance the
matrices generated during the elimination will have the same property. If the original ma-
trix is diagonally dominant, then the transformed matrices will also have the property of
being diagonally dominant under certain conditions. These properties are analyzed in detail
in this section.

The row vector � resulting from line 4 of Algorithm 10.6 will be denoted by
´ � � B5 + # .

Note that
´ � � B5 + � � -

for � ! � . Lines 3 to 10 in the algorithm involve a sequence of
operations of the form

� 5 � � � ´ �5 � � ´ � � £ ¥��L[­/­/¦
if � � 5 � � small enough set � 5 �|� -
else:´ � � B5 + � � � ´ �5 + � ¨�� 5 � ´ � + � ¨ + �5 � �m� � M / �,¬*¬,¬T�I® £ ¥��L[­/µ/¦

for ��� / �*¬*¬,¬T��Si¨ / , in which initially
´ B5 + # � � � 5 + # and where

+ �5 � is an element subtracted
from a fill-in element which is being dropped. It should be equal either to zero (no drop-
ping) or to

´ �5 � ¨ � 5 � ´ � � when the element
´ � � B5 + � is being dropped. At the end of the S -th

step of Gaussian elimination (outer loop in Algorithm 10.6), we obtain the S -th row of
�

,´ 5 + # � ´ 55 @�B + # £ ¥��L[­ $�¦

��� � � &�~
�	?�C~ \��?�*�L&�
��p&�	
�ª� 	?� ��� �³� ���k& ¶��p·

and the following relation is satisfied:

� 5 + #7� 5

� � B � � + � ´ �5 + # M + 5 + #
�

where
+ 5 + # is the row containing all the fill-ins.

The existence result which will be proved is valid only for certain modifications of
the basic ILUT <�� � �;= strategy. We consider an ILUT strategy which uses the following
modification:

	 Drop Strategy Modification. For any S�² ® , let � 5 + � $ be the element of largest
modulus among the elements � 5 + � � �¡� S M / �,¬*¬*¬I® , in the original matrix. Then
elements generated in position < S�� � 5 = during the ILUT procedure are not subject to
the dropping rule.

This modification prevents elements generated in position < S�� � 5 = from ever being dropped.
Of course, there are many alternative strategies that can lead to the same effect.

A matrix
�

whose entries � 5 � satisfy the following three conditions:

� 5 5 � -
for / !<S^² ® and � I I � - £ ¥ �L[­ .�¦

� 5 � ! -
for S�� � � / �,¬*¬,¬T�I® and S �� ��� £ ¥��L[­ 1/¦I
� ��5 � B � 5 � ² - � for / !<SR²³® £ ¥ �9[­ 2�¦

will be referred to as an
�
� matrix. The third condition is a requirement that there be at

least one nonzero element to the right of the diagonal element, in each row except the last.
The row sum for the S -th row is defined by+

� < � 5 + # =�� � 5 + #TQ �
I
� � B � 5 + � ¬

A given row of an
�
� matrix

�
is diagonally dominant, if its row sum is nonnegative. An�

� matrix
�

is said to be diagonally dominant if all its rows are diagonally dominant. The
following theorem is an existence result for ILUT. The underlying assumption is that an
ILUT strategy is used with the modification mentioned above.

�w�|���n�R�
 � ��� �
If the matrix � is a diagonally dominant

�
� matrix, then the rows´ �5 + # � � � - � / � 0 �*¬,¬*¬ � S defined by (10.23) starting with

´ � 5 + # � -
and

´ B5 + # � � 5 + # satisfy the
following relations for � � / �,¬*¬,¬T� �´ �5 � ! - � �� S £ ¥ �L[­ ¤ ¦+

� < ´ �5 + # = � +
��< ´ � @�B5 + # = � - � £ ¥ �L[­ ��¦´ �5 5 � -

when SR²¡® and
´ �I I � - ¬ £ ¥ �L[µ ��¦

��� � �
 �
The result can be proved by induction on � . It is trivially true for ��� -

. To prove
that the relation (10.28) is satisfied, start from the relation´ � � B5 + # � � ´ �5 + # ¨�� 5 � ´ � + #2¨ + �5 #

¶p·�� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
in which � 5 �C! - � ´ � + � ! -

. Either
+ �5 � is zero which yields

´ � � B5 � ! ´ �5 � ! -
, or

+ �5 �
is nonzero which means that

´ � � B5 � is being dropped, i.e., replaced by zero, and therefore
again

´ � � B5 � ! -
. This establishes (10.28). Note that by this argument

+ �5 � � -
except when

the � -th element in the row is dropped, in which case
´ � � B5 � � -

and
+ �5 � � ´ �5 � ¨ � 5 � ´ � + � ! -

.
Therefore,

+ �5 � ! -
, always. Moreover, when an element in position <%S�� � = is not dropped,

then ´ � � B5 + � � � ´ �5 + � ¨�� 5 � ´ � + � ! ´ �5 + �
and in particular by the rule in the modification of the basic scheme described above, for
S�² ® , we will always have for �n� � 5 , ´ � � B5 + � $! ´ �5 + � $ £ ¥��L[µ9¥G¦
in which � 5 is defined in the statement of the modification.

Consider the row sum of
´ � � B5 # . We have+

� < ´ � � B5 + # =�� +
��< ´ �5 + # =ª¨�� 5 � +

� < ´ � + # =ª¨ +
� < + �5 # =

� +
��< ´ �5 + # =ª¨�� 5 � +

� < ´ � + # = £ ¥��L[µ/­/¦
� +
��< ´ �5 + # = £ ¥��L[µ/µ/¦

which establishes (10.29) for � M / .It remains to prove (10.30). From (10.29) we have, for S^² ® ,´ � � B5 5 �
� � � � B + I ¨ ´ � � B5 + � �
� � � � B + I � ´ � � B5 + � � £ ¥��L[µ $�¦
� � ´ � � B5 + � $ � � � ´ �5 + � $ � � ¬*¬,¬ £ ¥��L[µ ./¦
� � ´ B5 + � $ �9� � � 5 + � $ �H¬ £ ¥��L[µ 1/¦

Note that the inequalities in (10.35) are true because
´ �5 + � $ is never dropped by assumption

and, as a result, (10.31) applies. By the condition (10.27), which defines
�
� matrices, � � 5 + � $ �

is positive for S�² ® . Clearly, when SQ��® , we have by (10.34)
´ I I�� -

. This completes
the proof.

The theorem does not mean that the factorization is effective only when its conditions are
satisfied. In practice, the preconditioner is efficient under fairly general conditions.

$��! �� �� 2 B ��6,01BD019!;3'�;>2H7�9 450 ;3'52 6
*

A poor implementation of ILUT may well lead to an expensive factorization phase, and
possibly an impractical algorithm. The following is a list of the potential difficulties that
may cause inefficiencies in the implementation of ILUT.

� �
Generation of the linear combination of rows of � (Line 7 in Algorithm 10.6).� �
Selection of the � largest elements in

�
and

�
.

� �
Need to access the elements of

�
in increasing order of columns (in line 3 of

Algorithm 10.6).

��� � � &�~
�	?�C~ \��?�*�L&�
��p&�	
�ª� 	?� ��� �³� ���k& ¶p·��

For (1), the usual technique is to generate a full row and accumulate the linear combination
of the previous rows in it. The row is zeroed again after the whole loop is finished using
a sparse set-to-zero operation. A variation on this technique uses only a full integer array
�
+ < / � ®�= , the values of which are zero except when there is a nonzero element. With this

full row, a short real vector � < / � ± �L� � = must be maintained which contains the real
values of the row, as well as a corresponding short integer array � � < / � ± �%� � = which
points to the column position of the real values in the row. When a nonzero element resides
in position � of the row, then �

+ < � = is set to the address � in � � � � where the nonzero
element is stored. Thus, � � < ��= points to �

+ < � = , and �
+ < � = points to � � <���= and � <��;= . This

is illustrated in Figure 10.11.

1

2

0 0 2

4

0 0 3

7

0 4

9

0 0 0 0

� � � � � : real values

� � : pointer to nonzero elements

�
+
: nonzero

indicator

��� ��� � �������#�,�
Illustration of data structure used for the work-

ing row in ILUT.

Note that �
+

holds the information on the row consisting of both the
�

part and the�
part of the LU factorization. When the linear combinations of the rows are performed,

first determine the pivot. Then, unless it is small enough to be dropped according to the
dropping rule being used, proceed with the elimination. If a new element in the linear
combination is not a fill-in, i.e., if �

+ < � =R�	� �� -
, then update the real value � < ��= . If it is a

fill-in (�
+ < � =^� -

), then append an element to the arrays � � � � and update �
+

accordingly.
For (2), the natural technique is to employ a heap-sort strategy. The cost of this imple-

mentation would be
(<o± M �^¯ �

7
� « ± = , i.e.,

(<o± = for the heap construction and
(< �

7
� « ± =

for each extraction. Another implementation is to use a modified quick-sort strategy based
on the fact that sorting the array is not necessary. Only the largest � elements must be ex-
tracted. This is a quick-split technique to distinguish it from the full quick-sort. The method
consists of choosing an element, e.g., �¡� � < / = , in the array � < / � ± = , then permuting
the data so that � � <��;= � ! � � � if � ! ±DS"� and � � < ��= � � � � � if � � ±DS�� , where ± S�� is
some split point. If ±DS�� � � , then exit. Otherwise, split one of the left or right sub-arrays
recursively, depending on whether ± S�� is smaller or larger than � . The cost of this strategy
on the average is

(<N± = . The savings relative to the simpler bubble sort or insertion sort
schemes are small for small values of � , but they become rather significant for large � and± .

The next implementation difficulty is that the elements in the
�

part of the row being
built are not in an increasing order of columns. Since these elements must be accessed from
left to right in the elimination process, all elements in the row after those already elimi-

¶p·p¶ � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
nated must be scanned. The one with smallest column number is then picked as the next
element to eliminate. This operation can be efficiently organized as a binary search tree
which allows easy insertions and searches. However, this improvement is rather complex
to implement and is likely to yield moderate gains.

���
	��
 � ������� �
Tables 10.3 and 10.4 show the results of applying GMRES(10) precon-

ditioned with ILUT(1 � / - @ �

) and ILUT(5 � / - @ �

), respectively, to the five test problems
described in Section 3.7. See Example 6.1 for the meaning of the column headers in the ta-
ble. As shown, all linear systems are now solved in a relatively small number of iterations,
with the exception of F2DB which still takes 130 steps to converge with lfil = 1 (but only
10 with lfil = 5.) In addition, observe a marked improvement in the operation count and
error norms. Note that the operation counts shown in the column Kflops do not account for
the operations required in the set-up phase to build the preconditioners. For large values of
lfil , this may be large.

Matrix Iters Kflops Residual Error
F2DA 18 964 0.47E-03 0.41E-04
F3D 14 3414 0.11E-02 0.39E-03
ORS 6 341 0.13E+00 0.60E-04
F2DB 130 7167 0.45E-02 0.51E-03
FID 59 19112 0.19E+00 0.11E-03

� 	������ ����� �
A test run of GMRES(10)-ILUT(1 � / - @ �

) precon-
ditioning.

If the total time to solve one linear system with � is considered, a typical curve of
the total time required to solve a linear system when the lfil parameter varies would look
like the plot shown in Figure 10.12. As lfil increases, a critical value is reached where
the preprocessing time and the iteration time are equal. Beyond this critical point, the
preprocessing time dominates the total time. If there are several linear systems to solve
with the same matrix � , then it is advantageous to use a more accurate factorization, since
the cost of the factorization will be amortized. Otherwise, a smaller value of lfil will be
more efficient.

Matrix Iters Kflops Residual Error
F2DA 7 478 0.13E-02 0.90E-04
F3D 9 2855 0.58E-03 0.35E-03
ORS 4 270 0.92E-01 0.43E-04
F2DB 10 724 0.62E-03 0.26E-03
FID 40 14862 0.11E+00 0.11E-03

� 	������ ����� �
A test run of GMRES(10)-ILUT(5 � / - @ �

) precon-
ditioning.

��� � � &�~
�	?�C~ \��?�*�L&�
��p&�	
�ª� 	?� ��� �³� ���k& ¶p·��

level of fill-in

C
P
U

T
i
m
e

3.0 5.0 7.0 9.0 11. 13. 15.

0.

2.0

4.0

6.0

8.0

10.

12.

��� ��� � �������#�%¶
Typical CPU time as a function of lfil The

dashed line is the ILUT time, the dotted line is the GMRES time,
and the solid line shows the total.

$��! �� � ;>=?0@2 6 (�; ��' � �!A 7�' ��=

The ILUT approach may fail for many of the matrices that arise from real applications, for
one of the following reasons.

���
The ILUT procedure encounters a zero pivot;���
The ILUT procedure encounters an overflow or underflow condition, because of an
exponential growth of the entries of the factors;

� �
The ILUT preconditioner terminates normally but the incomplete factorization pre-
conditioner which is computed is unstable.

An unstable ILU factorization is one for which � @�B � � @�B � @�B has a very large norm
leading to poor convergence or divergence of the outer iteration. The case (1) can be over-
come to a certain degree by assigning an arbitrary nonzero value to a zero diagonal element
that is encountered. Clearly, this is not a satisfactory remedy because of the loss in accuracy
in the preconditioner. The ideal solution in this case is to use pivoting. However, a form of
pivoting is desired which leads to an algorithm with similar cost and complexity to ILUT.
Because of the data structure used in ILUT, row pivoting is not practical. Instead, column
pivoting can be implemented rather easily.

Here are a few of the features that characterize the new algorithm which is termed
ILUTP (“P” stands for pivoting). ILUTP uses a permutation array � Q + ± to hold the new
orderings of the variables, along with the reverse permutation array. At step S of the elim-
ination process the largest entry in a row is selected and is defined to be the new S -th
variable. The two permutation arrays are then updated accordingly. The matrix elements
of
�

and
�

are kept in their original numbering. However, when expanding the
�

-
�

row
which corresponds to the S -th outer step of Gaussian elimination, the elements are loaded
with respect to the new labeling, using the array � Q + ± for the translation. At the end of
the process, there are two options. The first is to leave all elements labeled with respect

¶p·�� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
to the original labeling. No additional work is required since the variables are already in
this form in the algorithm, but the variables must then be permuted at each preconditioning
step. The second solution is to apply the permutation to all elements of � as well as

� � � .
This does not require applying a permutation at each step, but rather produces a permuted
solution which must be permuted back at the end of the iteration phase. The complexity
of the ILUTP procedure is virtually identical to that of ILUT. A few additional options
can be provided. A tolerance parameter called � Q + ± � � � may be included to help determine
whether or not to permute variables: A nondiagonal element �;5 � is candidate for a per-
mutation only when

� � �Z¯ � ��5 � � � � � 5 5 � . Furthermore, pivoting may be restricted to take
place only within diagonal blocks of a fixed size. The size ± � � � of these blocks must be
provided. A value of ±f � � � � ® indicates that there are no restrictions on the pivoting.

For difficult matrices, the following strategy seems to work well:
� �

Always apply a scaling to all the rows (or columns) e.g., so that their / -norms are
all equal to 1; then apply a scaling of the columns (or rows).� �
Use a small drop tolerance (e.g., �]� / - @ �

or �Z� / - @ � = .
� �

Take a large fill-in parameter (e.g., � � S � � 0 -
).

� �
Do not take a small value for � Q + ± � � � . Reasonable values are between

- ¬ � and- ¬ - / , with
- ¬ � being the best in many cases.

� �
Take ± � � �Z��® unless there are reasons why a given block size is justifiable.

���
	��
 � ������� �
Table 10.5 shows the results of applying the GMRES algorithm with

ILUTP(1 � / - @ �

) preconditioning to the five test problems described in Section 3.7. The
permtol parameter is set to 1.0 in this case.

Matrix Iters Kflops Residual Error
F2DA 18 964 0.47E-03 0.41E-04
F3D 14 3414 0.11E-02 0.39E-03
ORS 6 341 0.13E+00 0.61E-04
F2DB 130 7167 0.45E-02 0.51E-03
FID 50 16224 0.17E+00 0.18E-03

� 	������ ����� �
A test run of GMRES with ILUTP(1) precondi-

tioning.

See Example 6.1 for the meaning of the column headers in the table. The results are identi-
cal with those of ILUT(1 � / - @ �

) shown in Table 10.3, for the first four problems, but there
is an improvement for the fifth problem.

$��! � �� ; =?0@2 6 (+* ' � �!A 7�' ��=

The ILU preconditioners discussed so far are based mainly on the the IKJvariant of Gaus-
sian elimination. Different types of ILUs can be derived using other forms of Gaussian

��� � � &�~
�	?�C~ \��?�*�L&�
��p&�	
�ª� 	?� ��� �³� ���k& ¶p·��
elimination. The main motivation for the version to be described next is that ILUT does
not take advantage of symmetry. If � is symmetric, then the resulting � � ��� is nonsym-
metric in general. Another motivation is that in many applications including computational
fluid dynamics and structural engineering, the resulting matrices are stored in a sparse
skyline (SSK) format rather than the standard Compressed Sparse Row format.

sparse row �

� sparse column

��� ��� � �������#� �
Illustration of the sparse skyline format.

In this format, the matrix � is decomposed as

�¢�	� M � B M � b«
in which � is a diagonal of � and

� B � � « are strictly lower triangular matrices. Then a
sparse representation of

� B and
� « is used in which, typically,

� B and
� « are stored in the

CSR format and � is stored separately.
Incomplete Factorization techniques may be developed for matrices in this format

without having to convert them into the CSR format. Two notable advantages of this ap-
proach are (1) the savings in storage for structurally symmetric matrices, and (2) the fact
that the algorithm gives a symmetric preconditioner when the original matrix is symmetric.

Consider the sequence of matrices

� � � B � % � � � �� �
 � � B) �
where � I ��� . If � � is nonsingular and its LDU factorization

� � � � � � � � �
is already available, then the LDU factorization of � � � B is

� � � B � % � � -

� /)

%
� � -- � � � B)

% � � 2 �- /)
in which

2 � �	� @�B� � @�B� � � £ ¥ �L[µ 2�¦

�W� � � � @�B� � @�B� £ ¥ �L[µ ¤ ¦

¶p·�� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
� � � B �
 � � B ¨
 � � �%2 �%¬ £ ¥��L[µ �/¦

Hence, the last row/column pairs of the factorization can be obtained by solving two unit
lower triangular systems and computing a scaled dot product. This can be exploited for
sparse matrices provided an appropriate data structure is used to take advantage of the
sparsity of the matrices

� � , � � as well as the vectors � � , � � ,

� , and 2 � . A convenient data

structure for this is to store the rows/columns pairs � � � � b� as a single row in sparse mode.
All these pairs are stored in sequence. The diagonal elements are stored separately. This is
called the Unsymmetric Sparse Skyline (USS) format. Each step of the ILU factorization
based on this approach will consist of two approximate sparse linear system solutions and
a sparse dot product. The question that arises is: How can a sparse triangular system be
solved inexpensively? It would seem natural to solve the triangular systems (10.37) and
(10.38) exactly and then drop small terms at the end, using a numerical dropping strategy.
However, the total cost of computing the ILU factorization with this strategy would be(<o® « = operations at least, which is not acceptable for very large problems. Since only an
approximate solution is required, the first idea that comes to mind is the truncated Neumann
series,

2 �w�	� @�B� � @�B� � �|� � @�B� < & M � � M � «� M ¬,¬*¬ M � �� = � � £ ¥��L[$��/¦
in which � � � & ¨ � � . In fact, by analogy with ILU(�), it is interesting to note that the
powers of � � will also tend to become smaller as � increases. A close look at the structure
of � �� � � shows that there is indeed a strong relation between this approach and ILU(�) in
the symmetric case. Now we make another important observation, namely, that the vector� �� � � can be computed in sparse-sparse mode, i.e., in terms of operations involving prod-
ucts of sparse matrices by sparse vectors. Without exploiting this, the total cost would still
be

(<o® « = . When multiplying a sparse matrix � by a sparse vector � , the operation can
best be done by accumulating the linear combinations of the columns of � . A sketch of the
resulting ILUS algorithm is as follows.

�������n�	�-�w��
 ����� ��� �V�i�7� ��� � � �
1. Set � B �	� B � � B B , � B � � B � /2. For Sª� / �*¬,¬*¬T�S®�¨ / Do:
3. Compute 2 � by (10.40) in sparse-sparse mode
4. Compute

� in a similar way

5. Apply numerical dropping to

� and 2 �

6. Compute � � � B via (10.39)
7. EndDo

If there are only S nonzero components in the vector � and an average of � nonzero elements
per column, then the total cost per step will be

0 ¯ SX¯�� on the average. Note that the
computation of � � via (10.39) involves the inner product of two sparse vectors which is
often implemented by expanding one of the vectors into a full vector and computing the
inner product of a sparse vector by this full vector. As mentioned before, in the symmetric
case ILUS yields the Incomplete Cholesky factorization. Here, the work can be halved
since the generation of

� is not necessary.

��� � � �����
r\ �R�
��p&�	�� � ��	;
��;	��
�	 � \�� ��� &�� \�� 	�
�� ¶p·��

Also note that a simple iterative procedure such as MR or GMRES(m) can be used
to solve the triangular systems in sparse-sparse mode. Similar techniques will be seen
in Section 10.5. Experience shows that these alternatives are not much better than the
Neumann series approach [53].

�8� �X�Z�.�v�V�����u���N� ���Z�R�]� ���7���2���C�v�t���D�f�n�]�]�
���v� �

The Incomplete LU factorization techniques were developed originally for � -matrices
which arise from the discretization of Partial Differential Equations of elliptic type, usu-
ally in one variable. For the common situation where � is indefinite, standard ILU fac-
torizations may face several difficulties, and the best known is the fatal breakdown due to
the encounter of a zero pivot. However, there are other problems that are just as serious.
Consider an incomplete factorization of the form

�¢� ��� M � £ ¥ �L[$9¥K¦
where � is the error. The preconditioned matrices associated with the different forms of
preconditioning are similar to

� @�BK� � @�B2� & M � @�B � � @�B4¬ £ ¥ �L[$/­�¦
What is sometimes missed is the fact that the error matrix � in (10.41) is not as important
as the “preconditioned” error matrix

� @�B � � @�B shown in (10.42) above. When the matrix� is diagonally dominant, then
�

and
�

are well conditioned, and the size of
� @�B � � @�B re-

mains confined within reasonable limits, typically with a nice clustering of its eigenvalues
around the origin. On the other hand, when the original matrix is not diagonally dominant,� @�B or

� @�B may have very large norms, causing the error
� @�B � � @�B to be very large and

thus adding large perturbations to the identity matrix. It can be observed experimentally
that ILU preconditioners can be very poor in these situations which often arise when the
matrices are indefinite, or have large nonsymmetric parts.

One possible remedy is to try to find a preconditioner that does not require solving
a linear system. For example, the original system can be preconditioned by a matrix �
which is a direct approximation to the inverse of � .

$��! � $ ' � �!A 7 	 2#BC'�;>2 9�& ; =?0@2#9 �>01A1*10 7 � ' * � ' A1*10
BC'3;>A+2 	

A simple technique for finding approximate inverses of arbitrary sparse matrices is to at-
tempt to find a sparse matrix � which minimizes the Frobenius norm of the residual matrix& ¨©��� , � <
� =���§ & ¨�� � § «� ¬ £ ¥ �L[$/µ�¦

¶p·�� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
A matrix � whose value � < � = is small would be a right-approximate inverse of � . Sim-
ilarly, a left-approximate inverse can be defined by using the objective function

§ & ¨ � �m§ «� ¬ £ ¥��L[$ $�¦
Finally, a left-right pair

� � � can be sought to minimize

§ & ¨ � � � § «� ¬ £ ¥��L[$./¦
In the following, only (10.43) and(10.45) are considered. The case (10.44) is very

similar to the right preconditioner case (10.43). The objective function (10.43) decouples
into the sum of the squares of the 2-norms of the individual columns of the residual matrix& ¨�� � , � < � =���§ & ¨©��� § «� �

I
� � B § Q � ¨©�7± � § «« £ ¥��L[$ 1/¦
in which Q � and ± � are the � -th columns of the identity matrix and of the matrix � ,
respectively. There are two different ways to proceed in order to minimize (10.46). The
function (10.43) can be minimized globally as a function of the sparse matrix � , e.g., by
a gradient-type method. Alternatively, the individual functions

� � <N± =���§ Q � ¨©�7±�§ «« � �m� / � 0 �,¬*¬*¬ �I® £ ¥��L[$ 2/¦
can be minimized. The second approach is appealing for parallel computers, although there
is also parallelism to be exploited in the first approach. These two approaches will be
discussed in turn.

$��! �� " & 6 7 �1'56D2 ; 01A�'�;>2H7:9

The global iteration approach consists of treating � as an unknown sparse matrix and
using a descent-type method to minimize the objective function (10.43). This function is a
quadratic function on the space of ® ¯f® matrices, viewed as objects in �

I 0
. The proper

inner product on the space of matrices, to which the squared norm (10.46) is associated, is� � �������
�
� <�� b �"=K¬ £ ¥��L[$ ¤ ¦

In the following, an array representation of an ® « vector � means the ®�¯m® matrix whose
column vectors are the successive ® -vectors of � .

In a descent algorithm, a new iterate � I
J/K
is defined by taking a step along a selected

direction � , i.e.,

� I
JLK ��� M
 �
in which
 is selected to minimize the objective function � <
� I
JLK = . From results seen
in Chapter 5, minimizing the residual norm is equivalent to imposing the condition that
�g¨
 ��� be orthogonal to � � with respect to the

��� � � � inner product. Thus, the optimal
 is given by

 �
�
�N�B� ���� � �8�B� ��� �

�
� <�� b � ��=�

� < <V� ��= b � ��= ¬ £ ¥��L[$��/¦

��� � � �����
r\ �R�
��p&�	�� � ��	;
��;	��
�	 � \�� ��� &�� \�� 	�
�� ¶p·p·

The denominator may be computed as §K���v§ «� . The resulting matrix � will tend to be-
come denser after each descent step and it is therefore essential to apply a numerical drop-
ping strategy to the resulting � . However, the descent property of the step is now lost,
i.e., it is no longer guaranteed that � < � I
J/K =,! � <
� = . An alternative would be to apply
numerical dropping to the direction of search � before taking the descent step. In this case,
the amount of fill-in in the matrix � cannot be controlled.

The simplest choice for the descent direction � is to take it to be equal to the residual
matrix � � & ¨f� � , where � is the new iterate. Except for the numerical dropping step,
the corresponding descent algorithm is nothing but the Minimal Residual (MR) algorithm,
seen in Section 5.3.2, on the ® « ¯w® « linear system � � � &

. The global Minimal Residual
algorithm will have the following form.

��� � �n� �D�w��
 ����� � � � � � � ��� � ��	��
� ��� � � � � � � � � � � � � � 	 � � � � ��� � ��
 �
1. Select an initial �
2. Until convergence Do:
3. Compute
 � �¢� � and � � � & ¨	

4. Compute
 �

�
� < � b ����=
�r§
�§ «�

5. Compute � � � � M
 �
6. Apply numerical dropping to �
7. EndDo

A second choice is to take � to be equal to the direction of steepest descent, i.e., the
direction opposite to the gradient of the function (10.43) with respect to � . If all vectors
as represented as 2-dimensional ®©¯�® arrays, then the gradient can be viewed as a matrix
� , which satisfies the following relation for small perturbations � ,� < � M � =�� � <
� = M � �8� � � M � <S§ �u§�=K¬ £ ¥ �L[. ��¦
This provides a way of expressing the gradient as an operator on arrays, rather than ® «
vectors.

�R� �n� ��� �-��� ��� ����� �
The array representation of the gradient of � with respect to �

is the matrix

�a�z¨ 0 � b �
in which � is the residual matrix �g� & ¨�� � .

��� � �
 �
For any matrix � we have� <
� M � =0¨ � <
� =�� �

� � < & ¨�� <
� M � = = b < & ¨�� < � M � = = �
¨
�
� � < & ¨�� <
� = b < & ¨�� <
� = �

�
�
� � <���¨���� = b <���¨���� =(¨ � b � �

�a¨
�
� � <V��� = b � M � b ���g¨ <V��� = b <N����= �

�a¨ 0 � � <
� b ��� = M �
� � <N����= b <N����= �

�a¨ 0 � � b �N� ��� M � ��� �S��� � ¬

����� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
Comparing this with (10.50) yields the desired result.

Thus, the steepest descent algorithm will consist of replacing � in line 3 of Algorithm
10.8 by ���!� b � �!� b < & ¨ � � = . As is expected with steepest descent techniques, the
algorithm can be quite slow.

�������n�	�-�w��
 �����t·�� � � � � � � � � ���� �� � � � � � � � 	 � � � � ��� � ��
 �
1. Select an initial �
2. Until convergence Do:
3. Compute �g� & ¨�� � , and � � �¢� b � ;
4. Compute
 ��§ �v§ «� �r§K���v§ «�
5. Compute � � ��� M
 �
6. Apply numerical dropping to �
7. EndDo

In either steepest descent or minimal residual, the � matrix must be stored explicitly.
The scalars §*� �v§ «� and

�
� < � b ����= needed to obtain
 in these algorithms can be com-

puted from the successive columns of ��� , which can be generated, used, and discarded.
As a result, the matrix ��� need not be stored.

$��! �� � �+7G6 (BD9�-/7�A�2#019!;>014 '56 & 7:A+2 ;>=?B8*

Column-oriented algorithms consist of minimizing the individual objective functions
(10.47) separately. Each minimization can be performed by taking a sparse initial guess
and solving approximately the ® parallel linear subproblems

�7± � � Q � � �n� / � 0 �,¬*¬,¬ �I® £ ¥��L[.9¥G¦
with a few steps of a nonsymmetric descent-type method, such as MR or GMRES. If these
linear systems were solved (approximately) without taking advantage of sparsity, the cost
of constructing the preconditioner would be of order ® « . That is because each of the ®
columns would require

(<o®�= operations. Such a cost would become unacceptable for large
linear systems. To avoid this, the iterations must be performed in sparse-sparse mode, a
term which was already introduced in Section 10.4.5. The column ± � and the subsequent
iterates in the MR algorithm must be stored and operated on as sparse vectors. The Arnoldi
basis in the GMRES algorithm are now to be kept in sparse format. Inner products and
vector updates involve pairs of sparse vectors.

In the following MR algorithm, ® 5 iterations are used to solve (10.51) approximately
for each column, giving an approximation to the � -th column of the inverse of � . Each
initial ± � is taken from the columns of an initial guess, � � .

��� � � �����
r\ �R�
��p&�	�� � ��	;
��;	��
�	 � \�� ��� &�� \�� 	�
�� ���3�
��� � �n� �D�w��
 �����#����� � � ��1� � �
� � � � � 	�� ��� � � ��� � ��� � � ���,� � � � 	

1. Start: set ����� �
2. For each column �n� / �*¬*¬,¬T�I® Do:
3. Define ± � ��� Q �
4. For Sª� / �,¬*¬*¬ �I® 5 Do:
5.

+ � � � Q � ¨��Q± �
6.
 � � � & � � + (� � -&)(� � + (� � -7. ± � � ��± � M
 � + �
8. Apply numerical dropping to ± �
9. EndDo

10. EndDo

The algorithm computes the current residual
+ � and then minimizes the residual norm§ Q � ¨f��<o± � M
 + � =,§ « , with respect to
 . The resulting column is then pruned by applying

the numerical dropping step in line 8.
In the sparse implementation of MR and GMRES, the matrix-vector product, SAXPY,

and dot product kernels now all involve sparse vectors. The matrix-vector product is much
more efficient if the sparse matrix is stored by columns, since all the entries do not need
to be traversed. Efficient codes for all these kernels may be constructed which utilize a full® -length work vector.

Columns from an initial guess � � for the approximate inverse are used as the initial
guesses for the iterative solution of the linear subproblems. There are two obvious choices:
� �7�
 & and � �X�
 � b . The scale factor
 is chosen to minimize the norm of

& ¨ � � � .
Thus, the initial guess is of the form � �|�
 � where � is either the identity or � b . The
optimal
 can be computed using the formula (10.49), in which � is to be replaced by
the identity, so
 �

�
� <V� ��=�� � � <N��� <N����= b = . The identity initial guess is less expensive to

use but � � �
 � b is sometimes a much better initial guess. For this choice, the initial
preconditioned system � � � is SPD.

The linear systems needed to solve when generating each column of the approximate
inverse may themselves be preconditioned with the most recent version of the precondi-
tioning matrix � . Thus, each system (10.51) for approximating column � may be pre-
conditioned with � �� where the first ��¨ / columns of � �� are the ± � that already have
been computed, / !	� ² � , and the remaining columns are the initial guesses for the ±
� ,
��!	� !�® . Thus, outer iterations can be defined which sweep over the matrix, as well as
inner iterations which compute each column. At each outer iteration, the initial guess for
each column is taken to be the previous result for that column.

$��! � �� ; =?0F7:A!0 ; 2 �1'56 �+7:9 *32#4501A '3; 2 7:9 *

The first theoretical question which arises is whether or not the approximate inverses ob-
tained by the approximations described earlier can be singular. It cannot be proved that �
is nonsingular unless the approximation is accurate enough. This requirement may be in
conflict with the requirement of keeping the approximation sparse.

���r¶ � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
�R� �n� ��� �D��� ��� ����� �

Assume that � is nonsingular and that the residual of the ap-
proximate inverse � satisfies the relation

§ & ¨�� � § ² / £ ¥��L[./­/¦
where §4¬T§ is any consistent matrix norm. Then � is nonsingular.

�����	��
 �
The result follows immediately from the equality

� � � & ¨ < & ¨�� � = � & ¨ �f¬ £ ¥��L[./µ/¦
Since § �³§X² / , Theorem 1.5 seen in Chapter 1 implies that

& ¨ � is nonsingular.

The result is true in particular for the Frobenius norm which is consistent (see Chapter 1).
It may sometimes be the case that � � is poorly balanced and as a result � can be

large. Then balancing � � can yield a smaller norm and possibly a less restrictive condi-
tion for the nonsingularity of � . It is easy to extend the previous result as follows. If � is
nonsingular and two nonsingular diagonal matrices � B � � « exist such that

§ & ¨ � B ��� � «L§ ² / £ ¥��L[. $�¦
where §4¬T§ is any consistent matrix norm, then � is nonsingular.

Each column is obtained independently by requiring a condition on the residual norm
of the form

§ Q � ¨��Q± � §,! �,� £ ¥��L[. ./¦
for some vector norm §4¬T§ . From a practical point of view the 2-norm is preferable since it is
related to the objective function which is used, namely, the Frobenius norm of the residual& ¨f��� . However, the 1-norm is of particular interest since it leads to a number of simple
theoretical results. In the following, it is assumed that a condition of the form

§ Q � ¨©�7± � § B ! � � £ ¥��L[. 1/¦
is required for each column.

The above proposition does not reveal anything about the degree of sparsity of the
resulting approximate inverse � . It may well be the case that in order to guarantee nonsin-
gularity, � must be dense, or nearly dense. In fact, in the particular case where the norm in
the proposition is the 1-norm, it is known that the approximate inverse may be structurally
dense, in that it is always possible to find a sparse matrix � for which � will be dense if§ & ¨�� � § B ² / .Next, we examine the sparsity of � and prove a simple result for the case where an
assumption of the form (10.56) is made.

�R� �n� ��� �D��� ��� ����� �
Let ����� @�B and assume that a given element 5 � of � satisfies

the inequality � 5 � � � � � � � �� � B + I � 5 � � � £ ¥��L[. 2/¦
then the element ± 5 � is nonzero.

��� � � �����
r\ �R�
��p&�	�� � ��	;
��;	��
�	 � \�� ��� &�� \�� 	�
�� ���;�
��� � �
 �

From the equality ����� & ¨�� we have � �¢� @�B ¨�� @�B � , and hence

± 5 � �¢ 5 � ¨ I

� � B 5 � + � � ¬

Therefore, � ±�5 � � � � A5 � ��¨ I

� � B � 5 � + � � �� � 5 � ��¨ � � �� � B + I � 5 � �%§ + � § B� � 5 � ��¨ � � �� � B + I � 5 � � � � ¬

Now the condition (10.57) implies that � ± 5 � � � -
.

The proposition implies that if � is small enough, then the nonzero elements of � are
located in positions corresponding to the larger elements in the inverse of � . The following
negative result is an immediate corollary.

� �n� � � �%�|� � �����#�
Let �v� � � � � � B +������ + I � � . If the nonzero elements of ����� @�B are

� -equimodular in that � A5 � � � �
� � �� � B + I + � � B + I � � � � �

then the nonzero sparsity pattern of � includes the nonzero sparsity pattern of � @�B . In
particular, if � @�B is dense and its elements are � -equimodular, then � is also dense.

The smaller the value of � , the more likely the condition of the corollary will be satisfied.
Another way of stating the corollary is that accurate and sparse approximate inverses may
be computed only if the elements of the actual inverse have variations in size. Unfortu-
nately, this is difficult to verify in advance and it is known to be true only for certain types
of matrices.

$��! �� � �+7:9 �>01A1&)019 ��0D7 � * 036 � �!A!0 ��7�9)4?2 ; 2 7:9?014 BDA

We now examine the convergence of the MR algorithm in the case where self precon-
ditioning is used, but no numerical dropping is applied. The column-oriented algorithm is
considered first. Let � be the current approximate inverse at a given substep. The self pre-
conditioned MR iteration for computing the � -th column of the next approximate inverse
is obtained by the following sequence of operations:

1.
+ � � � Q � ¨��Q± � � Q � ¨�� � Q �

2.
� � � ��� + �

3.
 � � � & � � + (� � -&)(� � + (� � -4. ± � � ��± � M
 � � � .

��� � � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
Note that
 � can be written as

 � � < + � �S��� + � =<N��� + � �S��� + � = � < + � �
 + � =<�
 + � �
 + � =
where

a��� �
is the preconditioned matrix at the given substep. The subscript � is now dropped to sim-
plify the notation. The new residual associated with the current column is given by+ I JLK � + ¨
 � � � + ¨
 ��� +�� + ¨

 + ¬
The orthogonality of the new residual against � � +

can be used to obtain

§ + I
JLK § «« �z§ + § «« ¨
 « §
 + § «« ¬
Replacing
 by its value defined above we get

§ + I
JLK § «« ��§ + § «« � / ¨ % <
 + � + =
§
 + §*«%§ + §*«) « � ¬

Thus, at each inner iteration, the residual norm for the � -th column is reduced according to
the formula

§ + I
JLK § « � § + § « � � 9 � < + �
 + = £ ¥��L[. ¤ ¦
in which

� < ´ � � = denotes the acute angle between the vectors
´

and � . Assume that each
column converges. Then, the preconditioned matrix
 converges to the identity. As a result
of this, the angle

� < + �
 + = will tend to
� < + � + = � -

, and therefore the convergence ratio� � 9 � < + �
 + = will also tend to zero, showing superlinear convergence.
Now consider equation (10.58) more carefully. Denote by � the residual matrix ���& ¨�� � and observe that

� � 9 � < + �
 + =R� � � 9
�

§ + ¨

 + §*«
§ + § «! § + ¨
 + §K«

§ + §*« � § � + §*«
§ + §K«!a§ ��§K«4¬

This results in the following statement.

�R� �n� ��� �D��� ��� �������
Assume that the self preconditioned MR algorithm is employed

with one inner step per iteration and no numerical dropping. Then the 2-norm of each
residual Q � ¨f�Q± � of the � -th column is reduced by a factor of at least § & ¨f� � §�« , where
� is the approximate inverse before the current step, i.e.,

§ + I
JLK� § « ! § & ¨©��� § « § + � § « ¬ £ ¥��L[. �/¦
In addition, the residual matrices � � � & ¨v� � � obtained after each outer iteration satisfy

§ � � � B § � ! § � � § «� ¬ £ ¥��L[1 �/¦
As a result, when the algorithm converges, it does so quadratically.

��� � � �����
r\ �R�
��p&�	�� � ��	;
��;	��
�	 � \�� ��� &�� \�� 	�
�� ��� �
��� � �
 �

Inequality (10.59) was proved above. To prove quadratic convergence, first use
the inequality § �¡§,« !a§ �¡§ �

and (10.59) to obtain

§ + I
JLK� §*« !�§ � � + � § � § + � §K«9¬
Here, the � index corresponds to the outer iteration and the � -index to the column. Note that
the Frobenius norm is reduced for each of the inner steps corresponding to the columns,
and therefore,

§ � � + � § � ! § � � § � ¬
This yields

§ + I
J/K� § «« !�§ � �p§ «� § + � § ««
which, upon summation over � , gives

§ � � � B § � !a§ � � § «� ¬
This completes the proof.

Note that the above theorem does not prove convergence. It only states that when the al-
gorithm converges, it does so quadratically at the limit. In addition, the result ceases to be
valid in the presence of dropping.

Consider now the case of the global iteration. When self preconditioning is incor-
porated into the global MR algorithm (Algorithm 10.8), the search direction becomes

 � � � � � � , where � � is the current residual matrix. Then, the main steps of the al-
gorithm (without dropping) are as follows.

1. � � � � & ¨�� � �
2.

 � � ��� � � �
3.
 � � � � � � + (� ���� (� � + (� � �4. � � � B � � � � M
 �
 �

At each step the new residual matrix � � � B satisfies the relation

� � � B � & ¨�� � � � B � & ¨�� <
� � M
 �
 � =��	� �7¨
 �4�
 ��¬
An important observation is that � � is a polynomial in � � . This is because, from the above
relation,

� � � B �	� �X¨
 �4��� � � �w� � ��¨
 ��< & ¨ � � =�� �|� < / ¨
 � = � � M
 � � «� ¬ £ ¥ �L[1E¥K¦
Therefore, induction shows that � � � B � � « � <���� = where � � is a polynomial of degree � .
Now define the preconditioned matrices,

� � � ��� � � & ¨�� � ¬ £ ¥ �L[1,­�¦
Then, the following recurrence follows from (10.61),

� � � B � � � M
 � � � < & ¨�� � = £ ¥ �L[1,µ�¦
and shows that � � � B is also a polynomial of degree

0 � in ��� . In particular, if the initial
��� is symmetric, then so are all subsequent � � ’s. This is achieved when the initial � is a
multiple of � b , namely if � �X�
 �/� b .

��� � � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
Similar to the column oriented case, when the algorithm converges it does so quadrat-

ically.

�R� �n� ��� �D��� ��� ����� �
Assume that the self preconditioned global MR algorithm is

used without dropping. Then, the residual matrices obtained at each iteration satisfy

§ � � � B § � !a§ � «� § � ¬ £ ¥��L[1 $�¦
As a result, when the algorithm converges, then it does so quadratically.

�����	��
 �
Define for any
 ,

� <
 =^� < / ¨
 = � � M
 � «�
Recall that
 � achieves the minimum of § � <
 =*§ �

over all
 ’s. In particular,

§ � � � B § � � ��� 9
�
§ � <
 =*§ �!g§ � < / =,§ � ��§ � «� § � £ ¥��L[1 ./¦!g§ � �p§ «� ¬

This proves quadratic convergence at the limit.

For further properties see Exercise 16.

$��! �� �� � ' � ;?7:A!014 ' � �+A 7 	 2 BC'3;>0@2#9 �>01A1*10,*

A notable disadvantage of the right or left preconditioning approach method is that it is
difficult to assess in advance whether or not the resulting approximate inverse � is non-
singular. An alternative would be to seek a two-sided approximation, i.e., a pair

�
,
�

, with�
lower triangular and

�
upper triangular, which attempts to minimize the objective func-

tion (10.45). The techniques developed in the previous sections can be exploited for this
purpose.

In the factored approach, two matrices
�

and
�

which are unit lower and upper trian-
gular matrices are sought such that

� � ��� �
where � is some unknown diagonal matrix. When � is nonsingular and

� � � � � , then� � � are called inverse LU factors of � since in this case � @�B � � � @�B � . Once more, the
matrices are built one column or row at a time. Assume as in Section 10.4.5 that we have
the sequence of matrices

� � � B � % � � � �� �
 � � B)
in which � I � � . If the inverse factors

� �.� � � are available for � � , i.e.,
� �4� � � �W� � ���

��� � � �����
r\ �R�
��p&�	�� � ��	;
��;	��
�	 � \�� ��� &�� \�� 	�
�� ��� �
then the inverse factors

� � � B � � � � B for � � � B are easily obtained by writing% � � -
¨
 � /)

% � � � �� �
 � � B)
% � � ¨�2 �- /) � %

� � -- O � � B) £ ¥ �L[1 1�¦
in which 2 � ,

� , and

O � � B are such that

� �%2 �W� � � £ ¥ �L[1 2�¦

��� �w� � � £ ¥ �L[1 ¤ ¦O � � B �
 � � B ¨ � �%2 �W�
 � � B ¨
 � � ��¬ £ ¥ �L[1 ��¦

Note that the formula (10.69) exploits the fact that either the system (10.67) is solved
exactly (middle expression) or the system (10.68) is solved exactly (second expression) or
both systems are solved exactly (either expression). In the realistic situation where neither
of these two systems is solved exactly, then this formula should be replaced by

O � � B �
 � � B ¨ � � 2 � ¨
 � � � M
 � � � 2 � ¬ £ ¥ �L[2 ��¦
The last row/column pairs of the approximate factored inverse can be obtained by solving
two sparse systems and computing a few dot products. It is interesting to note that the only
difference with the ILUS factorization seen in Section 10.4.5 is that the coefficient matrices
for these systems are not the triangular factors of � � , but the matrix � � itself.

To obtain an approximate factorization, simply exploit the fact that the � � matrices are
sparse and then employ iterative solvers in sparse-sparse mode. In this situation, formula
(10.70) should be used for

O � � B . The algorithm would be as follows.

��� � �n� �D�w��
 �����#�,��� � � ��1� � �
� � � � � 	�� ��� � � ��� � � ��� �v� � � ��� � ��
 �
1. For � � / �*¬,¬*¬T�S® Do:
2. Solve (10.67) approximately;
3. Solve (10.68) approximately;
4. Compute

O � � B �
 � � B ¨ � � 2 � ¨
 � � � M
 � � � 2 �
5. EndDo

A linear system must be solved with � � in line 2 and a linear system with � b � in line 3.
This is a good scenario for the Biconjugate Gradient algorithm or its equivalent two-sided
Lanczos algorithm. In addition, the most current approximate inverse factors can be used
to precondition the linear systems to be solved in steps 2 and 3. This was termed “self
preconditioning” earlier. All the linear systems in the above algorithm can be solved in
parallel since they are independent of one another. The diagonal � can then be obtained at
the end of the process.

This approach is particularly suitable in the symmetric case. Since there is only one
factor, the amount of work is halved. In addition, there is no problem with the existence
in the positive definite case as is shown in the following lemma which states that

O � � B is
always � -

when � is SPD, independently of the accuracy with which the system (10.67)
is solved.

�C�

�� �����#�
Let � be SPD. Then, the scalar

O � � B as computed by (10.70) is positive.

����� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
�����	��
 �

In the symmetric case, � �w� � b� . Note that
O � � B as computed by formula (10.70)

is the <�� M / � � M / = element of the matrix
� � � B � � � B � b � � B . It is positive because � � � B is

SPD. This is independent of the accuracy for solving the system to obtain 2 � .
In the general nonsymmetric case, there is no guarantee that

O � � B will be nonzero,
unless the systems (10.67) and (10.68) are solved accurately enough. There is no practical
problem here, since

O � � B is computable. The only question remaining is a theoretical one:
Can

O � � B be guaranteed to be nonzero if the systems are solved with enough accuracy?
Intuitively, if the system is solved exactly, then the � matrix must be nonzero since it is
equal to the � matrix of the exact inverse factors in this case. The minimal assumption to
make is that each � � is nonsingular. Let

O #� � B be the value that would be obtained if at least
one of the systems (10.67) or (10.68) is solved exactly. According to equation (10.69), in
this situation this value is given by

O #� � B �
 � � B ¨ � �4� @�B� � ��¬ £ ¥��L[29¥G¦
If � � � B is nonsingular, then

O #� � B �� -
. To see this refer to the defining equation (10.66)

and compute the product
� � � B � � � B � � � B in the general case. Let

+ � and � � be the residuals
obtained for these linear systems, i.e.,+ � � � � ¨�� � 2 � � � � � � � ¨
 � � � ¬ £ ¥��L[2/­/¦
Then a little calculation yields

� � � B � � � B � � � B � % � ��� � � � � � + �
� � � � O � � B) ¬ £ ¥��L[2/µ/¦

If one of
+ � or � � is zero, then it is clear that the term

O � � B in the above relation be-
comes

O #� � B and it must be nonzero since the matrix on the left-hand side is nonsingular.
Incidentally, this relation shows the structure of the last matrix

� I � I � I � � � � . The
components / to �|¨ / of column � consist of the vector

� � + � , the components 1 to �m¨ /of row S make up the vector � � � � , and the diagonal elements are the
O 5 ’s. Consider now

the expression for
O � � B from (10.70).

O � � B �
 � � B ¨ � � 2 �Q¨
 � � � M
 ��� � 2 �
�
 � � B ¨ � �9� @�B� < � ��¨ + �?=0¨ < � ��¨ � � =I� @�B� � � M < � ��¨ + � =q� @�B� < � ��¨ � �?=
�
 � � B ¨ � �4� @�B� � � M + �4� @�B� � �� O #� � B M + � � @�B� � � ¬

This perturbation formula is of a second order in the sense that � O � � B ¨ O #� � B �¡�(<S§ + �p§�§ � � §�= . It guarantees that
O � � B is nonzero whenever � + �4� @�B� � � � ² � O #� � B � .

$��! � �� 2 B �+A 7 � 2#9 & '��!A!0 ��7�9)4?2 ; 2 7:9?01A

After a computed ILU factorization results in an unsatisfactory convergence, it is difficult
to improve it by modifying the

�
and

�
factors. One solution would be to discard this

factorization and attempt to recompute a fresh one possibly with more fill-in. Clearly, this
may be a wasteful process. A better alternative is to use approximate inverse techniques.
Assume a (sparse) matrix � is a preconditioner to the original matrix � , so the precondi-

��� ��� ���/\ � � ��
�	 � \�� ��� &�� \���	;
�� ���r·
tioned matrix is

 ��� @�B � ¬
A sparse matrix � is sought to approximate the inverse of � @�B � . This matrix is then to be
used as a preconditioner to � @�B � . Unfortunately, the matrix
 is usually dense. However,
observe that all that is needed is a matrix � such that

� � � �g¬
Recall that the columns of � and � are sparse. One approach is to compute a least-squares
approximation in the Frobenius norm sense. This approach was used already in Section
10.5.1 when � is the identity matrix. Then the columns of � were obtained by approxi-
mately solving the linear systems ��� 5 � Q 5 . The same idea can be applied here. Now, the
systems

��� 5 ��± 5
must be solved instead, where ± 5 is the S -th column of � which is sparse. Thus, the
coefficient matrix and the right-hand side are sparse, as before.

�w� �D� � �X�X���Q�f�N�v�H���-�f�n�Z�R�
���v� �

Block preconditioning is a popular technique for block-tridiagonal matrices arising from
the discretization of elliptic problems. It can also be generalized to other sparse matrices.
We begin with a discussion of the block-tridiagonal case.

$��! ��! %$ � 6 7 ��� -L;>A+2#4?2 '�& 7:9+'56 BC'�; A+2 ��0,*

Consider a block-tridiagonal matrix blocked in the form

�!�
�����
�
� B � «� « � « � �

. . .
. . .

. . .� D @�B � D @�B � D� D � D
������
	 ¬ £ ¥ �L[2�$4¦

One of the most popular block preconditioners used in the context of PDEs is based on
this block-tridiagonal form of the coefficient matrix � . Let � be the block-diagonal matrix
consisting of the diagonal blocks � 5 , � the block strictly-lower triangular matrix consisting
of the sub-diagonal blocks � 5 , and

�
the block strictly-upper triangular matrix consisting

of the super-diagonal blocks � 5 . Then, the above matrix has the form

�!� � M � M � ¬

����� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
A block ILU preconditioner is defined by

� � < � M � = � @�B < � M � = � £ ¥��L[2 ./¦
where

�
and

�
are the same as above, and � is a block-diagonal matrix whose blocks � 5

are defined by the recurrence:

��5ª� � 5 ¨ � 5 � 5 @�B � 5�� £ ¥��L[2 1/¦
in which

� � is some sparse approximation to � @�B� . Thus, to obtain a block factorization,
approximations to the inverses of the blocks � 5 must be found. This clearly will lead to
difficulties if explicit inverses are used.

An important particular case is when the diagonal blocks � 5 of the original matrix are
tridiagonal, while the co-diagonal blocks � 5 and � 5 are diagonal. Then, a simple recur-
rence formula for computing the inverse of a tridiagonal matrix can be exploited. Only the
tridiagonal part of the inverse must be kept in the recurrence (10.76). Thus,

� B � � B � £ ¥��L[2 2/¦
� 5 � � 5 ¨ � 5 � & � -5 @�B � 5 � S(� / �,¬*¬,¬ �I± � £ ¥��L[2 ¤ ¦

where
� & � -� is the tridiagonal part of � @�B� .< � & � -� = 5 + � � < � @�B� = 5 + � for � Sc¨ ��� ! / ¬

The following theorem can be shown.

�w�|���n�]�
 ����� �
Let � be Symmetric Positive Definite and such that

	 � 5 5 � - � S(� / �,¬*¬,¬T�I® , and � 5 � ! -
for all � �� S .

	 The matrices � 5 are all (strict) diagonally dominant.

Then each block � 5 computed by the recurrence (10.77), (10.78) is a symmetric � -matrix.
In particular, � is also a positive definite matrix.

We now show how the inverse of a tridiagonal matrix can be obtained. Let a tridiagonal
matrix � of dimension � be given in the form

� �
�����
�

 B ¨ �C«¨ � «
 « ¨ � �

. . .
. . .

. . .¨ � � @�B
 � @�B ¨ � �¨ � �
 �

������
	 �

and let its Cholesky factorization be

� � � � � b �
with

� �
: � �
� � O 5 �

��� ��� �
�	 � \�� ��� &�� \�� 	�
�� �/\�
v&�~ 	��}\�
�
���� 	���� �p&�� \���� ���,�
and

� �
�����
�

/¨ � « /.¨ � � @�B /¨ � � /

� ����
	 ¬

The inverse of � is
� @ b � @�B � @�B . Start by observing that the inverse of

� b
is a unit upper

triangular matrix whose coefficients
´ 5 � are given by´ 5 � � � 5 � B � 5 � « ¬*¬,¬ � � @�B � � for / ! S^² ��² �q¬

As a result, the � -th column � � of
� @ b is related to the < �W¨ / = -st column � � @�B by the very

simple recurrence,

� � � Q � M	� � � � @�B � for � � 0
starting with the first column � B � Q B . The inverse of � becomes

� @�B2� � @ b � @�B � @�BZ� �
� � B /O � � � � b� ¬ £ ¥ �L[2 ��¦
See Exercise 12 for a proof of the above equality. As noted, the recurrence formulas for
computing � @�B can be unstable and lead to numerical difficulties for large values of � .

$��! �! #" &)019?01A�'56 BC'3;>A+2 ��0,*

A general sparse matrix can often be put in the form (10.74) where the blocking is ei-
ther natural as provided by the physical problem, or artificial when obtained as a result of
RCMK ordering and some block partitioning. In such cases, a recurrence such as (10.76)
can still be used to obtain a block factorization defined by (10.75). A 2-level precondi-
tioner can be defined by using sparse inverse approximate techniques to approximate

� 5 .
These are sometimes termed implicit-explicit preconditioners, the implicit part referring to
the block-factorization and the explicit part to the approximate inverses used to explicitly
approximate � @�B5 .

���7���2���C�v�t���D�f�n�]�]� � ���a�u�n�z�w�����������0���Q�����D�f�W�
���v���

When the original matrix is strongly indefinite, i.e., when it has eigenvalues spread on both
sides of the imaginary axis, the usual Krylov subspace methods may fail. The Conjugate
Gradient approach applied to the normal equations may then become a good alternative.
Choosing to use this alternative over the standard methods may involve inspecting the spec-
trum of a Hessenberg matrix obtained from a small run of an unpreconditioned GMRES
algorithm.

���%¶ � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
If the normal equations approach is chosen, the question becomes how to precondition

the resulting iteration. An ILU preconditioner can be computed for � and the precondi-
tioned normal equations,

� b < ��� = @ b < ��� = @�B �Q���¢� b < � � = @ b < � � = @�B ��
can be solved. However, when � is not diagonally dominant the ILU factorization pro-
cess may encounter a zero pivot. Even when this does not happen, the resulting precon-
ditioner may be of poor quality. An incomplete factorization routine with pivoting, such
as ILUTP, may constitute a good choice. ILUTP can be used to precondition either the
original equations or the normal equations shown above. This section explores a few other
options available for preconditioning the normal equations.

$��! ��! %$ � ' �+7 � 2�� *F7:A���' 9?4 ��' A+2 ' 9+;)*

There are several ways to exploit the relaxation schemes for the Normal Equations seen in
Chapter 8 as preconditioners for the CG method applied to either (8.1) or (8.3). Consider
(8.3), for example, which requires a procedure delivering an approximation to <N�7� b = @�B �
for any vector � . One such procedure is to perform one step of SSOR to solve the system<N�X� b = � � � . Denote by � @�B the linear operator that transforms � into the vector result-
ing from this procedure, then the usual Conjugate Gradient method applied to (8.3) can
be recast in the same form as Algorithm 8.5. This algorithm is known as CGNE/SSOR.
Similarly, it is possible to incorporate the SSOR preconditioning in Algorithm 8.4, which
is associated with the Normal Equations (8.1), by defining � @�B to be the linear transfor-
mation that maps a vector � into a vector � resulting from the forward sweep of Algorithm
8.2 followed by a backward sweep. We will refer to this algorithm as CGNR/SSOR.

The CGNE/SSOR and CGNR/SSOR algorithms will not break down if � is nonsin-
gular, since then the matrices �X� b and � b � are Symmetric Positive Definite, as are the
preconditioning matrices � . There are several variations to these algorithms. The standard
alternatives based on the same formulation (8.1) are either to use the preconditioner on the
right, solving the system � b � � @�B
 � , or to split the preconditioner into a forward
SOR sweep on the left and a backward SOR sweep on the right of the matrix � b � . Sim-
ilar options can also be written for the Normal Equations (8.3) again with three different
ways of preconditioning. Thus, at least six different algorithms can be defined.

$��! ��! " 2 � ��� � � 7:A ; =?0@9�7:A!B '56D0FEG('3; 2 7:9 *

The Incomplete Cholesky IC(0) factorization can be used to precondition the Normal
Equations (8.1) or (8.3). This approach may seem attractive because of the success of
incomplete factorization preconditioners. However, a major problem is that the Incom-
plete Cholesky factorization is not guaranteed to exist for an arbitrary Symmetric Pos-
itive Definite matrix � . All the results that guarantee existence rely on some form of
diagonal dominance. One of the first ideas suggested to handle this difficulty was to
use an Incomplete Cholesky factorization on the “shifted” matrix � M
 & . We refer to
IC(0) applied to � � � b � as ICNR(0), and likewise IC(0) applied to � � �X� b

��� ��� �
�	 � \�� ��� &�� \�� 	�
�� �/\�
v&�~ 	��}\�
�
���� 	���� �p&�� \���� ��� �
as ICNE(0). Shifted variants correspond to applying IC(0) to the shifted � matrix.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
150

160

170

180

190

200

210

220

alpha

ite
ra

tio
ns

��� ��� � �������#� �
Iteration count as a function of the shift
 .

One issue often debated is how to find good values for the shift
 . There is no easy and
well-founded solution to this problem for irregularly structured symmetric sparse matrices.
One idea is to select the smallest possible
 that makes the shifted matrix diagonally dom-
inant. However, this shift tends to be too large in general because IC(0) may exist for much
smaller values of
 . Another approach is to determine the smallest
 for which the IC(0)
factorization exists. Unfortunately, this is not a viable alternative. As is often observed,
the number of steps required for convergence starts decreasing as
 increases, and then
increases again. An illustration of this is shown in Figure 10.14. This plot suggests that
there is an optimal value for
 which is far from the smallest admissible one. For small
 ,
the diagonal dominance of � M
 & is weak and, as a result, the computed IC factorization
is a poor approximation to the matrix ��<
 = � � M
 & . In other words, � <
 = is close to
the original matrix � , but the IC(0) factorization is far from � <
 = . For large
 , the oppo-
site is true. The matrix � <
 = has a large deviation from � < - = , but its IC(0) factorization
may be quite good. Therefore, the general shape of the curve shown in the figure is not too
surprising.

To implement the algorithm, the matrix � �g�7� b need not be formed explicitly. All
that is required is to be able to access one row of � at a time. This row can be computed,
used, and then discarded. In the following, the S -th row Q b5 � of � is denoted by � 5 . The
algorithm is row-oriented and all vectors denote row vectors. It is adapted from the ILU(0)
factorization of a sparse matrix, i.e., Algorithm 10.4, but it actually computes the

� � � b
factorization instead of an

���
or
� � b

factorization. The main difference with Algorithm
10.4 is that the loop in line 7 is now restricted to � !<S because of symmetry. If only the � 5 �
elements are stored row-wise, then the rows of

� � � b which are needed in this loop are
not directly available. Denote the � -th row of

� � � b by
´ � . These rows are accessible by

adding a column data structure for the
�

matrix which is updated dynamically. A linked
list data structure can be used for this purpose. With this in mind, the IC(0) algorithm will
have the following structure.

��� � �n� �D�w��
 �����#�%¶ � �
 � � � ��� �#�W�m� � � �

��� � � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
1. Initial step: Set � B � � � B B , � B B � /2. For Sª� 0 ���F�*¬*¬,¬T�I® Do:
3. Obtain all the nonzero inner products
4. � 5 � � < � � � � 5 =T� �n� / � 0 �,¬*¬,¬ ��Si¨ / , and � 5 5 � ��§ � 5 § « M

5. Set �
 < S = � � � � � 5 � �� - �
6. For ��� / �*¬,¬*¬T� Si¨ / and if � � �
 <%S = Do:
7. Extract row

´ � � < � Q � = b
8. Compute � 5 � � � � 5 � � � �
9. For �m� � M / �*¬,¬*¬T� S and if < S�� � = � �
 <%S = Do:

10. Compute � 5 � � � � 5 � ¨�� 5 � ´ � �
11. EndDo
12. EndDo
13. Set � 5 � � � 5 5 , � 5 5 � � /14. EndDo

Note that initially the row
´ B in the algorithm is defined as the first row of � . All vectors

in the algorithm are row vectors.
The step represented by lines 3 and 4, which computes the inner products of row

number S with all previous rows, needs particular attention. If the inner products

�
b B � 5 � � b« � 5 �*¬*¬,¬ � � b5 @�B � 5

are computed separately, the total cost of the incomplete factorization would be of the
order of ® « steps and the algorithm would be of little practical value. However, most of
these inner products are equal to zero because of sparsity. This indicates that it may be
possible to compute only those nonzero inner products at a much lower cost. Indeed, if � is
the column of the S4¨ / inner products � 5 � , then � is the product of the rectangular <%S4¨ / =r¯Q®matrix �>5 @�B whose rows are � b B �*¬*¬,¬ ��� b5 @�B by the vector � 5 , i.e.,

�Q��� 5 @�B � 5 ¬ £ ¥��L[¤ �/¦
This is a sparse matrix-by-sparse vector product which was discussed in Section 10.5. It
is best performed as a linear combination of the columns of � 5 @�B which are sparse. The
only difficulty with this implementation is that it requires both the row data structure of �
and of its transpose. A standard way to handle this problem is by building a linked-list data
structure for the transpose. There is a similar problem for accessing the transpose of

�
,

as mentioned earlier. Therefore, two linked lists are needed: one for the
�

matrix and the
other for the � matrix. These linked lists avoid the storage of an additional real array for
the matrices involved and simplify the process of updating the matrix � when new rows
are obtained. It is important to note that these linked lists are used only in the preprocessing
phase and are discarded once the incomplete factorization terminates.

��� ��� �
�	 � \�� ��� &�� \�� 	�
�� �/\�
v&�~ 	��}\�
�
���� 	���� �p&�� \���� ��� �
$��! ��! �� 2 9 �+7:B ��6,0 ; 0D&)A�' B�-/* ��=?B 2#4 ;P' 9?4 2 6 E

Consider a general sparse matrix � and denote its rows by � B ���%«
�*¬,¬*¬T��� I . The (complete)
LQ factorization of � is defined by

�¢� ��� �
where

�
is a lower triangular matrix and

�
is unitary, i.e.,

� b � � &
. The

�
factor in the

above factorization is identical with the Cholesky factor of the matrix � �g�X� b . Indeed,
if �¢� ��� where

�
is a lower triangular matrix having positive diagonal elements, then

���¢�7� b � ����� b � b � � � b ¬
The uniqueness of the Cholesky factorization with a factor

�
having positive diagonal ele-

ments shows that
�

is equal to the Cholesky factor of � . This relationship can be exploited
to obtain preconditioners for the Normal Equations.

Thus, there are two ways to obtain the matrix
�

. The first is to form the matrix �
explicitly and use a sparse Cholesky factorization. This requires forming the data structure
of the matrix �X� b , which may be much denser than � . However, reordering techniques
can be used to reduce the amount of work required to compute

�
. This approach is known

as symmetric squaring.
A second approach is to use the Gram-Schmidt process. This idea may seem undesir-

able at first because of its poor numerical properties when orthogonalizing a large number
of vectors. However, because the rows remain very sparse in the incomplete LQ factoriza-
tion (to be described shortly), any given row of � will be orthogonal typically to most of the
previous rows of

�
. As a result, the Gram-Schmidt process is much less prone to numerical

difficulties. From the data structure point of view, Gram-Schmidt is optimal because it does
not require allocating more space than is necessary, as is the case with approaches based
on symmetric squaring. Another advantage over symmetric squaring is the simplicity of
the orthogonalization process and its strong similarity with the LU factorization. At every
step, a given row is combined with previous rows and then normalized. The incomplete
Gram-Schmidt procedure is modeled after the following algorithm.

��� � �n� �D�w��
 �����#� � � � � ��� � � ��� � � � � � � 	 ��� �
1. For S0� / �*¬*¬,¬T�I® Do:
2. Compute � 5 � � � < � 5 � � � = , for �m� / � 0 �*¬*¬,¬T��Sc¨ / �
3. Compute � 5 � � � 5 ¨ � 5 @�B� � B � 5 � � � , and � 5 5 ��§ � 5 §*«
4. If � 5 5 � � -

then Stop; else Compute � 5 � � ��5 � � 5 5 .
5. EndDo

If the algorithm completes, then it will result in the factorization � � ��� where the rows
of
�

and
�

are the rows defined in the algorithm. To define an incomplete factorization, a
dropping strategy similar to those defined for Incomplete LU factorizations must be incor-
porated. This can be done in very general terms as follows. Let

�
� and

�
� be the chosen

zero patterns for the matrices
�

, and
�

, respectively. The only restriction on

�
� is that�

�

� � <%S�� � = � S �� ���L¬

��� � � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
As for

�
� , for each row there must be at least one nonzero element, i.e.,�

� � <%S � � = � � � � �� � / � 0 �,¬*¬*¬ �S® � � 	 7 ��S(� / �*¬*¬,¬T�I®(¬
These two sets can be selected in various ways. For example, similar to ILUT, they can be
determined dynamically by using a drop strategy based on the magnitude of the elements
generated. As before, ��5 denotes the S -th row of a matrix � and ��5 � its <%S�� � = -th entry.

�������n�	�-�w��
 �����#� ��� � 	 � � � � �	� � � �,� � �K� �
 � � � �
1. For Sª� / �*¬,¬*¬T�S® Do:
2. Compute � 5 � � � < � 5 � � � = , for �m� / � 0 �*¬,¬*¬ � Si¨ / �3. Replace � 5 � by zero if <%S�� � = � �

�
4. Compute � 5 � � � 5}¨ � 5 @�B� � B � 5 � � � ,
5. Replace each � 5 � � �n� / �*¬,¬*¬T�S® by zero if < S�� � = � �

�

6. � 5 5 � ��§ � 5S§ «
7. If � 5 5c� -

then Stop; else compute � 5 � � ��5 � � 5 5 .
8. EndDo

We recognize in line 2 the same practical problem encountered in the previous section
for IC(0) for the Normal Equations. It can be handled in the same manner. Therefore, the
row structures of � ,

�
, and

�
are needed, as well as a linked list for the column structure

of
�

.
After the S -th step is performed, the following relation holds:

� 5 � � 5 5 � 5 M + 5 � � 5 ¨ � @�B
� � B � 5 � � �
or

� 5 � �
� � B � 5 � � � M + 5 £ ¥��L[¤ ¥G¦
where

+ 5 is the row of elements that have been dropped from the row � 5 in line 5. The above
equation translates into

�¢� ��� M � £ ¥��L[¤ ­/¦
where � is the matrix whose S -th row is

+ 5 , and the notation for
�

and
�

is as before.
The case where the elements in

�
are not dropped, i.e., the case when

�
� is the empty

set, is of particular interest. Indeed, in this situation, �g� -
and we have the exact relation� � ���

. However,
�

is not unitary in general because elements are dropped from
�

. If
at a given step � 5 5 � -

, then (10.81) implies that � 5 is a linear combination of the rows � B ,¬*¬,¬ , � � @�B . Each of these � � is, inductively, a linear combination of � B �*¬,¬*¬ � � . Therefore, � 5
would be a linear combination of the previous rows, � B �*¬*¬,¬ ��� 5 @�B which cannot be true if� is nonsingular. As a result, the following proposition can be stated.

�R� �n� ��� �D��� ��� ����� �
If � is nonsingular and

�
� � � , then the Algorithm 10.14 com-

pletes and computes an incomplete LQ factorization �z� ���
, in which

�
is nonsingular

and
�

is a lower triangular matrix with positive elements.

��� ��� �
�	 � \�� ��� &�� \�� 	�
�� �/\�
v&�~ 	��}\�
�
���� 	���� �p&�� \���� ���
�
A major problem with the decomposition (10.82) is that the matrix

�
is not orthogonal in

general. In fact, nothing guarantees that it is even nonsingular unless
�

is not dropped or
the dropping strategy is made tight enough.

Because the matrix
�

of the complete LQ factorization of � is identical with the
Cholesky factor of � , one might wonder why the IC(0) factorization of � does not always
exist while the ILQ factorization seems to always exist. In fact, the relationship between
ILQ and ICNE, i.e., the Incomplete Cholesky for � �a�X� b , can lead to a more rigorous
way of choosing a good pattern for ICNE, as is explained next.

We turn our attention to Modified Gram-Schmidt. The only difference is that the row
� � is updated immediately after an inner product is computed. The algorithm is described
without dropping for

�
for simplicity.

��� � �n� �D�w��
 �����#� ��� � 	 � � � � �	� � � �'� � � � � � �,� � �G� �
 ��� � �
1. For S0� / �*¬*¬,¬T�I® Do:
2. � 5 � � � 5
3. For �m� / �,¬*¬*¬ ��Si¨ / , Do:

4. Compute � 5 � � � � - �
	 < S�� � = � � �< � 5 � � � = 7���
 �
��� � � �

5. Compute � 5 � � � 5 ¨�� 5 � � � .
6. EndDo
7. � 5 5 � �z§ � 5 §K«
8. If � 5 5ª� -

then Stop; else Compute � 5 � � � 5 � � 5 5 .
9. EndDo

When � is nonsingular, the same result as before is obtained if no dropping is used on
�

, namely, that the factorization will exist and be exact in that � � ���
. Regarding the

implementation, if the zero pattern

�
� is known in advance, the computation of the inner

products in line 4 does not pose a particular problem. Without any dropping in
�

, this
algorithm may be too costly in terms of storage. It is interesting to see that this algorithm
has a connection with ICNE, the incomplete Cholesky applied to the matrix �X� b . The
following result is stated without proof.

�w�|���n�R�
 � ��� �
Let � be an ®�¯w± matrix and let �����7� b . Consider a zero-pattern

set

�
� which is such that for any / ! S � � � � ! ® , with Sm² � and Sn² � , the following

holds: <%S�� � = � � � � 9;: <%S � ��= ��
�
� � < � � ��= � � � ¬

Then the matrix
�

obtained from Algorithm 10.15 with the zero-pattern set

�
� is identi-

cal with the
�

factor that would be obtained from the Incomplete Cholesky factorization
applied to � with the zero-pattern set

�
� .

For a proof, see [222]. This result shows how a zero-pattern can be defined which guaran-
tees the existence of an Incomplete Cholesky factorization on �7� b .

��� � � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
�����Z�5�w�t�]�ª�

1 Assume that
`

is the Symmetric Positive Definite matrix arising from the 5-point finite differ-
ence discretization of the Laplacean on a given mesh. We reorder the matrix using the red-black
ordering and obtain the reordered matrix" e % � 4 �

�9� �) �
We then form the Incomplete Cholesky factorization on this matrix.��� Show the fill-in pattern for the IC(0) factorization for a matrix of size

�³e �)
associated

with a � ��� mesh.� � Show the nodes associated with these fill-ins on the 5-point stencil in the finite difference
mesh. !� Give an approximate count of the total number of fill-ins when the original mesh is square,
with the same number of mesh points in each direction. How does this compare with the
natural ordering? Any conclusions?

2 Consider a � � � tridiagonal nonsingular matrix
`

.��� What can be said about its ILU(0) factorization (when it exists)?� � Suppose that the matrix is permuted (symmetrically, i.e., both rows and columns) using the
permutation � e�� � ���!���!�) � � � �
	 �� � Show the pattern of the permuted matrix.��� � Show the locations of the fill-in elements in the ILU(0) factorization.����� � Show the pattern of the ILU(1) factorization as well as the fill-ins generated.��
 � Show the level of fill of each element at the end of the ILU(1) process (including the

fill-ins).
 � What can be said of the ILU(2) factorization for this permuted matrix?

3 Assume that
`

is the matrix arising from the 5-point finite difference discretization of an elliptic
operator on a given mesh. We reorder the original linear system using the red-black ordering and
obtain the reordered linear system% � 4 �� �) % d 4d) e % h 4h) ���� Show how to obtain a system (called the reduced system) which involves the variable

d 	
only.� � Show that this reduced system is also a sparse matrix. Show the stencil associated with
the reduced system matrix on the original finite difference mesh and give a graph-theory
interpretation of the reduction process. What is the maximum number of nonzero elements
in each row of the reduced system.

4 It was stated in Section 10.3.2 that for some specific matrices the ILU(0) factorization of
`

can
be put in the form � e # � 6 �

'
� 254 # � 6 � '

in which
6 �

and
6 �

are the strict-lower and -upper parts of
`

, respectively.

	���	�
 � � � 	?����� � �}\�&�	?� ���%·
� � Characterize these matrices carefully and give an interpretation with respect to their adja-

cency graphs.� � Verify that this is true for standard 5-point matrices associated with any domain � . !� Is it true for 9-point matrices?� � Is it true for the higher level ILU factorizations?

5 Let
`

be a pentadiagonal matrix having diagonals in offset positions
6 � � 6*� ��0 ��� ���

. The
coefficients in these diagonals are all constants: � for the main diagonal and -1 for all others. It
is assumed that ����� � . Consider the ILU(0) factorization of

`
as given in the form (10.20).

The elements � � of the diagonal
�

are determined by a recurrence of the form (10.19).� � Show that � 		� � � � � for
 e:�����
�
�
� � .� � Show that � � is a decreasing sequence. [Hint: Use induction]. !� Prove that the formal (infinite) sequence defined by the recurrence converges. What is its
limit?

6 Consider a matrix
`

which is split in the form
`¢e ��
 6 ��6 �

, where
��

is a block diag-
onal matrix whose block-diagonal entries are the same as those of

`
, and where

6 �
is strictly

lower triangular and
6 �

is strictly upper triangular. In some cases the block form of the ILU(0)
factorization can be put in the form (Section 10.3.2):

� e # � 6 �
'
� 2�4 # � 6 � ' �

The block entries of
�

can be defined by a simple matrix recurrence. Find this recurrence rela-
tion. The algorithm may be expressed in terms of the block entries the matrix

`
.

7 Generalize the formulas developed at the end of Section 10.6.1 for the inverses of symmetric
tridiagonal matrices, to the nonsymmetric case.

8 Develop recurrence relations for Incomplete Cholesky with no fill-in (IC(0)), for 5-point matri-
ces, similar to those seen in Section 10.3.4 for ILU(0). Same question for IC(1).

9 What becomes of the formulas seen in Section 10.3.4 in the case of a 7-point matrix (for three-
dimensional problems)? In particular, can the ILU(0) factorization be cast in the form (10.20) in
which

6 �
is the strict-lower diagonal of

`
and

6 �
is the strict upper triangular part of

`
, and�

is a certain diagonal?

10 Consider an arbitrary matrix
`

which is split in the usual manner as
` e �
 6 � 6 �

, in which6 �
and

6 �
are the strict-lower and -upper parts of

`
, respectively, and define, for any diagonal

matrix
�

, the approximate factorization of
`

given by
� e # � 6 �

'
� 2�4 # � 6 � ' �

Show how a diagonal
�

can be determined such that
`

and
�

have the same diagonal elements.
Find a recurrence relation for the elements of

�
. Consider now the symmetric case and assume

that the matrix
�

which is positive can be found. Write
�

in the form
� e # � 4�
 	 6 � � 254�
 	 ' # � 4�
 	 6 � � 2�4�
 	 ' � 	 � 4 � � 4 �

What is the relation between this matrix and the matrix of the SSOR

#
�
'

preconditioning, in the
particular case when

� 2�4�
 	 e �
+

? Conclude that this form of ILU factorization is in effect an
SSOR preconditioning with a different relaxation factor � for each equation.

11 Consider a general sparse matrix
`

(irregularly structured). We seek an approximate LU factor-
ization of the form � e # � 6 �

'
� 2�4 # � 6 � '

�p¶�� � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
in which

6 �
and

6 �
are the strict-lower and -upper parts of

`
, respectively. It is assumed that`

is such that
� � � � 0 � � � � � � � � 0 for
 ���Xe������
�
�
��� ���� By identifying the diagonal elements of

`
with those of

�
, derive an algorithm for generat-

ing the elements of the diagonal matrix
�

recursively.� � Establish that if � � � 0 for
� �
 then � � � � � � . Is it true in general that � � � 0 for all

�
? !� Assume that for
 e ���
�
�
�����96 �

we have � � �
% ��0

. Show a sufficient condition under
which � � �

%
. Are there cases in which this condition cannot be satisfied for any

%
?� � Assume now that all diagonal elements of

`
are equal to a constant, i.e., � � � e � for

� e�����
�
�
� �
. Define

%
	 � 	 and let

� � 	
� 254

��� 4 �

� � � � � ��� 	 �	��

� � 4
� � � � � 	 � � �

Show a condition on
�

under which � � �
% ���7e�� �) ���
�
�
� � �

12 Show the second part of (10.79). [Hint: Exploit the formula
` " � e � 	� � 4 � � h �� where � � �_h �

are the
�
-th columns of

`
and

"
, respectively].

13 Let a preconditioning matrix
�

be related to the original matrix
`

by
��e�` � �

, in which�
is a matrix of rank � .��� Assume that both

`
and

�
are Symmetric Positive Definite. How many steps at most are

required for the preconditioned Conjugate Gradient method to converge when
�

is used as
a preconditioner?� � Answer the same question for the case when

`
and

�
are nonsymmetric and the full GM-

RES is used on the preconditioned system.

14 Formulate the problem for finding an approximate inverse
�

to a matrix
`

as a large
� 	 � � 	

linear system. What is the Frobenius norm in the space in which you formulate this problem?

15 The concept of mask is useful in the global iteration technique. For a sparsity pattern
�

, i.e., a set
of pairs

#

 ���
'

and a matrix

"
, we define the product � e

"�� �
to be the matrix whose elements/ � � are zero if

#

 ���
'

does not belong to
�

, and
h�� � otherwise. This is called a mask operation

since its effect is to ignore every value not in the pattern
�

. Consider a global minimization of
the function

��� # � ' 	 � �
�=#&+ 6�` � ' ��� .��� What does the result of Proposition 10.3 become for this new objective function?� � Formulate an algorithm based on a global masked iteration, in which the mask is fixed and

equal to the pattern of
`

. !� Formulate an algorithm in which the mask is adapted at each outer step. What criteria would
you use to select the mask?

16 Consider the global self preconditioned MR iteration algorithm seen in Section 10.5.5. Define
the acute angle between two matrices as

������� #�� �! ' 	 "
� �
 $#

�
�
� � � � � ���� Following what was done for the (standard) Minimal Residual algorithm seen in Chapter 5,

establish that the matrices

" � e ` � �
and % � e

+ 6 " �
produced by global MR without

dropping are such that

�&% ��� 4 ��� � ��% � ��� �
')(� # % � �
" � % �

' �

	���	�
 � � � 	?����� � �}\�&�	?� �p¶��
� � Let now

�
 e % ` �
so that

" �
is symmetric for all � (see Section 10.5.5). Assume that, at

a given step � the matrix

" �
is positive definite. Show that

������� # % � �
" � % �

'
�
��� � 	 #?" � '
���
���
#?" � '

in which
��� � 	 #?" � '

and
���
���
#?" � '

are, respectively, the smallest and largest eigenvalues of" �
.

17 In the two-sided version of approximate inverse preconditioners, the option of minimizing

�
#
� � � ' e �

+ 6 �i` � � 	�
was mentioned, where

�
is unit lower triangular and

�
is upper triangular.� � What is the gradient of

�
#
� � � '

?� � Formulate an algorithm based on minimizing this function globally.

18 Consider the two-sided version of approximate inverse preconditioners, in which a unit lower
triangular

�
and an upper triangular

�
are sought so that

�i` �	�
+

. One idea is to use an
alternating procedure in which the first half-step computes a right approximate inverse

�
to
�i`

,
which is restricted to be upper triangular, and the second half-step computes a left approximate
inverse

�
to
` �

, which is restricted to be lower triangular.� � Consider the first half-step. Since the candidate matrix
�

is restricted to be upper trian-
gular, special care must be exercised when writing a column-oriented approximate inverse
algorithm. What are the differences with the standard MR approach described by Algorithm
10.10?� � Now consider seeking an upper triangular matrix

�
such that the matrix

#
�c` ' �

is close to
the identity only in its upper triangular part. A similar approach is to be taken for the second
half-step. Formulate an algorithm based on this approach.

19 Write all six variants of the preconditioned Conjugate Gradient algorithm applied to the Normal
Equations, mentioned at the end of Section 10.7.1.

20 With the standard splitting
`ge � 6 �:6 �

, in which
�

is the diagonal of
`

and
6 �;�
6 �

its lower- and upper triangular parts, respectively, we associate the factored approximate inverse
factorization, #&+ � � � 2�4 ' ` #&+ � � 254 � ' e � � % � £ ¥ �L[¤ µ�¦� � Determine % and show that it consists of second order terms, i.e., terms involving products

of at least two matrices from the pair
�;� �

.� � Now use the previous approximation for
� � % 	 � 4 6 � 4 6 � 4 ,#&+ � � 4 � 2544

' #
� � %

' #&+ � � 2�44 � 4 ' e � 4 � % 4 �
Show how the approximate inverse factorization (10.83) can be improved using this new
approximation. What is the order of the resulting approximation?

NOTES AND REFERENCES. A breakthrough paper on preconditioners is the article [149] by Mei-
jerink and van der Vorst who established existence of the incomplete factorization for

�
-matrices

and showed that preconditioning the Conjugate Gradient by using an ILU factorization can result in
an extremely efficient combination. The idea of preconditioning was exploited in many earlier papers.
For example, in [11, 12] Axelsson discusses SSOR iteration, “accelerated” by either the Conjugate

�p¶p¶ � ~���� &�	�
 ��� ��
�	 � \�� ��� &^� \��0� � �°&�	 � ~ �0� ����	?�
Gradient or Chebyshev acceleration. Incomplete factorizations were also discussed in early papers,
for example, by Varga [212] and Buleev [45]. Thus, Meijerink and van der Vorst’s paper played an
essential role in directing the attention of researchers and practitioners to a rather important topic and
marked a turning point. Many of the early techniques were developed for regularly structured matri-
ces. The generalization, using the definition of level of fill for high-order Incomplete LU factoriza-
tions for unstructured matrices, was introduced by Watts [223] for petroleum engineering problems.

Recent research on iterative techniques has been devoted in great part to the development of
better iterative accelerators, while “robust” preconditioners have by and large been neglected. This
is certainly caused by the inherent lack of theory to support such methods. Yet these techniques
are vital to the success of iterative methods in real-life applications. A general approach based on
modifying a given direct solver by including a drop-off rule was one of the first in this category
[151, 157, 235, 98]. More economical alternatives, akin to ILU(�), were developed later [179, 183,
68, 67, 226, 233]. ILUT and ILUTP, are inexpensive general purpose preconditioners which are
fairly robust and efficient. However, many of these preconditioners, including ILUT and ILUTP, can
fail. Occasionally, a more accurate ILUT factorization leads to a larger number of steps needed
for convergence. One source of failure is the instability of the preconditioning operation. These
phenomena of instability have been studied by Elman [81] who proposed a detailed analysis of ILU
and MILU preconditioners for model problems. The theoretical analysis on ILUT stated as Theorem
10.3 is modeled after Theorem 1.14 in Axelsson and Barker [16] for ILU(0).

Some theory for block preconditioners is discussed in Axelsson’s book [15]. Different forms of
block preconditioners were developed independently by Axelsson, Brinkkemper, and Il’in [17] and
by Concus, Golub, and Meurant [61], initially for block matrices arising from PDEs in two dimen-
sions. Later, some generalizations were proposed [137]. Thus, the 2-level implicit-explicit precon-
ditioning introduced in [137] consists of using sparse inverse approximations to � 254� for obtaining
� � .

The current rebirth of approximate inverse preconditioners [112, 62, 137, 54] is spurred by both
parallel processing and robustness considerations. Other preconditioners which are not covered here
are those based on domain decomposition techniques. Some of these techniques will be reviewed in
Chapter 13.

On another front, there is also increased interest in methods that utilize Normal Equations in
one way or another. Earlier, ideas revolved around shifting the matrix

" e ` � `
before applying the

IC(0) factorization as was suggested by Kershaw [134] in 1977. Manteuffel [148] also made some
suggestions on how to select a good

%
in the context of the CGW algorithm. Currently, new ways

of exploiting the relationship with the QR (or LQ) factorization to define IC(0) more rigorously are
being explored; see the recent work in [222].

� � � � � � �

� �

� �
� �
�¡� 	�� $C� ��� 	�� 	���
���

$L�����

�L./+-.EU U),U4=S8L5Qs43G;I?H1KJw? Aª:Y.*AP;]6�)>=S8L5Z?H1KJw.41�?H1*)IyEs/),1KAI? F*)2.4U ;_),+o1*.K;q? F*)^;P8�;B'*)]AV;<.41GMl4./+-l|AS34s�),+-=B895Qs43G;<),+k.Es4s,+t8�.*=,'Q:Y84+ A_89U F/?H1KJ U ./+tJ/)ZA<=>.4U)�s/+t8L64U),5^A0;B'*.G;(./+Y? A<)7?H1A<=K?)*1G;I? �L=2.41*lw),1KJE?H1*)B),+Y?H1KJW.4s4s4U ? =>.G;I? 8L1KA>[��?H1*=>)Q? ;_),+-.K;q? F*)X5R)S;S'K8El�AR./+-)2.4s4s�)B.EU M?H1KJ�:D8E+ªU ./+tJ�)WU ?H1*)>./+rAPOKAV;<),5^A^8,:i)>@%3*.G;I? 891KA>j�? ;R? AZ1K8wAB34+os,+T? A<)Z;B'*.G;0;B'*)SOX./+-)Z;B'*)s/+Y?H5R)Z=>.41*l9? l4.G;<)BAi:Y84+ ?H5Qs4U),5R),1G;<.G;I? 8L1KA}8L1|s*./+-.EU U),U/./+D=*'/? ;<)>=I;B34+-)BA>[E&('*),+-)�'*.KF*)6�)B),12;o{}8�;B+-.*l9? ;I? 891*.EU,.4s4s/+t8�.*=,'*)BAc:Y84+ l4)SF*)*U 8Ls/?H1KJ|s*./+-.EU U),U4? ;<),+-.G;I? F*)�;<)>=*'41/? @%3*)BA;B'43KA0:Y./+V[%&�'*) �p+tAP;^)IyK;S+-.,=S;PA2s*./+D.4U U)*U ? AB5 {^'*),1*)SF*),+is,8/A_AI?�64U)]:P+t8L5 AP;<.41*l4./+-l|.EU MJ/84+Y? ;B'45^A>[9&('*)].*l/F*.E1G;_.*J/)^8*:k;S'/? AiF/?)S{Rs,8E?�1G;(? Ai;S'*.K;0? ;0? Aª)>.*Aq?),+ ;_8|341*l4),+tAP;_.E1*l?H1ZJ/),1*),+-.4U/AI?�1*=>)�;S'*)7341*l4),+oU O/?�1KJW5])I;B'K8El '*.KA�1K8,;ª=,'*.E1KJ/)>l7:V+t8L5 ? ;PAcA<)B@%3*),1G;I? .4U)>@%3/? F*.4U),1G;B[�&('*)^A<)B=B8L1*lW.4s4s/+t8/.,=,'Q? A};_87l4)SF*),U 89s2.4U ;<)*+N1*.G;I? F*)^.4U J,8E+Y? ;S'45^A}{^'/? =,''*.KF*)R),14'*.41*=>)>lws*./+D.4U U)*U ? AB57[,&�'/? Ac=,'*.4sG;<),+%{�?HU U,J4? F*)].41Z8*F*),+HF/?)S{�8,:}?H5Qs4U),5R),1GM;<.G;I? 891KAi.E1*lZ{(?HU U*),5Qs4'*.KAI? �>)Z5R)S;S'K8El�A0?�1R;S'*) �r+tAP;c=>.G;<)SJ/84+HOG[4&('*)QU .G;<)*+ =,'*.4sG;<),+tA{�?�U UG=B891KAI? l4),+%.4U ;<),+o1*.G;I? F*)c.EU J/84+Y? ;B'45^Ak;S'*.K;i'*.KF*)]6/)>),1^l4)IF*),U 8Ls/)>lZABs/)>=K? �%=B.EU U O0:Y84+s*./+-.EU U),U4=B895Qs43G;I?H1KJX),1GF/?H+t8L145R),1G;PA>[

�N�X���]�@���:�]���-���
�|� �*�

The remaining chapters of this book will examine the impact of high performance com-
puting on the design of iterative methods for solving large linear systems of equations.
Because of the increased importance of three-dimensional models combined with the high
cost associated with sparse direct methods for solving these problems, iterative techniques
are starting to play a major role in many application areas. The main appeal of iterative
methods is their low storage requirement. Another advantage is that they are far easier to
implement on parallel computers than sparse direct methods because they only require a
rather small set of computational kernels. Increasingly, direct solvers are being used in
conjunction with iterative solvers to develop robust preconditioners.

The first considerations for high-performance implementations of iterative methods in-
volved implementations on vector computers. These efforts started in the mid 1970s when
the first vector computers appeared. Currently, there is a larger effort to develop new prac-�p¶��

�p¶�� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
tical iterative methods that are not only efficient in a parallel environment, but also robust.
Often, however, these two requirements seem to be in conflict.

This chapter begins with a short overview of the various ways in which parallelism has
been exploited in the past and a description of the current architectural models for existing
commercial parallel computers. Then, the basic computations required in Krylov subspace
methods will be discussed along with their implementations.

� ����� �!� � � ���R� �ª�c�]�ª�t�Z�
�|�m���

Parallelism has been exploited in a number of different forms since the first computers were
built. The six major forms of parallelism are: (1) multiple functional units; (2) pipelining;
(3) vector processing; (4) multiple vector pipelines; (5) multiprocessing; and (6) distributed
computing. Next is a brief description of each of these approaches.

1 #"! %$ B (6 ;>2 �+6,0 � (9 � ;>2H7�9�'56D(9)2 ; *

This is one of the earliest forms of parallelism. It consists of multiplying the number of
functional units such as adders and multipliers. Thus, the control units and the registers
are shared by the functional units. The detection of parallelism is done at compilation time
with a “Dependence Analysis Graph,” an example of which is shown in Figure 11.1.

+

+ +

a b * *

c d e f

��� ��� � �@�,���#�
Dependence analysis for arithmetic expression:< � M = M < � � � M � � Q = .

In the example of Figure 11.1, the two multiplications can be performed simultaneously,
then the two additions in the middle are performed simultaneously. Finally, the addition at
the root is performed.

� � �H� �/\�
�
>�n\ � � ��
����?�?	;�9� �
 �p¶��
1 #"! " �+2 �!036 2 9)2#9�&

The pipelining concept is essentially the same as that of an assembly line used in car
manufacturing. Assume that an operation takes � stages to complete. Then the operands
can be passed through the � stages instead of waiting for all stages to be completed for the
first two operands.

�

� F $ � �� $ � � �

stage 1

F $ � 0� $ � 0 �

stage 2

F $ � �� $ � � �

stage 3

F $� $ �

stage 4

If each stage takes a time � to complete, then an operation with ® numbers will take
the time � � M <o®�¨ / = �°� <o® M ��¨ / = � . The speed-up would be the ratio of the time to
complete the � stages in a non-pipelined unit versus, i.e., ��¯X®n¯ � , over the above obtained
time,

��� ® �
® M �Q¨ / ¬

For large ® , this would be close to � .

1 #"! � �>0 � ;)7:A �+A 7 ��0,*,*F7:A1*

Vector computers appeared in the beginning of the 1970s with the CDC Star 100 and
then the CRAY-1 and Cyber 205. These are computers which are equipped with vector
pipelines, i.e., pipelined functional units, such as a pipelined floating-point adder, or a
pipelined floating-point multiplier. In addition, they incorporate vector instructions explic-
itly as part of their instruction sets. Typical vector instructions are, for example:

�������
	
To load a vector from memory to a vector register

����	�	
To add the content of two vector registers

����
��
To multiply the content of two vector registers.

Similar to the case of multiple functional units for scalar machines, vector pipelines
can be duplicated to take advantage of any fine grain parallelism available in loops. For
example, the Fujitsu and NEC computers tend to obtain a substantial portion of their per-
formance in this fashion. There are many vector operations that can take advantage of
multiple vector pipelines.

1 #"! � B (6 ;>2 �!A 7 ��0,*F*32 9�& ' 9)4 4?2H* ;>A+2�� (�;>014 ��7:B �+(�; 2#9�&

A multiprocessor system is a computer, or a set of several computers, consisting of several
processing elements (PEs), each consisting of a CPU, a memory, an I/O subsystem, etc.
These PEs are connected to one another with some communication medium, either a bus
or some multistage network. There are numerous possible configurations, some of which
will be covered in the next section.

�p¶�� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
Distributed computing is a more general form of multiprocessing, in which the pro-

cessors are actually computers linked by some Local Area Network. Currently, there are a
number of libraries that offer communication mechanisms for exchanging messages be-
tween Unix-based systems. The best known of these are the Parallel Virtual Machine
(PVM) and the Message Passing Interface (MPI). In heterogeneous networks of computers,
the processors are separated by relatively large distances and that has a negative impact on
the performance of distributed applications. In fact, this approach is cost-effective only for
large applications, in which a high volume of computation can be performed before more
data is to be exchanged.

�����7�0�!� � � ���^���ª�i�Z�����5�W�n�t�u���]��� �7�0�
�|�m���

There are currently three leading architecture models. These are:
	 The shared memory model.
	 SIMD or data parallel models.
	 The distributed memory message passing model.

A brief overview of the characteristics of each of the three groups follows. Emphasis is on
the possible effects these characteristics have on the implementations of iterative methods.

1 �! %$ *1=+' A!014 BD01B87:A�	 ��7:B �+(�;>01A1*

A shared memory computer has the processors connected to a large global memory with
the same global view, meaning the address space is the same for all processors. One of
the main benefits of shared memory models is that access to data depends very little on its
location in memory. In a shared memory environment, transparent data access facilitates
programming to a great extent. From the user’s point of view, data are stored in a large
global memory that is readily accessible to any processor. However, memory conflicts
as well as the necessity to maintain data coherence can lead to degraded performance.
In addition, shared memory computers cannot easily take advantage of data locality in
problems which have an intrinsically local nature, as is the case with most discretized
PDEs. Some current machines have a physically distributed memory but they are logically
shared, i.e., each processor has the same view of the global address space.

There are two possible implementations of shared memory machines: (1) bus-based
architectures, and (2) switch-based architecture. These two model architectures are illus-
trated in Figure 11.2 and Figure 11.3, respectively. So far, shared memory computers have
been implemented more often with buses than with switching networks.

� � ��� &�����	?�v\ � � ��
������?	��>��
 � ~0� &�	 � &��
�	?� �p¶��
P P P P P

SHARED MEMORY

HIGH SPEED BUS

� � � � �

� � � � �

� � � � �

� � � � �

��� ��� � ���,���t¶
A bus-based shared memory computer.

P P P P P P P P

SWITCHING NETWORK

M M M M M M M M

��� ��� � ���,��� �
A switch-based shared memory computer.

Buses are the backbone for communication between the different units of most computers.
Physically, a bus is nothing but a bundle of wires, made of either fiber or copper. These
wires carry information consisting of data, control signals, and error correction bits. The
speed of a bus, often measured in Megabytes per second and called the bandwidth of the
bus, is determined by the number of lines in the bus and the clock rate. Often, the limiting
factor for parallel computers based on bus architectures is the bus bandwidth rather than
the CPU speed.

The primary reason why bus-based multiprocessors are more common than switch-
based ones is that the hardware involved in such implementations is simple. On the other
hand, the difficulty with bus-based machines is that the number of processors which can
be connected to the memory will be small in general. Typically, the bus is timeshared,
meaning slices of time are allocated to the different clients (processors, IO processors,
etc.) that request its use.

In a multiprocessor environment, the bus can easily be saturated. Several remedies are
possible. The first, and most common, remedy is to attempt to reduce traffic by adding
local memories or caches attached to each processor. Since a data item used by a given
processor is likely to be reused by the same processor in the next instructions, storing
the data item in local memory will help reduce traffic in general. However, this strategy
causes some difficulties due to the requirement to maintain data coherence. If Processor
(A) reads some data from the shared memory, and Processor (B) modifies the same data
in shared memory, immediately after, the result is two copies of the same data that have
different values. A mechanism should be put in place to ensure that the most recent update
of the data is always used. The additional overhead incurred by such memory coherence

�p¶�� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
operations may well offset the savings involving memory traffic.

The main features here are the switching network and the fact that a global memory
is shared by all processors through the switch. There can be � processors on one side
connected to � memory units or banks on the other side. Alternative designs based on
switches connect � processors to each other instead of � memory banks. The switching
network can be a crossbar switch when the number of processors is small. A crossbar
switch is analogous to a telephone switch board and allows � inputs to be connected to± outputs without conflict. Since crossbar switches for large numbers of processors are
typically expensive they are replaced by multistage networks. Signals travel across a small
number of stages consisting of an array of elementary switches, e.g.,

0 ¯ 0 or
3 ¯ 3 switches.

There have been two ways of exploiting multistage networks. In circuit switching
networks, the elementary switches are set up by sending electronic signals across all of
the switches. The circuit is set up once in much the same way that telephone circuits are
switched in a switchboard. Once the switch has been set up, communication between pro-
cessors

�
B �*¬,¬*¬T�

�
I

is open to the memories

��� � ����� 0 �,¬*¬,¬T���������
in which � represents the desired permutation. This communication will remain functional
for as long as it is not reset. Setting up the switch can be costly, but once it is done, com-
munication can be quite fast. In packet switching networks, a packet of data will be given
an address token and the switching within the different stages will be determined based
on this address token. The elementary switches have to provide for buffering capabilities,
since messages may have to be queued at different stages.

1 �! " 4?2 *,;>A+2 � (+;>014 BD01B 7:A�	<' A ��=)2 ;>0 � ; ()A+0,*

The distributed memory model refers to the distributed memory message passing archi-
tectures as well as to distributed memory SIMD computers. A typical distributed memory
system consists of a large number of identical processors which have their own memories
and which are interconnected in a regular topology. Examples are depicted in Figures 11.4
and 11.5. In these diagrams, each processor unit can be viewed actually as a complete pro-
cessor with its own memory, CPU, I/O subsystem, control unit, etc. These processors are
linked to a number of “neighboring” processors which in turn are linked to other neighbor-
ing processors, etc. In “Message Passing” models there is no global synchronization of the
parallel tasks. Instead, computations are data driven because a processor performs a given
task only when the operands it requires become available. The programmer must program
all the data exchanges explicitly between processors.

In SIMD designs, a different approach is used. A host processor stores the program
and each slave processor holds different data. The host then broadcasts instructions to pro-
cessors which execute them simultaneously. One advantage of this approach is that there
is no need for large memories in each node to store large programs since the instructions
are broadcast one by one to all processors.

� � ��� &�����	?�v\ � � ��
������?	��>��
 � ~0� &�	 � &��
�	?� �p¶p·
> 4 > 	

>��

>��
>��

>��

>��

>��

��� ��� � ���,��� �
An eight-processor ring (left) and a

3 ¯ 3 multi-
processor mesh (right).

An important advantage of distributed memory computers is their ability to exploit lo-
cality of data in order to keep communication costs to a minimum. Thus, a two-dimensional
processor grid such as the one depicted in Figure 11.4 is perfectly suitable for solving
discretized elliptic Partial Differential Equations (e.g., by assigning each grid point to a
corresponding processor) because some iterative methods for solving the resulting linear
systems will require only interchange of data between adjacent grid points.

A good general purpose multiprocessor must have powerful mapping capabilities be-
cause it should be capable of easily emulating many of the common topologies such as 2-D
and 3-D grids or linear arrays, FFT-butterflies, finite element meshes, etc.

Three-dimensional configurations are also popular. A massively parallel commercial
computer based on a 3-D mesh, called T3D, is marketed by CRAY Research, Inc. For
2-D and 3-D grids of processors, it is common that processors on each side of the grid
are connected to those on the opposite side. When these “wrap-around” connections are
included, the topology is sometimes referred to as a torus.

10 11

010010

101

111
110

100

010 011

001000

��� ��� � ���,��� �
The ® -cubes of dimensions ®f� / � 0 ��� .

Hypercubes are highly concurrent multiprocessors based on the binary ® -cube topol-
ogy which is well known for its rich interconnection capabilities. A parallel processor
based on the ® -cube topology, called a hypercube hereafter, consists of

0 I
identical pro-

cessors, interconnected with ® neighbors. A � -cube can be represented as an ordinary cube

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
in three dimensions where the vertices are the � � 0 �

nodes of the 3-cube; see Figure 11.5.
More generally, one can construct an ® -cube as follows: First, the

0 I
nodes are labeled by

the
0 I

binary numbers from
-

to
0 I ¨ / . Then a link between two nodes is drawn if and

only if their binary numbers differ by one (and only one) bit.
The first property of an ® -cube graph is that it can be constructed recursively from

lower dimensional cubes. More precisely, consider two identical <o® ¨ / = -cubes whose
vertices are labeled likewise from 0 to

0 I @�B . By joining every vertex of the first <N®f¨ / = -cube to the vertex of the second having the same number, one obtains an ® -cube. Indeed, it
suffices to renumber the nodes of the first cube as

-��
�;5 and those of the second as / �

��5
where � 5 is a binary number representing the two similar nodes of the <N®�¨ / = -cubes and
where

�
denotes the concatenation of binary numbers.

Separating an ® -cube into the subgraph of all the nodes whose leading bit is 0 and
the subgraph of all the nodes whose leading bit is 1, the two subgraphs are such that each
node of the first is connected to one node of the second. If the edges between these two
graphs is removed, the result is 2 disjoint <o®f¨ / = -cubes. Moreover, generally, for a given
numbering, the graph can be separated into two subgraphs obtained by considering all the
nodes whose S ��� bit is 0 and those whose S ��� bit is 1. This will be called tearing along the
S ��� direction. Since there are ® bits, there are ® directions. One important consequence of
this is that arbitrary meshes with dimension !¡® can be mapped on hypercubes. However,
the hardware cost for building a hypercube is high, because each node becomes difficult
to design for larger dimensions. For this reason, recent commercial vendors have tended to
prefer simpler solutions based on two- or three-dimensional meshes.

Distributed memory computers come in two different designs, namely, SIMD and
MIMD. Many of the early projects have adopted the SIMD organization. For example,
the historical ILLIAC IV Project of the University of Illinois was a machine based on a
mesh topology where all processors execute the same instructions.

SIMD distributed processors are sometimes called array processors because of the
regular arrays that they constitute. In this category, systolic arrays can be classified as an
example of distributed computing. Systolic arrays are distributed memory computers in
which each processor is a cell which is programmed (possibly micro-coded) to perform
only one of a few operations. All the cells are synchronized and perform the same task.
Systolic arrays are designed in VLSI technology and are meant to be used for special
purpose applications, primarily in signal processing.

�����7�0�!� � �@�7�Z�^�����-�����
�|�m���

Now consider two prototype Krylov subspace techniques, namely, the preconditioned Con-
jugate Gradient method for the symmetric case and the preconditioned GMRES algorithm
for the nonsymmetric case. For each of these two techniques, we analyze the types of oper-
ations that are performed. It should be emphasized that other Krylov subspace techniques
require similar operations.

� � � � &�����	?�v\ �w\���	�
��p&�� \���� �����
1 � $ �+A!0 �+7:9?4?2 ;>2H7:9?014 �+&

Consider Algorithm 9.1. The first step when implementing this algorithm on a high-
performance computer is identifying the main operations that it requires. We distinguish
five types of operations, which are:

���
Preconditioner setup.���
Matrix vector multiplications.

� �
Vector updates.

� �
Dot products.

� �
Preconditioning operations.

In the above list the potential bottlenecks are (1), setting up the preconditioner and (5),
solving linear systems with � , i.e., the preconditioning operation. Section 11.6 discusses
the implementation of traditional preconditioners, and the last two chapters are devoted
to preconditioners that are specialized to parallel environments. Next come the matrix-
by-vector products which deserve particular attention. The rest of the algorithm consists
essentially of dot products and vector updates which do not cause significant difficulties in
parallel machines, although inner products can lead to some loss of efficiency on certain
types of computers with large numbers of processors.

1 � #" &)B A!0,*

The only new operation here with respect to the Conjugate Gradient method is the orthog-
onalization of the vector � � 5 against the previous � ’s. The usual way to accomplish this is
via the modified Gram-Schmidt process, which is basically a sequence of subprocesses of
the form:

	 Compute
 � <
 � � = .
	 Compute

�
 � �
 ¨
 � .

This orthogonalizes a vector

against another vector � of norm one. Thus, the outer loop of
the modified Gram-Schmidt is sequential, but the inner loop, i.e., each subprocess, can be
parallelized by dividing the inner product and SAXPY operations among processors. Al-
though this constitutes a perfectly acceptable approach for a small number of processors,
the elementary subtasks may be too small to be efficient on a large number of processors.
An alternative for this case is to use a standard Gram-Schmidt process with reorthogonal-
ization. This replaces the previous sequential orthogonalization process by a matrix opera-
tion of the form

�
 �
 ¨ � � b
 , i.e., BLAS-1 kernels are replaced by BLAS-2 kernels.
Recall that the next level of BLAS, i.e., level 3 BLAS, exploits blocking in dense

matrix operations in order to obtain performance on machines with hierarchical memories.
Unfortunately, level 3 BLAS kernels cannot be exploited here because at every step, there
is only one vector to orthogonalize against all previous ones. This may be remedied by
using block Krylov methods.

���p¶ � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
1 �� �� �>0 � ;?7:A 7��!01A�'�;>2H7:9 *

These are usually the simplest operations to implement on any computer. In many cases,
compilers are capable of recognizing them and invoking the appropriate machine instruc-
tions, possibly vector instructions. In the specific case of CG-like algorithms, there are two
types of operations: vector updates and dot products.

Vector Updates Operations of the form

y(1:n) = y(1:n) + a * x(1:n),

where � is a scalar and

and � two vectors, are known as vector updates or SAXPY
operations. They are typically straightforward to implement in all three machine models
discussed earlier. On an SIMD computer, the above code segment can be used on many
of the recent systems and the compiler will translate it into the proper parallel version.
The above line of code is written in FORTRAN 90, which is the prototype programming
language for this type of computers. On shared memory computers, we can simply write
the usual FORTRAN loop, possibly in the above FORTRAN 90 style on some computers,
and the compiler will translate it again in the appropriate parallel executable code.

On distributed memory computers, some assumptions must be made about the way
in which the vectors are distributed. The main assumption is that the vectors � and

are

distributed in the same manner among the processors, meaning the indices of the compo-
nents of any vector that are mapped to a given processor are the same. In this case, the
vector-update operation will be translated into � independent vector updates, requiring no
communication. Specifically, if ® � � � is the number of variables local to a given processor,
this processor will simply execute a vector loop of the form

y(1:nloc) = y(1:nloc) + a * x(1:nloc)

and all processors will execute a similar operation simultaneously.

Dot products A number of operations use all the components of a given vector to com-
pute a single floating-point result which is then needed by all processors. These are termed
Reduction Operations and the dot product is the prototype example. A distributed version
of the dot-product is needed to compute the inner product of two vectors � and

that are

distributed the same way across the processors. In fact, to be more specific, this distributed
dot-product operation should compute the inner product

� ��� b
 of these two vectors and
then make the result

�
available in each processor. Typically, this result is needed to per-

form vector updates or other operations in each node. For a large number of processors, this
sort of operation can be demanding in terms of communication costs. On the other hand,
parallel computer designers have become aware of their importance and are starting to pro-
vide hardware and software support for performing global reduction operations efficiently.
Reduction operations that can be useful include global sums, global max/min calculations,
etc. A commonly adopted convention provides a single subroutine for all these operations,
and passes the type of operation to be performed (add, max, min, multiply,. . .) as one of
the arguments. With this in mind, a distributed dot-product function can be programmed
roughly as follows.

� � � � &�����	?�v\ �w\���	�
��p&�� \���� �����
����������	�
���
�	�����
�
���������
���������	�� �����"!��#	�����!�$
	�����%�&�%�'(����
��
'�%�)���*�+,��������
-��$.�/!��0����
-��$
�-��
-�21 	�	���34���-��
-���/���#	��������"!���	�����!�$

 	�����
�
���1�5�6�	�
-7�6��8�-��
�����9:)�
�
;9<$
%���

The function DDOT performs the usual BLAS-1 dot product of x and
!

with strides
incx and incy, respectively. The REDUCE operation, which is called with “add” as the
operation-type parameter, sums all the variables “tloc” from each processor and put the
resulting global sum in the variable � S � � � � � in each processor.

1 �� � A!0
�>01A3* 0 ��7�B B (9)2 �1'3; 2 7:9

To conclude this section, the following important observation can be made regarding the
practical implementation of Krylov subspace accelerators, such as PCG or GMRES. The
only operations that involve communication are the dot product, the matrix-by-vector prod-
uct, and, potentially, the preconditioning operation. There is a mechanism for delegating
the last two operations to a calling program, outside of the Krylov accelerator. The result of
this is that the Krylov acceleration routine will be free of any matrix data structures as well
as communication calls. This makes the Krylov routines portable, except for the possible
redefinition of the inner product distdot.

This mechanism, particular to FORTRAN programming, is known as reverse commu-
nication. Whenever a matrix-by-vector product or a preconditioning operation is needed,
the subroutine is exited and the calling program unit performs the desired operation. Then
the subroutine is called again, after placing the desired result in one of its vector arguments.

A typical execution of a flexible GMRES routine with reverse communication is
shown in the code segment below. The integer parameter icode indicates the type of oper-
ation needed by the subroutine. When icode is set to one, then a preconditioning operation
must be applied to the vector � � / . The result is copied in � � 0 and FGMRES is called
again. If it is equal to two, then the vector � � / must be multiplied by the matrix � . The
result is then copied in � � 0 and FGMRES is called again.

	���
�
�%(1>=
? ��
�����	@���-%

��)����(��&�A-'�%-�B���C�D	DAE��'�F ���D��
��G�<	.�0H�H��0IC�JI�K ? �LI�K�M;�:%�N ���
* A)���	�� �.�<	�
������<	���
�
�%-$
	��O�<	���
�
�%4P0%�QCP ? $R��F-%��

��)���� N�'�%-��
����0�C��I�K ? �"I�K�M�$TSU� ��%�'�9D�VN�'�%-��
���
 	���	�
��-%�'
&�
���
 ?

%�����%W	��4�@	���
�
�%4P�%�QCP"M�$R��F�%��
��)����XA�)���H�%-�B�����0I�K ? �UI�K�M�$TSU� ��%�'�9D�YA)���H�%-�
&�
���
 ?

%���
 	��

Reverse communication enhances the flexibility of the FGMRES routine substantially.
For example, when changing preconditioners, we can iterate on a coarse mesh and do the

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
necessary interpolations to get the result in � � 0 in a given step and then iterate on the fine
mesh in the following step. This can be done without having to pass any data regarding the
matrix or the preconditioner to the FGMRES accelerator.

Note that the purpose of reverse communication simply is to avoid passing data struc-
tures related to the matrices, to the accelerator FGMRES. The problem is that these data
structures are not fixed. For example, it may be desirable to use different storage formats
for different architectures. A more elegant solution to this problem is Object-Oriented
Programming. In Object-Oriented Programming languages such as C++, a class can be
declared, e.g., a class of sparse matrices, and operators can be defined on them. Data struc-
tures are not passed to these operators. Instead, the implementation will recognize the types
of the operands and invoke the proper functions. This is similar to what exists currently for
arithmetic. For operation � � 2 M

, the compiler will recognize what type of operand is

involved and invoke the proper operation, either integer, double real, or complex, etc.

��������� � � � � � �����Z�n��� �X�Z�����:�Z�m�
�|�m���

Matrix-by-vector multiplications (sometimes called “Matvecs” for short) are relatively
easy to implement efficiently on high performance computers. For a description of storage
formats for sparse matrices, see Chapter 3. We will first discuss matrix-by-vector algo-
rithms without consideration of sparsity. Then we will cover sparse Matvec operations for
a few different storage formats.

1 �� %$;>=?0 � '�*10�7 �@45019 *10 BC'3;>A+2 ��0,*

The computational kernels for performing sparse matrix operations such as matrix-by-
-vector products are intimately associated with the data structures used. However, there
are a few general approaches that are common to different algorithms for matrix-by-vector
products which can be described for dense matrices. Two popular ways of performing these
operations are (1) the inner product form described in Algorithm 11.1, and (2) the SAXPY
form described by Algorithm 11.2.

�������n�	�-�w��
 �,���#��� � � � � �1�'� � � � ����� � � � � 	 � � � � � �
1. Do i = 1, n
2. y(i) = dotproduct(a(i,1:n),x(1:n))
3. EndDo

The dot product operation dotproduct(v(1:n),w(1:n)) computes the dot product of the two
vectors v and w of length ® each. If there is no ambiguity on the bounds, we simply write
dotproduct(v,w). The above algorithm proceeds by rows. It computes the dot-product of
row S of the matrix � with the vector � and assigns the result to

 < S = . The next algorithm

� � � �
��p&�
 � �}M � �}M ��	 � &c\�
 ��
r\���� � &�� �����
uses columns instead and results in the use of the SAXPY operations.

��� � �n� �D�w��
 �,���t¶ � �ª���8� � ����� � � � � 	 � � � � � �
1. y(1:n) = 0.0
2. Do j = 1, n
3. y(1:n) = y(1:n) + x(j) * a(1:n,j)
4. EndDo

The SAXPY form of the Matvec operation computes the result

 � �Q� as a linear com-

bination of the columns of the matrix � . A third possibility consists of performing the
product by diagonals. This option bears no interest in the dense case, but it is at the basis
of many important matrix-by-vector algorithms in the sparse case.

��� � �n� �D�w��
 �,��� � � �v�H� ����� � � � � 	 � � � � � �
1. y(1:n) = 0
2. Do k = – n+1, n – 1
3. Do i = 1 – min(k,0), n – max(k,0)
4. y(i) = y(i) + a(i,k+i)*x(k+i)
5. EndDo
6. EndDo

The product is performed by diagonals, starting from the leftmost diagonal whose offset is¨2® M / to the rightmost diagonal whose offset is ®�¨ / .
1 � #" ; =?0 ��*1A�' 9?4 ��* � � 7�A+BC'3; *

One of the most general schemes for storing sparse matrices is the Compressed Sparse Row
storage format described in Chapter 3. Recall that the data structure consists of three arrays:
a real array A(1:nnz) to store the nonzero elements of the matrix row-wise, an integer array
JA(1:nnz) to store the column positions of the elements in the real array A, and, finally, a
pointer array IA(1:n+1), the S -th entry of which points to the beginning of the S -th row in
the arrays A and JA. To perform the matrix-by-vector product

 ���Q� in parallel using this
format, note that each component of the resulting vector

can be computed independently

as the dot product of the S -th row of the matrix with the vector � . This yields the following
sparse version of Algorithm 11.1 for the case where the matrix is stored in CSR format.

��� � �n� �D�w��
 �,��� ��� �Z�Z� ����� � � � � � � � � �1�'� � � � ����� �
1. Do i = 1, n
2. k1 = ia(i)
3. k2 = ia(i+1)-1
4. y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))
5. EndDo

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
Line 4 of the above algorithm computes the dot product of the vector with components
a(k1), a(k1+1),

� � �
, a(k2) with the vector with components x(ja(k1)), x(ja(k1+1)),

� � �
,

x(ja(k2)).
The fact that the outer loop can be performed in parallel can be exploited on any par-

allel platform. On some shared-memory machines, the synchronization of this outer loop
is inexpensive and the performance of the above program can be excellent. On distributed
memory machines, the outer loop can be split in a number of steps to be executed on each
processor. Thus, each processor will handle a few rows that are assigned to it. It is common
to assign a certain number of rows (often contiguous) to each processor and to also assign
the component of each of the vectors similarly. The part of the matrix that is needed is
loaded in each processor initially. When performing a matrix-by-vector product, interpro-
cessor communication will be necessary to get the needed components of the vector � that
do not reside in a given processor. This important case will return in Section 11.5.6.

+

+

+

+

DotProduct
Gather

*

x(*) a(i,*)

x(1:n)

y(i)

��� ��� � �@�,�����
Illustration of the row-oriented matrix-by-

vector multiplication.

The indirect addressing involved in the second vector in the dot product is called a
gather operation. The vector x(ja(k1:k2)) is first “gathered” from memory into a vector of
contiguous elements. The dot product is then carried out as a standard dot-product opera-
tion between two dense vectors. This is illustrated in Figure 11.6.

���
	��
 � ���,���#�
This example illustrates the use of scientific libraries for performing

sparse matrix operations. If the pseudo-code for Algorithm 11.4 is compiled as it is on
the Connection Machine, in CM-FORTRAN (Thinking Machine’s early version of FOR-
TRAN 90), the resulting computations will be executed on the front-end host of the CM-2
or the Control Processor (CP) of the CM-5, rather than on the PEs. This is due to the fact
that the code does not involve any vector constructs. The scientific library (CMSSL) pro-
vides gather and scatter operations as well as scan add operations which can be exploited
to implement this algorithm more efficiently as is show in the following code segment:

y = 0.0
call sparse util gather (tmp, x, gather trace, ¬*¬,¬)
tmp = a*tmp
call cmf scan add (tmp, tmp, cmf upward, cmf inclusive, ¬*¬,¬)

� � � �
��p&�
 � �}M � �}M ��	 � &c\�
 ��
r\���� � &�� �����
call sparse util scatter (y, scatter pointer, tmp,

scatter trace, ¬*¬*¬)
The sparse util gather routine is first called to gather the corresponding entries from the
vector � into a temporary array

� ± � , then the multiplications are carried out element-by-
element in parallel. The cmf scan add routine from the CM Fortran Utility Library is used
to perform the summation for each row. Finally, the call to sparse util scatter copies the
results. Segmented scan-adds are particularly useful for implementing sparse matrix-by-
vector products when they are provided as part of the libraries. Note that the sparse util-
gather setup and sparse util scatter setup routines must be called to compute the com-

munication patterns, gather trace and scatter trace, before this algorithm is called. These
tend to be expensive operations.

Now assume that the matrix is stored by columns (CSC format). The matrix-by-vector
product can be performed by the following algorithm which is a sparse version of Algo-
rithm 11.2.

��� � �n� �D�w��
 �,��� ��� �Z��� ����� � � � ���ª��� � � ����� �
1. y(1:n) = 0.0
2. Do i = 1, n
3. k1 = ia(i)
4. k2 = ia(i + 1)-1
5. y(ja(k1:k2)) = y(ja(k1:k2)) + x(j) * a(k1:k2)
6. EndDo

The above code initializes

to zero and then adds the vectors ��< � =n¯ ��< / � ® � � = for
� � / �*¬,¬*¬T�S® to it. It can also be used to compute the product of the transpose of a matrix
by a vector, when the matrix is stored (row-wise) in the CSR format. Normally, the vector
y(ja(k1:k2)) is gathered and the SAXPY operation is performed in vector mode. Then the
resulting vector is “scattered” back into the positions ja(*), by what is called a Scatter
operation. This is illustrated in Figure 11.7.

A major difficulty with the above FORTRAN program is that it is intrinsically sequen-
tial. First, the outer loop is not parallelizable as it is, but this may be remedied as will be
seen shortly. Second, the inner loop involves writing back results of the right-hand side
into memory positions that are determined by the indirect address function ja. To be cor-
rect, y(ja(1)) must be copied first, followed by y(ja(2)), etc. However, if it is known that
the mapping ja(i) is one-to-one, then the order of the assignments no longer matters. Since
compilers are not capable of deciding whether this is the case, a compiler directive from
the user is necessary for the Scatter to be invoked.

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����

+

+

+

+

+

+

+

+

Gather

+ x(j)*

y(1:n)

y(*)

y(1:n)

=

Scatter

y(*) a(*,j)

��� ��� � �@�,��� �
Illustration of the column-oriented matrix-by-

vector multiplication.

Going back to the outer loop, � subsums can be computed (independently) into �
separate temporary vectors and then these � subsums can be added at the completion of
all these partial sums to obtain the final result. For example, an optimized version of the
previous algorithm can be implemented as follows:

�������n�	�-�w��
 �,������� �2��� ����� � � � ��� � � � �ª���8� � ����� �
1. tmp(1:n,1:p) = 0.0
2. Do m=1, p
3. Do j = m, n, p
4. k1 = ia(j)
5. k2 = ia(j + 1)-1
6. tmp(ja(k1:k2),j) = tmp(ja(k1:k2),j) + x(j) * a(k1:k2)
7. EndDo
8. EndDo
9. y(1:n) = SUM(tmp,dim=2)

The SUM across the second dimension at the end of the algorithm constitutes additional
work, but it is highly vectorizable and parallelizable.

1 �� �� B '3; �>0 ��* 2 9 ; =?0 4?2 ' & 7:9+'56 � 7:A!B '3;

The above storage schemes are general but they do not exploit any special structure of the
matrix. The diagonal storage format was one of the first data structures used in the context
of high performance computing to take advantage of special sparse structures. Often, sparse
matrices consist of a small number of diagonals in which case the matrix-by-vector product
can be performed by diagonals as in Algorithm 11.3. For sparse matrices, most of the

0 ®^¨ /diagonals invoked in the outer loop of Algorithm 11.3 are zero. There are again different
variants of Matvec algorithms for the diagonal format, related to different orderings of the
loops in the basic FORTRAN program. Recall that the matrix is stored in a rectangular
array diag(1:n,1:ndiag) and the offsets of these diagonals from the main diagonal may be
stored in a small integer array offset(1:ndiag). Consider a “dot-product” variant first.

� � � �
��p&�
 � �}M � �}M ��	 � &c\�
 ��
r\���� � &�� ���p·
��� � �n� �D�w��
 �,��� � � �v�H� ����� � � � � � � � � �1�'� � � � ����� �

1. Do i = 1, n
2. tmp = 0.0d0
3. Do j = 1, ndiag
4. tmp = tmp + diag(i,j)*x(i+offset(j))
5. EndDo
6. y(i) = tmp
7. EndDo

In a second variant, the vector

is initialized to zero, and then � is multiplied by each of the
diagonals and the separate results are added to

. The innermost loop in this computation

is sometimes called a Triad operation.

��� � �n� �D�w��
 �,��� � � � � � � � � �
	©� � � ��� ����� �
1. y = 0.0d0
2. Do j = 1, ndiag
3. joff = offset(j)
4. i1 = max(1, 1-offset(j))
5. i2 = min(n, n-offset(j))
6. y(i1:i2) = y(i1:i2) + diag(i1:i2,j)*x(i1+joff:i2+joff)
7. EndDo

Good speeds can be reached on vector machines when the matrix is large enough.
One drawback with diagonal storage is that it is not general enough. For general sparse

matrices, we can either generalize the diagonal storage scheme or reorder the matrix in or-
der to obtain a diagonal structure. The simplest generalization is the Ellpack-Itpack Format.

1 �� � ;>=?0 036 6 �
' ��� -�2 ; � ' � � � 7:A!BC'�;

The Ellpack-Itpack (or Ellpack) format is of interest only for matrices whose maximum
number of nonzeros per row, jmax, is small. The nonzero entries are stored in a real array
ae(1:n,1:jmax). Along with this is integer array jae(1:n,1:jmax) which stores the column
indices of each corresponding entry in ae. Similar to the diagonal scheme, there are also
two basic ways of implementing a matrix-by-vector product when using the Ellpack for-
mat. We begin with an analogue of Algorithm 11.7.

��� � �n� �D�w��
 �,���t· � � � � �� ��� ����� � � � � � � � ��� ��� � � � � ����� �
1. Do i = 1, n
2. yi = 0
3. Do j = 1, ncol
4. yi = yi + ae(j,i) * x(jae(j,i))
5. EndDo

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
6. y(i) = yi
7. EndDo

In data-parallel mode, the above algorithm can be implemented by using a temporary
two-dimensional array to store the values � < � ��< �
� S = = , and then performing a pointwise
array product of � and this two-dimensional array. The result is then summed along the
rows

forall (i=1:n, j=1:ncol) tmp(i,j) = x(jae(i,j))
y = SUM(ae*tmp, dim=2).

The FORTRAN forall construct performs the operations as controlled by the loop
heading, in parallel. Alternatively, use of the temporary array can be avoided by recoding
the above lines as follows:

forall (i = 1:n) y(i) = SUM(ae(i,1:ncol)*x(jae(i,1:ncol))) .

The main difference between these loops and the previous ones for the diagonal format is
the presence of indirect addressing in the innermost computation. A disadvantage of the
Ellpack format is that if the number of nonzero elements per row varies substantially, many
zero elements must be stored unnecessarily. Then the scheme becomes inefficient. As an
extreme example, if all rows are very sparse except for one of them which is full, then the
arrays ae, jae must be full ®¡¯�® arrays, containing mostly zeros. This is remedied by a
variant of the format which is called the jagged diagonal format.

1 � �� ;>=?0 � ' & &)014 4?2 ' & 7:9+'56 � 7:A!BC'�;

A more general alternative to the diagonal or Ellpack format is the Jagged Diagonal (JAD)
format. This can be viewed as a generalization of the Ellpack-Itpack format which removes
the assumption on the fixed length rows. To build the jagged diagonal structure, start from
the CSR data structure and sort the rows of the matrix by decreasing number of nonzero
elements. To build the first “jagged diagonal” (j-diagonal), extract the first element from
each row of the CSR data structure. The second jagged diagonal consists of the second
elements of each row in the CSR data structure. The third, fourth, ¬*¬,¬ , jagged diagonals can
then be extracted in the same fashion. The lengths of the successive j-diagonals decreases.
The number of j-diagonals that can be extracted is equal to the number of nonzero elements
of the first row of the permuted matrix, i.e., to the largest number of nonzero elements per
row. To store this data structure, three arrays are needed: a real array DJ to store the values
of the jagged diagonals, the associated array JDIAG which stores the column positions of
these values, and a pointer array IDIAG which points to the beginning of each j-diagonal
in the DJ, JDIAG arrays.

� � � �
��p&�
 � �}M � �}M ��	 � &c\�
 ��
r\���� � &�� ���3�
���
	���
������,���t¶

Consider the following matrix and its sorted version

�
� :

�¢�
�����
�

/ ¬ - ¬ 0 ¬ - ¬ - ¬
�p¬ 3 ¬ - ¬ � ¬ - ¬- ¬��r¬���¬ - ¬ �r¬- ¬ - ¬ � ¬ / - ¬ - ¬- ¬ - ¬ - ¬ /?/ ¬ / 0 ¬

������
	 � �

�¢�
�����
�
�p¬ 3 ¬ - ¬ � ¬ - ¬- ¬��r¬���¬ - ¬ �r¬/ ¬ - ¬ 0 ¬ - ¬ - ¬- ¬ - ¬ � ¬ / - ¬ - ¬- ¬ - ¬ - ¬ /�/ ¬ / 0 ¬

������
	

The rows of

�
� have been obtained from those of � by sorting them by number of nonzero

elements, from the largest to the smallest number. Then the JAD data structure for � is as
follows:

DJ 3. 6. 1. 9. 11. 4. 7. 2. 10. 12. 5. 8.

JDIAG 1 2 1 3 4 2 3 3 4 5 4 5

IDIAG 1 6 11 13

Thus, there are two j-diagonals of full length (five) and one of length two.

A matrix-by-vector product with this storage scheme can be performed by the follow-
ing code segment.

1. Do j=1, ndiag
2. k1 = idiag(j)
3. k2 = idiag(j+1) – 1
4. len = idiag(j+1) – k1
5. y(1:len) = y(1:len) + dj(k1:k2)*x(jdiag(k1:k2))
6. EndDo

Since the rows of the matrix � have been permuted, the above code will compute
�
�Q� , a permutation of the vector �7� , rather than the desired �7� . It is possible to permute

the result back to the original ordering after the execution of the above program. This
operation can also be performed until the final solution has been computed, so that only
two permutations on the solution vector are needed, one at the beginning and one at the
end. For preconditioning operations, it may be necessary to perform a permutation before
or within each call to the preconditioning subroutines. There are many possible variants
of the jagged diagonal format. One variant which does not require permuting the rows is
described in Exercise 8.

1 � �� ;>=?0 � '�*10D7 �@4?2 * ; A+2 � (+;>014<* � ' A1*10 BC'�; A+2 ��0,*

Given a sparse linear system to be solved on a distributed memory environment, it is natural
to map pairs of equations-unknowns to the same processor in a certain predetermined way.
This mapping can be determined automatically by a graph partitioner or it can be assigned
ad hoc from knowledge of the problem. Assume that there is a convenient partitioning of
the adjacency graph. Without any loss of generality, the matrix under consideration can be
viewed as originating from the discretization of a Partial Differential Equation on a certain
domain. This is illustrated in Figure 11.8. Initially, assume that each subgraph (or subdo-
main, in the PDE literature) is assigned to a different processor, although this restriction

���r¶ � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
can be relaxed, i.e., a processor can hold several subgraphs to increase parallelism.

Internal

points

External interface
points

points
Internal interface

��� ��� � �@�,��� �
Decomposition of physical domain or adjacency

graph and the local data structure.

A local data structure must be set up in each processor (or subdomain, or subgraph)
which will allow the basic operations such as (global) matrix-by-vector products and pre-
conditioning operations to be performed efficiently. The only assumption to make regard-
ing the mapping is that if row number S is mapped into processor � , then so is the unknown
S , i.e., the matrix is distributed row-wise across the processors according to the distribution
of the variables. The graph is assumed to be undirected, i.e., the matrix has a symmetric
pattern.

It is important to “preprocess the data” in order to facilitate the implementation of the
communication tasks and to gain efficiency during the iterative process. The preprocessing
requires setting up the following: information in each processor.

� �
List of processors with which communication will take place. These are called
“neighboring processors” although they may not be physically nearest neighbors.� �
List of local nodes that are coupled with external nodes. These are the local inter-
face nodes.

� �
Local representation of the distributed matrix in each processor.

� � � �
��p&�
 � �}M � �}M ��	 � &c\�
 ��
r\���� � &�� ���;�
In order to perform a matrix-by-vector product with a distributed sparse matrix, the matrix
consisting of rows that are local to a given processor must be multiplied by some global
vector � . Some components of this vector will be local, and some components must be
brought from external processors. These external variables correspond to interface points
belonging to adjacent subdomains. When performing a matrix-by-vector product, neigh-
boring processors must exchange values of their adjacent interface nodes.

� J F �
� � ���

Local interface points (��� I �)
Internal points (� 5 I �)

External interface matrix

Internal points

��� ��� � ���,���t·
The local matrices and data structure associ-

ated with each subdomain.

Let � � ��� be the local part of the matrix, i.e., the (rectangular) matrix consisting of all
the rows that are mapped to myproc. Call � � ��� the “diagonal block” of � located in � � ��� ,
i.e., the submatrix of � � ��� whose nonzero elements � 5 � are such that � is a local variable.
Similarly, call � J F � the “offdiagonal” block, i.e., the submatrix of � � ��� whose nonzero
elements � 5 � are such that � is not a local variable. To perform a matrix-by-vector product,
start multiplying the diagonal block � � ��� by the local variables. Then, multiply the external
variables by the sparse matrix � J F � . Notice that since the external interface points are not
coupled with local internal points, only the rows ® 5 I � M / to ® I � ��� in the matrix � J F �
will have nonzero elements. Thus, the matrix-by-vector product can be separated into two
such operations, one involving only the local variables and the other involving external
variables. It is necessary to construct these two matrices and define a local numbering of
the local variables in order to perform the two matrix-by-vector products efficiently each
time.

To perform a global matrix-by-vector product, with the distributed data structure de-
scribed above, each processor must perform the following operations. First, multiply the
local variables by the matrix � � ��� . Second, obtain the external variables from the neigh-
boring processors in a certain order. Third, multiply these by the matrix � J F � and add the
resulting vector to the one obtained from the first multiplication by � � ��� . Note that the
first and second steps can be done in parallel. With this decomposition, the global matrix-
by-vector product can be implemented as indicated in Algorithm 11.10 below. In what
follows, � � ��� is a vector of variables that are local to a given processor. The components
corresponding to the local interface points (ordered to be the last components in � � ��� for
convenience) are called ��� I � . The external interface points, listed in a certain order, con-
stitute a vector which is called � J F � . The matrix � � ��� is a sparse ® � � �2¯v® � � � matrix which
represents the restriction of � to the local variables � � ��� . The matrix � J F � operates on the

��� � � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
external variables � J F � to give the correction which must be added to the vector � � ��� � � ���
in order to obtain the desired result <N�7� = � ��� .
�������n�	�-�w��
 �,���#����� � ��� �%� ��� � � ��� � ���� � � � � �%� � � � �1�'� � � � � ��� 	 � �
1. Exchange interface data, i.e.,
2. Scatter � � I � to neighbors and
3. Gather � J F � from neighbors
4. Do Local Matvec:

 � � � ��� � � ���
5. Do External Matvec:

 �
 M � J F �_� J F �
An important observation is that the matrix-by-vector products in lines 4 and 5 can use any
convenient data structure that will improve efficiency by exploiting knowledge on the local
architecture. An example of the implementation of this operation is illustrated next:

call bdxchg(nloc,x,y,nproc,proc,ix,ipr,type,xlen,iout)
y(1:nloc) = 0.0
call amux1 (nloc,x,y,aloc,jaloc,ialoc)
nrow = nloc – nbnd + 1
call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

In the above code segment, bdxchg is the only routine requiring communication. Its
purpose is to exchange interface values between nearest neighbor processors. The first call
to amux1 performs the operation

 � �
 M � � ��� � � ��� , where

has been initialized to zero
prior to the call. The second call to amux1 performs

 � �
 M � J F � � J F � . Notice that the
data for the matrix � J F � is simply appended to that of � � ��� , a standard technique used for
storing a succession of sparse matrices. The � J F � matrix acts only on the subvector of �
which starts at location ®i >®!� of � . The size of the � J F � matrix is ® + � � ��® � � �k¨n®i >®!� M / .
�c�Z� �N�7���>� ���7���2���C�v�t���-���n�N� � ���X�]�R�����D�f�W�
�|�m���

Each step of a preconditioned iterative method requires the solution of a linear system of
equations

� 2 �
 ¬
This section only considers those traditional preconditioners, such as ILU or SOR or

SSOR, in which the solution with � is the result of solving triangular systems. Since
these are commonly used, it is important to explore ways to implement them efficiently in
a parallel environment. We only consider lower triangular systems of the form

� ���¢ �¬ £ ¥/¥/[H¥G¦
Without loss of generality, it is assumed that

�
is unit lower triangular.

� � ��� �L&���������
�� �
�	 � \�� ��� &�� \��0� � �©\���	�
��p&�� \���� ��� �
1 ��! %$ � ' A�'56 6,036 2 * B 2 9	� 7:A � ' A!4 * � 010 �1*

Typically in solving a lower triangular system, the solution is overwritten onto the right-
hand side on return. In other words, there is one array � for both the solution and the
right-hand side. Therefore, the forward sweep for solving a lower triangular system with
coefficients � � <%S � � = and right-hand-side � is as follows.

��� � �n� �D�w��
 �,���#�,��� � ���� � � ������������� � � �
���
	 � � � � 	
1. Do i=2, n
2. For (all j such that al(i,j) is nonzero) Do:
3. x(i) := x(i) – al(i,j) * x(j)
4. EndDo
5. EndDo

Assume that the matrix is stored row wise in the general Compressed Sparse Row (CSR)
format, except that the diagonal elements (ones) are not stored. Then the above algorithm
translates into the following code segment:

1. Do i=2, n
2. Do j=ial(i), ial(i+1) – 1
3. x(i)=x(i) – al(j) * x(jal(j))
4. EndDo
5. EndDo

The outer loop corresponding to the variable S is sequential. The � loop is a sparse dot
product of the S ��� row of

�
and the (dense) vector � . This dot product may be split among

the processors and the partial results may be added at the end. However, the length of the
vector involved in the dot product is typically short. So, this approach is quite inefficient
in general. We examine next a few alternative approaches. The regularly structured and the
irregularly structured cases are treated separately.

1 ��! #" 6,0
�>036N* ��=?014?(�6 2#9�&��,;>=?0 �1'�*10 7 ����-�� 7G2 9!;
BC'�; A�2 ��0,*

First, consider an example which consists of a 5-point matrix associated with a
3 ¯ � mesh

as represented in Figure 11.10. The lower triangular matrix associated with this mesh is
represented in the left side of Figure 11.10. The stencil represented in the right side of
Figure 11.10 establishes the data dependence between the unknowns in the lower triangular
system solution when considered from the point of view of a grid of unknowns. It tells us
that in order to compute the unknown in position < S�� � = , only the two unknowns in positions< SZ¨ / � � = and < S�� ��¨ / = are needed . The unknown � B B does not depend on any other
variable and can be computed first. Then the value of � B B can be used to get � B + « and �C« + B
simultaneously. Then these two values will in turn enable � � + B �I�k« + « and � B + � to be obtained
simultaneously, and so on. Thus, the computation can proceed in wavefronts. The steps for
this wavefront algorithm are shown with dashed lines in Figure 11.10. Observe that the

��� � � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
maximum degree of parallelism (or vector length, in the case of vector processing) that can
be reached is the minimum of ® F , ® � , the number of mesh points in the � and

directions,

respectively, for 2-D problems. For 3-D problems, the parallelism is of the order of the
maximum size of the sets of domain points � 5 + � + � , where S M � M ��� � Q � , a constant level� Q � . It is important to note that there is little parallelism or vectorization at the beginning
and at the end of the sweep. The degree of parallelism is equal to one initially, and then
increases by one for each wave reaching its maximum, and then decreasing back down to
one at the end of the sweep. For example, for a

3 ¯ � grid, the levels (sets of equations that
can be solved in parallel) are

� / � , � 0 � � � , � �F� �,� � � , � 3 � � � / - � , � �F� /�/ � , and finally

� / 0 � .The first and last few steps may take a heavy toll on achievable speed-ups.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5

6

< S�� � =

<%Si¨ / � � =

<%S�� �w¨ / =
�

�

Stencil

��� ��� � �@�,���#���
Level scheduling for a

3 ¯ � grid problem.

The idea of proceeding by levels or wavefronts is a natural one for finite difference
matrices on rectangles. Discussed next is the more general case of irregular matrices, a
textbook example of scheduling, or topological sorting, and is well known in different
forms to computer scientists.

1 �! � 6,0
�>0368* ��=)014?(6 2 9�& � 7:A 2#A!A+0F& (6�' A &)A�' �+= *

The simple scheme described above can be generalized for irregular grids. The objective
of the technique, called level scheduling, is to group the unknowns in subsets so that they
can be determined simultaneously. To explain the idea, consider again Algorithm 11.11 for
solving a unit lower triangular system. The S -th unknown can be determined once all the
other ones that participate in equation S become available. In the S -th step, all unknowns �
that � � < S�� � = �� -

must be known. To use graph terminology, these unknowns are adjacent
to unknown number S . Since

�
is lower triangular, the adjacency graph is a directed acyclic

graph. The edge � � S in the graph simply indicates that � � must be known before � 5 can
be determined. It is possible and quite easy to find a labeling of the nodes that satisfy the
property that if � � Q � < � =a² � � Q � < S = , then task � must be executed before task S . This is
called a topological sorting of the unknowns.

The first step computes � B and any other unknowns for which there are no predecessors

� � ��� �L&���������
�� �
�	 � \�� ��� &�� \��0� � �©\���	�
��p&�� \���� ��� �
in the graph, i.e., all those unknowns � 5 for which the offdiagonal elements of row S are
zero. These unknowns will constitute the elements of the first level. The next step computes
in parallel all those unknowns that will have the nodes of the first level as their (only)
predecessors in the graph. The following steps can be defined similarly: The unknowns
that can be determined at step � are all those that have as predecessors equations that have
been determined in steps / � 0 �*¬,¬*¬T� �i¨ / . This leads naturally to the definition of a depth
for each unknown. The depth of a vertex is defined by performing the following loop for� / � 0 �,¬*¬*¬ �I® , after initializing � Q � � � < � = to zero for all � .

� Q � � ��<%S =�� / M � � �� � � Q � � ��< � = � for all � such that � � <%S�� � = �� - �L¬
By definition, a level of the graph is the set of nodes with the same depth. A data struc-
ture for the levels can be defined: A permutation ��< / � ®�= defines the new ordering and� Q � Q � < S = � Sc� / � � � � �I® � Q � M / points to the beginning of the S -th level in that array.

Natural ordering Wavefront ordering

��� ��� � ���,���#�,�
Lower triangular matrix associated with mesh

of Figure 11.10.

Once these level sets are found, there are two different ways to proceed. The permu-
tation vector � can be used to permute the matrix according to the new order. In the

3 ¯ �
example mentioned in the previous subsection, this means renumbering the variables

� / � ,� 0 � � � , � �F� �,� � �.�*¬*¬,¬ , consecutively, i.e., as

� / � 0 � �,�,¬*¬*¬ � . The resulting matrix after the per-
mutation is shown in the right side of Figure 11.11. An alternative is simply to keep the
permutation array and use it to identify unknowns that correspond to a given level in the
solution. Then the algorithm for solving the triangular systems can be written as follows,
assuming that the matrix is stored in the usual row sparse matrix format.

��� � �n� �D�w��
 �,���#�%¶ ��������������� � � �
���
	 � � � � 	 � � ��
 � � � � � � �
�� � � � �
	 �
1. Do lev=1, nlev
2. j1 = level(lev)
3. j2 = level(lev+1) – 1
4. Do k = j1, j2
5. i = q(k)
6. Do j= ial(i), ial(i+1) – 1

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
7. x(i) = x(i) – al(j) * x(jal(j))
8. EndDo
9. EndDo

10. EndDo

An important observation here is that the outer loop, which corresponds to a level,
performs an operation of the form

� � ���u¨
� �
where � is a submatrix consisting only of the rows of level � Q � , and excluding the diagonal
elements. This operation can in turn be optimized by using a proper data structure for these
submatrices. For example, the JAD data structure can be used. The resulting performance
can be quite good. On the other hand, implementation can be quite involved since two
embedded data structures are required.

Natural ordering Level-Scheduling ordering

��� ��� � �@�,���#�%¶
Lower-triangular matrix associated with a fi-

nite element matrix and its level-ordered version.

���
	��
 � ���,��� �
Consider a finite element matrix obtained from the example shown in

Figure 3.1. After an additional level of refinement, done in the same way as was described
in Chapter 3, the resulting matrix, shown in the left part of Figure 11.12, is of size ®�� / 3 � .In this case, � levels are obtained. If the matrix is reordered by levels, the matrix shown in
the right side of the figure results. The last level consists of only one element.

	���	�
 � � � 	?����� � �}\�&�	?� ���r·
� ���]� �W�-�]�ª�

1 Give a short answer to each of the following questions:� � What is the main disadvantage of shared memory computers based on a bus architecture?� � What is the main factor in yielding the speed-up in pipelined processors? !� Related to the previous question: What is the main limitation of pipelined processors in
regards to their potential for providing high speed-ups?

2 Show that the number of edges in a binary
�

-cube is
�) 	 2�4

.

3 Show that a binary � -cube is identical with a torus which is a � � � mesh with wrap-around
connections. Are there hypercubes of any other dimensions that are equivalent topologically to
toruses?

4 A Gray code of length � e) 	 is a sequence �
 � �
�
�
� � � 2�4 of
�

-bit binary numbers such that (a)
any two successive numbers in the sequence differ by one and only one bit; (b) all

�
-bit binary

numbers are represented in the sequence; and (c) �
 and � � 254 differ by one bit.� � Find a Gray code sequence of length � e � and show the (closed) path defined by the
sequence of nodes of a 3-cube, whose labels are the elements of the Gray code sequence.
What type of paths does a Gray code define in a hypercube?� � To build a “binary reflected” Gray code, start with the trivial Gray code sequence consisting
of the two one-bit numbers 0 and 1. To build a two-bit Gray code, take the same sequence
and insert a zero in front of each number, then take the sequence in reverse order and insert a
one in front of each number. This gives � 	 e���0 0 � 0!� �
��� ����0�� . The process is repeated until
an
�

-bit sequence is generated. Show the binary reflected Gray code sequences of length 2,
4, 8, and 16. Prove (by induction) that this process does indeed produce a valid Gray code
sequence. !� Let an

�
-bit Gray code be given and consider the sub-sequence of all elements whose first

bit is constant (e.g., zero). Is this an
� 6 �

bit Gray code sequence? Generalize this to any of
the
�

-bit positions. Generalize further to any set of � � � bit positions.� � Use the previous question to find a strategy to map a
) 	 � �) 	 0

mesh into an

# � 4 � � 	
'
-cube.

5 Consider a ring of � processors which are characterized by the following communication perfor-
mance characteristics. Each processor can communicate with its two neighbors simultaneously,
i.e., it can send or receive a message while sending or receiving another message. The time for
a message of length

�
to be transmitted between two nearest neighbors is of the form

� � ��� �
� � A message of length

�
is “broadcast” to all processors by sending it from

> 4 to
> 	 and then

from
> 	 to

> �
, etc., until it reaches all destinations, i.e., until it reaches

> �
. How much time

does it take for the message to complete this process?� � Now split the message into packets of equal size and pipeline the data transfer. Typically,
each processor will receive packet number
 from the previous processor, while sending
packet
 6=� it has already received to the next processor. The packets will travel in chain
from

> 4 to
> 	 , ���
� , to

> �
. In other words, each processor executes a program that is described

roughly as follows:
��	+
�S)�<� ����;	��$�!�# C������

����� � ~���� &�	�
 � � � ��
����?��	��m�
����?	;
 	�� &��p&�� \����
L
��#*�

� ��38
!�#�C����R����;��
�*�D
9:��
	 ;G8�����

�	����V8���	�#*�
���*	*�
J�����@38�!�# C����=����;
�
���G
V��	 �
�����38��
	�#��
����	*�

� ��@��
	

There are a few additional conditionals. Assume that the number of packets is equal to � 6 � .
How much time does it take for all packets to reach all � processors? How does this compare
with the simple method in (a)?

6 (a) Write a short FORTRAN routine (or C function) which sets up the level number of each
unknown of an upper triangular matrix. The input matrix is in CSR format and the output should
be an array of length

�
containing the level number of each node. (b) What data structure should

be used to represent levels? Without writing the code, show how to determine this data structure
from the output of your routine. (c) Assuming the data structure of the levels has been deter-
mined, write a short FORTRAN routine (or C function) to solve an upper triangular system
using the data structure resulting in the previous question. Show clearly which loop should be
executed in parallel.

7 In the jagged diagonal format described in Section 11.5.5, it is necessary to preprocess the matrix
by sorting its rows by decreasing number of rows. What type of sorting should be used for this
purpose?

8 In the jagged diagonal format described in Section 11.5.5, the matrix had to be preprocessed by
sorting it by rows of decreasing number of elements.��� What is the main reason it is necessary to reorder the rows?� � Assume that the same process of extracting one element per row is used. At some point the

extraction process will come to a stop and the remainder of the matrix can be put into a
CSR data structure. Write down a good data structure to store the two pieces of data and a
corresponding algorithm for matrix-by-vector products. !� This scheme is efficient in many situations but can lead to problems if the first row is very
short. Suggest how to remedy the situation by padding with zero elements, as is done for the
Ellpack format.

9 Many matrices that arise in PDE applications have a structure that consists of a few diagonals
and a small number of nonzero elements scattered irregularly in the matrix. In such cases, it is
advantageous to extract the diagonal part and put the rest in a general sparse (e.g., CSR) format.
Write a pseudo-code to extract the main diagonals and the sparse part. As input parameter, the
number of diagonals desired must be specified.

NOTES AND REFERENCES. Kai Hwang’s book [124] is recommended for an overview of parallel
architectures. More general recommended reading on parallel computing are the book by Bertsekas
and Tsitsiklis [25] and a more recent volume by Kumar et al. [139]. One characteristic of high-
performance architectures is that trends come and go rapidly. A few years ago, it seemed that mas-
sive parallelism was synonymous with distributed memory computing, specifically of the hypercube
type. Currently, many computer vendors are mixing message-passing paradigms with “global address
space,” i.e., shared memory viewpoint. This is illustrated in the recent T3D machine built by CRAY
Research. This machine is configured as a three-dimensional torus and allows all three programming
paradigms discussed in this chapter, namely, data-parallel, shared memory, and message-passing. It
is likely that the T3D will set a certain trend. However, another recent development is the advent of
network supercomputing which is motivated by astounding gains both in workstation performance
and in high-speed networks. It is possible to solve large problems on clusters of workstations and to

	���	�
 � � � 	?����� � �}\�&�	?� ���3�
obtain excellent performance at a fraction of the cost of a massively parallel computer.

Regarding parallel algorithms, the survey paper of Ortega and Voigt [156] gives an exhaustive
bibliography for research done before 1985 in the general area of solution of Partial Differential
Equations on supercomputers. An updated bibliography by Ortega, Voigt, and Romine is available in
[99]. See also the survey [178] and the monograph [71]. Until the advent of supercomputing in the
mid 1970s, storage schemes for sparse matrices were chosen mostly for convenience as performance
was not an issue, in general. The first paper showing the advantage of diagonal storage schemes in
sparse matrix computations is probably [133]. The first discovery by supercomputer manufacturers of
the specificity of sparse matrix computations was the painful realization that without hardware sup-
port, vector computers could be inefficient. Indeed, the early CRAY machines did not have hardware
instructions for gather and scatter operations but this was soon remedied in the second-generation
machines. For a detailed account of the beneficial impact of hardware for “scatter” and “gather” on
vector machines, see [146].

Level scheduling is a textbook example of topological sorting in graph theory and was discussed
from this viewpoint in, e.g., [8, 190, 228]. For the special case of finite difference matrices on rectan-
gular domains, the idea was suggested by several authors independently, [208, 209, 111, 186, 10]. In
fact, the level scheduling approach described in this chapter is a “greedy” approach and is unlikely
to be optimal. There is no reason why an equation should be solved as soon as it is possible. For
example, it may be preferable to use a backward scheduling [7] which consists of defining the levels
from bottom up in the graph. Thus, the last level consists of the leaves of the graph, the previous level
consists of their predecessors, etc. Dynamic scheduling can also be used as opposed to static schedul-
ing. The main difference is that the level structure is not preset; rather, the order of the computation is
determined at run-time. The advantage over pre-scheduled triangular solutions is that it allows pro-
cessors to always execute a task as soon as its predecessors have been completed, which reduces idle
time. On loosely coupled distributed memory machines, this approach may be the most viable since
it will adjust dynamically to irregularities in the execution and communication times that can cause
a lock-step technique to become inefficient. However, for those shared memory machines in which
hardware synchronization is available and inexpensive, dynamic scheduling would have some dis-
advantages since it requires managing queues and generates explicitly busy waits. Both approaches
have been tested and compared in [22, 189] where it was concluded that on the Encore Multimax
dynamic scheduling is usually preferable except for problems with few synchronization points and a
large degree of parallelism. In [118], a combination of prescheduling and dynamic scheduling was
found to be the best approach on a Sequent balance 21000. There seems to have been no comparison
of these two approaches on distributed memory machines or on shared memory machines with mi-
crotasking or hardware synchronization features. In [22, 24] and [7, 8], a number of experiments are
presented to study the performance of level scheduling within the context of preconditioned Conju-
gate Gradient methods. Experiments on an Alliant FX-8 indicated that a speed-up of around 4 to 5
can be achieved easily. These techniques have also been tested for problems in Computational Fluid
Dynamics [214, 216].

� � � � � � �

�	�

���
����������
�
������������ ���!�"���#
�$

%'&)(*,+-&-.0/2143657+98-:-365;*<.>=?3A@�. B 1C365ED-.21F(:-3>GH3A1A&I80JK*H=L8 5M/)5N3O+A8PD-JQ(1R(8PD)(SDIT>.UB (SD-3O.)5*WVI*X1C36GZY[%'&-39*C3\GH3A1A&I80JK*,.)5N3]*9^)(1C. _ B 3,@H&-36D`19&-3ZJ 39*F(S5N3OJUT68K. Ba(*H148bGH.2cK(dG<(eO3/-.)5N. B B 36B (*9GZYf%'&-3b*R(SGg/ B 39*X1>.0/ /65N8).6+-&h(*`19&-3iJQ(.IT)8QD-.0BkjE805mlI.6+A8P_)(nU/)5N3O+A8PD-JQ(o1R(8PD)(dDIT!Yapq=r1436D0st19&)(*Z/)5N3O+98QD-JQ(1F(8QD-365u(*ZDI861H:-365SVi^I*C3A=X^ B s[*R(SD-+O3Z1A&-3\D ^ Gg_K3-5786=(1C365N.21F(8QDI*q86=719&-3>5N39*9^ B 1F(SDITv(1C365N.21F(8QDg1C36D-JK*q1X8w_K3>Gg^-+6&xB .)5;TK365y19&-. DZ1A&-3`Gz805N3*W1C. D-J .)5rJz:-.)5?(.0D21X*OsI*9^-+6&z.I*'{;|Q}w8 5P~!~!pg�fY2��&-3-DMJ 3A:-36B 8Q/)(SDIT]/-.)5N. B B 36B-/)5N3O+A8PD-JQ(o1R(8PD-3-5N*9s)8PD-3M*9&I8Q^ B J>_K3A@�.)5N3'19&-.21�19&-3,_)36D-3A�014*78-=f(dD-+65N3O.-*43OJ�/-.)5N. B B 36B (*9G�.)5N3gDI8-18Q^21E@�3I(TP&-39J�_9V]19&-3>(SD-+65N3O.I*C3OJU. Gz8P^ D21z86=q+98PGg/ ^214.I1R(8PDI*OY�%M&-3�Gm.)(SD>�!^-39*X1F(8PD1X8�.-*9�w(*<@z&-3A19&-3-5'8 5<DI861>(1`(*v/68)*4*F(d_ B 3�1X8i�[D-Jh/)5N3O+A8PD-JQ(1R(8PD)(SDIT\1C3O+6& D)(�!^-39*1A&-.I1z&-.2:-3<.�&)(TQ&ZJ 39TP5N3O3,8-='/-.)5N.0B B 36B (*9GZs .I*q@�36B B .-*'T68 80Jw(SD21A5L(SDI*F(+z�!^-.0B (1F(3A*OY

�E�`���,�h�i�>�,���N���
�Z���I�

As seen in the previous chapter, a limited amount of parallelism can be extracted from
the standard preconditioners such as ILU and SSOR. Fortunately, a number of alternative
techniques can be developed that are specifically targeted at parallel environments. These
are preconditioning techniques that would normally not be used on a standard machine,
but only for parallel computers. There are at least three such types of techniques discussed
in this chapter. The simplest approach is to use a Jacobi or, even better, a block Jacobi
approach. In the simplest case, a Jacobi preconditioner may consist of the diagonal or a
block-diagonal of � . To enhance performance, these preconditioners can themselves be
accelerated by polynomial iterations, i.e., a second level of preconditioning called polyno-
mial preconditioning.

A different strategy altogether is to enhance parallelism by using graph theory algo-
rithms, such as graph-coloring techniques. These consist of coloring nodes such that two
adjacent nodes have different colors. The gist of this approach is that all unknowns associ-
ated with the same color can be determined simultaneously in the forward and backward
sweeps of the ILU preconditioning operation.

Finally, a third strategy uses generalizations of “partitioning” techniques, which can

�t�[�

������� � |)p��
	yoWl��
� p � {�������� p����M{ %M{ p����[�a~ �t�[�

be put in the general framework of “domain decomposition” approaches. These will be
covered in detail in the next chapter.

Algorithms are emphasized rather than implementations. There are essentially two
types of algorithms, namely, those which can be termed coarse-grain and those which can
be termed fine-grain. In coarse-grain algorithms, the parallel tasks are relatively big and
may, for example, involve the solution of small linear systems. In fine-grain parallelism, the
subtasks can be elementary floating-point operations or consist of a few such operations.
As always, the dividing line between the two classes of algorithms is somewhat blurred.

����� ����� �"!>�g�#�v��$]�&%M�g�h�U�b�S� �N�h�'%,�)(
�Z�b�A�

Overlapping block-Jacobi preconditioning consists of a general block-Jacobi approach as
described in Chapter 4, in which the sets *�+ overlap. Thus, we define the index sets

*
+-,/.1032546+8790:7<;5+>=
with

4@?�,BA
; CD,FE
; +8G 4 +IH ?KJLA�7NM)7PORQSA

where O is the number of blocks. Now use the block-Jacobi method with this particular
partitioning, or employ the general framework of additive projection processes of Chapter
5, and use an additive projection method onto the sequence of subspacesT +
,VUXWZY\[].K^�+>=�J_^Z+-,a` b�cId1Jeb5cfdgH ? Jih�hihiJjbKk>dmlmh

Each of the blocks will give rise to a correction of the formn�oqp H ?er+ , n�osp r+ut ��v ?+ ^Dw+yx{z Q ��| osp rX} h j�~��QY�~In
One problem with the above formula is related to the overlapping portions of the | vari-
ables. The overlapping sections will receive two different corrections in general. According
to the definition of “additive projection processes” seen in Chapter 5, the next iterate can
be defined as

| p H ? ,�| p t
C�
+s� ? ^Z+X��v ?+ ^Dw+ ; p

where ; p , z Q���| p is the residual vector at the previous iteration. Thus, the corrections
for the overlapping regions simply are added together. It is also possible to weigh these
contributions before adding them up. This is equivalent to redefining (12.1) inton osp H ?er+ , n osp r+utN� + � v ?+ ^�w+ x{z Q ��| p }
in which � + is a nonnegative diagonal matrix of weights. It is typical to weigh a nonover-
lapping contribution by one and an overlapping contribution by A���� where � is the number

�t��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

of times the unknown is represented in the partitioning.

��?

���
���

���

�	�
��

�	�

�� ��������� ��� �

The block-Jacobi matrix with overlapping
blocks.

The block-Jacobi iteration is often over- or under-relaxed, using a relaxation parameter� . The iteration can be defined in the form

| p H ? ,�| p t
C�
+s� ?

� + ^ + � v ?+ ^�w+ ; p h
Recall that the residual at step � t A is then related to that at step � by

; p H ? ,
���

Q
C�
+s� ?

� + � ^Z+��m^�w+ � ^Z+! v ? ^�w+#" ; p h
The solution of a sparse linear system is required at each projection step. These systems
can be solved by direct methods if the subblocks are small enough. Otherwise, iterative
methods may be used. The outer loop accelerator should then be a flexible variant, such as
FGMRES, which can accommodate variations in the preconditioners.

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �t�a�

$,�#���b�v�	� � !R� $`� %z�<���\�b�;���N��� %,��(
�Z�b��

In polynomial preconditioning the matrix � is defined by

� v ? ,�
 x � }
where
 is a polynomial, typically of low degree. Thus, the original system is replaced by
the preconditioned system

 x � } ��| ,�
 x � } z j�~��QY �Kn
which is then solved by a conjugate gradient-type technique. Note that
 x � } and � com-
mute and, as a result, the preconditioned matrix is the same for right or left preconditioning.
In addition, the matrix
 x � } or ��
 x � } does not need to be formed explicitly since ��
 x � }��
can be computed for any vector � from a sequence of matrix-by-vector products.

Initially, this approach was motivated by the good performance of matrix-vector oper-
ations on vector computers for long vectors, e.g., the Cyber 205. However, the idea itself is
an old one and has been suggested by Stiefel [204] for eigenvalue calculations in the mid
1950s. Next, some of the popular choices for the polynomial
 are described.

����������� ��� �"!$#����&%('�)�*+�,'-!/. #0)21

The simplest polynomial
 which has been used is the polynomial of the Neumann series
expansion �

t43 t53 � t7686�6Kt43:9
in which

3 ,
�
Q � �

and � is a scaling parameter. The above series comes from expanding the inverse of � �
using the splitting � �V,

�
Q x

�
Q � � } h

This approach can also be generalized by using a splitting of the form� �V, � Q x � Q � � }
where � can be the diagonal of � or, more appropriately, a block diagonal of � . Then,

x � � } v ? ,<; � x
�
Q x

�
Q � � v ? � }e}>= v ?

, ;
�
Q x

�
Q � � v ? � } = v ? � v ? h

Thus, setting

3 ,
�
Q � � v ? �

�t��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

results in the approximate
 -term expansion

x � � } v ?�� � v ?�� `
�
t43 t&6�6865t43 9 l � v ? h j�~��QY �)n

Since � v ? �V, � v ? `
�
Q 3 l J note that

� v ? �V,B`
�
t43 t&6�686Kt43 9 l � v ? �

, A� `
�
t43 t7686�65t43 9 l x

�
Q 3 }

, A� x
�
Q 3:9 H ?i} h

The matrix operation with the preconditioned matrix can be difficult numerically for large
 . If the original matrix is Symmetric Positive Definite, then � v ? � is not symmetric, but
it is self-adjoint with respect to the � -inner product; see Exercise 1.

��������� � �	����
 * 1�����
�%('�)�*+� ' !/. #0)21

The polynomial
 can be selected to be optimal in some sense, and this leads to the use of
Chebyshev polynomials. The criterion that is used makes the preconditioned matrix
 x � } �
as close as possible to the identity matrix in some sense. For example, the spectrum of the
preconditioned matrix can be made as close as possible to that of the identity. Denoting by� x � } the spectrum of � , and by � p the space of polynomials of degree not exceeding � ,
the following may be solved.

Find
���� p which minimizes:� Y������� o�� r 2 A�Q��
 x � } 2 h j�~��QY �Kn
Unfortunately, this problem involves all the eigenvalues of � and is harder to solve than
the original problem. Usually, problem (12.4) is replaced by the problem

Find
���� p which minimizes:� Y��� ��! 2fA�Q��
 x � } 2fJ j�~��QY ")n
which is obtained from replacing the set � x � } by some continuous set # that encloses it.
Thus, a rough idea of the spectrum of the matrix � is needed. Consider first the particular
case where � is Symmetric Positive Definite, in which case # can be taken to be an interval
` $)J&%
l containing the eigenvalues of � .

A variation of Theorem 6.4 is that for any real scalar ' such with '#7($, the minimum�*) [C �,+.-0/ C o21 r � ? � Y��3 �54 67/ 8 9 2 O x;: } 2
is reached for the shifted and scaled Chebyshev polynomial of the first kind,

<= p x;: } �
= p?> A t�@ 6 v 38 v 6BA= p?> A t�@ 6 v 18 v 6 A

h

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �t���
Of interest is the case where ' ,�� which gives the polynomial� p x : } � A� p = p

� % t $yQ @ :% Q $ � with � p � = p
� % t $% Q $�� h

Denote the center and mid-width of the interval ` $ J %�l , respectively, by� � % t $@ J
	 � % Q $@ h
Using these parameters instead of $ J % , the above expressions then become� p x : } � A� p = p

� � Q :	 � with � p � = p
� � 	 � h

The three-term recurrence for the Chebyshev polynomials results in the following three-
term recurrences: � p H ? , @ � 	 � p Q � p v ?�J��3,BA\J @ h�hih J
with � ?�,

� 	 J ��� ,/A J
and � p H ? x : } � A� p H ?�
 @ � Q :	 � p � p x : } Q � p v ? � p v ? x;: }��

, � p� p H ?�
 @ � Q :	 � p x : } Q � p v ?� p � p v ? x : }�� Ju��� A\J
with � ? x;: } ,BA�Q :� J � � x;: } ,BA\h
Define �

p � � p� p H ? Ju�R,/A\J @ Jih�hih h j�~��QY �Kn
Note that the above recurrences can be put together as�

p , A@ � ?)Q
�
p v ?

j�~��QY �Kn� p H ? x : } ,
�
p
 @ x � ?�Q :	 } � p x;: } Q

�
p v ?
� p v ? x;: } � Ju��� A\h j�~��QY �Kn

Observe that formulas (12.7–12.8) can be started at �#,�� provided we set
�
v ? � � and

�
v ? � � , so that

� � ,BAK� x @ � ? } .
The goal is to obtain an iteration that produces a residual vector of the form ; p H ? ,� p H ? x � } ; � where

� p is the polynomial defined by the above recurrence. The difference
between two successive residual vectors is given by

; p H ? Q9; p , x � p H ? x � } Q � p x � }e} ; � h
The identity A , x @ � ?�Q

�
p v ? }

�
p and the relations (12.8) yield� p H ? x : } Q � p x : } , � p H ? x;: } Q x @ � ?�Q

�
p v ? }

�
p � p x;: }

�t��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

,
�
p
 Q @ :	 � p x;: } t � p v ? x � p x : } Q � p v ? x : }X} � h

As a result, � p H ? x : } Q � p x : }: ,
�
p
 � p v ? � p x : } Q � p v ? x : }: Q @	 � p x;: } � h j�~��QY �)n

Define
� p � | p H ? QP| p J

and note that ; p H ? QP; p , � � p . If | p H ? , | � t
 p x � } ; � , then ; p H ? , x
�
Q ��
 p x � }e} ; � ,

and
� p , � v ? x � p H ? x � } Q � p x � }X} ; � . Therefore the relation (12.9) translates into the

recurrence,

� p ,
�
p
 � p v ? � p v ? Q @	 ; p � h

Finally, the following algorithm is obtained.

�����	�U��
N�v�
� � � � ��� ����������������� !�������� �����! #"%$'&
1. ; � , z Q ��| � ; � ? , 	\� � ;
2.

� � ,/A�� � ? ; � � , ?(; � ;
3. For �3,�� J�hihihiJ until convergence Do:
4. | p H ? ,�| p t � p
5. ; p H ? ,�; p Q�� � p
6.

�
p H ? , x @ � ? Q

�
p } v ? ;

7.
� p H ?�,

�
p H ?
�
p � p Q �*) -,+�-. ; p H ?

8. EndDo

Lines 7 and 4 can also be recast into one single update of the form

| p H ?�,F| p t
�
p
 � p v ? x | p Q9| p v ? } Q @ 	 x{z Q ��| p } � h

It can be shown that when $S, ��? and %<, ��/ , the resulting preconditioned matrix
minimizes the condition number of the preconditioned matrices of the form ��
 x � } over all
polynomials
 of degree 7��'QSA . However, when used in conjunction with the Conjugate
Gradient method, it is observed that the polynomial which minimizes the total number
of Conjugate Gradient iterations is far from being the one which minimizes the condition
number. If instead of taking $, � ? and % , � / , the interval [$)J&%] is chosen to be
slightly inside the interval [� ? J � /], a much faster convergence might be achieved. The true
optimal parameters, i.e., those that minimize the number of iterations of the polynomial
preconditioned Conjugate Gradient method, are difficult to determine in practice.

There is a slight disadvantage to the approaches described above. The parameters $
and % , which approximate the smallest and largest eigenvalues of � , are usually not avail-
able beforehand and must be obtained in some dynamic way. This may be a problem mainly
because a software code based on Chebyshev acceleration could become quite complex.

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �t���
To remedy this, one may ask whether the values provided by an application of Gersh-

gorin’s theorem can be used for $ and % . Thus, in the symmetric case, the parameter$, which estimates the smallest eigenvalue of � , may be nonpositive even when � is a
positive definite matrix. However, when $ 7�� , the problem of minimizing (12.5) is not
well defined, since it does not have a unique solution due to the non strict-convexity of
the uniform norm. An alternative uses the � � -norm on [$)J&%] with respect to some weight
function � x � } . This “least-squares” polynomials approach is considered next.

��������� �) � # 1�����1���� #
	 � 1:%('�) *+� ' ! . #0)21

Consider the inner product on the space � p :

� O
J
��� , � 8
6 O x � } � x � } � x � } � � j�~��PY�~��Kn

where � x � } is some non-negative weight function on ($ J %). Denote by ��O���� and call� -norm, the 2-norm induced by this inner product.
We seek the polynomial
 p v ? which minimizes

��A Q �
 x � } � � j�~��PY�~�~In
over all polynomials
 of degree 7 ��Q A . Call
 p v ? the least-squares iteration polynomial,
or simply the least-squares polynomial, and refer to � p x � } � A&Q��
 p v ? x � } as the least-
squares residual polynomial. A crucial observation is that the least squares polynomial is
well defined for arbitrary values of $ and % . Computing the polynomial
 p v ? x � } is not a
difficult task when the weight function � is suitably chosen.

Computation of the least-squares polynomials There are three ways to compute the
least-squares polynomial
 p defined in the previous section. The first approach is to use an
explicit formula for � p , known as the kernel polynomials formula,

� p x � } ,�� p+s� � �i+ x � } �i+ x � }
� p+I� � �i+ x � } � j�~��PY�~1�Kn

in which the � + ’s represent a sequence of polynomials orthogonal with respect to the weight
function � x � } . The second approach generates a three-term recurrence satisfied by the
residual polynomials � p x � } . These polynomials are orthogonal with respect to the weight
function ��� x � } . From this three-term recurrence, we can proceed exactly as for the Cheby-
shev iteration to obtain a recurrence formula for the sequence of approximate solutions | p .
Finally, a third approach solves the Normal Equations associated with the minimization of
(12.11), namely, � A�Q �
 p v ? x � } J0����� x � } � , � J 0�,��ZJiA J @ J�hih�h�Jj� Q<A
where ���\Jm0 , A Jihih�h Jj�#QaA is any basis of the space p v ? of polynomials of degree
7S� Q<A .

These three approaches can all be useful in different situations. For example, the first
approach can be useful for computing least-squares polynomials of low degree explicitly.
For high-degree polynomials, the last two approaches are preferable for their better numer-

�7��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

ical behavior. The second approach is restricted to the case where $ � � , while the third is
more general.

Since the degrees of the polynomial preconditioners are often low, e.g., not exceeding
5 or 10, we will give some details on the first formulation. Let � + x � } JeM�, � J�A\Jih�hih�JeE8Jihih�h ,
be the orthonormal polynomials with respect to � x � } . It is known that the least-squares
residual polynomial � p x � } of degree � is determined by the kernel polynomials formula
(12.12). To obtain
 p v ? x � } , simply notice that

 p v ? x � } , A�Q � p x � }�
, � p+I� � � + x � } : + x � }

� p+s� � � + x � } � J with
j�~��QY ~0�Kn

: + x � } , ��+ x � } Q �i+ x � }� h j�~1�PY�~0�Kn
This allows
 p v ? to be computed as a linear combination of the polynomials : + x � } . Thus,
we can obtain the desired least-squares polynomials from the sequence of orthogonal poly-
nomials ��+ which satisfy a three-term recurrence of the form:

%�+sH ? ��+IH ? x � } , x � Q $�+ } �i+ x � } Q %�+ �i+ v ? x � } JXM , A J @ Jihih�h h
From this, the following recurrence for the : + ’s can be derived:

% +sH ? : +sH ? x � } , x �RQ $ + } : + x � } Q % + : + v ? x � } t � + x � } JeM�,BA\J @ Jih�hih�h
The weight function � is chosen so that the three-term recurrence of the orthogonal

polynomials � + is known explicitly and/or is easy to generate. An interesting class of weight
functions that satisfy this requirement is considered next.

Choice of the weight functions This section assumes that $, � and %<, A . Consider
the Jacobi weights

� x � } , ��� v ? x A�Q � }�� J where � G � and � �VQ A@ h j�~1�PY�~ ")n
For these weight functions, the recurrence relations are known explicitly for the polyno-
mials that are orthogonal with respect to � x � } , ��� x � } , or � � � x � } . This allows the use of
any of the three methods described in the previous section for computing
 p v ? x � } . More-
over, it has been shown [129] that the preconditioned matrix ��
 p x � } is Symmetric Positive
Definite when � is Symmetric Positive Definite, provided that � Q<A ��� �VQ ?� .

The following explicit formula for � p x � } can be derived easily from the explicit ex-
pression of the Jacobi polynomials and the fact that .�� p = is orthogonal with respect to the
weight ��� x � } :

� p x � } ,
p�
� � � 	 osp r� x A�Q�� } p v � x Q � } � j�~1�PY�~ �)n

	 oqp r� , � p� � v ?

+s� � � Q9M t �
M t A t � h

Using (12.13), the polynomial
 p v ? x � } , x A Q � p x � }e} � � can be derived easily “by hand”
for small degrees; see Exercise 4.

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �7� �
���������	� � � � � �

As an illustration, we list the least-squares polynomials
 p for �R, A , h�hih ,

, obtained for the Jacobi weights with � , ?� and �3,BQ ?� . The polynomials listed are for

the interval ` � J���l as this leads to integer coefficients. For a general interval ` �ZJ&%�l , the best
polynomial of degree � is
 p x ���]� % } . Also, each polynomial
 p is rescaled by x�
 t @ � } ��� to
simplify the expressions. However, this scaling factor is unimportant if these polynomials
are used for preconditioning.

1 � ��� ��� ��� ��� ��� ��� ������ 5 � 1�
� 14 � 7 1�
� 30 � 27 9 � 1�
� 55 � 77 44 � 11 1�
� 91 � 182 156 � 65 13 � 1�
� 140 � 378 450 � 275 90 � 15 1�
� 204 � 714 1122 � 935 442 � 119 17 � 1�
� 285 � 1254 2508 � 2717 1729 � 665 152 � 19 1

We selected �a, ?� and �F, Q ?� only because these choices lead to a very simple re-
currence for the polynomials � + , which are the Chebyshev polynomials of the first kind.

Theoretical considerations An interesting theoretical question is whether the least-
squares residual polynomial becomes small in some sense as its degree increases. Consider
first the case ��� $��(% . Since the residual polynomial � p minimizes the norm � � � � as-
sociated with the weight � , over all polynomials � of degree 7 � such that � x � } ,BA , the
polynomial x A�Q x � � � }X}jp with

� , x $ t % } � @ satisfies

� � p � � 7

�
A�Q �

! � p � 7

 z Q#"

z t "
� p � , 	
 % Q $% t $ � p

where 	 is the � -norm of the function unity on the interval ` $ J %�l . The norm of � p will
tend to zero geometrically as � tends to infinity, provided $ G � .

Consider now the case $F, � , % , A and the Jacobi weight (12.15). For this choice
of the weight function, the least-squares residual polynomial is known to be O p x � } �1O p x � }
where O p is the � 3%$ degree Jacobi polynomial associated with the weight function �'& x � } ,� � x A Q � } � . It can be shown that the 2-norm of such a residual polynomial with respect to
this weight is given by

�>O p ��O p x � } � ��)(, * � x � t A } * x � t � t A }
x @ � t � t � t A } x * x � t � t � t A }

* x � t A }* x � t � t A }
in which

*
is the Gamma function. For the case �#, ?� and �R,/Q ?� , this becomes

�>O p ��O p x � } � �� (, ` * x �� } l �
x @ � t A } x � t ?� } , +

@ x @ � t A } � h
Therefore, the � & -norm of the least-squares residual polynomial converges to zero like AK�\�
as the degree � increases (a much slower rate than when $ G �). However, note that the
condition O x � } , A implies that the polynomial must be large in some interval around the

�7�a� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

origin.

����� ����� � ���	� ' �,1 *+! ! ��� 	 . � �(# 1 �
Given a set of approximate eigenvalues of a nonsymmetric matrix � , a simple region # can
be constructed in the complex plane, e.g., a disk, an ellipse, or a polygon, which encloses
the spectrum of the matrix � . There are several choices for # . The first idea uses an ellipse# that encloses an approximate convex hull of the spectrum. Consider an ellipse centered
at
�
, and with focal distance 	 . Then as seen in Chapter 6, the shifted and scaled Chebyshev

polynomials defined by � p x � } ,
= p � (v �. = p � (.

are nearly optimal. The use of these polynomials leads again to an attractive three-term
recurrence and to an algorithm similar to Algorithm 12.1. In fact, the recurrence is identi-
cal, except that the scalars involved can now be complex to accommodate cases where the
ellipse has foci not necessarily located on the real axis. However, when � is real, then the
symmetry of the foci with respect to the real axis can be exploited. The algorithm can still
be written in real arithmetic.

An alternative to Chebyshev polynomials over ellipses employs a polygon � that
contains � x � } . Polygonal regions may better represent the shape of an arbitrary spectrum.
The best polynomial for the infinity norm is not known explicitly but it may be computed
by an algorithm known in approximation theory as the Remez algorithm. It may be simpler
to use an � � -norm instead of the infinity norm, i.e., to solve (12.11) where � is some weight
function defined on the boundary of the polygon � .

Now here is a sketch of an algorithm based on this approach. We use an � � -norm as-
sociated with Chebyshev weights on the edges of the polygon. If the contour of � consists
of � edges each with center

� + and half-length 	 + , then the weight on each edge is defined
by

� + x � } , @+ 2 	 + Q x � Q � + } � 2 v ?�� � J M�,BA\J�hihihiJj�]h j�~1�PY�~ �)n
Using the power basis to express the best polynomial is not a safe practice. It is preferable to
use the Chebyshev polynomials associated with the ellipse of smallest area containing � .
With the above weights or any other Jacobi weights on the edges, there is a finite procedure
which does not require numerical integration to compute the best polynomial. To do this,
each of the polynomials of the basis (namely, the Chebyshev polynomials associated with
the ellipse of smallest area containing �) must be expressed as a linear combination of
the Chebyshev polynomials associated with the different intervals ` � +�Q 	�+XJ � + t 	�+6l . This
redundancy allows exact expressions for the integrals involved in computing the least-
squares solution to (12.11).

Next, the main lines of a preconditioned GMRES algorithm are described based on
least-squares polynomials. Eigenvalue estimates are obtained from a GMRES step at the
beginning of the outer loop. This GMRES adaptive corrects the current solution and the
eigenvalue estimates are used to update the current polygon � . Correcting the solution
at this stage is particularly important since it often results in a few orders of magnitude

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �7�a�
improvement. This is because the polygon � may be inaccurate and the residual vector is
dominated by components in one or two eigenvectors. The GMRES step will immediately
annihilate those dominating components. In addition, the eigenvalues associated with these
components will now be accurately represented by eigenvalues of the Hessenberg matrix.

���!� �U�
r�v�
� � � �;� � $ $'� � &�$�� " � � $ � ����$ &��'" #"%$ &������ � � %�(
1. Start or Restart:
2. Compute current residual vector ; � , z Q ��| .
3. Adaptive GMRES step:
4. Run � ? steps of GMRES for solving � � , ; .
5. Update | by | � , | t �

.
6. Get eigenvalue estimates from the eigenvalues of the
7. Hessenberg matrix.
8. Compute new polynomial:
9. Refine � from previous hull � and new eigenvalue estimates.

10. Get new best polynomial
 p .
11. Polynomial Iteration:
12. Compute the current residual vector ;�, z Q�� | .
13. Run � � steps of GMRES applied to
 p x � } � � ,�
 p x � } ; .
14. Update | by | � , | t �

.
15. Test for convergence.
16. If solution converged then Stop; else GoTo 1.

���������	� � � � �;�
Table 12.1 shows the results of applying GMRES(20) with polynomial

preconditioning to the first four test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 56 2774 0.22E-05 0.51E-06
F3D 22 7203 0.18E-05 0.22E-05
ORS 78 4454 0.16E-05 0.32E-08
F2DB 100 4432 0.47E-05 0.19E-05

� ���	� � � � � �
A test run of ILU(0)-GMRES accelerated with

polynomial preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In fact, the system
is preconditioned by ILU(0) before polynomial preconditioning is applied to it. Degree 10
polynomials (maximum) are used. The tolerance for stopping is A � v � . Recall that Iters
is the number of matrix-by-vector products rather than the number of GMRES iterations.
Notice that, for most cases, the method does not compare well with the simpler ILU(0)
example seen in Chapter 10. The notable exception is example F2DB for which the method
converges fairly fast in contrast with the simple ILU(0)-GMRES; see Example 10.2. An
attempt to use the method for the fifth matrix in the test set, namely, the FIDAP matrix
FID, failed because the matrix has eigenvalues on both sides of the imaginary axis and the
code tested does not handle this situation.

�7� � ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

It is interesting to follow the progress of the algorithm in the above examples. For the
first example, the coordinates of the vertices of the upper part of the first polygon � are

� b x ! + } � � x ! + }
0.06492 0.00000
0.17641 0.02035
0.29340 0.03545
0.62858 0.04977
1.18052 0.00000

This hull is computed from the 20 eigenvalues of the @ ��� @ � Hessenberg matrix result-
ing from the first run of GMRES(20). In the ensuing GMRES loop, the outer iteration
converges in three steps, each using a polynomial of degree 10, i.e., there is no further
adaptation required. For the second problem, the method converges in the 20 first steps of
GMRES, so polynomial acceleration was never invoked. For the third example, the initial
convex hull found is the interval ` � h ���
 A�� JiA h �	� @ �
 l of the real line. The polynomial pre-
conditioned GMRES then convergences in five iterations. Finally, the initial convex hull
found for the last example is

� b x ! + } � � x ! + }
0.17131 0.00000
0.39337 0.10758
1.43826 0.00000

and the outer loop converges again without another adaptation step, this time in seven steps.

� ���K���?�<�#�����`�E� �
�Z����

The general idea of multicoloring, or graph coloring, has been used for a long time by
numerical analysts. It was exploited, in particular, in the context of relaxation techniques
both for understanding their theory and for deriving efficient algorithms. More recently,
these techniques were found to be useful in improving parallelism in iterative solution
techniques. This discussion begins with the 2-color case, called red-black ordering.

����� �,� � 	��
� �
,) #	���5' 	��0� 	 . ���
The problem addressed by multicoloring is to determine a coloring of the nodes of the
adjacency graph of a matrix such that any two adjacent nodes have different colors. For
a 2-dimensional finite difference grid (5-point operator), this can be achieved with two

����� � ��}k|F%M{ � pg|)p<�f{f��� �7�t�
colors, typically referred to as “red” and “black.” This red-black coloring is illustrated in
Figure 12.2 for a � ��� mesh where the black nodes are represented by filled circles.

1 3 5

8 10 12

13 15 17

20 22 24

2 4 6

7 9 11

14 16 18

19 21 23

�� �����!� � � �;�
Red-black coloring of a � � � grid. Natural la-

beling of the nodes.

Assume that the unknowns are labeled by listing the red unknowns first together, fol-
lowed by the black ones. The new labeling of the unknowns is shown in Figure 12.3.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

�� �����!� � � �;�
Red-black coloring of a � �#� grid. Red-black

labeling of the nodes.

Since the red nodes are not coupled with other red nodes and, similarly, the black
nodes are not coupled with other black nodes, the system that results from this reordering
will have the structure � � ? �# � � � � |]?| � � ,

� z ?
z � � J j�~��PY�~ �Kn

in which � ? and � � are diagonal matrices. The reordered matrix associated with this new
labeling is shown in Figure 12.4.

Two issues will be explored regarding red-black ordering. The first is how to exploit
this structure for solving linear systems. The second is how to generalize this approach for
systems whose graphs are not necessarily 2-colorable.

�7�7� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

�� ��������� ��� �
Matrix associated with the red-black reordering

of Figure 12.3.

����� �,��� 1�'�) � ��. ' � '�� 	��
� �0
,) # � �51 * 1���� ! 1
The easiest way to exploit the red-black ordering is to use the standard SSOR or ILU(0)
preconditioners for solving the block system (12.18) which is derived from the original sys-
tem. The resulting preconditioning operations are highly parallel. For example, the linear
system that arises from the forward solve in SSOR will have the form� � ? �# � � � � | ?|�� � ,

� z ?
z � � h

This system can be solved by performing the following sequence of operations:

1. Solve � ?1|�?�, z ? .
2. Compute

<z � � , z ��Q #�| ? .
3. Solve � � |��&, <z � .

This consists of two diagonal scalings (operations 1 and 3) and a sparse matrix-by-
vector product. Therefore, the degree of parallelism, is at least E-� @ if an atomic task is
considered to be any arithmetic operation. The situation is identical with the ILU(0) pre-
conditioning. However, since the matrix has been reordered before ILU(0) is applied to it,
the resulting LU factors are not related in any simple way to those associated with the orig-
inal matrix. In fact, a simple look at the structure of the ILU factors reveals that many more
elements are dropped with the red-black ordering than with the natural ordering. The result
is that the number of iterations to achieve convergence can be much higher with red-black
ordering than with the natural ordering.

A second method that has been used in connection with the red-black ordering solves
the reduced system which involves only the black unknowns. Eliminating the red un-
knowns from (12.18) results in the reduced system:

x � � Q # � v ?? � } |�� , z � Q # � v ?? z ? h

����� � ��}k|F%M{ � pg|)p<�f{f��� �7���
Note that this new system is again a sparse linear system with about half as many un-
knowns. In addition, it has been observed that for “easy problems,” the reduced system
can often be solved efficiently with only diagonal preconditioning. The computation of the
reduced system is a highly parallel and inexpensive process. Note that it is not necessary
to form the reduced system. This strategy is more often employed when � ? is not diag-
onal, such as in domain decomposition methods, but it can also have some uses in other
situations. For example, applying the matrix to a given vector | can be performed using
nearest-neighbor communication, and this can be more efficient than the standard approach
of multiplying the vector by the Schur complement matrix � ��Q # � v ?? � . In addition, this
can save storage, which may be more critical in some cases.

����� �,��� !/�)
�+. � '�) ' 	 . ��� � ' 	 �"� ��� 	 #0) 1 % #
	 1 �:! # ��	 . � � 1
Chapter 3 discussed a general greedy approach for multicoloring a graph. Given a general
sparse matrix � , this inexpensive technique allows us to reorder it into a block form where
the diagonal blocks are diagonal matrices. The number of blocks is the number of colors.
For example, for six colors, a matrix would result with the structure shown in Figure 12.5
where the � + ’s are diagonal and # , � are general sparse. This structure is obviously a
generalization of the red-black ordering.

� ?
� �

� �
�

� �
� �

F

E

�� �����!� � � �S�
A six-color ordering of a general sparse matrix.

Just as for the red-black ordering, ILU(0), SOR, or SSOR preconditioning can be used
on this reordered system. The parallelism of SOR/SSOR is now of order E-��O where O is
the number of colors. A loss in efficiency may occur since the number of iterations is likely
to increase.

A Gauss-Seidel sweep will essentially consist of O scalings and O�Q A matrix-by-vector
products, where O is the number of colors. Specifically, assume that the matrix is stored in
the well known Ellpack-Itpack format and that the block structure of the permuted matrix
is defined by a pointer array MqO : ; . The index MqO : ; x 0 } is the index of the first row in the 0 -th
block. Thus, the pair � x E8A � E @ J � } J � � x E8A � E @ J � } represents the sparse matrix consisting
of the rows E8A to E @ in the Ellpack-Itpack format. The main diagonal of � is assumed to

�7��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

be stored separately in inverted form in a one-dimensional array
� M "�� . One single step of

the multicolor SOR iteration will then take the following form.

�����	�U��
N�v�
� � � �;� � ��� � #" ��$'� $ �&('���/(�������� " & ��� % � ��������	�
�$ � � ��

1. Do col = 1, ncol
2. n1 = iptr(col)
3. n2 = iptr(col+1) – 1
4. y(n1:n2) = rhs(n1:n2)
5. Do j = 1, ndiag
6. Do i = n1, n2
7. y(i) = y(i) – a(i,j)*y(ja(i,j))
8. EndDo
9. EndDo

10. y(n1:n2) = diag(n1:n2) * y(n1:n2)
11. EndDo

In the above algorithm, E !
� 4 is the number of colors. The integers E8A and E @ set in lines
2 and 3 represent the beginning and the end of block !
� 4 . In line 10, � x E8A � E @ } is mul-
tiplied by the diagonal � v ? which is kept in inverted form in the array

� M "�� . The outer
loop, i.e., the loop starting in line 1, is sequential. The loop starting in line 6 is vectoriz-
able/parallelizable. There is additional parallelism which can be extracted in the combina-
tion of the two loops starting in lines 5 and 6.

� ���K�����K% �u��� �E� !M���r�h� �@�u�
�Z�����

The discussion in this section begins with the Gaussian elimination algorithm for a general
sparse linear system. Parallelism in sparse Gaussian elimination can be obtained by find-
ing unknowns that are independent at a given stage of the elimination, i.e., unknowns that
do not depend on each other according to the binary relation defined by the graph of the
matrix. A set of unknowns of a linear system which are independent is called an indepen-
dent set. Thus, independent set orderings can be viewed as permutations to put the original
matrix in the form � � #

�
= � j�~1�PY�~ �)n

in which � is diagonal, but
=

can be arbitrary. This amounts to a less restrictive form of
multicoloring, in which a set of vertices in the adjacency graph is found so that no equation
in the set involves unknowns from the same set. A few algorithms for finding independent
set orderings of a general sparse graph were discussed in Chapter 3.

The rows associated with an independent set can be used as pivots simultaneously.
When such rows are eliminated, a smaller linear system results, which is again sparse.
Then we can find an independent set for this reduced system and repeat the process of

������� ��}k|F%M{ oe�a|Q{ �x{ �]�a%M{ p�� {S|P} �7���
reduction. The resulting second reduced system is called the second-level reduced system.
The process can be repeated recursively a few times. As the level of the reduction increases,
the reduced systems gradually lose their sparsity. A direct solution method would continue
the reduction until the reduced system is small enough or dense enough to switch to a dense
Gaussian elimination to solve it. This process is illustrated in Figure 12.6. There exists a
number of sparse direct solution techniques based on this approach.

�� �����!� � � �2�
Illustration of two levels of multi-elimination for

sparse linear systems.

After a brief review of the direct solution method based on independent set orderings,
we will explain how to exploit this approach for deriving incomplete LU factorizations by
incorporating drop tolerance strategies.

�������,� � !/�)
�+. � �) . !/. � # �+.�' �
We start by a discussion of an exact reduction step. Let � � be the matrix obtained at the
0 -th step of the reduction, 0:, � J�hihihiJXE
4@b � with � � , � . Assume that an independent set
ordering is applied to � � and that the matrix is permuted accordingly as follows:

 �6� � w� ,
� � � � �# � = � � j�~��PY � �Kn

where � � is a diagonal matrix. Now eliminate the unknowns of the independent set to get
the next reduced matrix,

� � H ? , = ��Q # � � v ?� � � h j�~��PY ��~In
This results, implicitly, in a block LU factorization

 � � � w� ,
� � � � �# � = � � ,

� �
�# � � v ?�
� � �

� � � � �
� � � H ? �

with � � H ? defined above. Thus, in order to solve a system with the matrix � � , both a
forward and a backward substitution need to be performed with the block matrices on the
right-hand side of the above system. The backward solution involves solving a system with
the matrix � � H ? .

This block factorization approach can be used recursively until a system results that is
small enough to be solved with a standard method. The transformations used in the elimina-
tion process, i.e., the matrices # � � v ?� and the matrices � � must be saved. The permutation

����� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

matrices � can also be saved. Alternatively, the matrices involved in the factorization at
each new reordering step can be permuted explicitly.

�������,��� .) �"!

The successive reduction steps described above will give rise to matrices that become more
and more dense due to the fill-ins introduced by the elimination process. In iterative meth-
ods, a common cure for this is to neglect some of the fill-ins introduced by using a simple
dropping strategy as the reduced systems are formed. For example, any fill-in element in-
troduced is dropped, whenever its size is less than a given tolerance times the 2-norm of
the original row. Thus, an “approximate” version of the successive reduction steps can be
used to provide an approximate solution � v ? � to � v ? � for any given � . This can be used
to precondition the original linear system. Conceptually, the modification leading to an
“incomplete” factorization replaces (12.21) by

� � H ?�, x = ��Q # � � v ?� � � } Q � � j�~1�PY �5�)n
in which �
� is the matrix of the elements that are dropped in this reduction step. Globally,
the algorithm can be viewed as a form of incomplete block LU with permutations.

Thus, there is a succession of block ILU factorizations of the form

 �K� � �w� ,
� � � � �# � = � �

,
� �

�# � � v ?�
� � �

� � � � �
� � � H ? � t

�
� �
� � � �

with � � H ? defined by (12.22). An independent set ordering for the new matrix ��� H ? will
then be found and this matrix is reduced again in the same manner. It is not necessary to
save the successive �
� matrices, but only the last one that is generated. We need also to
save the sequence of sparse matrices

� � H ? ,
� � � � �# � � v ?� � � j�~1�PY � �)n

which contain the transformation needed at level 0 of the reduction. The successive per-
mutation matrices � can be discarded if they are applied to the previous

� + matrices as
soon as these permutation matrices are known. Then only the global permutation is needed,
which is the product of all these successive permutations.

An illustration of the matrices obtained after three reduction steps is shown in Figure
12.7. The original matrix is a 5-point matrix associated with a A�� �:A�� grid and is therefore
of size 3 , @ @ � . Here, the successive matrices

� + (with permutations applied) are shown
together with the last �
� matrix which occupies the location of the � block in (12.23).

������� ��}k|F%M{ oe�a|Q{ �x{ �]�a%M{ p�� {S|P} ��� �

�� �����!� � � � �
Illustration of the processed matrices obtained

from three steps of independent set ordering and reductions.

We refer to this incomplete factorization as ILUM (ILU with Multi-Elimination). The
preprocessing phase consists of a succession of E
4{b � applications of the following three
steps: (1) finding the independent set ordering, (2) permuting the matrix, and (3) reducing
it.

���!� �U�
r�v�
� � � � � � �@�u�$����$	� ����� $ ����� � " &�� $ ����� �
1. Set � � , � .
2. For 0', �ZJiA\J�hih�h JXE
4{b � QSA Do:
3. Find an independent set ordering permutation � for � � ;
4. Apply � to � � to permute it into the form (12.20);
5. Apply � to

� ? J�hihihiJ � � ;
6. Apply � to � J�hihih�J � v ? ;
7. Compute the matrices � � H ? and

� � H ? defined by (12.22) and (12.23).
8. EndDo

In the backward and forward solution phases, the last reduced system must be solved but
not necessarily with high accuracy. For example, we can solve it according to the level of
tolerance allowed in the dropping strategy during the preprocessing phase. Observe that
if the linear system is solved inaccurately, only an accelerator that allows variations in
the preconditioning should be used. Such algorithms have been discussed in Chapter 9.
Alternatively, we can use a fixed number of multicolor SOR or SSOR steps or a fixed
polynomial iteration. The implementation of the ILUM preconditioner corresponding to

���a� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

this strategy is rather complicated and involves several parameters.
In order to describe the forward and backward solution, we introduce some notation.

We start by applying the “global permutation,” i.e., the product

 �� c���� v ?\J �� c���� v � h�hihiJ
 �
to the right-hand side. We overwrite the result on the current solution vector, an 3 -vector
called | � . Now partition this vector into

| � ,
�
� �
|]? �

according to the partitioning (12.20). The forward step consists of transforming the second
component of the right-hand side as

|�? � ,�|]?�Q # � � v ?� � � h
Now |�? is partitioned in the same manner as | � and the forward elimination is continued
the same way. Thus, at each step, each |�� is partitioned as

| � ,
�

� �| � H ? � h
A forward elimination step defines the new |�� H ? using the old |�� H ? and � � for 0 ,� J�hihihiJXE
4@b � QaA while a backward step defines � � using the old � � and | � H ? , for 0 ,
E
4@b � Q�A\Jih�hih J � . Algorithm 12.5 describes the general structure of the forward and back-
ward solution sweeps. Because the global permutation was applied at the beginning, the
successive permutations need not be applied. However, the final result obtained must be
permuted back into the original ordering.

�����	�U��
N�v�
� � � �S� � �{���$���
�$ � �
��� � � &�� � ��� 	 ����� �S('$'� �! #"%$'&��
1. Apply global permutation to right-hand-side z and copy into | � .
2. For 0 , �ZJiA Jihih�h JXE
4{b � Q<A Do: [Forward sweep]
3. |�� H ? � ,F|�� H ?�Q # � � v ?� � �
4. EndDo
5. Solve with a relative tolerance � :
6. � � c�����| � c���� � ,F| � c���� .
7. For 0 , E
4{b � Q<A Jih�hih J�A\J � Do: [Backward sweep]
8. � � � , � v ?� x � ��Q � �i|�� H ? } .
9. EndDo

10. Permute the resulting solution vector back to the original
11. ordering to obtain the solution | .

Computer implementations of ILUM can be rather tedious. The implementation issues
are similar to those of parallel direct-solution methods for sparse linear systems.

������� �M{ ~!%M�f{ � }�% �Z� {S|P} � ����~P~�p<� ���a�
�b�I(k���`�@�>�g� %H���{��� !w�\� (�('���

�Z�b���

This section describes parallel variants of the block Successive Over-Relaxation (BSOR)
and ILU(0) preconditioners which are suitable for distributed memory environments.
Chapter 11 briefly discussed distributed sparse matrices.. A distributed matrix is a ma-
trix whose entries are located in the memories of different processors in a multiprocessor
system. These types of data structures are very convenient for distributed memory com-
puters and it is useful to discuss implementations of preconditioners that are specifically
developed for them. Refer to Section 11.5.6 for the terminology used here. In particular, the
term subdomain is used in the very general sense of subgraph. For both ILU and SOR, mul-
ticoloring or level scheduling can be used at the macro level, to extract parallelism. Here,
macro level means the level of parallelism corresponding to the processors, or blocks, or
subdomains.

��������� � ��. 1���	 .�
,� �+�
� 1 % #
	 1 �:! # ��	 . � � 1
In the ILU(0) factorization, the LU factors have the same nonzero patterns as the original
matrix � , so that the references of the entries belonging to the external subdomains in
the ILU(0) factorization are identical with those of the matrix-by-vector product operation
with the matrix � . This is not the case for the more accurate ILU(O) factorization, with
O G � . If an attempt is made to implement a wavefront ILU preconditioner on a distributed
memory computer, a difficulty arises because the natural ordering for the original sparse
problem may put an unnecessary limit on the amount of parallelism available. Instead, a
two-level ordering is used. First, define a “global” ordering which is a wavefront ordering
for the subdomains. This is based on the graph which describes the coupling between
the subdomains: Two subdomains are coupled if and only if they contain at least a pair
of coupled unknowns, one from each subdomain. Then, within each subdomain, define a
local ordering.

To describe the possible parallel implementations of these ILU(0) preconditioners, it is
sufficient to consider a local view of the distributed sparse matrix, illustrated in Figure 12.8.
The problem is partitioned into O subdomains or subgraphs using some graph partitioning
technique. This results in a mapping of the matrix into processors where it is assumed that
the M -th equation (row) and the M -th unknown are mapped to the same processor. We dis-
tinguish between interior points and interface points. The interior points are those nodes
that are not coupled with nodes belonging to other processors. Interface nodes are those
local nodes that are coupled with at least one node which belongs to another processor.
Thus, processor number 10 in the figure holds a certain number of rows that are local rows.
Consider the rows associated with the interior nodes. The unknowns associated with these
nodes are not coupled with variables from other processors. As a result, the rows associ-
ated with these nodes can be eliminated independently in the ILU(0) process. The rows
associated with the nodes on the interface of the subdomain will require more attention.
Recall that an ILU(0) factorization is determined entirely by the order in which the rows
are processed. The interior nodes can be eliminated first. Once this is done, the interface

��� � ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

rows can be eliminated in a certain order. There are two natural choices for this order.
The first would be to impose a global order based on the labels of the processors. Thus,
in the illustration, the interface rows belonging to Processors 2, 4, and 6 are processed be-
fore those in Processor 10. The interface rows in Processor 10 must in turn be processed
before those of Processors 13 and 14. The local order, i.e., the order in which we process
the interface rows in the same processor (e.g. Processor 10), may not be as important. This
global order based on PE-number defines a natural priority graph and parallelism can be
exploited easily in a data-driven implementation.

Internal interface points

External interface points

Proc. 2
Proc. 4

Proc. 6

Proc. 14

Proc. 13

Proc. 10

�� ��������� ��� �
A local view of the distributed ILU(0).

It is somewhat unnatural to base the ordering just on the processor labeling. Observe
that a proper order can also be defined for performing the elimination by replacing the PE-
numbers with any labels, provided that any two neighboring processors have a different
label. The most natural way to do this is by performing a multicoloring of the subdomains,
and using the colors in exactly the same way as before to define an order of the tasks.
The algorithms will be written in this general form, i.e., with a label associated with each
processor. Thus, the simplest valid labels are the PE numbers, which lead to the PE-label-
based order. In the following, we define � " z � as the label of Processor number 0 .

�����	�U��
N�v�
� � � �2� � � "%� �," � �! ��� �@�u��������� ��� $ � "	���� #" $'&
1. In each processor + J
M8, A\J�hih�hiJ@O Do:
2. Perform the ILU(0) factorization for interior local rows.
3. Receive the factored rows from the adjacent processors 0 with
4. � " z � � � " z + .
5. Perform the ILU(0) factorization for the interface rows with
6. pivots received from the external processors in step 3.
7. Perform the ILU(0) factorization for the boundary nodes, with
8. pivots from the interior rows completed in step 2.
9. Send the completed interface rows to adjacent processors 0 with

������� pM% ���a��% �������q{ �<}��Q~ ���t�
10. � " z � G � " z + .
11. EndDo

Step 2 of the above algorithm can be performed in parallel because it does not depend on
data from other subdomains. Once this distributed ILU(0) factorization is completed, the
preconditioned Krylov subspace algorithm will require a forward and backward sweep at
each step. The distributed forward/backward solution based on this factorization can be
implemented as follows.

���!� �U�
r�v�
� � � � � � � "%� �," � �! ���
�$ � ����� � � &�� � ����	 �
��� � (����� �
1. In each processor + J�M�,/A\J�hihihiJ@O Do:
2. Forward solve:
3. Perform the forward solve for the interior nodes.
4. Receive the updated values from the adjacent processors 0
5. with � " z � � � " z + .
6. Perform the forward solve for the interface nodes.
7. Send the updated values of boundary nodes to the adjacent
8. processors 0 with � " z � G � " z + .
9. Backward solve:

10. Receive the updated values from the adjacent processors 0
11. with � " z � G � " z + .
12. Perform the backward solve for the boundary nodes.
13. Send the updated values of boundary nodes to the adjacent
14. processors, 0 with � " z � � � " z + .
15. Perform the backward solve for the interior nodes.
16. EndDo

As in the ILU(0) factorization, the interior nodes do not depend on the nodes from the
external processors and can be computed in parallel in lines 3 and 15. In the forward solve,
the solution of the interior nodes is followed by an exchange of data and the solution on
the interface. The backward solve works in reverse in that the boundary nodes are first
computed, then they are sent to adjacent processors. Finally, interior nodes are updated.

�b���'%m� � %M���\�w�����D%�(
�Z�b�	�

This section gives a brief account of other parallel preconditioning techniques which are
sometimes used. The next chapter also examines another important class of methods, which
were briefly mentioned before, namely, the class of Domain Decomposition methods.

���7� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~
����������� #0% %�	('���. ! # ���	. �
+� 	 1 � 1

Another class of preconditioners that require only matrix-by-vector products, is the class
of approximate inverse preconditioners. Discussed in Chapter 10, these can be used in
many different ways. Besides being simple to implement, both their preprocessing phase
and iteration phase allow a large degree of parallelism. Their disadvantage is similar to
polynomial preconditioners, namely, the number of steps required for convergence may be
large, possibly substantially larger than with the standard techniques. On the positive side,
they are fairly robust techniques which can work well where standard methods may fail.

��������� � �) � ! � �����0
 *�� �) � ! � ��� �+��� ��� . ���"� 1
A somewhat specialized set of techniques is the class of Element-By-Element (EBE) pre-
conditioners which are geared toward finite element problems and are motivated by the
desire to avoid assembling finite element matrices. Many finite element codes keep the
data related to the linear system in unassembled form. The element matrices associated
with each element are stored and never added together. This is convenient when using di-
rect methods since there are techniques, known as frontal methods, that allow Gaussian
elimination to be performed by using a few elements at a time.

It was seen in Chapter 2 that the global stiffness matrix � is the sum of matrices � 4
�
9

associated with each element, i.e.,

� ,
/ ��c�
��� ? �

4
�
9 h

Here, the matrix � 4
�
9

is an E � E matrix defined as

� 4
�
9 , �2����� �w�

in which ���	� is the element matrix and � is a Boolean connectivity matrix which maps
the coordinates of the small � � � matrix into those of the full matrix � . Chapter 2 showed
how matrix-by-vector products can be performed in unassembled form. To perform this
product in parallel, note that the only potential obstacle to performing the matrix-by-vector
product in parallel, i.e., across all elements, is in the last phase, i.e., when the contributions
are summed to the resulting vector � . In order to add the contributions � 4

�
9 | in paral-

lel, group elements that do not have nodes in common. Referring to Equation (2.35), the
contributions

� � , � � � x w� | }
can all be computed in parallel and do not depend on one another. The operations

� � , � t � � �

can be processed in parallel for any group of elements that do not share any vertices. This
grouping can be found by performing a multicoloring of the elements. Any two elements
which have a node in common receive a different color. Using this idea, good performance
can be achieved on vector computers.

������� pM% ���a��% �������q{ �<}��Q~ �����
EBE preconditioners are based on similar principles and many different variants have

been developed. They are defined by first normalizing each of the element matrices. In the
sequel, assume that � is a Symmetric Positive Definite matrix. Typically, a diagonal, or
block diagonal, scaling is first applied to � to obtain a scaled matrix �� ,

�� , � v ?�� � � � v ?�� � h j�~��PY � � n
This results in each matrix � 4

�
9

and element matrix � �	� being transformed similarly:

�� 4
�
9 , � v ? � � � 4

�
9 � v ?�� �

, � v ? � � �2���	� � v ? � �
, � x �w� � v ?�� � �

} � 4
�
9 x � � v ?�� � �w� }� � �� � � �w� h

The second step in defining an EBE preconditioner is to regularize each of these trans-
formed matrices. Indeed, each of the matrices � 4

�
9

is of rank O � at most, where O � is the
size of the element matrix � � � , i.e., the number of nodes which constitute the b -th ele-
ment. In the so-called Winget regularization, the diagonal of each � 4

�
9

is forced to be the
identity matrix. In other words, the regularized matrix is defined as

�� 4
�
9 ,

�
t �� 4

�
9 Q �) Y�� x �� 4

�
9 } h j�~��PY � "Kn

These matrices are positive definite; see Exercise 8.
The third and final step in defining an EBE preconditioner is to choose the factorization

itself. In the EBE Cholesky factorization, the Cholesky (or Crout) factorization of each
regularized matrix

�� 4
�
9

is performed,
�� 4
�
9 , � � � � �)w � h j�~��PY � �Kn

The preconditioner from it is defined as

� ,
� � c

�>� ? � � �
� ��c

��� ? � � �
?

��� � � c � w � h j�~��PY � �Kn
Note that to ensure symmetry, the last product is in reverse order of the first one. The fac-
torization (12.26) consists of a factorization of the small O � �3O � matrix

�� � � . Performing
the preconditioning operations will therefore consist of a sequence of small O � �'O � back-
ward or forward solves. The gather and scatter matrices � defined in Chapter 2 must also
be applied for each element. These solves are applied to the right-hand side in sequence. In
addition, the same multicoloring idea as for the matrix-by-vector product can be exploited
to perform these sweeps in parallel.

One of the drawbacks of the EBE Cholesky preconditioner is that an additional set of
element matrices must be stored. That is because the factorizations (12.26) must be stored
for each element. In EBE/SSOR, this is avoided. Instead of factoring each

�� 4
�
9
, the usual

splitting of each
�� 4
�
9

is exploited. Assuming the Winget regularization, we have
�� 4
�
9 ,

�
Q # � Q #�w� j�~��PY � �Kn

in which Q�# � is the strict-lower part of
�� 4
�
9
. By analogy with the SSOR preconditioner,

����� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

the EBE-SSOR preconditioner is defined by

� ,
� � c

��� ? x
�
Q � # �

} �
� � c

��� ? � � �
?

��� � ��c x
�
Q � #�w� } h j�~1�PY � �)n

��������� � % #
	 #0)) �) 	('�� % 	('�� ��� ��. ' �&%�	���� ' � ��. ��. ' ��� 	 1
One of the attractions of row-projection methods seen in Chapter 8 is their high degree of
parallelism. In Cimmino’s method, the scalars 	 + as well as the new residual vector can
be computed in parallel. In the Gauss-Seidel-NE (respectively Gauss-Seidel-NR), it is also
possible to group the unknowns in such a way that any pair of rows (respectively columns)
have disjointed nonzero patterns. Updates of components in the same group can then be
performed in parallel. This approach essentially requires finding a multicolor ordering for
the matrix

� , �]� w (respectively
� , � w �).

It is necessary to first identify a partition of the set .�A\J @ Jih�hih�J 3 = into subsets * ? , hih�h ,
* p such that the rows (respectively columns) whose indices belong to the same set * + are
structurally orthogonal to each other, i.e., have no nonzero elements in the same column
locations. When implementing a block SOR scheme where the blocking is identical with
that defined by the partition, all of the unknowns belonging to the same set * � can be
updated in parallel. To be more specific, the rows are reordered by scanning those in *)?
followed by those in * � , etc.. Denote by � + the matrix consisting of the rows belonging to
the M -th block. We assume that all rows of the same set are orthogonal to each other and
that they have been normalized so that their 2-norm is unity. Then a block Gauss-Seidel
sweep, which generalizes Algorithm 8.1, follows.

�����	�U��
N�v�
� � � � � �
�$ � �
��� �/��� $ ��	�� %
� � � ��� � ��('��" � ���-(��������
1. Select an initial | � .
2. For M�,/A J @ Jihih�h Jj� Do:
3.

� +�, z +�Q � +{|
4. | � ,F| t � w+ � +
5. EndDo

Here, | + and z + are subvectors corresponding to the blocking and
� + is a vector of length

the size of the block, which replaces the scalar 	K+ of Algorithm 8.1. There is parallelism in
each of the steps 3 and 4.

The question that arises is how to find good partitions *8+ . In simple cases, such as
block-tridiagonal matrices, this can easily be done; see Exercise 7. For general sparse ma-
trices, a multicoloring algorithm on the graph of �Z� w (respectively � w �) can be em-
ployed. However, these matrices are never stored explicitly. Their rows can be generated,
used, and then discarded.

��� �a����{ ~��Q~ � ���N�7pM% �Q~ �����
%��R%m�g�>�I(�%�(

1 Let � be a Symmetric Positive Definite matrix and consider ���	�)��

� � � where
 is a block
diagonal of � .
��� Show that
 is a Symmetric Positive Definite matrix. Denote by ������� ��� the associated inner

product.� � Show that � is self-adjoint with respect to to ������� ��� .
��� Show that �
� is self-adjoint with respect to to ������� � � for any integer ! ." � Show that the Neumann series expansion preconditioner defined by the right-hand side of

(12.3) leads to a preconditioned matrix that is self-adjoint with respect to the
 -inner prod-
uct.

#�� Describe an implementation of the preconditioned CG algorithm using this preconditioner.

2 The development of the Chebyshev iteration algorithm seen in Section 12.3.2 can be exploited to
derive yet another formulation of the conjugate algorithm from the Lanczos algorithm. Observe
that the recurrence relation (12.8) is not restricted to scaled Chebyshev polynomials.
��� The scaled Lanczos polynomials, i.e., the polynomials $ � �&%'�'(�$ � �*)+� , in which $ � �&%'� is the

polynomial such that , �.- � �/$ � �*�0�1, � in the Lanczos algorithm, satisfy a relation of the
form (12.8). What are the coefficients 2 � and 3 in this case?� � Proceed in the same manner as in Section 12.3.2 to derive a version of the Conjugate Gradient
algorithm.

3 Show that 2 � as defined by (12.7) has a limit 2 . What is this limit? Assume that Algorithm 12.1
is to be executed with the 2 � ’s all replaced by this limit 2 . Will the method converge? What is
the asymptotic rate of convergence of this modified method?

4 Derive the least-squares polynomials for 45� �
�
� ��67� �

� for the interval 8)9��:<; for !=�>:?��@���A��'B .
Check that these results agree with those of the table shown at the end of Section 12.3.3.

5 Consider the mesh shown below. Assume that the objective is to solve the Poisson equation with
Dirichlet boundary conditions.

��� Consider the resulting matrix obtained (before boundary conditions are applied) from order-
ing the nodes from bottom up, and left to right (thus, the bottom left vertex is labeled 1 and
the top right vertex is labeled 13). What is the bandwidth of the linear system? How many
memory locations would be needed to store the matrix in Skyline format? (Assume that the
matrix is nonsymmetric so both upper and lower triangular parts must be stored).

����� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~
� � Is it possible to find a 2-color ordering of the mesh points? If so, show the ordering, or

otherwise prove that it is not possible.
��� Find an independent set of size 5. Show the pattern of the matrix associated with this inde-

pendent set ordering." � Find a multicolor ordering of the mesh by using the greedy multicolor algorithm. Can you
find a better coloring (i.e., a coloring with fewer colors)? If so, show the coloring [use letters
to represent each color].

6 A linear system ��� � �
where � is a 5-point matrix, is reordered using red-black ordering as�
 � ��
 � � � � � � �

���
� � �

� � Write the block Gauss-Seidel iteration associated with the above partitioned system (where
the blocking in block Gauss-Seidel is the same as the above blocking).� � Express the

�
iterates, independently of the � iterates, i.e., find an iteration which involves

only
�

-iterates. What type of iteration is the resulting scheme?

7 Consider a tridiagonal matrix 	 ��

�����������
�����1� � �'����� � . Find a grouping of the rows such that
rows in each group are structurally orthogonal, i.e., orthogonal regardless of the values of the en-
try. Find a set of three groups at most. How can this be generalized to block tridiagonal matrices
such as those arising from 2-D and 3-D centered difference matrices?

8 Why are the Winget regularized matrices ���� "! defined by (12.25) positive definite when the
matrix #� is obtained from � by a diagonal scaling from � ?

NOTES AND REFERENCES. As vector processing appeared in the middle to late 1970s, a number
of efforts were made to change algorithms, or implementations of standard methods, to exploit the
new architectures. One of the first ideas in this context was to perform matrix-by-vector products
by diagonals [133]. Matrix-by-vector products using this format can yield excellent performance.
Hence, came the idea of using polynomial preconditioning. Polynomial preconditioning was ex-
ploited independently of supercomputing, as early as 1952 in a paper by Lanczos [141], and later
for eigenvalue problems by Stiefel who employed least-squares polynomials [204], and Rutishauser
[171] who combined the QD algorithm with Chebyshev acceleration. Dubois et al. [75] suggested us-
ing polynomial preconditioning, specifically, the Neumann series expansion, for solving Symmetric
Positive Definite linear systems on vector computers. Johnson et al. [129] later extended the idea by
exploiting Chebyshev polynomials, and other orthogonal polynomials. It was observed in [129] that
least-squares polynomials tend to perform better than those based on the uniform norm, in that they
lead to a better overall clustering of the spectrum. Moreover, as was already observed by Rutishauser
[171], in the symmetric case there is no need for accurate eigenvalue estimates: It suffices to use the
simple bounds that are provided by Gershgorin’s theorem. In [175] it was also observed that in some
cases the least-squares polynomial approach which requires less information than the Chebyshev
approach tends to perform better.

The use of least-squares polynomials over polygons was first advocated by Smolarski and Saylor
[200] and later by Saad [176]. The application to the indefinite case was examined in detail in [174].
Still in the context of using polygons instead of ellipses, yet another attractive possibility proposed
by Fischer and Reichel [91] avoids the problem of best approximation altogether. The polygon can
be conformally transformed into a circle and the theory of Faber polynomials yields a simple way of
deriving good polynomials from exploiting specific points on the circle.

Although only approaches based on the formulation (12.5) and (12.11) have been discussed,
there are other lesser known possibilities based on minimizing $: (� � � �%� ��$&% . There has been

��� �a����{ ~��Q~ � ���N�7pM% �Q~ ��� �
very little work on polynomial preconditioning or Krylov subspace methods for highly non-normal
matrices; see, however, the recent analysis in [207]. Another important point is that polynomial
preconditioning can be combined with a subsidiary relaxation-type preconditioning such as SSOR
[2, 153]. Finally, polynomial preconditionings can be useful in some special situations such as that
of complex linear systems arising from the Helmholtz equation [93].

Multicoloring has been known for a long time in the numerical analysis literature and was used
in particular for understanding the theory of relaxation techniques [232, 213] as well as for deriving
efficient alternative formulations of some relaxation algorithms [213, 110]. More recently, it became
an essential ingredient in parallelizing iterative algorithms, see for example [4, 2, 82, 155, 154, 164].
It is also commonly used in a slightly different form — coloring elements as opposed to nodes —
in finite elements techniques [23, 217]. In [182] and [69], it was observed that ! -step SOR pre-
conditioning was very competitive relative to the standard ILU preconditioners. Combined with
multicolor ordering, multiple-step SOR can perform quite well on supercomputers. Multicoloring
is especially useful in Element-By-Element techniques when forming the residual, i.e., when multi-
plying an unassembled matrix by a vector [123, 88, 194]. The contributions of the elements of the
same color can all be evaluated and applied simultaneously to the resulting vector. In addition to the
parallelization aspects, reduced systems can sometimes be much better conditioned than the original
system, see [83].

Independent set orderings have been used mainly in the context of parallel direct solution tech-
niques for sparse matrices [66, 144, 145] and multifrontal techniques [77] can be viewed as a par-
ticular case. The gist of all these techniques is that it is possible to reorder the system in groups of
equations which can be solved simultaneously. A parallel direct solution sparse solver based on per-
forming several successive levels of independent set orderings and reduction was suggested in [144]
and in a more general form in [65].

� � � � � � �

���

� ��� ���y� ���������
 ��$ � ���!���
� � ��� ��� $

�7*MGZ^ B 1F(S/65N80+939*4*F(SDITz1C3O+-& DI8PB 86T6V<(*f*X1C39.6JQ(SB VHT).K(dD)(SDITmTQ5N8Q^ D-J�sPD-3A@h+6B .I*4*C39*786=7D ^2oGH365L(+9.0B-GH3A19&I80JK*[19&-.21 +9.0Dq14.0�A3'_K3F1X1C3-5Q.6J):-. D21C.ITK3�86= /-.)5N. B B 36B (*9Gh.)5N3u36GH365;T0(SDITPY
�'Gz8PDIT>1A&-39*C3,1C39+6& D)(�!^-39*OsQJK8QGm.)(SD]J 3O+98QGg/)86*F(1F(8PD�GH3A19&I80JK*z.)5N3>^ D-JK8P^ _21C39J!B V1A&-3`_K3A*X1<�)DI82@zD`. D-Ji/K365E&-. /I*q19&-3>Gz8)*X1</65;8PG,(*F(SDIT]=L8 57+O365S14.K(SDg1EV /)39*M86=M/)5;8P_2oB 36Gz*OYk%'&-39*C3 GH3A1A&I80JK*\+A8PGg_)(SD-3�(J 3O.I*>=X5;8QG �P.)5;1R(. B8�k(�[365N36D21F(.0B-�Q�!^-.I1R(8PDI*OsB (SD-3O.)5'. B T)36_)5N.0sqGm.219&-3-Gm.21F(+O.0By. D-.0B VI*F(*Os7. D-J�1C39+6& D)(�!^-39*g=X5;8PG�TQ5r. / &w1A&-398 5;VOY%'&)(*H+6&-. /21C3657(*,J 3A:I8-1C3OJ�148��WJ 39+98PGg/68)*F(1R(8PD
	bGH3A19&I80JK*9s�@H&)(+-&>.)5N3v_-.-*C39JU8PD1A&-3mTK3-D-365N.0B0+A8PD-+O36/21X*'86=fTQ5N.0/ &�/-.)5S1F(1R(8PD)(dDIT)*OY

�E�`���,�h�i�>�,���N���
�+
��I�

Domain decomposition methods refer to a collection of techniques which revolve around
the principle of divide-and-conquer. Such methods have been primarily developed for solv-
ing Partial Differential Equations over regions in two or three dimensions. However, similar
principles have been exploited in other contexts of science and engineering. In fact, one of
the earliest practical uses for domain decomposition approaches was in structural engi-
neering, a discipline which is not dominated by Partial Differential Equations. Although
this chapter considers these techniques from a purely linear algebra view-point, the ba-
sic concepts, as well as the terminology, are introduced from a model Partial Differential
Equation.

���a�

�����s� { �f%M�[p��z}��y%M{ p�� ���a�

� ? � �

� �

* ? �
* ? �

�� �����!� � � � �
An L-shaped domain subdivided into three sub-

domains.

Consider the problem of solving the Laplace Equation on an L-shaped domain
�

parti-
tioned as shown in Figure 13.1. Domain decomposition or substructuring methods attempt
to solve the problem on the entire domain

� , 9�
+s� ?
� + J

from problem solutions on the subdomains
� + . There are several reasons why such tech-

niques can be advantageous. In the case of the above picture, one obvious reason is that the
subproblems are much simpler because of their rectangular geometry. For example, fast
solvers can be used on each subdomain in this case. A second reason is that the physical
problem can sometimes be split naturally into a small number of subregions where the
modeling equations are different (e.g., Euler’s equations on one region and Navier-Stokes
in another). Substructuring can also be used to develop “out-of-core” solution techniques.
As already mentioned, such techniques were often used in the past to analyze very large
mechanical structures. The original structure is partitioned into
 pieces, each of which
is small enough to fit into memory. Then a form of block-Gaussian elimination is used
to solve the global linear system from a sequence of solutions using
 subsystems. More
recent interest in domain decomposition techniques has been motivated by parallel pro-
cessing.

����� �(��� � ' � # ��. ' �
In order to review the issues and techniques in use and to introduce some notation, assume
that the following problem is to be solved:

��� ,�� in
�

��� � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~
� , ��� on

* , � � h
Domain decomposition methods are all implicitly or explicitly based on different ways
of handling the unknown at the interfaces. From the PDE point of view, if the value of the
solution is known at the interfaces between the different regions, these values could be used
in Dirichlet-type boundary conditions and we will obtain
 uncoupled Poisson equations.
We can then solve these equations to obtain the value of the solution at the interior points.
If the whole domain is discretized by either finite elements or finite difference techniques,
then this is easily translated into the resulting linear system.

Now some terminology and notation will be introduced for use throughout this chapter.
Assume that the problem associated with domain shown in Figure 13.1 is discretized with
centered differences. We can label the nodes by subdomain as shown in Figure 13.3. Note
that the interface nodes are labeled last. As a result, the matrix associated with this problem
will have the structure shown in Figure 13.4. For a general partitioning into
 subdomains,
the linear system associated with the problem has the following structure:�����

�
� ? # ?� � #��

. . .
...�

9 # 9� ? � � 686�6 � 9
=

������
	

�����
�
| ?
|��
...
| 9�

������
	 ,

�����
�
�\?
� �
...
� 9�

������
	 j�~ �QY ~2n

where each | + represents the subvector of unknowns that are interior to subdomain
� + and

� represents the vector of all interface unknowns. It is useful to express the above system
in the simpler form,

�
� |
� � ,

� �
� � with � ,

� � #
�

= � h j�~ �QY �)n
Thus, # represents the subdomain to interface coupling seen from the subdomains, while
� represents the interface to subdomain coupling seen from the interface nodes.

����� �(� � � *�% � 1 '�� % #
	 �+. �+.�' �". ����1
When partitioning a problem, it is common to use graph representations. Since the sub-
problems obtained from a given partitioning will eventually be mapped into distinct pro-
cessors, there are some restrictions regarding the type of partitioning needed. For example,
in Element-By-Element finite element techniques, it may be desirable to map elements into
processors instead of vertices. In this case, the restriction means no element should be split
between two subdomains, i.e., all information related to a given element is mapped to the
same processor. These partitionings are termed element-based. A somewhat less restric-
tive class of partitionings are the edge-based partitionings, which do not allow edges to be
split between two subdomains. These may be useful for finite volume techniques where
computations are expressed in terms of fluxes across edges in two dimensions. Finally,
vertex-based partitionings work by dividing the origin vertex set into subsets of vertices
and have no restrictions on the edges, i.e., they allow edges or elements to straddle be-
tween subdomains. See Figure 13.2, (a), (b), and (c).

�����s� { �f%M�[p��z}��y%M{ p�� ���t�

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

� ?

� �

(b)

1 2 3 4

5 6 7 8

9 10 11 12

� ?

� �

(c)

�� �����!� � � �;�
(a) Vertex-based, (b) edge-based, and (c)

element-based partitioning of a � �
 mesh into two subregions.

����� �(� � � *�% � 1 '�� �����	���". ��� � 1
The interface values can be obtained by employing a form of block-Gaussian elimination
which may be too expensive for large problems. In some simple cases, using FFT’s, it is
possible to explicitly obtain the solution of the problem on the interfaces inexpensively.

Other methods alternate between the subdomains, solving a new problem each time,
with boundary conditions updated from the most recent subdomain solutions. These meth-
ods are called Schwarz Alternating Procedures, after the Swiss mathematician who used
the idea to prove the existence for a solution of the Dirichlet problem on irregular regions.

The subdomains may be allowed to overlap. This means that the
� + ’s are such that

� , �
+I� ? / 9

� +eJ � +�� � ���,��-h
For a discretized problem, it is typical to quantify the extent of overlapping by the number
of mesh-lines that are common to the two subdomains. In the particular case of Figure
13.3, the overlap is of order one.

���7� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24 25

26 27 28 29

30 31 32 33

34

35

36

37383940

�� ��������� ���;�
Discretization of problem shown in Figure 13.1.

�� ��������� ��� �
Matrix associated with the finite difference mesh

of Figure 13.3.

The various domain decomposition techniques are distinguished by four features:
���

Type of Partitioning. For example, should partitioning occur along edges, or along

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% �����
vertices, or by elements? Is the union of the subdomains equal to the original do-
main or a superset of it (fictitious domain methods)?

� �
Overlap. Should sub-domains overlap or not, and by how much?

� �
Processing of interface values. For example, is the Schur complement approach
used? Should there be successive updates to the interface values?

� �
Subdomain solution. Should the subdomain problems be solved exactly or approx-
imately by an iterative method?

The methods to be discussed in this chapter will be classified in four distinct groups. First,
direct methods and the substructuring approach are useful for introducing some definitions
and for providing practical insight. Second, among the simplest and oldest techniques are
the Schwarz Alternating Procedures. Then, there are methods based on preconditioning
the Schur complement system. The last category groups all the methods based on solving
the linear system with the matrix � , by using a preconditioning derived from Domain
Decomposition concepts.

�b�W� %z�m� ('�#�u�g� �N�h� !w�U� ���'%F(M���\�\� �<�:� $&�-%"� %m�`�
�+
b�A�

One of the first divide-and-conquer ideas used in structural analysis exploited the partition-
ing (13.1) in a direct solution framework. This approach, which is covered in this section,
introduces the Schur complement and explains some of its properties.

����� ��� �
,) '�� � � #"� 1 1 . #����) . ! .�� # ��. ' �
Consider the linear system written in the form (13.2), in which

�
is assumed to be nonsin-

gular. From the first equation the unknown | can be expressed as

| , � v ? x � Q # � } h j�~ �QY �Kn
Upon substituting this into the second equation, the following reduced system is obtained:

x = Q � � v ? # } �R, � Q � � v ? � h j�~ �QY � n
The matrix

� , = Q � � v ? # j�~ �QY "Kn
is called the Schur complement matrix associated with the � variable. If this matrix can be
formed and the linear system (13.4) can be solved, all the interface variables � will become
available. Once these variables are known, the remaining unknowns can be computed, via
(13.3). Because of the particular structure of

�
, observe that any linear system solution

with it decouples in
 separate systems. The parallelism in this situation arises from this
natural decoupling.

A solution method based on this approach involves four steps:

����� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~
���

Obtain the right-hand side of the reduced system (13.4).
� �

Form the Schur complement matrix (13.5).
� �

Solve the reduced system (13.4).
� �

Back-substitute using (13.3) to obtain the other unknowns.

One linear system solution with the matrix
�

can be saved by reformulating the algorithm
in a more elegant form. Define

& , � v ? # and � & , � v ? � h
The matrix # & and the vector � & are needed in steps (1) and (2). Then rewrite step (4) as

| , � v ? � Q � v ? # �',�� & Q # & � J
which gives the following algorithm.

�����	�U��
N�v�
� � � � ��� ��� $ ��	�� � � ��� � " � &<% � " � " &��� #" $'&

1. Solve
� # & , �

, and
� � & , � for # & and � & , respectively

2. Compute �	&�, ��Q � � &
3. Compute

� , = Q � # &
4. Solve

�
�', �	&

5. Compute | , �)& Q # & � .

In a practical implementation, all the
� + matrices are factored and then the systems� + # &+ , # + and

� + � &+ , � + are solved. In general, many columns in # + will be zero. These
zero columns correspond to interfaces that are not adjacent to subdomain M . Therefore,
any efficient code based on the above algorithm should start by identifying the nonzero
columns.

����� ��� � %�	 ' % � 	 ��. � 1 ' � � ��� 1�� �"� 	 � ' ! %) � ! � ���
Now the connections between the Schur complement and standard Gaussian elimination
will be explored and a few simple properties will be established. Start with the block-LU
factorization of � , � � #

�
= � ,

� �
�

� � v ?
� � � � #

� � � j�~ �QY �)n
which is readily verified. The Schur complement can therefore be regarded as the (2,2)
block in the � part of the block-LU factorization of � . From the above relation, note that
if � is nonsingular, then so is

�
. Taking the inverse of � with the help of the above equality

yields � � #
�

= � v ? ,
� � v ? Q � v ? # � v ?
� � v ? � �

�
�

Q � � v ?
� �

,
� � v ? t � v ? # � v ? � � v ? Q � v ? # � v ?Q � v ? � � v ? � v ? � h j�~ �QY �)n

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% �����
Observe that

� v ? is the (2,2) block in the block-inverse of � . In particular, if the original
matrix � is Symmetric Positive Definite, then so is � v ? . As a result,

�
is also Symmetric

Positive Definite in this case.
Although simple to prove, the above properties are nonetheless important. They are

summarized in the following proposition.

�H� �U� ���
N�

 ��� � � � �
Let � be a nonsingular matrix partitioned as in (13.2) and such

that the submatrix
�

is nonsingular and let ��� be the restriction operator onto the interface
variables, i.e, the linear operator defined by

� � � | � � , �]h
Then the following properties are true.

� �
The Schur complement matrix

�
is nonsingular.

� �
If � is SPD, then so is

�
.

� �
For any � ,

� v ? �3, ��� � v ? > �� A .

The first property indicates that a method that uses the above block Gaussian elimi-
nation algorithm is feasible since

�
is nonsingular. A consequence of the second property

is that when � is positive definite, an algorithm such as the Conjugate Gradient algorithm
can be used to solve the reduced system (13.4). Finally, the third property establishes a
relation which may allow preconditioners for

�
to be defined based on solution techniques

with the matrix � .

��������� � 1��	�"� 	 � '-!/%) � ! � ��� � ' 	
+� 	 �+� ���0
 # 1 �
�% #
	 ��. ��. ' �".�����1

The partitioning used in Figure 13.3 is edge-based, meaning that a given edge in the graph
does not straddle two subdomains. If two vertices are coupled, then they must belong to the
same subdomain. From the graph theory point of view, this is perhaps less common than
vertex-based partitionings in which a vertex is not shared by two partitions (except when
domains overlap). A vertex-based partitioning is illustrated in Figure 13.5.

We will call interface edges all edges that link vertices that do not belong to the same
subdomain. In the case of overlapping, this needs clarification. An overlapping edge or
vertex belongs to the same subdomain. Interface edges are only those that link a vertex
to another vertex which is not in the same subdomain already, whether in the overlapping
portion or elsewhere. Interface vertices are those vertices in a given subdomain that are
adjacent to an interface edge. For the example of the figure, the interface vertices for sub-
domain one (bottom, left subsquare) are the vertices labeled 10 to 16. The matrix shown
at the bottom of Figure 13.5 differs from the one of Figure 13.4, because here the inter-
face nodes are not relabeled the last in the global labeling as was done in Figure 13.3.
Instead, the interface nodes are labeled as the last nodes in each subdomain. The number
of interface nodes is about twice that of the edge-based partitioning.

����� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

1 2 3

4 5 6

7 8 9

10

11

12

13141516

17 18 19

20 21 22

23 24 25

26 27 28

29

30

31

32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

�� ��������� ���S�
Discretization of problem shown in Figure 13.1

and associated matrix.

Consider the Schur complement system obtained with this new labeling. It can be
written similar to the edge-based case using a reordering in which all interface variables
are listed last. The matrix associated with the domain partitioning of the variables will have

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% ��� �
a natural
 -block structure where
 is the number of subdomains. For example, when
&,

(as is the case in the above illustration), the matrix has the block structure defined by the
solid lines in the figure, i.e.,

�V,
�� � ? � ? � � ? ��	� ? �	� �	� �� ��? � � � � �

�	 h j�~ �QY �Kn
In each subdomain, the variables are of the form

� + ,
� | +
� + � J

where | + denotes interior nodes while � + denotes the interface nodes associated with sub-
domain M . Each matrix � + will be called the local matrix. The structure of � + is as follows:

� +�,
� � + #�+
��+ = + � j�~ �QY �Kn

in which, as before,
� + represents the matrix associated with the internal nodes of subdo-

main M and # + and ��+ represent the couplings to/from external nodes. The matrix
= + is the

local part of the interface matrix
=

defined before, and represents the coupling between
local interface points. A careful look at the matrix in Figure 13.5 reveals an additional
structure for the blocks � + � 0 �, M . Each of these blocks contains a zero sub-block in the
part that acts on the variable |�� . This is expected since | + and |�� are not coupled. There-
fore,

�&+ � ,
� �# + � � h j�~ �PY�~��Kn

In addition, most of the # + � matrices are zero since only those indices 0 of the subdomains
that have couplings with subdomain M will yield a nonzero # + � .

Now write the part of the linear system that is local to subdomain M , as
� + | + t # + � + , � +
� + | + t = + � + t � � � /-d # + � � � , � + h j�~ �PY�~�~In

The term # + � � � is the contribution to the equation from the neighboring subdomain number
0 , and 3 + is the set of subdomains that are adjacent to subdomain M . Assuming that

� + is
nonsingular, the variable |]+ can be eliminated from this system by extracting from the first
equation | +-, � v ?+ x ��+�Q #�+ � + } which yields, upon substitution in the second equation,

� + �\+ t �
� � /�d #�+ � � � , �\+�Q �-+ � v ?+ ��+XJ M�,BA\Jih�hih J
 j�~ �PY�~1�Kn

in which
� + is the “local” Schur complement

� +-, = +
Q ��+ � v ?+ #�+Xh j�~ �PY�~0�Kn
When written for all subdomains M , the equations (13.12) yield a system of equations which
involves only the interface points � � , 0 ,BA\J @ J�hihih�J
 and which has a natural block structure

���a� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

associated with these vector variables

� ,

������
�

� ? #&? � #&? � 6�686 #&? 9# � ? � � # � � 6�686 # � 9...
. . .

...
...

. . .
...# 9 ? # 9 � # 9 � 6�686 �

9

� �����
	 h j�~0�PY�~0�Kn

The diagonal blocks in this system, namely, the matrices
� + , are dense in general, but the

offdiagonal blocks # + � are sparse and most of them are zero. Specifically, # + � �, � only if
subdomains M and 0 have at least one equation that couples them.

A structure of the global Schur complement
�

has been unraveled which has the fol-
lowing important implication: For vertex-based partitionings, the Schur complement ma-
trix can be assembled from local Schur complement matrices (the

� + ’s) and interface-to-
interface information (the #&+ � ’s). The term “assembled” was used on purpose because a
similar idea will be exploited for finite element partitionings.

��������� � 1,�	�"� 	 � ' ! %) � ! � ��� � ' 	 ��. �". ��� � �) � ! � ���% #
	 ��. ��. ' �".�����1

In finite-element partitionings, the original discrete set
�

is subdivided into
 subsets
� + ,

each consisting of a distinct set of elements. Given a finite element discretization of the
domain

�
, a finite dimensional space ^ $ of functions over

�
is defined, e.g., functions

that are piecewise linear and continuous on
�

, and that vanish on the boundary
*

of
�

.
Consider now the Dirichlet problem on

�
and recall that its weak formulation on the finite

element discretization can be stated as follows (see Section 2.3):

Find
� �#^ $ such that " x � J ��} , x � J ��} J � � � ^ $ J

where the bilinear form " x hIJ�h } is defined by

" x � J ��} ,
�

�

� � h � � � | ,
�

�

� � �� | ?
� �� | ? t

� �� |�� � �� |�� � � |
h
It is interesting to observe that since the set of the elements of the different

� + ’s are disjoint,
" x hsJih } can be decomposed as

" x � J �"} , 9�
+s� ? "�+ x

� J ��} J
where

" + x � J �"} ,
�

� d
� � h � � � |-h

In fact, this is a generalization of the technique used to assemble the stiffness matrix from
element matrices, which corresponds to the extreme case where each

� + consists of exactly
one element.

If the unknowns are ordered again by subdomains and the interface nodes are placed

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% ���a�
last as was done in Section 13.1, immediately the system shows the same structure,�����

�
� ? # ?� � #��

. . .
...�

9 # 9� ? � � 68686 � 9
=

������
	

�����
�
| ?
|��
...
| 9�

������
	 ,

�����
�
�\?
� �
...
� 9�

������
	 j�~ �PY�~0"Kn

where each
� + represents the coupling between interior nodes and #�+ and �-+ represent the

coupling between the interface nodes and the nodes interior to
� + . Note that each of these

matrices has been assembled from element matrices and can therefore be obtained from
contributions over all subdomain

� � that contain any node of
� + .

In particular, assume that the assembly is considered only with respect to
� + . Then the

assembled matrix will have the structure

� + ,
� � + #�+
� + = + � J

where
= + contains only contributions from local elements, i.e., elements that are in

� + .
Clearly,

=
is the sum of the

= + ’s,

= , 9�
+I� ?

= + h
The Schur complement associated with the interface variables is such that

� , = Q � � v ? #
, = Q 9�

+s� ? �-+
� v ?+ # +

, 9�
+s� ?

= + Q 9�
+s� ? � +

� v ?+ # +

, 9�
+s� ? ;

= + Q � + � v ?+ # + = h
Therefore, if

� + denotes the local Schur complement
� + , = + Q � + � v ?+ # + J

then the above proves that,

� , 9�
+I� ?

� + J j�~ �PY�~ �Kn
showing again that the Schur complement can be obtained easily from smaller Schur com-
plement matrices.

Another important observation is that the stiffness matrix � p , defined above by re-
stricting the assembly to

� p , solves a Neumann-Dirichlet problem on
� p . Indeed, consider

the problem � � p # p
� p = p � � | p

� p � ,
� z p
� p � h j�~ �PY�~ �Kn

��� � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

The elements of the submatrix
= p are the terms " p x � + J ��� } where � + J ��� are the basis func-

tions associated with nodes belonging to the interface
* p . As was stated above, the matrix=

is the sum of these submatrices. Consider the problem of solving the Poisson equa-
tion on

� p with boundary conditions defined as follows: On
* p � , the part of the boundary

which belongs to
* p , use the original boundary conditions; on the interfaces

* p � with
other subdomains, use a Neumann boundary condition. According to Equation (2.36) seen
in Section 2.3, the 0 -th equation will be of the form,�

� - � � h � ��� � | ,
�

� - � ��� � | t
� � - ���

� ����E �
 h j�~0�PY�~ �)n
This gives rise to a system of the form (13.17) in which the � p part of the right-hand side
incorporates the Neumann data related to the second integral on the right-hand side of
(13.18).

It is interesting to note that if a problem were to be solved with all-Dirichlet conditions,
i.e., if the Neumann conditions at the interfaces were replaced by Dirichlet conditions, the
resulting matrix problem would be of the form,� � p # p� � � � | p

� p � ,
� z p
� p � j�~0�PY�~ �)n

where � p represents precisely the Dirichlet data. Indeed, according to what was seen in
Section 2.3, Dirichlet conditions are handled simply by replacing equations associated with
boundary points by identity equations.

(M�����F!i���B!R�K� %,�]�&!M� �E� � $`�m� � %m�i�x� %�(
�+
��

The original alternating procedure described by Schwarz in 1870 consisted of three parts:
alternating between two overlapping domains, solving the Dirichlet problem on one do-
main at each iteration, and taking boundary conditions based on the most recent solution
obtained from the other domain. This procedure is called the Multiplicative Schwarz pro-
cedure. In matrix terms, this is very reminiscent of the block Gauss-Seidel iteration with
overlap defined with the help of projectors, as seen in Chapter 5. The analogue of the
block-Jacobi procedure is known as the Additive Schwarz procedure.

����������� !/�)
�+. %) . �(# ��.
+� 1�� � �/#
	��5%�	('�� �
��� 	��
In the following, assume that each pair of neighboring subdomains has a nonvoid overlap-
ping region. The boundary of subdomain

� + that is included in subdomain 0 is denoted by* + / � .

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��
� �M}k���Q~ ���t�

� ?

� �

� �

* ? / �
* � / ?

* � / ? * ? / �* ? / � * � / �

* ? / �

�� �����!� � � �2�
An L-shaped domain subdivided into three over-

lapping subdomains.

This is illustrated in Figure 13.6 for the L-shaped domain example. Each subdomain ex-
tends beyond its initial boundary into neighboring subdomains. Call

* + the boundary of
� +

consisting of its original boundary (which is denoted by
* + / �) and the

* + / � ’s, and denote
by
� � + the restriction of the solution

�
to the boundary

* � + . Then the Schwarz Alternating
Procedure can be described as follows.

���!� �U�
r�v�
� � � �;� � (�!3$
1. Choose an initial guess

�
to the solution

2. Until convergence Do:
3. For M�,BA\J 68686 J
 Do:
4. Solve

� � , � in
� + with

� , � + � in
* + �

5. Update
�

values on
* � + J � 0

6. EndDo
7. EndDo

The algorithm sweeps through the
 subdomains and solves the original equation in each
of them by using boundary conditions that are updated from the most recent values of

�
.

Since each of the subproblems is likely to be solved by some iterative method, we can take
advantage of a good initial guess. It is natural to take as initial guess for a given subproblem
the most recent approximation. Going back to the expression (13.11) of the local problems,
observe that each of the solutions in line 4 of the algorithm will be translated into an update
of the form

� + � , � + t 	 + J

���7� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

where the correction 	 + solves the system

� + 	 + ,�; + h
Here, ; + is the local part of the most recent global residual vector z Q���| , and the above
system represents the system associated with the problem in line 4 of the algorithm when
a nonzero initial guess is used in some iterative procedure. The matrix �D+ has the block
structure (13.9). Writing

� + ,
� | +
� + � J 	 + , � 	�� / +	 � / + � J ; + ,

� ;�� / +
; � / + � J

the correction to the current solution step in the algorithm leads to� |�+
� + � � ,

� | +
� + � t

� � + # +
� + = + � v ? � ; � / +; � / + � h j�~0�PY ���)n

After this step is taken, normally a residual vector ; would have to be computed again to
get the components associated with domain M t A and to proceed with a similar step for
the next subdomain. However, only those residual components that have been affected by
the change of the solution need to be updated. Specifically, employing the same notation
used in equation (13.11), we can simply update the residual ; � / � for each subdomain 0 for
which M � 3 � as

; � / � � ,F; � / ��Q # � + 	 � / + h
This amounts implicitly to performing Step 5 of the above algorithm. Note that since the
matrix pattern is assumed to be symmetric, then the set of all indices 0 such that M�� 3 � ,
i.e., 3 �+ , .10 2 M � 3 +>= , is identical to 3 + . Now the loop starting in line 3 of Algorithm
13.2 and called domain sweep can be restated as follows.

�����	�U��
N�v�
� � � �;� � ��� � #"�� � "%���� #" ���y('��� ����� �y(�������� � � �! �," �
�$ � �

1. For M�,/A J 6�686 J
 Do:
2. Solve �&+ 	�+-,F;�+
3. Compute | + � ,F|�+ t 	 � / + , � + � , �\+ t 	 � / + , and set ;5+ � , �
4. For each 0 � 3 + Compute ; � / � � , ; � / � Q # � +�	 � / +
5. EndDo

Considering only the � iterates, the above iteration would resemble a form of Gauss-Seidel
procedure on the Schur complement matrix (13.14). In fact, it is mathematically equivalent,
provided a consistent initial guess is taken. This is stated in the next result established by
Chan and Goovaerts [48]:

�v��� �U�m� � � � � �
Let the guess

� ���	��
d
�����

d � for the Schwarz procedure in each subdomain

be chosen such that

| o � r+ , � v ?+ ` � + Q # + � o � r+ lmh j�~0�PY �\~2n
Then the � iterates produced by the Algorithm 13.3 are identical to those of a Gauss-Seidel
sweep applied to the Schur complement system (13.12).

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��
� �M}k���Q~ �����
� ������� �

We start by showing that with the choice (13.21), the � components of the initial
residuals produced by the algorithm are identical to those of the Schur complement system
(13.12). Refer to Section 13.2.3 and the relation (13.10) which defines the # + � ’s from
the block structure (13.8) of the global matrix. Observe that � + � � �N, # + � � � and note
from (13.11) that for the global system the � components of the initial residual vectors are

; o � r� / + , � + Q � + | o � r+ Q = + � o � r+ Q �
� � /�d # + � � o � r�

, � + Q � + � v ? ` � + Q # + � o � r+ lZQ = + � o � r+ Q �
� � / d # + � � o � r�

, � + Q � + � v ? � + Q � + � o � r+ Q �
� � / d # + � � o � r� h

This is precisely the expression of the residual vector associated with the Schur comple-
ment system (13.12) with the initial guess �

o � r+ .
Now observe that the initial guess has been selected so that ; o � r� / + ,�� for all M . Because

only the � components of the residual vector are modified, according to line 4 of Algorithm
13.3, this property remains valid throughout the iterative process. By the updating equation
(13.20) and the relation (13.7), we have

� + � , �\+ t � v ?+ ; � / +eJ
which is precisely a Gauss-Seidel step associated with the system (13.14). Note that the
update of the residual vector in the algorithm results in the same update for the � compo-
nents as in the Gauss-Seidel iteration for (13.14).

It is interesting to interpret Algorithm 13.2, or rather its discrete version, in terms of
projectors. For this we follow the model of the overlapping block-Jacobi technique seen in
the previous chapter. Let * + be an index set

* + , .10�?KJ 0 � Jih�hihiJ 0 ��d1= J
where the indices 0 p are those associated with the E + mesh points of the interior of the
discrete subdomain

� + . Note that as before, the * + ’s form a collection of index sets such
that �

+s� ? /������ / 9
*
+�, .�A\Jih�hih JeE�= J

and the *-+ ’s are not necessarily disjoint. Let ��+ be a restriction operator from
�

to
� + .

By definition, ��+@| belongs to
� + and keeps only those components of an arbitrary vector

| that are in
� + . It is represented by an E
+ �PE matrix of zeros and ones. The matrices� + associated with the partitioning of Figure 13.4 are represented in the three diagrams of

Figure 13.7, where each square represents a nonzero element (equal to one) and every other
element is a zero. These matrices depend on the ordering chosen for the local problem.
Here, boundary nodes are labeled last, for simplicity. Observe that each row of each � + has
exactly one nonzero element (equal to one). Boundary points such as the nodes 36 and 37
are represented several times in the matrices ��?�J � � , and � � because of the overlapping
of the boundary points. Thus, node
 � is represented in matrices �'? and � � , while
 � is
represented in all three matrices.

����� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

� ? ,

� � ,

� � ,

�� ��������� ��� �
Patterns of the three matrices � + associated

with the partitioning of Figure 13.4.

From the linear algebra point of view, the restriction operator � + is an E + ��E matrix formed
by the transposes of columns b � of the E � E identity matrix, where 0 belongs to the index
set *
+ . The transpose � w+ of this matrix is a prolongation operator which takes a variable
from

� + and extends it to the equivalent variable in
�

. The matrix

� +-, �&+X� ��w+
of dimension E + � E + defines a restriction of � to

� + . Now a problem associated with � +
can be solved which would update the unknowns in the domain

� + . With this notation, the
multiplicative Schwarz procedure can be described as follows:

1. For M�,/A Jih�hih J
 Do
2. | � ,F| t � w+ ��v ?+ � + xmz Q � | }
3. EndDo

We change notation and rewrite step 2 as

| � � � ,F| t ��w+ � v ?+ � + xmz Q�� | } h j�~0�PY �5�)n
If the errors

� , | � QS| are considered where | � is the exact solution, then notice that
z Q���|<,�� x | � QN| } and, at each iteration the following equation relates the new error�
� � � and the previous error

�
,
�
� � � , � Q ��w+ � v ?+ � + � � h

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��
� �M}k���Q~ �����
Starting from a given | � whose error vector is

� � ,B| � Q | , each sub-iteration produces
an error vector which satisfies the relation

� + , � + v ?�Q ��w+ � v ?+ � + � � + v ?�J
for M�, A Jih�hih J
 . As a result,

� +-, x
�
Q �+ } � + v ?

in which

 -+�, ��w+ �Dv ?+ �&+X�Dh j�~ �PY � �Kn
Observe that the operator + � � w+ � v ?+ � + � is a projector since

x � w+ ��v ?+ � + � } � , � w+ ��v ?+ x � + � � w+ } ��v ?+ � + �V, � w+ �Dv ?+ � + �Dh
Thus, one sweep produces an error which satisfies the relation

�
9 , x

�
Q 9 } x

�
Q 9 v ? } h�hih x

�
Q �? } � � h j�~ �PY � � n

In the following, we use the notation

� 9 � x
�
Q 9 } x

�
Q 9 v ? } hihih x

�
Q 8? } h j�~ �PY � "Kn

��������� � ! �)���.�%) . �(# �+.
+� 1�� � � #
	 �4%�	���� ' � ��. ��. ' �".����
Because of the equivalence of the multiplicative Schwarz procedure and a block Gauss-
Seidel iteration, it is possible to recast one Multiplicative Schwarz sweep in the form of a
global fixed-point iteration of the form | � � � ,���| t � . Recall that this is a fixed-point
iteration for solving the preconditioned system � v ? ��| ,�� v ? z where the precondition-
ing matrix � and the matrix � are related by �/,

�
Q � v ? � . To interpret the operation

associated with � v ? , it is helpful to identify the result of the error vector produced by this
iteration with that of (13.24), which is | � � � Q9| � , � 9 x |RQP| � } . This comparison yields,

| � � � , � 9 | t x
�
Q � 9 } | � J

and therefore,

�B, � 9 � , x
�
Q � 9 } | � h

Hence, the preconditioned matrix is � v ? � ,
�
Q � 9 . This result is restated as follows.

�H� �U� ���
N�

 ��� � � �;�
The multiplicative Schwarz procedure is equivalent to a fixed-

point iteration for the “preconditioned” problem

� v ? � | ,�� v ? z J
in which

� v ? � ,
�
Q � 9 j�~ �PY � �Kn

� v ? z , x
�
Q � 9 } | � , x

�
Q � 9 } � v ? z h j�~ �PY � �Kn

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

The transformed right-hand side in the proposition is not known explicitly since it is ex-
pressed in terms of the exact solution. However, a procedure can be found to compute
it. In other words, it is possible to operate with � v ? without invoking � v ? . Note that� v ? , x

�
Q � 9 } � v ? . As the next lemma indicates, � v ? , as well as � v ? � , can be

computed recursively.

�y�'� ��� � � � �
Define the matrices

� +
,
�
Q ��+ j�~0�PY � �)n

� +
, � + � v ? j�~0�PY � �)n� + , + � v ? , ��w+ � v ?+ � + j�~0�PY ���)n
for M ,aA\Jih�hih J
 . Then � v ? , � 9 , � v ? � , �

9 , and the matrices
� + and � + satisfy the

recurrence relations
� ?�, �?�J

� + , � + v ? t + x
�
Q � + v ? } J M�, @ Jih�hih J
 j�~0�PY �\~2n

and

� ? , � ? J
� +
,�� + v ? t � + x � Q ��� + v ? } J M8, @ Jihih�h J
 h j�~0�PY �5�)n

� � � � � �
It is clear by the definitions (13.28) and (13.29) that � 9 , � v ? and that � ? ,� ? , � ? , ? . For the cases M G A , by definition of ��+ and ��+ v ?

� + ,
�
Q x

�
Q + } x

�
Q � + v ? } , + t � + v ?)Q + � + v ?�J

j�~0�PY � �)n
which gives the relation (13.31). Multiplying (13.33) to the right by � v ? yields,

� + , � + t � + v ?�Q + � + v ?�h
Rewriting the term + as

� + � above yields the desired formula (13.32).

Note that (13.31) yields immediately the important relation

� + ,
+�
� � ? ����� v ?�h

j�~0�PY � �Kn
If the relation (13.32) is multiplied to the right by a vector � and if the vector � +X� v ? � is
denoted by � + , then the following recurrence results.

� +-, � + v ? t � + x � Q � � + v ? } h
Since � 9 , x

�
Q � 9 } � v ? � ,�� v ? � , the end result is that � v ? � can be computed for an

arbitrary vector � , by the following procedure.

�����	�U��
N�v�
� � � � � � ��� � #"�� � "%���� #" ���y('��� ����� � $	� ����$'&��'" #" $'&����
1. Input: � ; Output: � ,7� v ? � .
2. �

� , � ? �
3. For M�, @ Jih�hih J
 Do:

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��
� �M}k���Q~ � � �
4. �

� , � t � + x � Q�� � }
5. EndDo

By a similar argument, a procedure can be found to compute vectors of the form
� ,7� v ? � � . In this case, the following algorithm results:

���!� �U�
r�v�
� � � �S� � ��� � #"�� � " � �! #" ���#('��� �
��� �<$	� ����$'&��'" #"%$'&�� � � � ��� �� $ �

1. Input: � , Output: � ,�� v ? � � .
2. �

� , 8? �
3. For M�, @ Jihih�h J
 Do
4. �

� , � t + x � Q � }
5. EndDo

In summary, the Multiplicative Schwarz procedure is equivalent to solving the “pre-
conditioned system”

x
�
Q � 9 } | , � j�~ �PY � "Kn

where the operation � , x
�
Q � 9 }�� can be computed from Algorithm 13.5 and �',�� v ? z

can be computed from Algorithm 13.4. Now the above procedures can be used within an
accelerator such as GMRES. First, to obtain the right-hand side � of the preconditioned
system (13.35), Algorithm 13.4 must be applied to the original right-hand side z . Then
GMRES can be applied to (13.35) in which the preconditioned operations

�
Q � 9 are

performed by Algorithm 13.5.
Another important aspect of the Multiplicative Schwarz procedure is that multicolor-

ing can be exploited in the same way as it is done traditionally for block SOR. Finally, note
that symmetry is lost in the preconditioned system but it can be recovered by following the
sweep 1, 2, h�hih�J
 by a sweep in the other direction, namely,
�QPA\J
�Q @ Jihih�hXJ�A . This yields
a form of the block SSOR algorithm.

��������� � # � ��. ��.
+� 1��	� �/#
	��4%�	 ' � �
��� 	 �
The additive Schwarz procedure is similar to a block-Jacobi iteration and consists of up-
dating all the new (block) components from the same residual. Thus, it differs from the
multiplicative procedure only because the components in each subdomain are not updated
until a whole cycle of updates through all domains are completed. The basic Additive
Schwarz iteration would therefore be as follows:

1. For M�,/A Jihih�h J
 Do
2. Compute 	 + , � w+ ��v ?+ � + xmz Q�� | }
3. EndDo
4. | � � � ,F| t � 9+s� ? 	 +

The new approximation (obtained after a cycle of the
 substeps in the above algorithm

� �[� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

are applied) is

| � � � ,F| t 9�
+I� ? ��w+ �Dv ?+ � + x{z Q ��| } h

Each instance of the loop redefines different components of the new approximation and
there is no data dependency between the subproblems involved in the loop.

The preconditioning matrix is rather simple to obtain for the additive Schwarz proce-
dure. Using the matrix notation defined in the previous section, notice that the new iterate
satisfies the relation

| � � � ,F| t 9�
+I� ?
� + x{z Q�� | } ,

� �
Q 9�

+s� ? -+�� | t 9�
+I� ?
� + z h

Thus, using the same analogy as in the previous section, this iteration corresponds to a
fixed-point iteration | � � � , ��| t � with

�/,
�
Q 9�

+I� ? + J � , 9�
+I� ?
� + z h

With the relation � ,
�
Q � v ? � , between � and the preconditioning matrix � , the result

is that

� v ? �V, 9�
+s� ? + J

and

� v ? , 9�
+I� ? + � v ? , 9�

+s� ?
� + h

Now the procedure for applying the preconditioned operator � v ? becomes clear.

�����	�U��
N�v�
� � � �2� � ! � �'" #" ���y('��� ����� �N$ � ����$'&��'" #" $'&����
1. Input: � ; Output: � ,7� v ? � .
2. For M�,/A Jih�hih J
 Do:
3. Compute � + � , � + �
4. EndDo
5. Compute �

� , � ? t � � hih�h t � 9 .
Note that the do loop can be performed in parallel. Step 5 sums up the vectors � + in each
domain to obtain a global vector � . In the nonoverlapping case, this step is parallel and
consists of just forming these different components since the addition is trivial. In the
presence of overlap, the situation is similar except that the overlapping components are
added up from the different results obtained in each subdomain.

The procedure for computing � v ? � � is identical to the one above except that
� + in

line 3 is replaced by �+ .

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��
� �M}k���Q~ � �[�
��������� � � ' �
+� 	 �"� �	� �

Throughout this section, it is assumed that � is Symmetric Positive Definite. The projectors + defined by (13.23) play an important role in the convergence theory of both additive and
multiplicative Schwarz. A crucial observation here is that these projectors are orthogonal
with respect to the � -inner product. Indeed, it is sufficient to show that + is self-adjoint
with respect to the � -inner product,

x + |
J � } � , x ��� w+ � v ?+ � + � |
J � } , x ��|
J
� w+ � v ?+ � + � � } , x |
J
 + � } � h
Consider the operator,

���:, 9�
+I� ? �+Xh

j�~ �PY � �Kn
Since each � is self-adjoint with respect to the � -inner product, i.e., � -self-adjoint, their
sum � � is also � -self-adjoint. Therefore, it will have real eigenvalues. An immediate con-
sequence of the fact that the + ’s are projectors is stated in the following theorem.

�v��� �U�H�'� � � �;�
The largest eigenvalue of � � is such that

����� � x � � } 7
 J
where
 is the number of subdomains.

� ������� �
For any matrix norm, � ��� � x ��� } 7��I��� � . In particular, if the � -norm is used,

we have

����� � x � � } 7 9�
+s� ? � + � � h

Each of the � -norms of �+ is equal to one since �+ is an � -orthogonal projector. This
proves the desired result.

This result can be improved substantially by observing that the projectors can be grouped
in sets that have disjoint ranges. Graph coloring techniques seen in Chapter 3 can be used
to obtain such colorings of the subdomains. Assume that ! sets of indices

� + JeM8,BA\J�hihihiJ !
are such that all the subdomains

� � for 0 � � + have no intersection with one another.
Then,

 	�
d8, �
� � � d �

j�~ �PY � �Kn
is again an orthogonal projector.

This shows that the result of the previous theorem can be improved trivially into the
following.

�v��� �U�H�'� � � �;�
Suppose that the subdomains can be colored in such a way that two

subdomains with the same color have no common nodes. Then, the largest eigenvalue of��� is such that

� ��� � x ��� } 7 ! J

� ��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

where ! is the number of colors.

In order to estimate the lowest eigenvalue of the preconditioned matrix, an assumption
must be made regarding the decomposition of an arbitrary vector | into components of

� + .
Assumption 1. There exists a constant

T � such that the inequality

9�
+s� ? x �

� + J � + } 7 T � x � � J � } J
is satisfied by the representation of

� � � as the sum

� , 9�
+s� ?
� +>J � + � � +eh

The following theorem has been proved by several authors in slightly different forms and
contexts.

�v��� �U�m� � � � � �
If Assumption 1 holds, then

� � + � x � � } � AT � h
� � � � � �

Unless otherwise stated, all summations in this proof are from A to
 . Start with
an arbitrary

�
decomposed as

� , � � + and write

x � J � } � , � x � + J � } � , � x + � + J � } � , � x � + J + � } � h
The last equality is due to the fact that 8+ is an � -orthogonal projector onto

� + and it is
therefore self-adjoint. Now, using Cauchy-Schwarz inequality, we get

x � J � } � , � x � + J + � } � 7 > � x � + J � + } � A ?�� � > � x + � J + � } � A ?�� � h
By Assumption 1, this leads to

� � � �� 7 T ?�� �� � � � � > � x + � J + � } � A ?�� � J
which, after squaring, yields

� � � �� 7 T � � x + � J + � } � h
Finally, observe that since each 8+ is an � -orthogonal projector, we have� x + � J + � } � , � x + � J � } � , > � + � J � A � h
Therefore, for any

�
, the inequality

x � � � J � } � � AT � x � J � } �
holds, which yields the desired upper bound by the min-max theorem.

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��
� �M}k���Q~ � �a�
Note that the proof uses the following form of the Cauchy-Schwarz inequality:

C�
+I� ? x | + J � +

} 7
� C�
+s� ? x | + Je| +

} � ?�� � � C�
+I� ? x � + J � +

} � ?�� �
h

See Exercise 1 for a proof of this variation.
We now turn to the analysis of the Multiplicative Schwarz procedure. We start by

recalling that the error after each outer iteration (sweep) is given by
� , � 9 � � h

We wish to find an upper bound for � � 9 � � . First note that (13.31) in Lemma 13.1 results
in

� + , � + v ?�Q + � + v ?KJ
from which we get, using the � -orthogonality of + ,

� � + � � �� , � � + v ? � � �� Q � + � + v ? � � �� h
The above equality is valid for M&, A , provided � � � �

. Summing these equalities from
M�,/A to
 gives the result,

� � 9 � � �� , � � � �� Q 9�
+s� ? � + � + v ? � � �� h j�~ �PY � �Kn

This indicates that the � -norm of the error will not increase at each substep of the sweep.
Now a second assumption must be made to prove the next lemma.

Assumption 2. For any subset
�

of .�A\J @ Jih�hih�J
�= � and
� +XJ � � � �

, the following in-
equality holds:

�
o + / �er � �

x �+ � +eJ � � � } � 7 T ?
� 9�
+s� ? � �+

� + � �� � ?�� � �� 9�
� � ? � �

� � � �� �	 ?�� �
h j�~ �PY � �Kn

�y�'� ��� � � �;�
If Assumptions 1 and 2 are satisfied, then the following is true,

9�
+I� ? � +

� � �� 7 x A t T ? } � 9�
+s� ? � + � + v ? � � �� h j�~ �PY ���Kn

� ������� �
Begin with the relation which follows from the fact that + is an � -orthogonal

projector,

x -+ � J
 -+ �"} � , x -+ � J
 -+ ��+ v ? ��} � t x �+ � J x
�
Q ��+ v ? }��"} � J

which yields, with the help of (13.34),

9�
+I� ? � +

� � �� , 9�
+s� ? x +

� J + � + v ? �"} � t 9�
+I� ?

+ v ?�
� � ? x +

� J
 � ��� v ? ��} � h j�~ �PY �\~In

� ��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

For the first term of the right-hand side, use the Cauchy-Schwarz inequality to obtain

9�
+s� ? x +

� J
 + � + v ? ��} � 7
� 9�
+s� ? � +

� � �� � ?�� � � 9�
+s� ? � + � + v ? � � �� � ? � �

h
For the second term of the right-hand side of (13.41), use the assumption (13.39) to get

9�
+s� ?

+ v ?�
� � ? x +

� J ����� v ? �"} � 7 T ?
� 9�
+s� ? � +

� � �� } � ?�� � �� 9�
� � ? � ����� v ?

� � �� }
�	 ?�� �

h
Adding these two inequalities, squaring the result, and using (13.41) leads to the inequality
(13.40).

From (13.38), it can be deduced that if Assumption 2 holds, then,

� � 9 � � �� 7 � � � �� Q A
x A t T ? } � 9�

+s� ? � +
� � �� h j�~0�PY �K�)n

Assumption 1 can now be exploited to derive a lower bound on � 9+I� ? � �+ � � �� . This will
yield the following theorem.

�v��� �U�m� � � � �S�
Assume that Assumptions 1 and 2 hold. Then,

� � 9 � � 7
 A�Q AT � x A t T ? } � � ?�� � h j�~0�PY � �)n
� � � � � �

Using the notation of Section 13.3.3, the relation � + � � �� , x + � J ��} � yields

9�
+s� ? � �+

� � �� ,
� 9�
+I� ? �+

� J � � � , x ��� � J ��} � h
According to Theorem 13.4, � � + � x ��� } � ?

� � , which implies x � � � J �"} � � x � J �"} � � T � .
Thus,

9�
+I� ? � +

� � �� � x � J �"} �T � J
which upon substitution into (13.42) gives the inequality

� � 9 � � ��� � � �� 7 A�Q AT � x A t T ? } � h
The result follows by taking the maximum over all vectors � .

This result provides information on the speed of convergence of the multiplicative
Schwarz procedure by making two key assumptions. These assumptions are not verifiable
from linear algebra arguments alone. In other words, given a linear system, it is unlikely
that one can establish that these assumptions are satisfied. However, they are satisfied for
equations originating from finite element discretization of elliptic Partial Differential Equa-
tions. For details, refer to Drya and Widlund [72, 73, 74] and Xu [230].

����� � ~����q}u� � p+�D��|\����� �f%9� �]� �[p��
�����Q~ � ���
(z���\�x���<�:� $&�-%"� %m�]� !3$ $`�m� !>��� %�(

�+
b�

Schur complement methods are based on solving the reduced system (13.4) by some pre-
conditioned Krylov subspace method. Procedures of this type involve three steps.

1. Get the right-hand side �	&�, ��Q � � v ? � .
2. Solve the reduced system

�
�3, �	& via an iterative method.

3. Back-substitute, i.e., compute | via (13.3).

The different methods relate to the way in which step 2 is performed. First observe
that the matrix

�
need not be formed explicitly in order to solve the reduced system by

an iterative method. For example, if a Krylov subspace method without preconditioning
is used, then the only operations that are required with the matrix

�
are matrix-by-vector

operations � , � � . Such operations can be performed as follows.

1. Compute � &�, # � ,
2. Solve

�
� , � &

3. Compute � , = � Q � � .

The above procedure involves only matrix-by-vector multiplications and one lin-
ear system solution with

�
. Recall that a linear system involving

�
translates into
 -

independent linear systems. Also note that the linear systems with
�

must be solved ex-
actly, either by a direct solution technique or by an iterative technique with a high level of
accuracy.

While matrix-by-vector multiplications with
�

cause little difficulty, it is much harder
to precondition the matrix

�
, since this full matrix is often not available explicitly. There

have been a number of methods, derived mostly using arguments from Partial Differential
Equations to precondition the Schur complement. Here, we consider only those precondi-
tioners that are derived from a linear algebra viewpoint.

�������,��� . � ��� � �
�7%�	 ��� ' � ��. ��. ' ��� 	 1
One of the easiest ways to derive an approximation to

�
is to exploit Proposition 13.1

and the intimate relation between the Schur complement and Gaussian elimination. This
proposition tells us that a preconditioning operator � to

�
can be defined from the (ap-

proximate) solution obtained with � . To precondition a given vector � , i.e., to compute�F,�� v ? � , where � is the desired preconditioner to
�

, first solve the system

�
� |
� � ,

� �� � J j�~ �PY � � n
then take � , � . Use any approximate solution technique to solve the above system. Let� � be any preconditioner for � . Using the notation defined earlier, let � � represent the
restriction operator on the interface variables, as defined in Proposition 13.1. Then the

� ��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

preconditioning operation for
�

which is induced from � � is defined by

� v ?�
� , � � � v ?� � �� � , ��� � v ?� � w� � h

Observe that when � � is an exact preconditioner, i.e., when � � , � , then according to
Proposition 13.1, � � is also an exact preconditioner, i.e., � � , �

. This induced precon-
ditioner can be expressed as

� � , � ��� � v ?� � w� v ? h j�~0�PY � ")n
It may be argued that this uses a preconditioner related to the original problem to be solved
in the first place. However, even though the preconditioning on

�
may be defined from a

preconditioning of � , the linear system is being solved for the interface variables. That is
typically much smaller than the original linear system. For example, GMRES can be used
with a much larger dimension of the Krylov subspace since the Arnoldi vectors to keep in
memory are much smaller. Also note that from a Partial Differential Equations viewpoint,
systems of the form (13.44) correspond to the Laplace equation, the solutions of which
are “Harmonic” functions. There are fast techniques which provide the solution of such
equations inexpensively.

In the case where � � is an ILU factorization of � , � � can be expressed in an ex-
plicit form in terms of the entries of the factors of � � . This defines a preconditioner to

�
that is induced canonically from an incomplete LU factorization of � . Assume that the

preconditioner � � is in a factored form � � , � � � � , where

� � ,
� ��� �
� � v ?� � � � � � ,

�
��� ��v ?� #� � � � h

Then, the inverse of � � will have the following structure:

� v ?� , � v ?� ��v ?�
,
��� �� � v ?� � ��� �� � v ?� �

,
� � �
�

� v ?� � v ?� �
where a star denotes a matrix whose actual expression is unimportant. Recall that by defi-
nition,

� ��, x � �
} J

where this partitioning conforms to the above ones. This means that

� � � v ?� � w� , �'v ?� ��v ?�

and, therefore, according to (13.45), � � , � � � � . This result is stated in the following
proposition.

�H� �U� ���
r��
 ��� � � �;�
Let � � , � � � � be an ILU preconditioner for � . Then the

preconditioner � � for
�

induced by � � , as defined by (13.45), is given by

� � , � � � � J with � � , � � � � ��w� J � � , � � � � ��w� h

����� � ~����q}u� � p+�D��|\����� �f%9� �]� �[p��
�����Q~ � ���
In words, the proposition states that the L and U factors for � � are the x @ J @ } blocks
of the L and U factors of the ILU factorization of � . An important consequence of the
above idea is that the parallel Gaussian elimination can be exploited for deriving an ILU
preconditioner for

�
by using a general purpose ILU factorization. In fact, the � and �

factors of � � have the following structure:

�V, � � � � Q � with J

� � ,

�����
�

� ? � �
. . . � 9� ? � v ?? ��� � v ?� 68686 � 9 � v ?9 �

� ����
	

� � ,

�����
�

�)? � v ?? #&?
� � ��v ?� # �

. . .
...

� 9 � v ?9 # 9�

� ����
	 h

Each �)+>J � + pair is an incomplete LU factorization of the local
� + matrix. These ILU

factorizations can be computed independently. Similarly, the matrices ��v ?+ #�+ and ��+ � v ?+
can also be computed independently once the LU factors are obtained. Then each of the
matrices

�
� + , = + Q � + � v ?+ � v ?+ # + J

which are the approximate local Schur complements, is obtained. Note that since an incom-
plete LU factorization is being performed, some drop strategy is applied to the elements in
�

� + . Let
� + be the matrix obtained after this is done,� + , �

� + Q � + h
Then a final stage would be to compute the ILU factorization of the matrix (13.14) where
each

� + is replaced by
� + .

����� �,� � %�	('
,.����
To derive preconditioners for the Schur complement, another general purpose technique
exploits ideas used in approximating sparse Jacobians when solving nonlinear equations.
In general,

�
is a dense matrix. However, it can be observed, and there are physical justi-

fications for model problems, that its entries decay away from the main diagonal. Assume
that

�
is nearly tridiagonal, i.e., neglect all diagonals apart from the main diagonal and the

two codiagonals, and write the corresponding tridiagonal approximation to
�

as

� ,

�����
�
" ? z �! � " � z �

. . .
. . .

. . .!
� v ? " � v ? z �!

� " �

� ����
	 h

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

Then, it is easy to recover
�

by applying it to three well-chosen vectors. Consider the three
vectors

� ?�, x A\J � J � JiA J �ZJ � J�A\J � J �ZJih�hihXJ } w J
� � , x � J�A\J � J �ZJiA J � J � J�A\J �ZJih�hihXJ } w J� � , x � J � J�A\J �ZJ �ZJiA\J � J � JiA Jih�hihXJ } w h

Then we have � � ? , x " ? J ! �\J z
 J�"
\J ! � J�hihih�J z � +sH ? J " � +sH ? J ! � +sH � Jih�hih } w J� � � , x{z ��J�" �\J ! � J z � J�" � J ! ��J�hihihiJ z � +IH��\J " � +sH ��J ! � +sH � Jih�hih } w J� � � , x{z ��J�" �\J !
 J z � J�" � J ! ��J�hihihiJ z � + J " � + J ! � +IH ?�J�hihih } w)h
This shows that all the coefficients of the matrix

�
are indeed all represented in the above

three vectors. The first vector contains the nonzero elements of the columns A , � , � , hih�h ,

 M t A , hih�h , in succession written as a long vector. Similarly,

� � � contains the columns@ J �"J
 Jih�hih , and
� � � contains the columns
 J �ZJ � J�hih�h . We can easily compute

� � + JeM�,BA\J

and obtain a resulting approximation

�
which can be used as a preconditioner to

�
. The

idea can be extended to compute any banded approximation to
�

. For details and analysis
see [49].

����� �,��� % 	���� ' � ��. �+.�'-� . ���
+� 	 �+� ���0
 # 1 �
�41,�	�"� 	� '-!/%) � ! � ���"1
We now discuss some issues related to the preconditioning of a linear system with the
matrix coefficient of (13.14) associated with a vertex-based partitioning. As was mentioned
before, this structure is helpful in the direct solution context because it allows the Schur
complement to be formed by local pieces. Since incomplete LU factorizations will utilize
the same structure, this can be exploited as well.

Note that multicolor SOR or SSOR can also be exploited and that graph coloring
can be used to color the interface values � + in such a way that no two adjacent interface
variables will have the same color. In fact, this can be achieved by coloring the domains.
In the course of a multicolor block-SOR iteration, a linear system must be solved with the
diagonal blocks

� + . For this purpose, it is helpful to interpret the Schur complement. Call the canonical injection matrix from the local interface points to the local nodes. If E +
points are local and if � + is the number of the local interface points, then is an E�+�� � +
matrix whose columns are the last �#+ columns of the E
+ �yE
+ identity matrix. Then it is
easy to see that

� +-, x �w��Dv ?c���� / + } v ? h j�~0�PY � �)n
If � c���� / + , � � is the LU factorization of � c���� / + then it can be verified that

� v ?+ , �w � v ? � v ? , �w � v ? �w � v ? J j�~0�PY � �)n
which indicates that in order to operate with w � v ? , the last � + � � + principal submatrix
of � must be used. The same is true for w � v ? which requires only a back-solve with
the last � + � � + principal submatrix of � . Therefore, only the LU factorization of � c���� / + is

������� � }k|Q| ���a%z�f{ � ���Q% �7p���~ � ���
needed to solve a system with the matrix

� + . Interestingly, approximate solution methods
associated with incomplete factorizations of � c�� � / + can be exploited.

'� �-�7� !z���`� � � %k���v�h�D(
�+
b� �

We call any technique that iterates on the original system (13.2) a full matrix method. In the
same way that preconditioners were derived from the LU factorization of � for the Schur
complement, preconditioners for � can be derived from approximating interface values.

Before starting with preconditioning techniques, we establish a few simple relations
between iterations involving � and

�
.

�H� �U� ���
N�

 ��� � � � �
Let

� � ,
� �

�
� � v ?

� � J � � ,
� � #
�

� � j�~ �PY � �Kn
and assume that a Krylov subspace method is applied to the original system (13.1) with left
preconditioning � � and right preconditioning � � , and with an initial guess of the form� | �

� � � ,
� � v ? x � Q # � � }

� � � h j�~ �PY � �Kn
Then this preconditioned Krylov iteration will produce iterates of the form� |��

� � � ,
� � v ? x � Q # � � }

� � � j�~ �PY " �Kn
in which the sequence � � is the result of the same Krylov subspace method applied without
preconditioning to the reduced linear system

�
�', ��& with ��& , �DQ � � v ? � starting with

the vector � � .
� ������� �

The proof is a consequence of the factorization� � #
�

= � ,
� �

�
� � v ?

� � �
�

�
� � � � � #

�
� � h j�~ �PY "�~In

Applying an iterative method (e.g., GMRES) on the original system, preconditioned from
the left by � � and from the right by � � , is equivalent to applying this iterative method to

��v ?� � � v ?� ,
� �

�
� � � � � & h j�~ �PY "��Kn

The initial residual for the preconditioned system is

� v ?� � �
� � Q x � v ?� � � v ?� } � � � | �� � �

,
� �

�
Q � � v ?

� � � � � � � Q
� �
� � v ? x � Q # � � } t =

� � � �

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

,
� �
��&"Q �

� � � � � �
; � � h

As a result, the Krylov vectors obtained from the preconditioned linear system associated
with the matrix � & have the form� �

; � � J
� �

� ; � � 6�686 J
� �

� � v ? ; � � j�~0�PY " �)n
and the associated approximate solution will be of the form� | �

� � � ,
� | �
� � � t

� � v ? Q � v ? #
�

� � � �
� � v ?+s� � $ + � + ; � �

,
� � v ? x �:Q # � � } Q � v ? # x � �VQ � � }

� � �
,
� � v ? x �:Q # � � }

� � � h
Finally, the scalars $ + that express the approximate solution in the Krylov basis are ob-
tained implicitly via inner products of vectors among the vector sequence (13.53). These
inner products are identical to those of the sequence ; � J � ; � J 68686 J � � v ? ; � . Therefore, these
coefficients will achieve the same result as the same Krylov method applied to the reduced
system

�
�3,�� & , if the initial guess gives the residual guess ; � .

A version of this proposition should allow
�

to be preconditioned. The following result
is an immediate extension that achieves this goal.

�H� �U� ���
r��
 ��� � � �S�
Let

� , � � � � Q � be an approximate factorization of
�

and
define

� � ,
� �

�
� � v ? � � � J � � ,

� � #
� � � � h j�~0�PY " �Kn

Assume that a Krylov subspace method is applied to the original system (13.1) with left
preconditioning � � and right preconditioning � � , and with an initial guess of the form� | �

� � � ,
� � v ? x �:Q # � � }

� � � h j�~0�PY " ")n
Then this preconditioned Krylov iteration will produce iterates of the form� | �

� � � ,
� � v ? x �:Q # � � }

� � � h j�~0�PY " �)n
Moreover, the sequence � � is the result of the same Krylov subspace method applied to the
reduced linear system

�
�', �-Q � � v ? � , left preconditioned with � � , right preconditioned

with � � , and starting with the vector � � .
� � � � � �

The proof starts with the equality� � #
�

= � ,
� �

�
� � v ? � � � �

�
�

� ��v ?�
�

� v ?� � � � #
� � � � h j�~0�PY " �)n

The rest of the proof is similar to that of the previous result and is omitted.

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �
Also there are two other versions in which

�
is allowed to be preconditioned from

the left or from the right. Thus, if � � is a certain preconditioner for
�

, use the following
factorizations � � #

�
= � ,

� �
�

� � v ? � � � �
�

�
� � v ?�

� � � � #
�

� � j�~ �PY " �Kn
,
� �

�
� � v ?

� � �
�

�
� � � v ?� � � � #

� � � � J j�~ �PY " �Kn
to derive the appropriate left or right preconditioners. Observe that when the preconditioner� � to

�
is exact, i.e., when �u, �

, then the block preconditioner � � , � � to � induced
from � � is also exact.

Although the previous results indicate that a Preconditioned Schur Complement iter-
ation is mathematically equivalent to a certain preconditioned full matrix method, there
are some practical benefits in iterating with the nonreduced system. The main benefit in-
volves the requirement in the Schur Complement techniques to compute

� | exactly at
each Krylov subspace iteration. Indeed, the matrix

�
represents the coefficient matrix of

the linear system, and inaccuracies in the matrix-by-vector operation may result in loss
of convergence. In the full matrix techniques, the operation

� | is never needed explic-
itly. In addition, this opens up the possibility of preconditioning the original matrix with
approximate solves with the matrix

�
in the preconditioning operation � � and � � .

�\�)!3$ � $]!i�H���S� �N���U� � �
�+
b���

The very first task that a programmer faces when solving a problem on a parallel computer,
be it a dense or a sparse linear system, is to decide how to map the data into the processors.
For shared memory and SIMD computers, directives are often provided to help the user
input a desired mapping, among a small set of choices. Distributed memory computers
are more general since they allow mapping the data in an arbitrary fashion. However, this
added flexibility puts the burden on the user to find good mappings. In particular, when
implementing Domain Decomposition ideas on a parallel computer, efficient techniques
must be available for partitioning an arbitrary graph. This section gives an overview of the
issues and covers a few techniques.

����� �����
 # 1 . � �0� ��. � . ��. ' �,1
Consider a general sparse linear system whose adjacency graph is � , x ^ J # } . There are
two issues related to the distribution of mapping a general sparse linear system on a num-
ber of processors. First, a good partitioning must be found for the original problem. This
translates into partitioning the graph � into subgraphs and can be viewed independently
from the underlying architecture or topology. The second issue, which is architecture de-
pendent, is to find a good mapping of the subdomains or subgraphs to the processors, after

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

the partitioning has been found. Clearly, the partitioning algorithm can take advantage of a
measure of quality of a given partitioning by determining different weight functions for the
vertices, for vertex-based partitionings. Also, a good mapping could be found to minimize
communication costs, given some knowledge on the architecture.

Graph partitioning algorithms address only the first issue. Their goal is to subdivide the
graph into smaller subgraphs in order to achieve a good load balancing of the work among
the processors and ensure that the ratio of communication over computation is small for
the given task. We begin with a general definition.

1 2 3 4

5 6 7 8

9 10 11 12

 8? �
 �

�� ��������� ��� �
Mapping of a simple � �
 mesh to 4 processors.

� �

 �

r��
 � � � � � �
We call a map of ^ , any set ^�?KJ1^ � Jih�hih�Jj^ 9 , of subsets of the vertex

set ^ , whose union is equal to ^ :

^�+��S^ J �
+s� ? / 9

^Z+-, ^ h

When all the ^ + subsets are disjoint, the map is called a proper partition; otherwise we refer
to it as an overlapping partition.

The most general way to describe a node-to-processor mapping is by setting up a
list for each processor, containing all the nodes that are mapped to that processor. Three
distinct classes of algorithms have been developed for partitioning graphs. An overview of
each of these three approaches is given next.

����� ��� � �"��'-! ����	 . �:#0% %�	(' # � �
The geometric approach works on the physical mesh and requires the coordinates of the
mesh points to find adequate partitionings. In the simplest case, for a 2-dimensional rec-
tangular grid, stripes in the horizontal and vertical direction can be defined to get square
subregions which have roughly the same number of points. Other techniques utilize no-
tions of moment of inertia to divide the region recursively into two roughly equal-sized
subregions.

Next is a very brief description of a technique based on work by Miller, Teng, Thur-
ston, and Vavasis [150]. This technique finds good separators for a mesh using projections

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �
into a higher space. Given a mesh in �

�
, the method starts by projecting the mesh points

into a unit sphere centered at the origin in �
� H ?

. Stereographic projection is used: A line
is drawn from a given point O in the plane to the North Pole x �ZJih�hih J � JiA } and the stereo-
graphic projection of O is the point where this line intersects the sphere. In the next step, a
centerpoint of the projected points is found. A centerpoint ! of a discrete set

�
is defined

as a point where every hyperplane passing through ! will divide
�

approximately evenly.
Once the centerpoint is found, the points of the sphere are rotated so that the centerpoint is
aligned with the North Pole, i.e., so that coordinates of ! are transformed into x �ZJih�hih J � JX; } .
The points are further transformed by dilating them so that the centerpoint becomes the ori-
gin. Through all these transformations, the point ! remains a centerpoint. Therefore, if any
hyperplane is taken that passes through the centerpoint which is now the origin, it should
cut the sphere into two roughly equal-sized subsets. Any hyperplane passing through the
origin will intersect the sphere along a large circle

=
. Transforming this circle back into

the original space will give a desired separator. Notice that there is an infinity of circles to
choose from. One of the main ingredients in the above algorithm is a heuristic for finding
centerpoints in �

�
space (actually, �

� H ?
in the algorithm). The heuristic that is used re-

peatedly replaces randomly chosen sets of
� t @ points by their centerpoint, which are easy

to find in this case.
There are a number of interesting results that analyze the quality of geometric graph

partitionings based on separators. With some minimal assumptions on the meshes, it is
possible to show that there exist “good” separators. In addition, the algorithm discussed
above constructs such separators. We start with two definitions.

� �

 �

r��
 ��� � � �;�
A � -ply neighborhood system in �

�
is a set of E closed disks � + ,

M�,/A Jih�hih JeE in �
�

such that no point in �
�

is (strictly) interior to more than � disks.

� �

 �

r��
 ��� � � �;�
Let $ � A and let � ?KJ�hihih�J � � be a � -ply neighborhood system

in �
�

. The x $)Jj� } -overlap graph for the neighborhood system is the graph with vertex set
^ ,/. A J @ Jihih�h�JXE�= and edge set, the subset of ^ � ^ defined by

. x M1Jm0 } � x � + � x $ h � � } �, � } and x � � � x $)h � + } �, � } = h
A mesh in �

�
is associated with an overlap graph by assigning the coordinate of the center! + of disk M to each node M of the graph. Overlap graphs model computational meshes in�

dimensions. Indeed, every mesh with bounded aspect ratio elements (ratio of largest to
smallest edge length of each element) is contained in an overlap graph. In addition, any
planar graph is an overlap graph. The main result regarding separators of overlap graphs is
the following theorem [150].

�v��� �U�H�'� � � �2�
Let � be an E -vertex x $)Jj� } overlap graph in

�
dimensions. Then the

vertices of � can be partitioned into three sets �DJ � , and
=

such that:
� �

No edge joins � and
�

.
� � � and

�
each have at most E x � t A } � x � t�@ } vertices.

� � =
has only � x $#� ? � � E o � v ?Xr � � } vertices.

Thus, for
� , @ , the theorem states that it is possible to partition the graph into two

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

subgraphs � and
�

, with a separator
=

, such that the number of nodes for each of � and�
does not exceed �
 E vertices in the worst case and such that the separator has a number

of nodes of the order � x $#� ? � � E ? � � } .
��������� � 1 %���� � 	 #0) �+��� ���". ���"� 1

Spectral bisection refers to a technique which exploits some known properties of the eigen-
vectors of the Laplacean of a graph. Given an adjacency graph � , x ^ J # } , we associate
to it a Laplacian matrix � which is a sparse matrix having the same adjacency graph � and
defined as follows:

46+ � ,
�� � Q�A)�� x � + J � � } � # Y�[� M �,N0���

� x) })�� M�,<0� �	��
 �
���) U � h
There are some interesting fundamental properties of such matrices. Assuming the graph
is undirected, the matrix is symmetric. It can easily be seen that it is also negative semi
definite (see Exercise 9). Zero is an eigenvalue and it is the smallest one. An eigenvector
associated with this eigenvalue is any constant vector, and this eigenvector bears little in-
terest. However, the second smallest eigenvector, called the Fiedler vector, has the useful
property that the signs of its components divide the domain into roughly two equal subdo-
mains. To be more accurate, the Recursive Spectral Bisection (RSB) algorithm consists of
sorting the components of the eigenvector and assigning the first half of the sorted vertices
to the first subdomain and the second half to the second subdomain. The two subdomains
are then partitioned in two recursively, until a desirable number of domains is reached.

�����	�U��
N�v�
� � � � � � ��(� �K� ��� � � � " ���P(� ���� ��� �)� "%� ��� #"%$'& �
1. Compute the Fiedler vector � of the graph � .
2. Sort the components of � , e.g., increasingly.
3. Assign first �gE-� @�� nodes to ^ ? , and the rest to ^�� .
4. Apply RSB recursively to ^ ? , ^�� , until the desired number of partitions
5. is reached.

The main theoretical property that is exploited here is that the differences between
the components of the Fiedler vector represent some sort of distance between the corre-
sponding nodes. Thus, if these components are sorted they would be grouping effectively
the associated node by preserving nearness. In addition, another interesting fact is that the
algorithm will also tend to minimize the number E � of cut-edges, i.e., the number of edges
x � + J � � } such that � + � ^]? and � � � ^ � . Let O be a partition vector whose components are
t A or Q�A in equal number, so that b w O , � where b�, x A\JiA Jih�hih�JiA } w . Assume that ^�? and
^ � are of equal size and that the components of O are set to t A for those in ^
? and Q�A for
those in ^ � . Then notice that

x �
O
J{O } , �\E � J x O
Jjb } ,��Zh
Ideally, the objective function x �
O-J@O } should be minimized subject to the constraint that

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �
x O
Jjb } , � . Note that here O is a vector of signs. If, instead, the objective function
x � |-JX| } � x |
Je| } were minimized with respect to the constraint x |-Jeb } , � for | real, the so-
lution would be the Fiedler vector, since b is the eigenvector associated with the eigenvalue
zero. The Fiedler vector is an eigenvector associated with the second smallest eigenvalue
of � . This eigenvector can be computed by the Lanczos algorithm or any other method ef-
ficient for large sparse matrices. Recursive Specrtal Bisection gives excellent partitionings.
On the other hand, it is rather expensive because of the requirement to compute eigenvec-
tors.

����� ��� � � 	 #0% � � ����' 	 * �+��� �"�". ��� � 1
There exist a number of other techniques which, like spectral techniques, are also based
on the adjacency graph only. The simplest idea is one that is borrowed from the technique
of nested dissection in the context of direct sparse solution methods. Refer to Chapter 3
where level set orderings are described. An initial node is given which constitutes the level
zero. Then, the method recursively traverses the � -th level (� � A), which consists of the
neighbors of all the elements that constitute level � Q<A . A simple idea for partitioning the
graph in two traverses enough levels to visit about half of all the nodes. The visited nodes
will be assigned to one subdomain and the others will constitute the second subdomain.
The process can then be repeated recursively on each of the subdomains. A key ingredient
for this technique to be successful is to determine a good initial node from which to start
the traversal. Often, a heuristic is used for this purpose. Recall that

� x |
J � } is the distance
between vertices | and � in the graph, i.e., the length of the shortest path between | and � .
If the diameter of a graph is defined as	 x � } , � Y�� . � x |-J � } 2i| � ^ J � � ^3=
then, ideally, one of two nodes in a pair x |-J � } that achieves the diameter can be used as
a starting node. These peripheral nodes, are expensive to determine. Instead, a pseudo-
peripheral node, as defined through the following procedure, is often employed.

���!� �U�
r�v�
� � � � � � $ � � ��� $���$ ���,"�� ������� �H��$ � �
1. Select an initial node | . Set 	�,�� .
2. Do a level set traversal from |
3. Select a node � in the last level set, with minimum degree
4. If

� x |-J � } G 	 then
5. Set | � , � and 	 � , � x |-J � }
6. GoTo 2
7. Else Stop: | is a pseudo-peripheral node.
8. EndIf

The distance
� x |
J � } in line 5 is the number of levels in the level set traversal needed in Step

2. The algorithm traverses the graph from a node of the last level in the previous traversal,
until the number of levels stabilizes. It is easy to see that the algorithm does indeed stop
after a finite number of steps, typically small.

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

The above algorithm plays a key role in sparse matrix computations. It is very helpful
in the context of graph partitioning as well. A first heuristic approach based on level set
traversals is the recursive dissection procedure mentioned above and described next.

�����	�U��
N�v�
� � � � � � � ����� � � " ��� �
��� � �S� "%� ���� #" $'&
1. Set � � � , � ,

� � , . �'= , E �
� �

� ,BA
2. While E �

� � �
 Do:
3. Select in

�
the subgraph � � with largest size.

4. Find a pseudo-peripheral node O in � � and
5. Do a level set traversal from O . Let 4@b � � , number of levels.
6. Let � ? the subgraph of � � consisting of the first 4{b � � @
7. levels, and � � the subgraph containing the rest of � � .
8. Remove � � from

�
and add � ? and � � to it

9. E �
� �

� ,FE �
� � t A

10. EndWhile

The cost of this algorithm is rather small. Each traversal of a graph � , x ^ J # } costs
around 2 # 2 , where 2 # 2 is the number of edges (assuming that 2 ^ 2Z, � x 2 # 2 }). Since there
are
 traversals of graphs whose size decreases by 2 at each step, it is clear that the cost is
� x 2 # 2 } , the order of edges in the original graph.

As can be expected, the results of such an algorithm are not always good. Typically,
two qualities that are measured are the sizes of the domains as well as the number of cut-
edges. Ideally, the domains should be equal. In addition, since the values at the interface
points should be exchanged with those of neighboring processors, their total number, as
determined by the number of cut-edges, should be as small as possible. The first measure
can be easily controlled in a recursive Graph Bisection Algorithm — for example, by using
variants in which the number of nodes is forced to be exactly half that of the original sub-
domain. The second measure is more difficult to control. Thus, the top part of Figure 13.9
shows the result of the RGB algorithm on a sample finite-element mesh. This is a vertex-
based partitioning. The dashed lines are the cut-edges that link two different domains.

An approach that is competitive with the one described above is that of double striping.
This method uses two parameters O
? , O � such that O�? O � ,
 . The original graph is first
partitioned into O
? large partitions, using one-way partitioning, then each of these partitions
is subdivided into O � partitions similarly. One-way partitioning into O subgraphs consists
of performing a level set traversal from a pseudo-peripheral node and assigning each set of
roughly E-�1O consecutive nodes in the traversal to a different subgraph. The result of this
approach with O
?�, O � , � is shown in Figure 13.9 on the same graph as before. As can
be observed, the subregions obtained by both methods have elongated and twisted shapes.
This has the effect of giving a larger number of cut-edges.

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �

�� �����!� � � � �
The RGB algorithm (top) and the double-

striping algorithm (bottom) for partitioning a graph into 16
subgraphs.

�[��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

There are a number of heuristic ways to remedy this. One strategy is based on the
fact that a level set traversal from � nodes can be defined instead of only one node. These
� nodes are called the centers or sites. Each subdomain will expand from one of these �
centers and the expansion will stop when it is no longer possible to acquire another point
that is not already assigned. The boundaries of each domain that are formed this way will
tend to be more “circular.” To smooth the boundaries of an initial partition, find some center
point of each domain and perform a level set expansion from the set of points. The process
can be repeated a few times.

�����	�U��
N�v�
� � � � � � � ��� � #" &�$ � � ��� ����� � ('� % ����� &�� "%$'&P! � � $ � " � �

1. Find a partition
� ,/. � ? J � �\Jihih�hiJ � 9 = .

2. For M : b5;�, A\J�hih�hiJXE � � : b5; Do:
3. For �R, A Jih�hih J
 Do:
4. Find a center ! p of � p . Set 4%" z bK4 x ! p } , � .
5. EndDo
6. Do a level set traversal from . ! ?KJ ! � J�hihih�J ! 9 = . Label each child
7. in the traversal with the same label as its parent.
8. For �R, A Jih�hih J
 set � p := subgraph of all nodes having label �
9. EndDo

�� ��������� ��� � �
Multinode expansion starting with the parti-

tion obtained in Figure 13.9.

��� �a����{ ~��Q~ � ���N�7pM% �Q~ �[� �
For this method, a total number of cut-edges equal to 548 and a rather small standard

deviation of 0.5 are obtained for the example seen earlier.
Still to be decided is how to select the center nodes mentioned in line 4 of the al-

gorithm. Once more, the pseudo-peripheral algorithm will be helpful. Find a pseudo-
peripheral node, then do a traversal from it until about one-half of the nodes have been
traversed. Then, traverse the latest level set (typically a line or a very narrow graph), and
take the middle point as the center.

A typical number of outer steps, nouter, to be used in line 2, is less than five. This
heuristic works well in spite of its simplicity. For example, if this is applied to the graph
obtained from the RGB algorithm, with E � � : b5;3,
 , the partition shown in Figure 13.10
is obtained. With this technique, the resulting total number of cut-edges is equal to 441
and the standard deviation is 7.04. As is somewhat expected, the number of cut-edges has
decreased dramatically, while the standard deviation of the various sizes has increased.

%��R%m�g�>�I(�%�(

1 In the proof of Theorem 13.4, the following form of the Cauchy-Schwarz inequality was used:

��
��� � ��� ���

� � � �
� ��
��� � ��� �1��� �*� �

���
� � ��

��� � �
� �'� � � � � ��� � �

(a) Prove that this result is a consequence of the standard Cauchy-Schwarz inequality. (b) Extend
the result to the � -inner product. (c) Assume that the � � ’s and

� � ’s are the columns of two �	�0$
matrix
 and � . Rewrite the result in terms of these matrices.

2 Using Lemma 13.1, write explicitly the vector � � � � for the Multiplicative Schwarz procedure,
in terms of the matrix � and the
 � ’s, when � � @�� and then when � � A .

3 (a) Show that in the multiplicative Schwarz procedure, the residual vectors � � � � � � � � obtained
at each step satisfy the recurrence,

�&� ���&� � � � ��
��� � � ��
 ���&� � �
for � � : �������.� � . (b) Consider the operator � ��� ��
 �� � � ��
 � . Show that � � is a projector. (c)
Is ��� an orthogonal projector with respect to the � -inner product? With respect to which inner
product is it orthogonal?

4 The analysis of the Additive Schwarz procedure assumes that � � �� is “exact,” i.e., that linear
systems � ��� � �

are solved exactly, each time � � �� is applied. Assume that � � �� is replaced by
some approximation � � �� . (a) Is � � still a projector? (b) Show that if � � is Symmetric Positive
Definite, then so is � � . (c) Now make the assumption that ������� ��� � � �! �"

. What becomes of
the result of Theorem 13.2?

5 In Element-By-Element (EBE) methods, the extreme cases of the Additive or the Multiplicative
Schwarz procedures are considered in which the subdomain partition corresponds to taking # � to
be an element. The advantage here is that the matrices do not have to be assembled. Instead, they
are kept in unassembled form (see Chapter 2). Assume that Poisson’s equation is being solved.

�[�a� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

(a) What are the matrices � � ? (b) Are they SPD? (c) Write down the EBE preconditioning
corresponding to the multiplicative Schwarz procedure, its multicolor version, and the additive
Schwarz procedure.

6 Theorem 13.1 was stated only for the multiplicative version of the Schwarz procedure. There is
a similar result for the additive Schwarz procedure. State this result and prove it.

7 Show that the matrix defined by (13.37) is indeed a projector. Is it possible to formulate Schwarz
procedures in terms of projection processes as seen in Chapter 5?

8 It was stated at the end of the proof of Theorem 13.4 that if

�*����� ��� ��� � :� �	� ��� � �

for any nonzero � , then � � ��
 �*��� � � �� . (a) Prove this result without invoking the min-max
theory. (b) Prove a version of the min-max theorem with the � -inner product, i.e., prove that the
min-max theorem is valid for any inner product for which � is self-adjoint.

9 Consider the Laplacean of a graph as defined in Section 13.6. Show that

��
 � ��� � � �
� �	� ������� ��� � � ���?� � �

10 Consider a rectangular finite difference mesh, with mesh size � � ��� in the � -direction and
�
�

��� closest to the
�

-direction.
� � To each mesh point $5� ��� ��� � � � , associate the closed disk
 � � of radius � centered at $ � .

What is the smallest ! such that the family �
 � ��� is a ! -ply system?� � Answer the same question for the case where the radius is reduced to � (?@ . What is the overlap
graph (and associated mesh) for any 4 such that

:
@ � 4 �

! @
@
"

What about when 4 � @ ?

11 Determine the cost of a level set expansion algorithm starting from $ distinct centers.

12 Write a FORTRAN subroutine (or C function) which implements the Recursive Graph Partition-
ing algorithm.

13 Write recursive versions of the Recursive Graph Partitioning algorithm and Recursive Spectral
Bisection algorithm. [Hint: Recall that a recursive program unit is a subprogram or function,
say foo, which calls itself, so foo is allowed to make a subroutine call to foo within its body.
Recursivity is not allowed in FORTRAN but is possible in C or C++.] (a) Give a pseudo-code
for the RGB algorithm which processes the subgraphs in any order. (b) Give a pseudo-code for
the RGB algorithm case when the larger subgraph is to be processed before the smaller one in
any dissection. Is this second version equivalent to Algorithm 13.9?

NOTES AND REFERENCES. To start with, the original paper by Schwarz is the reference [193], but
an earlier note appeared in 1870. In recent years, research on Domain Decomposition techniques has
been very active and productive. This rebirth of an old technique has been in large part motivated
by parallel processing. However, the first practical use of Domain Decomposition ideas has been in
applications to very large structures; see [166, 29], and elasticity problems; see, e.g., [169, 205, 198,
51, 28] for references.

��� �a����{ ~��Q~ � ���N�7pM% �Q~ �[�a�
Two recent monographs that describe the use of Domain Decomposition approaches in struc-

tural mechanics are [143] and [87]. Recent survey papers include those by Keyes and Gropp [135]
and another by Chan and Matthew [50]. The recent volume [136] discusses the various uses of
“domain-based” parallelism in computational sciences and engineering.

The bulk of recent work on Domain Decomposition methods has been geared toward a Partial
Differential Equations viewpoint. Often, there appears to be a dichotomy between this viewpoint
and that of “applied Domain Decomposition,” in that the good methods from a theoretical point of
view are hard to implement in practice. The Schwarz multiplicative procedure, with multicoloring,
represents a compromise between good intrinsic properties and ease of implementation. For example,
Venkatakrishnan concludes in [215] that although the use of global coarse meshes may accelerate
convergence of local, domain-based, ILU preconditioners, it does not necessarily reduce the overall
time to solve a practical aerodynamics problem.

Much is known about the convergence of the Schwarz procedure; refer to the work by Widlund
and co-authors [30, 72, 73, 74, 46]. The convergence results of Section 13.3.4 have been adapted
from Xu [230] as well as Hackbusch [116]. The result on the equivalence between Schwarz and
Schur complement iterations stated in Theorem 13.1 seems to have been originally proved by Chan
and Goovaerts [48]. The results on the equivalence between the full matrix techniques and the Schur
matrix techniques seen in Section 13.5 have been adapted from results by S. E. Eisenstat, reported
in [135]. These connections are rather interesting and useful in practice since they provide some
flexibility on ways to implement a method. A number of preconditioners have also been derived
using these connections in the PDE framework [32, 31, 33, 34, 35].

Research on graph partitioning is currently very active. So far, variations of the Recursive Spec-
tral Bisection algorithm [165] seem to give the best results in terms of overall quality of the sub-
graphs. However, the algorithm is rather expensive, and less costly multilevel variations have been
developed [119]. Alternatives of the same class as those presented in Section 13.6.4 may be quite
attractive for a number of reasons, including cost, ease of implementation, and flexibility; see [107].
There is a parallel between the techniques based on level set expansions and the ideas behind Voronoi
diagrams known in computational geometry. The description of the geometric partitioning techniques
in Section 13.6.2 is based on the recent papers [105] and [150]. Earlier approaches have been devel-
oped in [55, 56, 57].

���� ��
��#� � � $

:��������
	�����
 ��� ����������� ����� �&
������
���! #"%$'&)(%*,+.-/$10324(5+76�$981:��3; �1<�=�
�� � �?> ���@=%=@A :9B1C�B��
@���D���EF�G� ���1HI=@��JK+'(5"%L1+.-7M1(NL�O PQ$1"K-R+76�ST:VU@$1"WO�L1".PX(Y:/Z�L1"K:,(NO -R0[(%L1"\:�]�:�+'(5SN:^$10_Z�L1"`L�OROa(,O
*�$1S
ZGb�+'(5"5:��c>�de� fN�
�dg�@=
��=@Ag�
���g< ��� ��E �&
�dg�@H �&
��a�,=@AGhi����jQ� ��=
�
k
l�1mon � ��� ��������Ap d�����<��

�=%j ��<�<���A�nq�YA :@B�C+@X���
<�=%�sri�\��� p �1�

� ���
�� �
tu�@��� �

 :@v�v) @�wX�

A���D���EF�G� ���1HI= ��� �?;^�g�1� � �����e�?xk=
�gyitz�@�1<a���%{|	g< ��� � " ��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*sL10G8
��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A�v�� B�B))���?)1v�A :9B1CQ�X�

B���D���EF�G� ���1HI= ��� �����Gy �

���� ���3��HN��<
���{|�@�1<a���i�gyit�E?�
�dg� �lmR� �i> ��� ��<�<a�,< p ��HI����
�� ��=@�
x'�3 #"%$9*K(�(%81-R0�P1:T$`U\+76g(N�������IJK0g+'(5"K0�L1+.-.$10�L�O��V$109U9(5"%(50�*K(N$10? �L1"%L�"%L�OROa(,Og #"%$9*K(5:�:K-70�P1A���� ���,=
� A)���1v�A :9B�C @��

�������Gx5���u<������ ��AGfN��DV�g����<��,
XAgt^�����g�����@��� ��A���� �!n^�g;
� �������� ���@���?��D ���g�@�,��=`{
k
������< ��� ���
�d�H�m7� �
HN��<
�����<a�i=�
 ���

������sj��@�
�� ��=@�����@�Kdg���a���1<�t
�@�����

uri�gHI� ���a���1<��
���1<�
�=
�a=
E �����g=%� ������
ur
�IBQ�9{�:?:�AG�����W�����,<a<�D ��	�� � ��
��������@=@A�E?���
� �@
!; ��<�<.Agri��A :@B�B����

v������gDV�g�
<�j ��� � �����3E �1���a���g<���
����1� �1� �lj �a=%���1< ��� ��
����1�3�1m�=%� �&��=%�WH ��

�����@�@=@�����
����}�$�b�"K0�L1O
$�0��V$�SiZGb�+.-R0XP1A @���:@C�v)��@?)1v�A :9B1B)��

w������ p �g�
����� ��=%�1�e�?> ��� ��<a<��@< �aHI��<��@HI�@�
 ��
������l�1mo�����@�@�1� � �
����1�g� �?�,���1 k��� ��
���� � � �����@�

HI�
�dg� ��=#m7� �
=%��<�j �����s=%������=%�Y=`
�=�
��@HI=��1mq< ���g�����
�9¡X� ��
����1�g=@�3�e�@�5d������ ��<etu�@��� �

uC?)Q�XAp ��t
fTAgh
����jQ� ��=
�
k
_��m�xk<�< ���g� ��=@Agh ��	 ��� ��AgxkDVA :9B1C�C��FE3�l�#dg�@=
��=@�

C������ p �g�
����� ��=%�1� ��� �l¢T��� � � ��������<�j �����N=%������=%��

�����1�����g<��&�i=`
�=�
��@HI=��1�?� �&� �1<�<��@<
�,��HI�g�
�� ��=@�3JK0g+'(5"K0�L1+.-/$�0�L�Oo}�$�b�"K0�L1Oo$`U
£i-aP)6��1Z�(�(�8��V$1SiZgb�+.-70�P1A :�� w?A9��B�v�A :9B1C�B��

B��o���G���G� ���g�1< � �.�3�#dg�W� �����g�����g<��W��mqH ������H ���@� � �
�� � ��
������ ���
�d��\=%��<���
����1�3�1m
�d��\H ��

����¤
� ���1�@��j ��<��g�W�����1	g<��@H���¥#b�L1"K+'¦���ZQZ�Oa¦�2FL1+76�¦aAGB���:)w9��@1B�A :9BQ��:��

:�)�� p � p �G�u=%dg� � �)m
 �1���?tY�G§T�G§ ����HI�@=@��yi�!jQ�@�
�������������� ���g�,��HI�g<��
��\m �1�
�������� ��
������ ��� �
���gyit������@�,��� � �
��a�1�g� ��=@�F��J%�u2~}�$1b�"50GL�Oo$10��G*,-|(50g+.- ��*NL10G8_��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A
B���: @ @@��:9��:�A :@B�C�C��

: :���yT�g�u¤��@<�=%=%�1�e�3� ���@��� � �1< ���@� �����gyitzHI�
�d�� ���3�#J1¨oA : @�� B?B+A)�+BQv�w�A :9B�w @��
: @���yT�g�u¤��@<�=%=%�1�e� p �1�1 k��� �&
���� � � � ���@�
�
'
����,{|HI�
�dg� ��=�mR���
���g=`
�HIHI�

����� �1� � �a���@����=
��=�
��@�

=`
�=�
��@HI=���m�< �a��� ���u�9¡X����
�������=@�3���@�Kdg����� �1<et
�@�����

w B�{�:�)�A p �VturTAG§i�@�g�,j ��A :@BQw B��
:�A���yT�g�u¤��@<�=%=%�1�e� p �1�1 k��� �&
���� � � � ���@�
�
'
����,{|HI�
�dg� ��=�mR���
���g=`
�HIHI�

����� �1� � �a���@����=
��=�
��@�

=`
�=�
��@HI=���m�< �a��� ���u�9¡X����
�������=@��©�-70[(%L1"i�
O PX(@ª,"%L!L10�8I-R+.:
��ZQZ�O -.*KL�+.-/$10g:�A @1B���:K��:9v�A :9B1C)��
:�B���yT�g�u¤��@<�=%=%�1�e�3� ���@��� � �1< ���@� ���,���1 k��� ��
���� � � �����@�
9Ag<�� ��=�
i=�¡X�������@=�HI�
�d�� ����«\b�SI(5"5-R:5*K6g(

2cL1+76g(5SIL�+.-­¬�A���:1� @?)�B9�9@?@�w�A :@B�C�w�� �[� �

��� � �a��� �
�
�Q~ �[�t�
:)�X��yT�G��¤��,<a=%=%�1�e��JK+'(5"%L1+.-RM1(Y��$�O b�+.-/$10�24(5+76�$981:�� p �1HT	��������1�\hi���aj�� ��=
�
k
!> ���,=%=@AGri����¢�� � � A

:9B�B B��
:9v���yT�G��¤��,<a=%=%�1� �1���!n^�G�Y�g� ��� � � �9����-R0g-7+'(���Oa(5S_(50�+���$1O b�+.-.$10F$`U\�u$1b�0�8QL1"K]���L�O bg(

 �"`$Qª@Oa(5SN:����u� � ���@H ���W> ���,=%=@A[y ��<��1������Ag�qDVA :9B1C?B��
:)wX��yT�G��¤��,<a=%=%�1�eAG�[�g� ����� �	� �@HI��� �9A �1� �lnT�g>o�gx'<a<�
 �e�3yi�?=%�1HI�\jQ� ��=
������=��1m ���g�@�1HI�g<��
��

	g<��X� � {|H ��

����¤_m����
�� ����� �&
������ �
�� � ��
���jQ�WHI�
�d�� ��=@�?©�-70[(%L1"\�
O PX(@ª,"%LlL10�8I-R+.:
��ZQZ�O -.*KL�+.-/$10g:�A
�1C�� A9��:)�XA :9B1C?B��

:9C���yT�G��¤��,<a=%=%�1� �1���?>o�G�[��n ��=%=
��<a�,j�= � �.����	g<��X� � �1�@�g� � ��< �a�,� �3�@���� `��� ��
������ � �����@�
u=%��<�jQ� �
� �
�d �a���g� ���
�� � �&
��a�1�g= �1���!j �������1	�<a�W=�
��,�������@�,��� � �
��a�1���������4��J%�
2~}�$1b�"K0�L�O�$10�2FL1+."K-
�
�u0�L�O]�:�-R:YL10G8s��ZQZ�O -/*�L1+.-.$10g:�A :�@�A :9B�B�:��

:9B����[�g� �1<��@
XA����gfN�G§ �������eAgDV� p ���%m7H �1�3E?�,xk�g���@=@A��1� �!�
�g���[��H �
�d��?>V�V����� @��)s��=%� ��=
H �1��� ��</�?���@�Kdg����� �1<�t
�,��� �

�
riD�{'BQ����: :i{�tu�@j ��=
����� @X�)�� @ B�A��������1�g���Wr ��
����1� �1<
D �1	���� ��
����%
XA :9B1B�B��

@?)���t^�g���g� ��� � �1�����i�G��� p d ���e���
� ��� ��<�
�=
��=u�1m
�d��\�@��HI���1=
�
��W=�
��@��	����@�1�1 k��� �&
��� � � � ���@�

HI�
�dg� ���3«ib�SI(5"5-7:,*K6�(\2FL1+76�(5SIL1+.-­¬�AGv�v�� @1�1B9��A9:@B�A :9B1B A��
@�:1�V�i��� �&�

�d �1���?�i�GE �1�
��@���[�,</�?n �&�����1	g<��WHI�

�����\�,���1 k��� ��
���� � � �����@�
uHI�
�dg� ��=@�?x'�

�u81M�L10G*K(5:^-70?«\b�S_(5"K-/*�L�OG24(5+76�$981:VU,$1"
©�L1".PX(^��Z�L1"K:,(^�[(5+.:^$kU
©q-R0[(%L1"����,b�L1+.-/$10�:���«ib�SIªK(5"
�����q2FL1+."K-
�s�u0GL�O]1:�-R:WL10�8T uL�"%L�OROa(,O��V$1S
ZGb�+.-R0�P��o W��������AG� �����@= :@vQ�9� :9C1C����W�����
hi����jQ� ��=
�
'
XA�¢�� � ��d��1H ��A�� ��� ���eA :9B�B B��

@ @X��fN�G� ��¤
�� �9Ag���[� �1<
���AGEF�g;^�����5d��g<
���Ag��� p �G� ��=%�@��=�
 ��
9A �1� ���s� p ������<��,
X���
�
�,¤���� ����HI�@�
 �1<[=�
�� ��
!��mqHI�
�d�� ��=#mR���u� ��� ��<�<a�,<o�����@�,��� � �
��a�1�g� ��� �%
�<a�)j_HI�
�d�� ��=@�!xk�
 �"`$9*5(�(%81-R0XP1:T$`U\+76g(s�������I£i]5Z�(5"`*,b�ª5(Y23b�O +.- ZG"%$9*K(5:�:5$1"5:_�V$10@U9(5"�(50G*K(5AG� �����@= :9v1B�C9��:)w�: :1�
> �1=�� ���@� ��A p �YAG� ���e� :9B�C1C��

@?A���EF�����@���1�
 ��� ��� �?���G���G�o<���dg� �

'
X�3��=
��¤!�@��<����
� ���X�@� �������\mR���
�d��\� �&� �1<�<��@<�=%�1<���
������3��m
�V<�< ����
����Y=`
�=�
��,HI=��g=
�����
�d�� �G���
��Y¡���� �

���@�\=�

���g�
��������!xk�?���gfi����� ���
� ��A�>o��E?�,=%=
�a����A
fN� p �G�������@�g=%�1�eA��1���?t^�g§T��n�� � �
9A�� ���
�� ��=@A� �"`$9*K(K(%81-70�P1:T$`U\+76g(!��$�b�"K+763��J%�
2
�V$109U9(5"%(50�*K(N$10? �L1"%L1OROa(,OG #"%$9*K(5:�:�-R0�P\U,$1"\��*,-/(50g+.- ��*l�V$1S
ZGb�+.-R0�P1Ag� � �1�@= @?A)9�9@ A�v�A :9B�B?)��

@ B���;T�g��� �
�%
�H �1��Ag����� �1<
���Ag���G§ ���1�g��A ��� �?tY�gE � ���Kd ��� ���1�g�5
X�"� �%
�<��)jlHI�
�dg� ��=
�����@�@�1� � �
����1�g� �#� �
�d �����@��HI��<a�
��@<�
lm �1�
������ ��H ��

�����@�,=u�1�
�d�� p E!{�@X� }�$1b�"K0�L�O�$`U
 uL1"`L�OROa(,O�L10�8%$W-R:�+."K-/ª,b�+'(%8c�V$1S
ZGb�+.-R0�P1AgC���:9C1v)� :9B)�A :9B�B?)��

@��X��fN�G>o�g��� �

�=%� � �1=���� �?�����#=
�
�=
� � < ��=@�c �L1"%L1OROa(,OoL10G8&$\-R:�+."5-.ª,b�+'(%8��V$1SiZGb�+|L1+.-.$10g��> ���@�
����@�
; �1<�<.A������1<��'�#�X� � p < ���[=@AGri��A :@B�C1B��

@1v���§T�G� � � � dg���qA�t^��n ����� ��A��_t^��A��1���!fN��¢����������!�u<
�� ��� ��
������ ��� ���@�
��a�1� ��HI�g< �����
�HI�
�dg� ��=@�
xk����81M�L10G*5(5:Y-R0 �V$�SiZGb�+'(5"K:KAg� �����@= :9C1B)�9@1w?A��[�
� � ���@H ���W> ���@=%=@Agri�'�z¢�� � � A :9B�v @��

@�wX�V�^�g�e �(����� � �1���?�i����<�mRj �������3�
�,�@�@<�� � ��
����������) `�@�
����1�3HI�
�dg� ��=�mR���i�@�1HI�g�
��a���
�g=%�@�����1{ ����jQ� ��=%�\=%�1<���
�������=
��mq=`
�=�
��@HI=��1m�< ���g� �&�u�9¡X� ��
����1�g=@�c��J1¨oA :@B���:�BQ�9��:@v A�A :@BQw�B��

@1C��V>q�g���G�e *) ��=�
 � � �1� �?�
� ��� ��=�;ij ����=�
��,�e�lx
�� � �&
���jQ�WHI�
�dg� ��=#mR���
=%��	g=�

�����
������ �l�@<��1=�
������
k

������	�<��@HI= ����=�

���g�
�� � �1< �1���1<�
�=
�a=@��xk�?tu��<���� ��§i<���� ���g= � �.A�§i�@���\;T�G§i��<��g	�A�§?�� � ��� ���Y�
E?�@��� ���
9A��1����� ���9¡X�g�@=u>^�� �����1��¤[A�� ���
�����=@A+$^$�SIL1-R0"$^(%*K$�SiZ�$1:�-R+.-/$�0�24(5+76�$981:VU@$1"u �L1"K+.-/L�O
$W- ,
(5"�(50�+.-/L�O-���,b�L1+.-/$10�:��[��xk�\EFAg>Vd���< � ���@<���d�����AG>��YA :9B�C1C��

@1B��V>q�g���G�e *) ��=�
 � � �1� ��yT�g�u�g� ����<���� ���?����<�j �a���s�@<�< ����
����Y������	�<��@HI=���� ��� � ������=
�����

��
������g����a�
��s=%��	g=�

�����
������@=@�!xk��§ ���
���

� � � � dg��� �1� �!���

�d����
���5d��X�@�g=�
 � �
9A�� � �
�����=@A���ORO - ZG+.-.*
 �"`$Qª@Oa(5S���$�O M1(5"K:iJ%JKA�� � �1�@= @ BQ�9�9@1�1v����
� � ���@H ���W> ���@=%=@AGr
�'�z¢���� � A�ru¢NA :9B1C?B��

�[�7� ��� � �a��� �
�
�Q~

A)��V>o�g���g�e *) ��=�
 � � ��� ��yT�g�
��� ����<��g�����!x
�� � �&
���jQ�\HI�
�d�� ��=#mR���
�dg�W=%��<��
��a�1���1m��,<a< ����
����
� ����	�<a�,HI=u�1� ����� �����g=u� �&�

��
��a�1�g� � �a�
��s=%��	g=�

�����
������@=@�c��J%�u2~}�$1b�"50GL�Oo$�03«ib�S_(5"K-/*�L�O
�u0GL�O]�:K-7:KA @?A9�/v+�5��:�)1B A)� : :�@?)�A :9B1C�v��

A9:��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�

�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	X
l=%�g	g=�

�����
�����������A�x5��2FL1+76g(5SsL1+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A BXw���:)w1� �5��:�)?A)��:�A?B�A�:@B�C�v��

A+@��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�
� �
�� � ��
���jQ�WHI�
�d�� �lm7� �u�@<�< �a�
����
� ����	�<a�,HI=u�1� ����� �����g=u� �&�

��
��a�1�g� � �a�
��s=%��	g=�

�����
������@=@�32FL1+76�(5SIL1+.-/*,:^$kUI�V$�SiZGb�+|L1+.-/$�0g:�A
B�v ��:9w?A+�5� A1v9:5��A�v1B�A :9B�C1v��

A A��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�

�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	X
l=%�g	g=�

�����
�����������A�x%x5�32FL1+76g(5SsL1+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A BQB���:5��:@v�A :@B�CQwX�

A?B��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�

�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	X
l=%�g	g=�

�����
�����������A�x%x%x5�32FL1+76g(5SsL1+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A���:1� B :)�@��B A)�A :@B�C�C��

AQ���V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�

�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	X
l=%�g	g=�

�����
�����������A�xkn^��2FL�+76g(5SIL1+.-.*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A��?A���:5�9@ B�A :@B�C�B��

A�v���tY�g� � �1HI<��,
 �1�����^�g� �1HI�@d��?tu���z�����) `�@�
����1�3HI�
�dg� ��=#mR� �
<������1�^������=`
�HIHI�

���a�u< ���g� �&�
=`
�=�
��@HI=@�c��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�OV�V$1SiZGb�+.-R0XP1A :�A���:9v1C)��:@B A�A :@B�B @��

AQw���tY�g� � �1HI<��,
 �1�����^�g� �1HI�@d���� ����	g��=�
�� �&� �1<�<��@<o=%��<�jQ� �um7� �u	g<��X� �

����� � �����1� �1<e=`
�=�
��@HI=@�
x'�3 #"%$9*K(�(%81-R0�P1:T$`U\+76g(\JK0g+'(5"K0�L1+.-/$�0�L�O��V$�09U9(5"%(50�*K(T$10���b�Z�(5"`*�$1SiZGb�+.-R0XP1A[� �����@= A�B9��� B��
� p EFAG���g<�
 :9B1C�C��

A�C�� p �G� ���@������= � �.�3 uLQ8��(l¨g]KZ�(W��ZQZG"%$��1-RSIL1+.-.$10FL10�8��u(50[(5"`L�O��#"K+76�$�PQ$10GL�O[�$�O]�0�$1ST-/L�O :��
� � � � d (�1�g=%� �%{'nV� ��<�� ��A�� ��=%�@<�{'����=�
��1��{k�
��

�� ���

9A :9B1C)��

A�B�� p �G� ���@������= � � �1���3EF��t
� � ��jQ� � � �1<������ � �1+."`L5Z�$�O�L1+.-.$10c24(5+76�$981:��u¨e6g(%$1"K]lL10�8T #"%LQ*,+.-/*K(5�
r
� �

�d�{';
��<�<��1����Ag�
HI=�
�� � ���1H�A :9B1B9:1�

B+)�� p �G� ���@������= � � �1����EF��t
������jQ�1{ � � �1<�������;

�	 ��� �_�����X�,� ��� ���@=�mR� �u=%�1<aj �����I=`
�=�
��@HI=��1m�< ���g� �&�
�@¡�����
�������=@�c«ib�S_(5"K-R:5*K6g(W2FL1+76�(5SIL1+.-­¬�AGvQwX��:K��:@B�A :9B1B?B��

B :�� p �G� ���@������= � �.A�EF�gtu� ����jQ��{ � ����< ����A ��� �l;T�G��� ��� � �?�
jQ� � � �����N	 ��� � � ��� ��� �1� �
��� ���%{|	 ��� � � ������� ���?D �1���@�@�1=`{
'
������1< �������
�d�HI=@�c«ib�S_(5"K-/*�L�O[�
O PQ$1"K-R+76�ST:�A :1� @�v9:K�9@1C B�A
:@B�B�:��

B�@�� p �G� ���@������= � �.A�EF�gtu� ����jQ��{ � ����< ����A ��� �l;T�G��� ��� � �?��	������ � ��������{/m ���@�YD ���g�@�@�1=`{
k
������< ��� ���
�d�H�m7� �
=%��<�j �����s< ���g� �&�i=`
�=�
��@HI=@�3«ib�SI(5"5-7:,*K6�(W2FL1+76g(5SsL1+.-­¬�AGv A�� @�B)��A1C�A :@B�B+@X�
B+A��V>o��rT�g� �������e���
�dg�,� ���
���� ��<��@�1HI� ������=%�1���1m
�d��W��������<���� �1���3§WE?t
��� �1< �������
�d�HI=@�

��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*NL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1S
ZGb�+.-R0�P1A : @�� ��C)��w�C�A :@B�B9:1�
B B��V>o��rT�g� ������� �1���?�Y� p ��; ��� ��H ����=%d��3E �&

����¤�{/m ���,�WHI�
�dg� ��=#mR� �u=�
����c=`
�=�
��@HI=��1m�yifW��=@�

��J%�
2~}�$1b�"K0�L�Oo$10?«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A @ A�� v9:�))��v?A�C�A :9B�C1v��
BX����r^�gxK�G���g<��@�@j��?�����gHI� ����� ��<�HI�
�dg� �ImR� ��
�dg�i=%��<���
������3��m
*���1{ ����HI�@��=
����� ��< ��� �
�d ���@�,{ ����HI�@��=
����� ��<[�9¡X� ��
����1�g=��1m �����[�g=
���1�e��2FL1+76g¦��Gª,AG��:�� @ @1w9��@?A�C�A :9B1v)��5�����!tu�g=%=
���1���5�
BQv����^� p � p � � �1����yT��� ����<��g������E?�g<
����g< ��� ��
���jQ�T���Kd � �&�����1< �������
�dgHI=�mR� �u=%�1HI�

������=`
�HIHI�

���a� �1��� ��� ���'�G���
��W� ����	�<a�,HI=@�F��J%�
2~}�$1b�"K0�L�O�$10�«\b�S_(5"K-/*�L�OG�u0�L�O]�:�-R:�A
A?) � B+�5A��
������=�
 :9B�B?A��

��� � �a��� �
�
�Q~ �[���
BXwX�V�i����� p d �1��AG���G§ �1<�<���������<���=@A[nT�g� �aHI�1�g�������/A��i�����@�
���A ��� � p � ;^�����1�����3�

¡����1=
��{|H ������H �1< ���@=
�������1<�j �&�����1�
u�1m
�d��W� ��{ p §W�����i� ��<��1� ���
�dgH m7� �
�g����=`
�HIHI�

�����
=`
�=�
��,HI=@�F��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*_�V$1SiZGb�+.-R0XP1A :9�9� @ �5� A?A�C)��A?BQw�A :9B1B?B��

BQC��V�i����� p d �1� �1���?fN�g§i�X�)j ��� �

�=@�cyi�
�d�� ���@<���
����1�g=%d����3	��
 �#�@�,���)jQ� ��<��1��������� �1� �
�g�����)jQ� ��<��1��������� ����H ���a� ���,�@��HI���1=
�
����1��HI�
�dg� ��=@����J%�u2 }�$1b�"50GL�Oq$10?2FL�+."5-
�N�u0�L�O]�:�-R:
L10�8N�#Z�Z�O -/*�L1+.-/$10�:�A :�A�� v�v A9��v�w?)�A :@B�B+@X�

BQB��V�i����� p d �1� �1�����i�G>o�GE ��
�d��'�W�3�#d����a�
�� �%m �1�@�Y� ����	������
��@�Kdg���a¡X�g� ��� ���1H � ������@�@�1HI����=
�
��������F��J%�
2 }�$1b�"K0�L�O�$10?2FL1+."K-
�T�u0�L�O]�:�-R:YL10G8T�#ZQZGO -/*�L1+.-/$10�:KA :�A9��: �5� @�:�@9��@?A�C�A
:9B�B @��

�?)��V�i����� p d �1� �1�����i�G>o�GE ��
�d��'�W��f\�1H � ��� ���@�@�1HI����=
�
������ ��<��1� ���
�dgHI=@�c�u*,+|L
«\b�S_(5"K-/*�L1Ag� � �1�@=uv9:K��:�B A�A :@B�B?B��

��:1��;T� p � p d��@� �1���?�Y��� �1HI�@d��?��H ��

����¤ ���@�,��HI����=
�
������?HI�
�dg� �ImR���i���

�dg�

���1�����
�@<��1=�
������
k
?������	�<��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10�2FL1+."K-
�s�u0GL�O]�:K-7:YL10�8N��ZQZ�O -/*�L1+.-/$�0g:�A
:�) ��:��5� A�B)�Xv?B�A :9B�C1B��

� @X� p � p � p dg�@���,
X��JK0�+."%$981b�*,+.-/$�0F+|$N�#Z�ZG"%$��1-7SIL1+.-/$�0 ¨e6g(%$1"K]��cE?�)§ � ����; ��<a<.A�r
¢TA :@B�v1v��
�?A��V��� p dg��� �1� �_¢N�G��� � ���!x`D�hW������� ���g�@�1HI�g<��
��WD�h�m �1�
������a����
������3mR���iH �&

�����@�@= ���?=%� �&��=%�

= �
�< ���g�im7� ��H �&
9�?JK0g+'(5"K0�L1+.-/$�0�L�Oe}�$1b�"50GL�O�U,$1"
«ib�SI(5"5-.*KL1OG2F(5+76�$981:\-R0 ��O b�-.81:�A�@1��� w?A1B)��w BQC�A
:9B�B�w��

� B��V��� p dg��� �1� �_¢N�G��� � ���?�
�������9¤ ��H ��
�� ����jQ� ��=%�W� ���@�@�1� ���
�������� ��=�j � �T=%� ����=%�5{'=%������=%��
�� � ��
�������=@� ��J%�u2~}�$1b�"50GL�Oo$10��G*,-|(50g+.- ��*l�V$1S
ZGb�+.-R0�P1A :9B�� B1BQ�@��:�) @?A�A :@B�B1C��
���X��rT� p d�����=%�X�5d�� �����,=@A�§i�@�1� ���5
?���)¤[A��1���?���X�^�#dg�1HI�g=%�1�e��E��Vr
hW��{'>�§W§�H �1���������

�@��j � ���1�gHI�@�
#m7� �
����HI� ����� �1<[���g=�

���g�
������ � �1���!=�

���g�
������ �l� ��� ��<�<a�,< � ����� �1�@�g� � �&
������e�?xk�
 �"`$9*5(�(%81-R0XP1:T$`U\+76g(^�[(5M1(50�+76?JK0�+'(5"50GL1+.-/$10GL�O��V$10@U9(5"�(50G*5(T$10"$^$1SsL1-R0"$^(�*�$1S
Z�$1:�-R+.-/$10
24(5+76�$981:W-R03�G*,-|(50g+.- ��*sL10G8%�#0�P1-70[(�(5"5-70�P��V$�SiZGb�+.-R0XP1A :9B1B A��

�1v���rT� p d�����=%�X�5d�� �����,=@A p �G����;i����=�
���=@AG���Gr^��;
����=�
��a=@Ag>o�gr^�G> ��� ���5d��a�1�eAG�[� �s� �W���

��@=
��=@A�1� �?���gt����@���?fYyWE��
x'r�fW� p yWE�>�yW����t^���N=%�1m
*� ������
��X��<�mR� �uH ���g�������s>�fW�
�@��HI����
 ��
����1�g=
��s����� �1<�<��@< �&���5d��
��@�
������,=@��xk�!t^�g§i<���� ���g= � ���
9���1<.��AG�����
�� �9A�$^$1SsL1-R0
$T(%*�$1SiZ�$1:�-R+.-.$10�2F(5+76�$981:VU@$1"
 �L1"K+.-/L�O $W- ,
(5"�(50�+.-/L�O � �,b�L1+.-/$�0g:�A�� �����@= A B :5��AQ�1w��e��xk�\E
�g�g	�< �a����
�������=@A :9B1B9:1�

��wX��rT� p d�����=%�X�5d�� �����,=@A[����;i�1�g=�
���=@A��1� �!���Gt����@����E �1��������� ��<��1� ���
�dgHI=���� �!=%��m
 � �����
�@��j � ���1�gHI�@�
#m7� � ����
 �^� �&� �1<�<��@<q>�fW� �
�� � �&
���jQ�Y=%��<�jQ� ��=@�4}�$1b�"50GL�Oo$`U
 �L1"%L�O7Oa(,O�L10G8
$W-R:�+."K-/ª,b�+'(�8��V$1SiZgb�+.-70�P1A @�:�� w��@��B���A :9B1B?B��

�1C���§T� p ��HIH ���g��� p ��<a�,��<�� �1�g� ����=%=
��H ��
��I��� ��<a�W=%�1<��g��������� �����e=
��=�
��@H � �����9¡X� �����������e< ���g� �&���.�
��-/*)¦���*,-|¦[#"%$�P1"@¦q+'(%*,0�¦�(%*�$10�$�S_¦o0�L��)¦aAGB�� A+@�v)��A?A A�A :9B A1C��

�1B��V�^� p < �@

������3�g� �

�dg� � ���,=%�g<
�=����?���1<�
�����H ���1<�=ud �9j �����N<�� ��=�
iH �)¤ �aHT�gH�HI� ����<a��=��)jQ� ��1���@<�< ���g=%�����
�d��W�@��HI��<a�5¤_�g<��1�����3���,�5d������ �1<et
�,��� �

u�i�V�q� {kw?A?B�C�Agh �Y�i�V�^A
; �������#�@<�<�{|h �sA :9B�v?A��

v)��V>q� p �����@�g=���� �3§T��;T�g§i��<���	e�3� ���@��� � �1< ���@� ���,���1 k��� ��
���� � � �����@�
uHI�
�dg� �_mR� �
�g����=`
�HIHI�

�����
=`
�=�
��@HI=��1mq< ���g� �&���9¡X� �&
��a�1�g=@�_x'�!tY��§i<�� � ����= � � �1���!���gD���D ������=@A������
�� ��=@A
�V$1SiZGb�+.-R0XPs24(5+76�$981:W-R0?��ZQZ�O -|(%8I��*,-|(50G*5(5:^L�0�8 ��0XP1-R0[(�(5"K-R0�P1Ag� � �1�@=
�1v9��vQ�X����� ��������� �
n�� ��<�����AGr
�'��¢�� � � A :@BQw�v��

v9:1�V>q� p �����@�g=@A�§T�g;^�g§i��<��g	�A �1����§T�GE?�@��� ���
9�3��<��X� � � ���@�@�������
��������a���NmR���
�d��\�@�1�1 `��� �&
��� � � � ���@�

HI�
�dg� ���c��J%�u2~}�$1b�"50GL�Oo$�0c�G*,-|(50g+.- ��*NL�0�8I�g+|L1+.-R:�+.-/*�L�O��V$1SiZGb�+.-R0XP1A
v�� @ @))�9@1� @XA :@B�C����

�[��� ��� � �a��� �
�
�Q~

v+@��V���GfN����� p ��=
� ���)jQ�1A[��� p �Gf ���1�1A ��� �?�Y��§ �����'� �1� � ���
�������9¤ �aH �&
�� ����jQ� ��=%�
� ���@�@�1� ���
������������smR���u=%� ����=%�Y< ���g� �&�u=`
�=�
��,HI=@��JK0�+'(5"�(5"K0�L1-R+|$�0�L�Oq}�$1b�"K0�L�O�$`U
�V$�SiZGb�+|L1+.-/$�0�L�O�2cL1+76g(5SIL�+.-/*,:�A�B B�� B9:5� : :�)�A :9B1B+@��

v A��V��� p �g<�<��gH ��� �!�
�g���Y§ ���@�@��	��1�gH��ltu�@=
�������1< ���@<���
�������=%d����g=�� �
�d����
�d����,�W� � � ��=��1m�
�� � �&
���jQ� �1< �������
�d�HI=�mR� �u=%�1<aj �����_��¤ �i	e�!���@�Kdg���a���1<�t
�@�����

ux`��E tu�@=%� �����Kd�tu�@��� �

�t p
:@C�v�w @�AGx`��E �i������� ��
�=%���?t
�@=%�������Kd p �@�
�� �9A�¢���� �
������!;i��� ��d
�=@A�ri�'�z¢�� � � A�� �1�������%

:@B�B?A��c��� ���g��� �&�9A���x`�iE ����� ��� �1<��1m�E �&

����¤��u� �1<�
�=
��=��1� �!�
���g< ��� ��
�������=@A :@B�B�v��

v?B��V�u�GrT��f��&

 ���3«\b�SI(5"5-/*�L�Og©�-70[(%L1"i�
O PX(@ª,"%L!L10�8T��ZQZ�O -/*�L1+.-.$10g:��3� ���X� � = � p �1<a�N>V��	g< ��=%d�������A
> ����� �G�T§ ���)jQ��A p �^A :9B1BQ���

vQ���V>o�g���Gf �)j ��=@�3JK0g+'(5"|Z�$�O�L1+.-/$104L10G8s��ZQZG"`$��1-RSIL�+.-/$10g�3��<�� ��=����@<�<.AG� �1<
�d ��H�AGE��YA :@B�v?A��
v�v��V�i�g�^��f��9j ��=@���zZ�L1"%L1OROa(,O�L1O PQ$1"5-7+76�S�U@$1"\:/Z�L1"K:,(Yb�0g:�]�SNSI(5+."5-/*i© � U,LQ*,+|$1"K- �9L1+.-/$10�:K��>Vd�� fN�
�d��@=
��=@AGh
����jQ� ��=
�
k
l��mqxk<�< ���g� ��= ��
uh ��	��1��� p d ��HI� �����1�eA�h ��	��1� ��AgxkDV��A :9B�C1B��
vQw��V��������f%
 �
�,�@jQ� ����A����G�Y�G��� ��=`

�deA��1���l���g>o�G� �1������y � ��� �������sHI�
�d�� ��=#m7� �

� ���@�@�1� ���
�������� �?�@�1�1 k��� �&
���� � � � ���@�

HI�
�dg� ��= ���g��<���� �
��s�g��=�

���g�
�� ��� � �������?�����1	g<��@HI=@�
��J%�
2~}�$1b�"K0�L�Oo$10?2FL1+."K-
�I�u0GL�O]1:�-R:WL10�8N�#Z�Z�O -/*�L1+.-/$10�:�A :�A�� B?B?B���B1v9:1A :@B�B @��

v�C��V��������f%
 �
�,�@jQ� ����A����G�Y�G��� ��=`

�deA��1���l���g>o�G� �1�����3����� ��� ��= �N�@�1=�
u�,�[�@�
���jQ�WxkDeh
� ���@�@�1� ���
�������� � � �
�d!d�� ��d?<a�,jQ�@<��G<�<.�c�#J1¨oA A9:1� B B�@@��B�v A�A :@B�B+@X�

v�B���EF�G�^��f\�9D������ �1���?����EF��y �

���� ���3�gyit �1=��N�����,�@�������
������g� �9�c��ZQZ�O -|(%8N«\b�S_(5"K-/*�L�O
2cL1+76g(5SIL�+.-/*,:�A :9C�� B A9:K��B B)�A :9B1BQ�X�

w?)��V>o��f\�@���Id �&� ��A�t^�����g�����@��� ��A���� �?�Y��� �1<
�� �9��� �1=�
u=%�@���1�
uHI�
�dg� ��=#mR� �
�d����
�� � ��
���jQ�
=%�1<���
������3��mq<��������Y�����g=`
�HIHI�

�����
<������ ���
=`
�=�
��@HI=@��J%2! e�^��¨�$`Us�V$1S
ZGb�+.-R0�PI-R0���*,-|(50G*K(
L�0�8 ��0XP1-R0[(�(5"K-R0�P1A @�� @ B?B��9@1w1v�A :@B�B?)��

w�:��V��������f\����� �&�
� ��AGxK������f\���qA�fN�G�������@�g=%�@��A ��� �l;T�g�^��j ��� ��� �un�����=�
9�F�G$�O M9-R0�PT©�-R0�(%L1"
��]1:�+'(5ST:^$10 �G(%*,+|$1"NL10G8I��6�L1"%(�8s24(5SI$�"5]3�V$1S
ZGb�+'(5"5:��F��x`�\EFA�>�d���<�� ���@<��gd�����A�>[�^A :9B1B9:1�

w @���EF�gf �%
)
� �1� ��yT�g�u�g� ����<���� �������1HI� ����H � ��� ���@�@�1HI����=
�
������ ��< ��� ���
�d�HI=um7� �u�@<�< �a�
����
� ����	�<a�,HI=@��xk�!D �������N; �9
Q�@= �1���?f��9j � �������g� ��� �[Ag�����
�� ��=@A[JK+'(5"%L1+.-RM1(\24(5+76�$981:VU@$�"u©�L1".PX(
©q-R0[(%L1"Y��]1:�+'(5SN:�Ag� � �1�@= @�w?A9�9@�B9:����
� � ���@H ���W> ���@=%=@AGr
�'�z¢���� � A�ru¢NA :9B1C�B��

w?A���EF�gf �%
)
� �1� ��yT�g�u�g� ����<���� ���?����� �&� ��=��N����� �G� �
�dg�@���%
l�1m ���1H � ��� ���@�@�1HI����=
�
��������< ��� ���
�d�HI=um7� �u�@<�< �a�
����^� ����	�<a�,HI=@�?x'�����1��
 p d��1�eA�tu��<��1���3§i<�� � ����= � �.AG� �1�9¡X���@=
>^�� �����1��¤[A �1����yT��� ����<��g����A�� � �
�����=@A#¨e6�-7"%8TJK0g+'(5"K0�L1+.-.$10�L�Oe�g]�SiZ�$1:�-Rb�S $10 $^$1SsL1-R0
$^(%*K$�SiZ�$1:�-R+.-/$�0�24(5+76�$981:VU@$1"
 �L1"K+.-/L�O�$\- ,
(5"�(50g+.-.L�O ���,b�L1+.-/$10�:��V6g(,O�8I-R0?£W$1b�:K+|$�0 �
¨�� �
2cL1"%*K6�� ���/�Q���#�����X�1����xk�\EFA�>Vd���< � ���@<���d�����AG>��YA :@B�B?)��

w B���EF�gf �%
)
� �1� ��yT�g�u�g� ����<���� ���?� �����
���jQ�W���5d � �����WHI�
�d�� ��=#mR���u�@<�<����
��a� �g���
��\�@<��@HI�@�

� ����	�<a�,HI=����
�d����@��� �aHI�,�g=
������=@�?x'���i�g��� p d��1�eAgf��9j � �!��� �W�,
X�,=@AG§?�� � ��� �3�^�gE?�@� � �1�
9A
�1�,� ���,
��[�G��� ��� � ��=@A �1���!tu��	�� �

i§T��n�� ����
9Ag�����
�� ��=@A-��- U5+76_JK0g+'(5"K0�L1+.-.$10�L�Oe�g]�SiZ�$1:�-Rb�S�$10
Y1SIL�-R0 $T(%*�$1SiZ�$1:�-R+.-.$10�24(5+76�$981:VU@$�"
 uL1"K+.-/L�O-$W- ,
(5"�(50�+.-/L�O � �,b�L1+.-/$�0g:��[��x`�\EFA
>�d���<�� ���@<��gd�� ��A[>[�^A :9B1B+@X�

w����V>o�g���gfi�g	�� ��=@Ag�^�G§ ���@�@��	 ���gH�A��1����§T��;T��t
� � ��� ���g�1�3�
�������9¤ ��H ��
�������
�dg� ����jQ� ��=%�W��m �
H �&

����¤lm7� �
�g=%�\�1� �
�� � ��
���jQ����< ��� ���
�d�HI=
�1�?jQ�@�
�� ��=������X�@�,=%=%� ��=@� �V$1S
ZGb�+.-R0�P1A
@?@�� @��1w9��@1v�C�A :9BQw�B��

w1v���xK�����gfi���q�!��=%����j��,
_�1m�=%������=%�WH ��

����¤ ���@=%� �&���5d���x'�3 #"%$9*K(�(�8�-R0�P1:T$`U\+76g(iJ � � �����
	�A
��� �1�@=\�))9���?A�����> ���@�
����@�W; ��<a<.A�ri�'�z¢�� � � A :9B�w�w��

w�w���xK�����gfi���qA��^�gEF��� ����=%H �1��A���� ����� �s��t
� � �[� $\-R"�(%*,+�24(5+76�$981:�U@$1"i��Z�L1"K:,(W2FL1+."K-/*K(5:��p <��&���@� ������> ���@=%=@A[y
¤�mR��� ��A :9B1C�v��

��� � �a��� �
�
�Q~ �[���
w1C���x5�G�[��f\���qA�tY�G§T�G§ ����HI�@=@A��1� �!���[§T�gDe��� �a=@����� �&��=%�WH ��

����¤
��@=�
u�����1	g<��@HI=@�3�^��2

¨g"%L10�:5LQ*,+.-/$10�:N$�032cL1+76g(5SIL�+.-/*�L�Oe�G$`U5+���L1"�(5A :)�X��:K��:.B�A :9B1C�B��
w1B��V�i��� � ���1<�� �1� �?yT�gr
�@j �1�g< ���g�����?�
�@�,�@<�� � ��
������&� �
�d � ��� � {|�����\�g� ����
��@=@��©�-R0�(%L1"i�
O PX(@ª,"%L

L10�8I-R+.:
��ZQZ�O -/*�L1+.-.$10g:�A :�@�:1� ��: :K��� @)�A :9B1C�B��
C)����[�g� ��=%�@��=�
 ��
9�3� � �����@�
���HI�g<��@HI�@�
 �&
��a�1�?��m �N�@<��1=%=u�1m��,���1 k��� ��
���� � � �����@�
uHI�
�dg� ��=@�

��J%�u2 }�$�b�"K0�L1Oq$103��*,-/(50g+.- ��*NL10G8_��+|L1+.-R:�+.-/*�L�O��V$1S
ZGb�+.-R0�P1A @���:5�+B�A :@B�C1C��
C9:1��;T� p �G��<�H �1�e�?��=�
 ��	���< �
k
 ��� ��<�
�=
��=��1m ���g�,��HI�g<��
��\Deh�m �1�
�������� ��
�������=@� 2FL1+76g(5SsL1+.-/*,:^$`U

�V$1SiZGb�+|L1+.-.$10g:�A BQw���:9B�:5�9@�:)wXA :@B�C1v��
C+@X��;T� p �G��<�H �1� ��� �����g� � ���1�e�3y � ��� �������
��@�Kdg���a¡X�g�,=#mR� ��
�dg�i�����@�@�1� � �
����1�g� �?�,���1 k��� ��
��� � � � ���@�

HI�
�dg� �!�1�?����� �1<�<��@<o�,��HI�g�
�� ��=@� �V$1SiZgb�+'(5"i �6�]�:K-.*,:I�V$1SNSTb�0�-/*�L1+.-/$10�:�A

�?A�� @1�?A)��@1v1B�A :9B1C�B��
C A���;T� p �G��<�H �1� ��� �3§T��;T�g§i�1<a��	e�?x
�� � �&
��aj��WHI�
�dg� ��=#mR� �u�,
��@< ��� ��<a<�
 ��� �����@� �

�g����{|=%�@<�m7{ � �) `� ���

<������ ���u=`
�=�
��@HI=@�32FL1+76g(5SsL1+.-/*,:^$`Us�V$1S
ZGb�+|L1+.-/$10�:KA[� B�� v�w�:5��w?)?)�A :9B1B)��
C?B���EF�g�����1<��@H �1���l�oxkf
�i> H �1�����1<�=@�_���@�Kdg����� �1<[tu�@��� �

�nV��<.� :1A�@XA��1� � A�A��o<������_fi
�� ��H �a�,=

xk�
�� ��� �&
������ ��<.A���j ���g=�
�����A�x`DVA :9B1C�v��
CQ�X��nT��� �1	�� � �1���!�i�gE �1�
��@���[�@<.�lri�@�@�,=%=����%
 �1���l=%� � �����@�
��@�1� ���
�������=#mR����
�d��i�,¤ ��=�
��@���@�i��m�N�@���� `��� ��
������ � �����@�
uHI�
�d�� ������J%�u2~}�$1b�"50GL�Oq$10?«ib�S_(5"K-/*�L�O[�u0GL�O]1:�-R:�A�@�:1� A�� @@��A�v�:�A

:9B�C B��
C�v�� �\
?���1�e�!ri��
��W��� � {|H ��

�����@�@=@��¥#b�L1"K+'(5",O]l}�$1b�"K0�L�Oo$`U
2FL1+76g(5SsL1+.-/*,:��
� �`U@$1"%8I:,(5"5-/(5:� ���)A : :1� B A)�+BQB�A :@B�v?)��
CQwX� p ��� �&��d ��
���� ����� �^�gtu����¤��lx'HI�g< �����
�� ��� ��<�<a�,<������X�,�@=%=
����� ����=�

���g�
���� �1<�HI�@�Kd �������@=@�

�V$1SiZGb�+|L1+.-.$10�L�O[24(%*K6�L10g-.*,:
�u81M�L�0�*K(5:�A @9��:��5��:K��:�@ B�A :@B�B B��
C�C���t^�GEF�G��� ���@�g�,��� ��Oa(5S_(50�+ �kª,]��`(,Oa(5SI(50g+qZG"%(%*K$�0�81-R+.-.$10g-R0XPl+'(%*K6�0g-��,bG(5:VU,$1"YO�L1"/PX(W:5*KL1Oa(

M1(�*,+|$�"5- �)(%8\��0g-R+'(T(,Oa(5S_(50g+#L10�L1O]1:�-R:\-7030�$10gO -R0[(%L1"Y:5$�O -/8_L10G8_:�+."Kbg*,+.b�"`L�OoS_(%*K6�L10�-/*,:��
>Vd�� fT��
�d��@=
��=@AGf\�@�����

�HI�@�
���m��
���g< ��� ��E �&
�dg�@H �&
����@=@A��
 �1��mR� � �[A p �YA :@B�C1B��

C�B��V�
��� ��=%�Kdg� � �1���!tY�����g� ���@�g������yi�
�dg�i�@����=�

� � ���g� � p dg�@	X
�=%dg�@j ���g�����9¤ ��H ��
������
������	�<��@H �����,<a< ���g=%�,=@� }�$1b�"50GL�Oo$kUi��ZQZG"`$��1-RSsL1+.-/$10�¨e6g(%$1"K]1AGv+@�� @�BQw9��A9:9��A :9B1B)��

B)��V�
��� ��=%�Kdg� � �1���!tY�����g� ���@�g����� p dg�@	X
�=%dg�@jI���1<�
�����H ���1<�=������Y���
��1< � �9
�=u���
��aH ��<.�
}�$1b�"50GL�Oq$`U
��ZQZG"%$��1-RSIL1+.-.$10�¨e6g(%$1"5]�A[v���� @1v�:5�9@1w @XA :9B�B�:��

B9:1�V�
�G� ��=%�Kdg� ����� �!DV��t
� �a�Kdg�,</�!�z=�
 �1	�<a�Wt����5d���� ��=%��� �
�� � ��
�������HI�
�dg� �ImR� ���,��HI�g<��,¤_< ���g�����
=`
�=�
��,HI=@��«ib�S_(5"K-R:5*K6g(W2FL1+76�(5SIL1+.-­¬�A�� B�� @?@��@�9@ B9:�A :9B1C�C��

B+@X��t^�g�o<��
��5d�� �9� p �1�1 k��� �&
���� � � � ���@�

HI�
�dg� ��=�mR� � ��� ���'�G���
��i=`
�=�
��,HI=@�?x'�3§T�g�^��� ��
�=%�1�eA
� ���
�� �9A� �"`$9*K(K(%81-70�P1:^$`UW+76g(!$\b�0�8X(�(\��-|(50g0GL�O��V$10@U9(5"�(50G*K(N$10�«\b�SI(5"5-/*�L�OG�u0�L1O]1:�-R:^�1������A
� � �1�@=iw?A)�XC�B������ ���a����� ��nV� ��<�� ��AGr
�'��¢���� � A :@BQw��X�

B A���t^�����g�����@�g����� p ���� `��� ��
������ � �����@�
%{
k
����\HI�
�dg� ��=#m7� �u< ���g� �&�i=`
�=�
��@HI= � �
�d��@�1HI�g<��,¤
=`
�HIHI�

���a�
�@�X� � � �a�,�

H ��

�����@�,=@�F��J%�
2~}�$1b�"K0�L�Oq$�03��*,-|(50�+.- ��*sL�0�8I�g+|L1+.-R:�+.-/*�L�O
�V$1SiZGb�+.-R0XP1A :�A�� B�@1�9��B?BQC�A :@B�B @��

B?B���t^�����g�����@�g�����	�i� ��=
��{ � � ���g�@<[���1<�
�����H ���1<�=��1���?�@����jQ� �����@���@� ���@=%��<
�=�mR���
¡����1=
��{|H ������H �1<���@=
����� ��< �
�� � �&
������g=@�!xk�!f ���

�����@�Kd�� � ���@=%=��1� �!D �&�
�%
?D��g���Kd���H � � � �9AX� ���
�����=@A[«ib�S_(5"K-/*�L�O
24(5+76�$981:^$`U
��ZQZG"`$��1-RSIL�+.-/$10�¨e6g(%$1"5]�� �g$1Oo�1A�xk�
�� ������
��������1<�=%� �����@=
��mq���gHI� ����� ��<
H ��
�dg�,H ��
����@=@A�� �����@= :5� :9B��G� � � � d � (�g=%� �
n�� ��< ����AG� �1=%�@<.A :9B�B @��

�[��� ��� � �a��� �
�
�Q~

BQ����tY�����G� ���@�g�����!��� � ���g=%���1=%�,{'�����@� �i� ��=
��{kE ������H ��<etu�@=
�������1< �1< �������
�d�H mR� �
������{';
� ��H �
����1�?< ���g�����u=`
�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*_�V$1SiZgb�+.-70�P1A
:.B � @?�5� BQw?)9��BQC @�A :9B1B A��

B�v���tY�����G� ���@�g����AgEF�g;^�g§i��
 � �g�@�Kd
9A��1� �lrT�GEF�gr �1�Kd
���� �1<.�3�u� ��HI�g<��@HI�,�
 �&
������?��mq�1m
�d��YDe�X� � {'�udg� � �?D ���g�@�,��=��1< �������
�dgH��4��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*NL10�8I�g+|L1+.-7:K+.-.*KL1O
�V$�SiZGb�+.-R0XP1A :�B � @ �5� BXw))�+BQC+@XA :9B�B?A��

BQw���tY�����G� ���@�g��� ��� �?r^�GEF��r ���5d
�� � ��<.� �WE?t^���s¡X���1=
��{|H �a����H �1< ���@=
�������1<�HI�
�dg� �_mR� �
������{';
� ��H �
����1�?< ���g�����u=`
�=�
��@HI=@��«ib�S_(5"K-R:5*K6g(W2FL�+76g(5SIL1+.-a¬�A�v)�� A9:)�@��A?A�B�A :@B�B9:1�

B�C�� �s�G§ �1<�< ��j ���eAG�^�G���1HI�,deA �1��� � � � <���
��@j��?��� �&� �1<�<��@<odX
�	������_=%� ����=%�W< ���g�����
=`
�=�
��,H
=%�1<�jQ� �9� �V$1S
ZGb�+.-R0�PI�g]�:�+'(5SN:W-R0#�#0�P1-R0�(�(5"5-R0XP1A : � @){ B��5��:9C?A)� :9BQ�XA����g����:9B1B)��

B�B�� �s�g�^�G§ �1<�< ��j ���eA�EF�G�i��;i� �&
�deAg����r ��AG����EF��y �

���� ��AgtY�G���G>�<��@HIHI����=@A p ��;T��tu��H ���g��A
�Y�g;^�g���1HI�,deA��1���?t^�g§T��n�� � �
9�� �L1"`L�OROa(,OG�
O PQ$1"5-7+76�SN:VU@$�"
2FL1+."K-
���V$�SiZGb�+|L1+.-/$�0g:��
��x`�iEFAG>�d���<�� ���@<��gd�����A :9B1B)��

:�))��V����tY��§ ���
�H ���5d�� �9��¨e6g(l¨e6g(%$1"K]l$`U
2FL1+."K-/*K(5:�� p dg�,<a=%����A�r
�'�z¢���� � A :@BQ�1B��
:�)9:���r^��§ ��=�
����g�@<.�F�u0GL�O]1:,(i«\b�S �(5"K- �,bg(i©q-R0 �(@L�-R"�(5�?;i� ��H ���g�eA�> �&���a=@A :9B1v�v��
:�)+@��q����§ ����
�=%�Kd��.��yi� ���@��� � ��
������I���

�dg� �������1<e����<�
��g��H ����<a=@�F��J%�u2~}�$1b�"50GL�Oo$10��G*,-|(50g+.- ��*

L�0�8I�g+|L1+.-R:�+.-/*�L�O��V$1SiZGb�+.-R0XP1A A�� @�C�B9��A9:9w�A :@B�C+@X�
:�) A��V�Y��§i�,� �����1� p ��HI����
�� � ��HI�g<��@HI�,�
 �&
������l�1m
�d��!�G���
��\�,<a�,HI�@�
�HI�
�dg� �[�?�e�@�5d������ ��<

tu�@�����

\���o�
ru{ p ��{1@?)1C�Ag�
 ����mR��� �?hi����jQ� ��=
�
k
XA�f\�,� ���

�HI�,�
#�1m p ��HI����
�� ���������@���@��A :@BQw�:��
:�)?B��V�����^�g§i�@������� �1�����������gD ���e���V$1SiZgb�+'(5"Y�G$�O b�+.-/$10F$`Uu©�L1".PX(^��Z�L1"K:,(\ �$1:�-R+.-RM1(!$^(R�V0�-R+'(

��]1:�+'(5ST:K�c> ���@�
����@�,{|; ��<�</Ag������<��'���X� � p <����[=@Agr\��A :9B1C9:��
:�)Q���V���GtY�G§ ��<�	�� �

9A�§T�GD���E ��<�<�� �9A �1������� {|;^�g�e�@������§i�@�1HI�

�����WHI�@=%d?�����

��
��������������

x'HI�g<��@HI�@�
 �&
��a�1� ��� �l�,¤���� ����HI�@�
�=@�?x'��J` V ��c��� �V��b�ª,SN-R+.+'(%8l+|$I��J%�u2 ��JK�e�qA :@B�BQ�X�
:�)�v������ �s�G§i� ���g����j ��� �!§T�G>o��> ����� � �����)j��!��HI�
�d�� �l��moH ������H ��< �
�� � ��
������lmR� �u�@j �1<�����
������
�d��W��� ���@��j �1<��g�,=u��m �1�?�@<�<����
��a�Y�1��� � ��
����9� � 6g¦ ��-/*K6�:KOa¦�2FL1+'¦�2FL�+'¦ ��- �)¦aA :�)���: :@C))� : :@B)�A

:@BQw)��
:�)Qw��V�i��§i�X�@d�������� �1���!¢N�g��� � �[��;i�,������=�
������1< �������
�d�HI=�mR� � �1�
���H �&
��a� � � �1��d�� �&�

��
��a�1���������

�e�@�5d������ ��<�tu�@��� �

���HI=
��{'B B1{1@1B�Agh
����jQ� ��=
�
k
l��mVE ���g�g�,=%�
 �_������� ���@�1HI�g��
�� ��xk��=�
��
��
���A
E �����g� ������< ��=@A�E?rTAg�g�@	 ��� ���%
 :@B�B?B��

:�)�C���§T�g;T�g§i��<���	 �1��� A�� �!� ��� p �Gn �1�!De� ���e��2FL1+."K-
�c�V$1S
ZGb�+|L1+.-/$10�:K�3�#dg�Y���1dg�?;
��� � ����=
h
����jQ� ��=
�
'
?> ���@=%=@AG� �1<
���HI� ����A :9B1B�v��

:�)�B���§T�g;T�g§i��<���	 �1����EF��D���yij�� �

������?�#d��W�@����jQ� �����@���@�W�1m ���g�5¤����
 p dg�,	�
�=%d��@j �1� �
t����5d���� ��=%��� �
�� � �&
��aj��WHI�
�dg� ��=#mR� �u=%�1<aj �����I< ���g�����u=`
�=�
��@HI=@��«ib�S_(5"K-R:5*K6g(W2FL�+76g(5SIL1+.-a¬�A
� A�� ��w�:5���1B A�A :9B�C1C��

:?:�)���§T�g;T�g§i��<���	 �1���!tY������n ����� ��� p dg�@	X
�=%dg�@j_=%�@H � �
�� � �&
��aj��WHI�
�dg� ��=�=%�g�@�@�,=%=
�aj��
�)jQ� �
���@<���¤���
������ �
�� � �&
���jQ�WHI�
�dg� ��= �1���!=%�@�@�1� �?��� ��� �ut����5d���� ��=%�1� �
�� � ��
���jQ�WHI�
�dg� ��=@�
«ib�S_(5"K-R:5*K6g(W2FL�+76g(5SIL1+.-a¬�A A���:.BXw9� :9v1C�A :9B1v9:��

:?: :��V�Y��§ ���,�@��	 �1��H�A p �GD �/A��1���?;T� � � p d��1����> ��� ��<a<��@< ���������_� ���@�@�������
�������� �?�@�1�1 `��� �&
����� � � �a�,�
 ��<��1� ���
�dgHI=@� �V$1SiZGb�+'(5"
 �6�]�:K-.*,:I�V$1SNSTb�0�-/*�L1+.-/$10�:�A�� A�� @1B��9��A?)�B�A :@B�C1B��
:?: @���EF��§ ���
������ �!;^�gfT�G� ��HI���e�?> ��� ��<�<a�,<o�����@�,��� � �
��a�1������� �1� � �1�������9¤ �aH �&
�� ����jQ� ��=%�@=����
�d��W�@�����g�@�
��a�1��H �1�Kd��������lxk�?tY�g����� �a���@�)jQ�@��A�fN����� �W�,
Q�@=@AGD��gtY��>o�
��@�1< �[A ��� �!fT�G�Y�

tu�@� �[Ag�����
�� ��=@A� uL1"`L�OROa(,Og �"`$9*K(5:K:�-R0XPiU@$1"W�G*,-|(50g+.- ��*l�V$�SiZGb�+.-R0XP��_M�$�Oa¦��QAg��� �1�@=
��:9B9���?@?A��
��x`�iEFA :@B�B+@X�

��� � �a��� �
�
�Q~ �[� �
:?:�A���EF�G;T�g§i�
 � ���@�Kd
9�!���@��HI��<a�
�� �
�d��@� �%
!�1m
�d��\�g��=`
�HIHI�

�����\D ���g�@�,��=������X�@�,=%= ��� ����@<���
�� � ��< ��� ���
�d�HI=@��> ���

uxK�F��J%�
2~}�$1b�"K0�L�Oq$�0?2FL1+."K-
�I�u0�L1O]1:�-R:\L10�8N�#Z�Z�O -/*�L1+.-/$10�:�A

:�A�� ��B?B��Xv A1B�A :9B1B+@��
:?:�B���EF�G;T�g§i�
 � ���@�Kd
9�!���@��HI��<a�
�� �
�d��@� �%
!�1m
�d��\�g��=`
�HIHI�

�����\D ���g�@�,��=������X�@�,=%= ��� ����@<���
�� � ��< ��� ���
�d�HI=@��> ���

ux%xK�F��J%�
2~}�$1b�"K0�L�O�$10�2FL1+."K-
�s�u0GL�O]1:�-R:WL10�8N�#Z�Z�O -/*�L1+.-/$10�:�A

:)����:9�9����C�A :@B�B?B��
:?:)�X�q���g; �1� � 	g�g=%�Kde��2�b�O +.- ���#"K-/8N24(5+76�$981:^L10G8s��ZQZ�O -.*KL�+.-/$10g:��c�����������1� ��nV� ��<�� ��Agri�'��¢�� � � A

:9B�C����
:?:9v��q���g; �1� � 	g�g=%�Kde��JK+'(5"`L1+.-RM1(^�G$�O b�+.-/$10F$`Uu©�L1".PX(\©�-R0�(%L1"W�g]�:�+'(5SN:^$`U�� �,b�L1+.-.$10g:��c�����������1� �

n�� ��<�����AGr
�'��¢�� � � A :@B�B B��
:?:)wX�V>q��tY�X; �1<�HI��=@� ��-R0g-R+'(� $W-7S_(50g:�-/$�0�L�O �g(%*,+|$1"\�1Z�LQ*K(5:K�!�����������1� �#nV� ��<�� ��A�ri�'� ¢���� � A :9B��1C��
:?:9C����[��; �1HIHI�1� � �1���!tY�����5d ������	�� �9�?� � � �a�,�
����@���I�1� �N=%d������ �!HI�@HI� �%
_HT�g<
��������X�@�@=%=%���9�

���@�Kdg����� ��<�tu�@��� �

uC1B�� @ B�A�tux`� p �[A�r\�i�����
HI�@= ���,=%� �����Kd��@�@�
�� �9AGE?�1�[�

i� ���@<�� p �Y��A
:9B�C1B��

:?:9B��V�
�G;
�@� � ���a� � =%��� �1���?t^��D��@<��1� �[�3�u� ��HI�����)jQ� �_=%���@�

� ��< ��� �1�gd!� �&�

��
����1������� ��<��1� ���
�dgH
mR� �
H �1���������^� �&� �1<�<��@<o�@�1HI�g�
 ��
�������=@�����,�5d������ �1<�tu�@��� �

i���urifWB @){ :�B�v)�Agh p { B)Q�XA
���1�������Nr ��
��������1<oD �1	���� ��
�� �����@=@A��
<�	g�g¡���� �K¡X�g��AQrWEFA :9B�B @��

:�@?)���EF�GtY��;
�@=�
��@���@=��1� �!���gDV�G�
����,m7�@<.�cE?�
�d�� ��=��1mq�,���1 k��� ��
���� � � �����@�
�=�mR� �
=%��<�j �����s< ���g�����
=`
�=�
��,HI=@�4}�$1b�"K0�L�Oo$`U
�u(5:,(%L1"%*K6�$`U\+76g(W«WL1+.-/$10GL�O[��b�"%(%L1b�$`UW�g+|L10G8QL1"`81:�A����@�
��a�1�3�
A
BQB�� B)�B)�+B+A1v�A :9B�� @��

:�@�:1� p �G; � ��=%�Kde�3«\b�SI(5"5-/*�L�OV�V$1SiZgb�+|L�+.-/$10F$`UiJK0g+'(5"K0�L�O�L10�8 � �1+'(5"K0�L1O���O�$ ��:������1dg�?� �a<��,
�1� ��������=@Agr
�'��¢�� � � A :9B�C1C��
:�@ @X�V�^�G�[��;i�1�g=%�@d���<���� �9� ¨e6g(%$1"K]?$kUi2cL1+."5-.*5(5:W-70?«\b�S_(5"K-/*�L�O��u0�L�O]�:�-R:��3��<�� ��=����@<�<o>��g	e� p ����A

����d��g=%����A p yTA :9B1v?B��
:�@?A��V�i������t^��;
����d��@=@A�t^�GEF�G��� ���@�g�,��A ��� �!���[yT��; ��<�<­¡X���a=�
9��D �&�����,{|=%� ��<a�^jQ�@�
�� �����@� ��aHI��< �a� �
u� ��<��@�g<���
����1�g=��a�?=%��< ����HI�@�5d��1���a�,=���� � p � �9
 �
{kE�> � B�Cs��
���< �a� �a���_�����

�����@�@�1� � �
����1�g� �?�,���1 k��� ��
���� � � �����@�
�=@� �V$1S
ZGb�+'(5"\24(5+76�$981:W-R0?��ZQZ�O -/(�8T24(%*K6�L�0g-/*,:^L10G8
��0XP1-R0[(�(5"K-R0�P1AGv9:�� @�:)�9��@ B�C�A :9B1CQw��

:�@ B�� �s�g; � �1�������u81M�L10G*K(�8��V$1SiZgb�+'(5"\�u"`*K6�-R+'(%*,+.b�"�(��-R+76I uL�"%L�OROa(,OG �"`$�P1"%L1STSN-R0XP1��E?�^§ � ���
; ��<�</Agri�'�z¢�� � � A :9B1B A��

:�@��X� �s�G��	���<a�1�e��> ���) `�@�
��a�1��H �a����H �a����
������!HI�
�dg� ��=#mR� �u�����g=`
�HIHI�

�����
<������ ���u=`
�=�
��@HI=@�?����1�g�������9A�D ���g� �&�i�u< ���@	 � � �1��� �
�=u�
�g��< �a����
�������=@�
:�@1v�� �s�G��	���<a�1� �1���?;T�g� � ��� � ���u� �1<�
�=
��=��1mq=%�1HI�WjQ�@�
������,¤

� �1����<��&
��a�1�3HI�
�dg� ��=#mR���
=%�1<�j �����

=`
�=�
��,HI=��1m�< ���g� �&�
�@¡�����
�������=@�c«ib�S_(5"K-R:5*K6g(W2FL1+76�(5SIL1+.-­¬�Ag� �����@=
w?A9��C1B�A :@B�BQ�X�
:�@�wX� �s� p �g��� � ��� �!fT��EF��¢��1�g������§i�@�g� � ��< �a�,� ���@���� `��� ��
������ � �����@�
 �1�,�@�@<�� � ��
����1�3�1m

�g����=`
�HIHI�

����� �1	�<a� �
�� � ��
���jQ�YHI�
�d�� ��=@�?©�-R0�(%L1"i�
O PX(@ª,"%L!L10�8I-R+.:
��ZQZ�O -/*�L1+.-.$10g:�A
A?B���:9�1B)� :9B B�A :9B1C)��

:�@1C�� p �����1dg�g=%�1�e��«\b�S_(5"K-/*�L�O[��$�O b�+.-/$�0g:^$`Uu �L1"5+.-.L�O�$\- ,i(5"%(50g+.-/L1O ���,b�L1+.-/$10�:^ª,]I+76g(!��-R0�-R+'(
��Oa(5SI(50g+V2F(5+76�$981� p ��HN	������ ���Whi����jQ� ��=
�
k
l> ���@=%=@A p ��HN	 ��� � ����A�h �sA :@B�CQwX�

:�@1B���yT��§T�g����d��g=%�1�eA p �g�^�gE ���@�Kdg�@<�< �.A �1����§T�G> �1�g<.��>o��<�
��g��H ����<e� ���@�@�������
��������a����=�mR���
�@���� `��� ��
���� � � �����@�
u� �1<��@��<���
�������=@� ��J%�u2~}�$1b�"50GL�Oq$10?«ib�S_(5"K-/*�L�O[�u0GL�O]1:�-R:�A @?)�� A1v+@9��AQw�v�A
:9B�C?A��

�[�a� ��� � �a��� �
�
�Q~

:�A)������ �����@�@H �&�����3�u�����,� (�1d�� �

�������� (�1=%�g���sjQ���!=`
�=�
��@HI�@�l<������ ����� � ��<������Kd��g���1�@�e����b�OROa(5+.-R0
-70g+'(5"K0�L1+.-/$�0�L�Oq8Q(^O�� ��*KL�8 �(5SN-|(#Z�$�O�$10GL1-R:,(N8X(5:i��*,-|(50G*5(5:T(5+q©o(5+.+."�(5:�A���� �1�@= A����@��AQ�1w�A :@B AQwX�

:�A9:�� p � ���1H �&
�d ��� ���Y�G� �1HI�@d����������) `�@�
��a�1�3HI�
�dg� �ImR���i=%�1<�j �����s�g�1�g=`
�HIHI�

�����i< ���g� �&�
=`
�=�
��@HI=��1��HN��<
��a� ���X�@�@=%=%����=@�c uL�"%L�OROa(,O��V$1S
ZGb�+.-R0�P1AgB�� @1B�:5��A9: @XA :9B�C1C��

:�A+@���tY�GEF� ���&���e��tu� ���g����	���< �
k
 �1HI�1���T�@��HT	���� �&
�� �����1<������1	g<��@HI=@�!xk���V$�SiZ�Oa(�1-R+.]l$kU
�V$�SiZGb�+'(5"_�V$1SiZgb�+|L�+.-/$10g:�A���� �1�@=uCQ�9� :�) B���>�<a�,����H > ���@=%=@AGr
�'�z¢���� � A :@BQw @X�

:�A A��V�i�gx5� ��������=%deA�rT� �s�gE � ��=%�,�eA ��� �?§T�g;^�gtu� � ��� ��������E �&

����¤?HT�g<
����g< ��� ��
������?	�
� ��� ���1� ��<a=
����j��@�
�� ���)� �&� �1<�<��@<�� ���X�@�@=%=%� ��=@�c�e�@�5d������ ��<etu�@��� �

�h p hifNAgD ��� ���@���@�
D ��jQ� ��HI� ���Wr ��
��������1<eD ��	e��AGD ��jQ� ��HI� ���1A p �YA :@BQw��X�

:�A?B���fT����� �W� ��=%d����W�3�#dg�������@��HI��<a�
�� p dg�1<a�,= � �e�@���� `��� ��
������ � � �a�,�
uHI�
�d�� �lm7� �
�dg��
�� � �&
���jQ�W=%��<���
����1�3�1mq=`
�=�
��@HI=���mq< �a��� ���u�9¡X����
�������=@� }�$1b�"K0�L�O�$`Us�V$1SiZGb�+|L1+.-.$10�L�OG �6X]1:�-/*,:�A
@�v�� B+A9��v���A :9B�w1C��

:�AQ����fT�G��� �W�5
X�@=��1���l����fN�g§ �������e�3���@��HI��������=%���?�1m ����H � ��� ���@�@�1HI����=
�
������
��,�5d����a¡X�g�@=
m7� �
�@<�< �a�
����^�����

����1< �����[� ���,�
�����<��9¡X� �&
������g= ��� �
�d���� ��� �&� �1<�<��@< ��HI�g<��@HI�@�
 �&
��a�1�e����J%�u2
}�$�b�"K0�L1Oq$10���*,-|(50�+.- ��*TL10�8I�g+|L�+.-R:�+.-/*�L�O��V$1S
ZGb�+.-R0�P1AgC � @?�5� =�:@v�v9�X=�@?) @�A :9B1CQwX�

:�A�v���fT�G��� �W�5
X�@=@A�¢N�g��� � ��A��1���?fN�g§T��� ���gdg<��&�9� Y1SIL1-70 �R�
L1:,(%8s �L1"%L�O7Oa(,O -R:�S�L10�8T �"`$Qª@Oa(5S
$^(%*K$�SiZ�$1:�-R+.-/$�0�24(5+76�$981:W-R0 �V$1S
ZGb�+|L1+.-/$10GL�O���*,-/(50�*K(TL10G8%�#0�P1-70[(�(5"5-70�P1�c��x`�\EFA
>�d���<�� ���@<��gd�� ��A[>[�^A :9B1BQ�X� � p ����mR� ���@���@�Y�����X�@�,� �������1=��5�

:�AQw��VD���¢��e� �W�1<a��
���<������ ��� �!�^��¢�����¢�� ���,H �a���?yi� �Tm �1H ��<�
?��m
*���1{|<��@jQ�@<������@�,��� � �
��a�1�������1=
��m
�d������g�@�1HI�g<��
��\	�<a�X� � m��1�
�� ����� ��
����1�
'
���������$1M9-|(5+#}�$1b�"50GL�Oo$`U
«ib�S_(5"K-/*�L�O[�u0GL�O]1:�-R:WL10�8
2cL1+76g(5SIL�+.-/*�L�O�2F$98X(,O -70�P1A :�� @1B?A)��A @?)�A :9B�C1v��

:�A�C���EF�G�^� � � �1=%����=%�@<�= � � �o�
���</�c�#ZQZg"%$��1-RSsL1+'(^�G$�O b�+.-/$10g:W$`Us�oZ�(5"%L1+|$�" ���,b�L1+.-/$10�:K�
�4��<
�� ��=`{|ri��� ��d��1�qAG§ �������������@��A :9B�w @X�

:�A�B���n^� �W��H ���9A��^�g§ � ��H ��Ag�^�G§i�g��
 ��A ��� �?§T� ������
 ����=@�� uL1"`L�OROa(,OV�V$1SiZGb�+.-R0XP1�3���,�1
��H ���p ��HIH ������=@A�tu� � ���X� � p �
k
XA p �^A :9B1B?B��
:.B+)�� p �GD ���g�@�@�1=@�3�u� �
�� � ��
����1�3HI�
�dg� �ImR���
�d��\=%��<���
����1�3�1m
�d��\��� ���@��j �1<��g�W� ����	�<a�,H �1m

< ���g����� �����[� ���@�
����1< �1��� ���
���� � ��<������ � ��
�� ��=@� }�$1b�"50GL�Oo$`Ui��(5:@(%L1"`*K6c$`U\+76g(\«YL1+.-.$10�L�O
��b�"%(%L1bc$`U\�g+|L10G8QL1"`81:�A BX��� @1���9��@1C @�A :9B��?)��

:.B :�� p �GD ���g�@�@�1=@� p d��@	X
�=%d��@j_����<�
��g�1H � ��<�=����
�d��\=%��<��
��a�1���1m�<��&�����,{|=%� ��<a�^< ���g� �&�
=`
�=�
��@HI=@�
x'�3 #"%$9*K(�(%81-R0�P1:T$`U\+76g(\�^��2�A�� � �1�@= : @ B)��:�A A�A :@BQ�?@��

:.B�@�� p �GD ���g�@�@�1=@������<���
������?�1m�=`
�=�
��@HI=��1mo<������ ���
�9¡X� �&
��a�1�g=�	X
_H ������H ���@� � �
�� � �&
������g=@�
}�$�b�"K0�L1Oq$`U
�u(5:,(%L1"`*K6F$`U\+76g(\«WL1+.-/$�0�L�O���b�"�(%L1bc$`U\�g+|L�0�8QL1"`81:�A BQB�� A A)���?A�A :9BQ�?@��

:.B+A��V>o�gDe�9� �1<�<��@���3f\�1H � ��� ���@�@�1HI����=
�
�������HI�
�d�� ��= �����@�1HI�g�
 ��
��������1<[HI�@�Kd �1�����@=@�
�V$�SiZGb�+|L1+.-/$�0�L�O�2F(�*K6�L10g-/*,:u�u81M�L10G*K(5:KA :+� @ �5��:�@�:5��@ @)�A :9B1B?B��

:.B B���tY�gDe�@���@����x'� ���@���@� ���@�
#=%�
u��� ��� �������1=um7� �u� �&� �1<�<��@<�H �&

����¤lm �1�
�������� ��
�������=i	X
?§ �1��=%=
� ���
�,<���H ��� �&
������e�3 uL�"%L�OROa(,OV�V$1SiZgb�+.-70�P1A :�)���:9w�w9� :9B�:�A :9B1C�B��

:.BX���V���[§T�gDe�'� ��=@A��u�g����>o�,

�����A ��� �!�^�g>o�
�dg�,�e�?��m���=�
 ��< ��� ���
�d�H�m7� �����@� � ��� �������s=%������=%�
H �&

�����@�@=�mR���i����� �1<�<��@<�m��1�
�� ����� ��
����1�g=@� ��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*NL�0�8I�g+|L1+.-R:�+.-/*�L�O
�V$�SiZGb�+.-R0XP1A�v���:?:�BQv9��:?:)w?A�A :9B�C1B��

:.BQv��V���[§T�gDe�'� ��= �1� �l;T��fN�g� ��HI�������#d�����HI� �1�
��1mqd���� � � �����W=%� �&

�� �%{ � �&
�dg� �
����=%������=%�
§ ���g=%=
���1�3�,<���H ��� �&
������e�F��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A
B�� A)?B)��A�: :�A :@B�C�C��

��� � �a��� �
�
�Q~ �[�a�
:.BXwX���[�GE ���� �L1"`L�OROa(,Oeª@O�$9*K¬YZG"�(%*�$10G81-R+.-/$10�(%8��Y"K]�O�$�Ms:�bgª,:/Z�LQ*K(^SI(5+76�$981:VU@$�"
 uL1"K+.-/L�O

$W- ,
(5"�(50�+.-/L�O-���,b�L1+.-/$10�:���>Vd�� fN��
�d��@=
��=@Agfi�@� �&�

�HI�@�
��1m p �1HI�g��
�� �
�������@���@��A
E �a���g� ������< ��=@A�E?rTA :9B1B A��

:.BQC��V�i���^�gE ���
��,���[�@<.�3�u� ���g�,��HI�g<��
��
m��1�
�� ����� ��
����1�
��,�5d����a¡X�g�im7� �u����=
�
���jQ�������G���
��W< ���g� �&�
=`
�=�
��,HI=@��2FL�+76g(5SIL1+.-.*,:^$`Us�V$1SiZGb�+|L1+.-.$10g:�A A B�� BXw A)��B�BQwXA :@B�C?)��

:.BQB��V�����Y�GE?� � k� ����� � �1� �l;T�g�^��j �1� ��� �un�����=�
9���u� �
�� � �&
��aj��W=%��<���
������?HI�
�dg� �_mR� �u< ���g� �&�
=`
�=�
��,HI=��1m ��d����Kd
�d��W�@�X� � �����@�
uH ��

����¤ ��=��N=`
�HIHI�

�����WE!{|H ��

����¤[��2cL1+76g(5SIL�+.-/*,:^$`U
�V$1SiZGb�+|L1+.-.$10g:�A A�:+��:�A�w �5��:�B�C)� :9v+@XA�:@BQw1w��

:9�?)���§T�GD���E ��<�<�� �9A��[��;^�G���,����A����g�#d�����=�
�����A ��� �?�[�g�^��n �9j �1=
��=@�3�u��
��1H ��
����\HI�@=%d
� ���

��
���������������xk���Y�g§i�@� ���1��A[���G§ ��<a	�� �

9A �1���?���gD ����Ag� � �
�� ��=@A��1Z�L1"K:@(\2FL1+."K-
�
�V$1SiZGb�+|L1+.-.$10g:�����"%L5Z�6 ¨e6g(%$1"K]NJK:K:�bg(5:^L10G8s�
O PQ$1"K-R+76�ST:�A :9B1B A��3x%E���n��1<a��HI�@= ���
E ��
�dg�,H ��
����@=��1���?x
�=��u�g�g< ��� �&
��a�1�g=@�

:9��:1��rT�GE?�g� � =
� � ��� �[������<�j �a���s=%� �&��=%�W=`
�HIHI�

�����i=%�
�=��1m�< ���g�����u�9¡X� �&
��a�1�g=�	X

�����@�@�1� � �
����1�g� �?�,���1 k��� ��
���� � � �����@�
uHI�
�dg� �[�3�^��2 ¨g"`L10g:5LQ*,+.-.$10g:T$10�2FL1+76�(5SIL1+.-/*�L�O
��$`U5+���L1"%(5A�v�� @)�v9�9@�:@B�A :9B1C)��

:9� @X��rT�gEF�gr �1�Kd
���� �1<.�c� O�9)¬��kL96g(%LQ8!M�L1"K-/L10�+�$`U\+76g(
©�L10�* �9$1:i�
O PQ$�"5-R+76XS�L10�8I-R+.:YL5Z�Z�O -/*�L1+.-/$10
+|$_+76g(_¥#b�L1:�- �.23-R0g-RSsL�Og�u(5:�-/8�bgL1OeS_(5+76�$98iU@$1"i0�$10 �.£Y(5"5ST-R+.-/L10FO -R0�(�L�"\:�]1:�+'(5SN:��c>�de� fN�
�dg�@=
��=@A��u�g��<���� �?E ��
�d��@H ��
����@=@A p �1HT	��������1��A :@B�B�:��

:9�?A��V���gy �

���� ���?� � �����@�
 ��HI�g<��@HI�,�
 �&
������_�1m��@� �

 � ��� �
�� � ��
���jQ�\HI�
�d�� ��=@����J%�
2 }�$�b�"K0�L1O�$10
��*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1SiZgb�+.-70�P1A�B�� C�C+@@��C1B9:�A :@B�C1C��

:9� B��V���[y �

���� ���3y � ��� �������1=�mR� �u�@�1�1 k��� �&
���� � � � ���@�

� ���@�@�1� ���
�������������=@�F��J%�u2~}�$1b�"50GL�Oq$10
��*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1SiZgb�+.-70�P1A :�@�� �1v��9���1C+@XA :9B�B�:��

:9���X�V���[EF�Gy �

���� ���cJK0�+."%$981b�*,+.-/$10c+|$s �L1"`L�OROa(,OeL10�8��g(�*,+|$�"^�G$�O b�+.-/$10F$`Uu©�-70[(%L1"W�g]�:�+'(5SN:��
>V<��@���gH�> ���@=%=@Agri�'�z¢�� � � A :9B�C1C��

:9�1v��V���[EF�Gy �

���� � �1� �lt^�G§T��n�� ����
9������<���
������?�1mq�����

����1< �����[� ���@�
����1<��9¡X� �&
��a�1�g=����?jQ�@�
�����1� �!� ��� ��<�<a�,<��@�1HI�g��
�� ��=@�F��J%�
2 ��(5M9-|(��A @1w���:�B�B)�9@ B+)�A :@B�C����
:9��wX��yT��yi=�
�� ��	X
 �1��� � � � <���
��@j�� $W-R"%(�*,+�24(5+76�$981:VU,$1"W��Z�L1"K:,(W2FL1+."K-/*K(5:��������������1� �un�� ��<�����A

ri�'�z¢�� � � A :9B�C?A��
:9�1C�� p � p �g> � � ����� p ��HI�g�
 ��
��������1<�j �&�����1�
�=��1m
�d��WD ���g�@�@�1=
HI�
�dg� �lm7� �
�dg�i��� ���@��������	�<��@H��

}�$1b�"50GL�Oq$`U\+76g(iJK0g:�+.-R+.b�+'(N$`U
2FL1+76�(5SIL1+.-/*,:^L�0�8I-R+.:
��ZQZ�O -/*�L1+.-/$�0g:�A :�)�� AQw A)��A1C9:1A :@BQw?@��
:9�1B�� p � p �g> � � ��� �1����EF�G�^�g�����g� ��� ��=@������<��
��a�1���1m�=%������=%����� ���'�G���
��\=`
�=�
��@HI=��1m�< ���g� �&�

�9¡X� ��
����1�g=@�4��J%�
2~}�$1b�"K0�L�O�$10�«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A :�@�� v9:9w9�Xv+@ B�A :9BQw1���
:@v)��V�
�Gr^�g> �&��<��

9� ¨e6g(W�g]�SNSI(5+."5-/* ��-�PX(50gM�L�O bg(\ #"%$Qª@Oa(5ST�3> ���@�
����@�W; ��<a<.Ag�V����<��'���X� �p <����[=@A :9B�C?)��
:@v9:1�V�
�Gr^�g> �&��<��

9AGfN��tY�G� �9
�<�� �9A��1��� � �����gD ���e�3��<��X� � { �1dg��� ��D �1�g�,�@��= �1< �������
�dgH mR���

�g����=`
�HIHI�

�����iH ��

�����@�,=@�c2FL1+76�(5SIL1+.-/*,:^$kUI�V$�SiZGb�+|L1+.-/$�0gA�B?B���:�)��9� : @ B�A :9B�C����
:@v+@X��fN�G>o���1�@�@H ��� ��� �?;^��t �1�Kd�m7� � �[�3�#dg�W����HI� ����� �1<[=%��<��
��a�1�3�1mq�,<a< ����
���� �1���!����� �1	��1< �a������[� ���@�
����1<��9¡X� �&
��a�1�g=@�4}�$1b�"50GL�Oq$`U\��J%�u2�A A�� @�C)��B9:�A :@BQ���X�
:@v A����[�g> ��=%=��1���
�� �
X�c��Z�L1"K:,(W2FL1+."K-
�F¨[(%*K6�0G$�O�$�P1]����
� � ���@H ���W> ���@=%=@Agri�'�z¢�� � � A :9B�C B��
:@v?B��V���gD >o�X��<�� �1���?����EF��y �

�� � ���3E?�g<
����@��<����\x p�p §�HI�
�d�� ��=#m7� �
jQ�@�
������@��HI����
�� ��=@�

��J%�u2 }�$�b�"K0�L1Oq$10?«ib�SI(5"5-.*KL1O[�u0�L1O]1:�-R:�A�@ B���:�A�B?B)��:.B :9C�A�:@B�C�w��

�[� � ��� � �a��� �
�
�Q~

:@vQ���V�Y�G>o��
�dg�@��Ag;^��fN��� ��HI���eA���� �#�s�g>o�GD �����e��> ���

��
��������a���I=%� �&��=%�WH ��

�����@�@=�� �
�d
� ���1�@��jQ�@�
�����=
��m � � ���gd�=@�4��J%�u2~}�$1b�"50GL�Oq$10?2cL1+."5- �I�u0�L�O]�:�-R:WL�0�8N�#ZQZGO -/*�L1+.-/$10�:KA
:?:�� B+A?))�+BX� @XA :9B�B?)��

:@v�v��V���[�[��> ���@�@H ���@���a�,� � �.��E �&

����¤!=�

���g�
���� �1< �1���1<�
�=
��=
��mq=%�g	�=�

���g�
�� ���@=@�c�uSI¦[JK0g:�+'¦��u(5"%$X¦
�i:�+."%$X¦�}�¦aA :���:�A1C)��:.BXwXA :9B�v?A��

:@vQw��V��� �s��t
� � �[��yi�
�dg�\HI�
�d�� �l��m��@���� `��� ��
������ � �����@�
�=�mR���
�dg�W=%��<��
��a�1���1m�<��&�����Y=%� �&��=%�
=`
�=�
��@HI=���m�< �a��� ���u�9¡X����
�������=@��xk�?��� �s��tu������A�� ���
����9A�©�L�"/PX(^�1Z�L1"5:,(^��(5+.:^$`Uu©�-R0�(%L1"
���,b�L1+.-/$10�:�A�� �����@= @?A�:5��@�� B����
� � ���@H ���W> ���@=%=@A :9BQw�:��

:@v�C��V�i�G����t ��j�< �a��� ¨e6�(_��6g(@ª,]�:`6g(5MT u$1O]10G$1SN-/L1O : �XU5"`$1S ��ZQZG"%$��1-RSIL1+.-.$10 ¨e6�(�$�"5]I+|$N�
O PX(@ª,"%L
L�0�8N«\b�SIªK(5"l¨e6g(%$1"K]1�3����� �a<��,
 �1���������g=@A�ri����¢�� � � A :9B1B)��

:@v�B��V��� �^��t
�1��¤[�_�
�,�@�@<�� � ��
����1�?�1m
�dg�
����
�� ���@���� `��� ��
������ � � �a�,�
#	�
 ���,� �

�dg� ���1� �1< ��� �&
��a�1��mR���� ����H ����� ���,�@��HI���1=
�
����1�3HI�
�dg� �ImR���
=�

�����
���� ��< ��� ��<�
�=
��=u������	�<��@HI=@�?x'�����1�X
 p d��1���� �?tu��<���� ��§i<���� ���g= � �.A�� � �
�����=@A� #"%$9*K(�(%81-R0XP1:N$kUW+76�(!¨e6�-R"`8NJK0�+'(5"50GL1+.-/$10GL�O���]1S
Z�$1:�-Rb�S
$�0�$Y$1SIL�-R0"$T(%*�$1SiZ�$�:K-7+.-/$10324(5+76�$981:��V£W$1b�:�+|$1032FL1"%*K6?� ���/�Q�3�����X�1�G��xk�\EFA
>�d���<�� ���@<��gd�� ��A[>[�^A :9B1B)��

:9w?)��V�Y�gtu�gd����lxkHI��<a�,HI�@�
 ��
������ �1=%���@�
�=
��mq	 ��� �?D �1���@�@��= �1< �1� ���
�dgHI=�mR���i�,��HI�g�
 ��
������!�1m
� ���1�@��j ��<��g�@=u�1mq<��&�����Y=%� �&��=%�^=`
�HIHI�

�����uH ��

�����@�@=@��2FL1+76g(5SsL1+.-/*,:^$`Us�V$1S
ZGb�+|L1+.-/$10�:�A
A?A�� v�C?))�Xv�CQwXA :9BQw�B��

:9w�:���;^�gtu��
���=%d��1�g=%� �9���#d��@� �%
!�1m ��� � �����@�
uHI�
�d�� ��=@�lxk�3�u(R��0[(%8IJK+'(5"`L1+.-RM1(W24(5+76�$981:VU@$1"
�V$�SiZGb�+|L1+.-/$�0 $`U\+76g(Y��$�O b�+.-/$10FL10G8_+76�(�#-aPX(50gM�L�O bg(5:^$`U\��(,O U �.��8k&9$1-70g+q�
$1b�0�8QL�"5] ��L�O bg(
 #"%$�ª@Oa(5SN:�AG��� ���,=0@ B���B�B���x'�g=�
��
���
��i�1m��u�g�g< ��� �?E ��
�dg�,H ��
����@=@A � �������KdeA�� � � � d (���g=%� �
nV� ��<�� ��A�� ��=%�@<�{k�
���

�� ���

9A :9BQ��B��

:9w @��q¢T��� � � ��� � �%
�<��)j_=%�g	g=%���1�@�iHI�
�dg� ��=#mR� �
=%��<�j �����s<��&�����Y�g��=`
�HIHI�

���a�u< ���g� �&�i=`
�=�
��@HI=@�
2cL1+76g(5SIL�+.-/*,:^$`UI�V$1SiZGb�+|L1+.-.$10gA�AQw���:�)Q�9� : @�v�A :9B1C9:��

:9w?A��q¢T��� � � ���3�#d��WD ���g�@�,��=u	���� �

�d�� ���1� ��<���� �&
������ �1< �������
�dgH �1���?�
�d�� ����	�<��a¡X�g�W� ���� k�@�
������
HI�
�dg� ��=#m7� �
=%��<�j �����s<������1�Y�g�g=`
�HIHI�

�����u=`
�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�Oo$10?«\b�SI(5"5-/*�L�O
�u0GL�O]�:K-7:KA :9B�� BQw?)9��BQC B�A :9B1C+@X�

:9w B��q¢T��� � � ����x
�� � ��
���jQ�i=%��<���
������3��m ��� ���'�G���
��i=`
�HIHI�

���a�
=`
�=�
��@HI=�	X
!HI�
�dg� ��=���=
�����
���

�dg� �������1<o���1<�
�����H ���1<�=��)jQ� �
 �#� � �a=R k� ���
 ���
�� ��j �1<�=@�c��J%�u2 }�$�b�"K0�L1Oq$10?«ib�SI(5"5-.*KL1O
�u0GL�O]�:K-7:KA @?)�� w�C?B)��C9:?:�A :9B1C A��

:9w����q¢T��� � � ���3> � �1�
��a���1<���=%�W�1mq���1<�
�����H ���1<������,�@�������
�������������=�mR� �
�d��\�@���� `��� ��
������ � �����@�

HI�
�dg� ���c��J%�u2~}�$1b�"50GL�Oo$�0c�G*,-|(50g+.- ��*NL�0�8I�g+|L1+.-R:�+.-/*�L�O��V$1SiZGb�+.-R0XP1AGv�� C�vQ�@��C1C9:�A :@B�CQ�X�

:9w1v��q¢T��� � � ���3D�� �1=�
u=�¡X� �&���@=�����<�
��g�1H � ��<�=����
�d��\�@�1HI�g<��,¤l�g<��1�����1���
�dg� � ����=%�\mR���i=%�1<aj �����
=%������=%�Y�g�1�g=`
�HIHI�

�����i< ���g�����u=`
�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10�«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A
@ B���:)�1�9� :9v�B�A :9B�C�w��

:9w�w��q¢T��� � � ����yi�
�dg�\D �1���@�@�1=
HI�
�d�� �_m7� �u=%��<�j �����I=`
�HIHI�

�����i< ���g�����u=`
�=�
��@HI= � �
�d�=%�@jQ� � ��<��� �1d
%{|d��1� �l=
�����@=@��2FL1+76g(5SsL1+.-/*,:^$`UI�V$1SiZgb�+|L�+.-/$10g:�A BQC�� v���:5�Xv�v @�A :9B1CQw��
:9w1C��q¢T��� � � ��� � �%
�<��)j_=%�g	g=%���1�@�iHI�
�dg� ��=�����=%����� ���@��HI����
�� ��=@�c��J%�u2~}�$1b�"50GL�Oo$�0

�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�OV�V$1SiZGb�+.-R0XP1A :�)���: @)))� : @ A+@�A :9B1C�B��
:9w1B��q¢T��� � � ������>[�
ti� �Wx`�i����	 ��=
�a�
��X�1< � �
�mR���i=%������=%�WH ��

����¤l�@�1HI�g��
 �&
������g=@�?���@�Kdg����� �1<

tu�@�����

iB?)�{1@?)�AGtu�@=%� �&���5d�x'�g=�
��
���
��
mR� �
� ��j �1�g�,� � p �1HI�g�
�� �
�������@���@��A�r\�i�����
HI�@=
tu�@=%� �&���5d p �@�
�� �9A�E?���[�
i� �a�,< �[A p �YA :@B�B?)��

:@C)��q¢T��� � � ���c«ib�S_(5"K-/*�L�OG24(5+76�$981:VU@$�"
©�L1"/PX(��-aPX(50�M�L�O bg(i #"%$Qª@Oa(5ST:���; ��<�=�
�� � �3> ���@=%=@AGr
�'�
¢�� � � A :9B1B+@��

��� � �a��� �
�
�Q~ �[�t�
:@C9:1�q¢N�G��� � ���?� �G�5¤���	�<a� �a���g� �%{|�1��
�� ��� ���@�@�������
�������� �3§WE?t
��� ��< ��� ���
�d�H��4��J%�u2 }�$1b�"K0�L�O

$10���*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1SiZgb�+.-70�P1A :.B�� BQv�:5�+BQv�B�A :9B1B A��
:@C+@X�q¢N�G��� � ���!; � ��d�<�
?����� �1<�<��@<e�����@�@�1� � �
����1�g� ��=�mR��� �1�@�g� � �1<�=%������=%�WH �&

���a�,�@=@��x'�3§T�G§i��<��g	�A

EF��De��= � �a��A��1� �!�^�G§ ���@�@��	 ���gH�A�� � �
�����=@A[��(%*K(50g+���81M�L10�*K(5:Y-R0?JK+'(5"`L1+.-RM1(W24(5+76�$981:���J%2��
�g$1O b�SI(5:\-R0?2FL�+76g(5SIL1+.-.*,:^L10�8NJK+.:
��ZQZ�O -/*�L1+.-/$�0g:�AGjQ�1<��gHI�\v?)�Ag� � �1�@= :9vQ�@��:@B�B��[������������� �
n�� ��<�����AGr
�'��¢�� � � A :@B�B B��

:@C A��q¢N�G��� � ���!x`D�h\�i��� �����1<
�d����@=%d���<�� ���g�,��HI�g<��
��WxkDeh�m��1�
�� ����� ��
����1�e�4«ib�SI(5"5-.*KL1OG©q-R0[(%L1"
�
O PX(@ª,"%L ��-R+76_��ZQZ�O -/*�L1+.-.$10g:�A :1� A�CQw@��B)+@�A :@B�B?B��

:@C?B��q¢N�G��� � ���?�
���1<�
�=
�a=���m �1���1HI�@�
�� � � �%
�<��)j_=%�g	�=%� �1�,�
��@�5d����a¡X�g�@=@�c��J%�u2~}�$1b�"50GL�Oo$�0
2FL1+."K-
�s�u0GL�O]1:�-R:WL10�8N�#Z�Z�O -/*�L1+.-/$10�:�A :9C�� B+AQ�@��B?BQB�A :@B�BQwX�

:@CQ�X�q¢N�G��� � � ��� �3EF��;T�G���Kd��g<
����?§WE?ti���[��� �1�@�g� � ��< �a�,� ��H ������H �1< ���@=
�������1< �1< �������
�d�H mR� �
=%��<�j �a���I�g�1�g=`
�HIHI�

�����
< ���g�����
=`
�=�
��,HI=@�F��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O
�V$1SiZGb�+.-R0XP1A[wX� C��1v9��C�v1B�A :@B�C�v��

:@C�v��q¢N�G��� � � ��� �3EF��;T�G���Kd��g<
����!> ��� ��<a<��@< �aHI��<��@HI�@�
 ��
�������=��1mq� ���@�@�1� ���
�������� �?�@�1�1 k��� �&
��� � � � ���@�

HI�
�dg� ��=@�!xk�l���g���g� �
���� ��	g	��1�eAg� ���
�� �9A�2FL1+76�(5SIL1+.-/*�L�O�L10�83�V$1S
ZGb�+|L1+.-/$10GL�O
24(5+76�$981:W-R03��(5-R:�SN-/* � �5ZGO�$1"%L1+.-.$10FL10�8N�u(5:,(5"KM�$1-R"W2F$98X(,O -R0XP1����x`�iEFAg>�d���<�� ���@<��gd�� ��A�>[�^A
:9B�C1v��

:@CQwX�q¢N�G��� � � ��� �"�s��� ���?f �W§WE?ti���[��� ��� ���@�
u¡����1=
��{|H ������H �1< ���@=
�������1< �1< �������
�dgH�	 ��=%� �
��� ���g�,��HI�g<��
��i� �

�dg� ���1� �1< ��� �&
��a�1�e�4«ib�S_(5"K-/*�L�O�©q-R0[(%L1"i�
O PX(@ª,"`L ��-R+76_�#Z�Z�O -/*�L1+.-/$10�:�A
A�� A+@�B)��A B+A�A :@B�B1v��

:@C�C���;T�G��� ��� � �32 �(5+76�$98X(5:^8X(�ZG"%$'&)(%*,+.-/$10lZ�$1b�"YOa(5:\:�]1:�+��(5S_(5:^O -R0 �(@L1-R"%(5:Y(5+#0G$10cO -R0 �(@L1-7"�(5:��
>Vd�� fT��
�d��@=
��=@AGhi����jQ� ��=
�
k
_��mVD ��<�<a��:1A�D �a<�<���AG��� �1���@��A :9B�C�:��

:@C�B��V���[� �1<
���A�t^�gE � ���5d��1�����1���,
XA��1� ���s� p ������<��,
X�?t
����{
���HI�i� �&� �1<��@<�< ��� ��
������ ��� �
=%�5d�� ����<������s�1mq<��X�1�g=@�FJ � � ��¨g"%L10�:5LQ*,+.-/$10�:N$�0��V$�SiZGb�+'(5"K:KA B+)�� v?) A9��v9:�@�A :9B1B9:1�

:@B)��V���G;^�G� �1<
������
��
��1H ��
�� �_�����1	g<��@H =%�Kdg� ���g< ����� ��� � ��� �����
���������mq=`
��g�Kd���������� ��
������ ���@<��@

�,�[�@�
�=@�����@�Kdg����� ��<�tu�@��� �

uC�w){1@ @XAGx p �\����A�; �1HI�
�����A�nq�^A :9B1CQw��

:@B9:1�q���g���Kdg�����1��� �9�!�#dg�\� � �����@�
�=%��<���
������?�1mo<��&�����W< ���g� �&�
=`
�=�
��@HI=@A ���@=%��<
��a���Tm ����H
�dg�um���H
mR� � A�{ �!>VfW��
 =@AG�1�?jQ�@�
�� �u�@��HI����
�� ��=@�!xk�?> ���X�,�@� ��������=u�1m
�d���:,{|=�
�xk�
�� ������
��������1<
�@��<�<���¡X�����gH����!jQ�@�
���� �1� �l� �&� �1<�<��@<o�@�1HI�g��
������ �����������@�
�� �g���1���g< ��� ��
����1�g=�{#> �&���a=
E �����Kd5:9B1C A�A :9B�C?A��

:@B+@X�q�������5d (�����1�g� �9�F�G*,-|(50g+.- ��*l�V$1S
ZGb�+.-R0�P!$10 �g(�*,+|$�"!�V$1S
ZGb�+'(5"5:��3r
� �

�d�{';
��<�<��1����A�ri�'�
¢���� � A :@B�CQwX�

:@B A���;T�g�^�g���Kd � �����1� �u(5:5L1STS_(,O +'(W2FL�+76g(5SIL1+.-7:,*K6�(W�YªK6�L10�8�O b�0XPX(50gA�j���<��gHI�0@�A�� � �1�@=
:�A A9��:.B+A��4�����������1� ��n�� ��< ����AG��� ��< ���eAG§i� ��H �1�X
"�T;i� � ���@<�	�� ����AG§i� ��H ����
"�ND�����������A
h � �T�
��1�aA :9C1B)��3� � ��=�
u���g	g< ��=%dg��� ����n ��� �

��,< ��1d ��=%=%�5d ����m
 ��� �ur �&
����%mR����=%�5d��@� ���@�
§i�@=%�@<�<�=%�5d���m
 ��� � (�������5d�Agj���<��gHI� :9��A :9C�w?)�AG�g�e� @1w @9��@1C1v��

:@B?B��V������d � � ��	e� ��-R0�-R+'(N(,Oa(5SI(50g+�L�0�L�O]�:�-R:Y$`U\+76g(^*K$�SiZG"%(5:K:�-/ª@Oa(�#b�Oa(5"YL10G8s«WL1M9-|(5"W��+|$)¬Q(5:
� �,b�L1+.-/$�0g:���>�de� fN�
�dg�@=
��=@AGfi�@� �&�

�HI�@�
#�1mV�u� �������1�
��a�,=@A��
 �1��m7� � �[A p �YA :@B�C�B��

:@BQ�X�V�^�G� �����.�?��¤

� �1���1<���
������3j�=@�������) `�@�
����1�3HI�
�dg� ��=#mR� �u< ���g� �&�i=`
�=�
��@HI=���mq�9¡X� �&
������g=@�
}�$1b�"50GL�Oq$`Us�V$1S
ZGb�+|L1+.-/$10GL�OoL10G8s��ZQZ�O -/(�8N2FL1+76�(5SIL1+.-/*,:�A @ @�� w�:5��C1C�A :@B�C�C��

:@B�v���nT�G� ��HI����������� �1���?����§ ��<a<��1�����g<��1=@�c�
� �
�� � �&
���jQ�WHI�
�dg� �_mR���
������=`
�HIHI�

���a�
=`
�=�
��@HI=
� �
�d?HN�g<
����g<�� ��� �1d
%{|d��1� �l=
�����@=@�F��J%�u2 }�$�b�"K0�L1Oo$10���*,-/(50g+.- ��*l�V$1S
ZGb�+.-R0�P1A
:9v � B+�5� B9:)w@��B?A A�Ae����<�
 :@B�BQ�X�

�[�7� ��� � �a��� �
�
�Q~

:@BQw���n^��� ��HI���g� �a��� �1� �!����§ �1<�<������1�g<���=@� p �1��j�� �����@���@�W�����1��� �

����@=��1m�	�<a�X� � §WE?ti��� ��� �
H �&

����¤!���1<�
�����H ���1<�=@�3©�-R0�(�L�"i�
O PX(@ª,"%L?L�0�8I-R+.:
��ZQZ�O -/*�L1+.-/$�0g:�AG�e� �1����� ���9�

:@B�C��V�u�����G��H �
�de�!�
�!���
��aH ��< ����H ����� ���,�@��HI���1=
�
����1�������@�,��� � �
��a�1�g� ��m7� ��
�dg� �g���
��
�,<a�,HI�@�
�=%��<���
������3��mq< ���g� �&�i�@<���=�
��a� �
'
?� ����	�<a�,HI=@�4��J%�u2 }�$1b�"K0�L�Oq$�0c�G*,-|(50g+.- ��*NL�0�8
��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A :�A�� A�v?B)��A�w1C�A :@B�B+@X�

:@B�B���fT�g�Y�g��H �
�deAX���������g��� ��A��1���!�Y�G� �����.�!��¤

� �1���1<���
�������HI�
�dg� ��=�mR� ��j��@�
�� ��=%�@¡����@�g�,�@=@�
��J%�
2 "%(5M9-|(��A @1B���:9B�B9�9@ A A�A :@B�CQwX�

@))���fT� p �G��HI�1< �&��= � � ��� �?>o�g���G���@
�<�� �9���
�?�1��
���HN��H��
�� � �&
��aj��WHI�
�dg� �_mR� �u=%�1<aj ����� ���X

< ���g�����
=`
�=�
��,H � �
�d �N=�¡X� �����iH ��

����¤[���#J1¨oA @�C���:9v?A)��:9w1C�A :@B�C1C��

@)9:��V>o�G���1�g�g�,jQ�@<���� p §W�[A��Tm���=�
\D �1���@�@��=`{
'
����i=%��<�jQ� ��mR���i������=`
�HIHI�

���a�
< �a��� ���u=`
�=�
��@HI=@�
��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*NL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1S
ZGb�+.-R0�P1A :�) ��:��5� A�v)��� @XA :9B�C1B��

@)+@���§T�����g�
��'� ���

9��JK0g+."%$98�bg*,+.-.$104+|$N2FL1+."K-
���V$�SiZGb�+|L1+.-/$�0g:����
��� ���,H �a�\> ���@=%=@Agri�'�z¢�� � � A
:@BQw A��

@) A��q���G�����
��'� ���

9��JK0g+."%$98�bg*,+.-.$10F+|$I+76g(i«\b�S_(5"K-/*�L�O���$�O b�+.-/$10F$`U
2FL�"�¬�$1M?��6�L1-R0�:K�
> �����g�@�
����3hi����jQ� ��=
�
k
l> ���@=%=@A�> �����g�@�
����eAgr\��A :9B1B?B��

@)?B��V����D����
����,mR�@<.�"�W� ���g�@<�����<�
��g�1H ���1<�= �a�!< �a��� ��� �1< �1�@	�� � ��� �
�d���� � �1�g��< �a����
�������=@� � ¦���¦
«WL1+.-/$�0�L�O���b�"�(%L1bc$`U\�g+|L�0�8QL1"`81:��V��ZQZ�O -|(%8N2FL1+76g(5SsL1+.-/*,:W��(5"5-|(5:�A BQB���:K�9@ B�A :9B��1C��

@)Q���V> �&

����� � De�Y� ��<a<��@�1AG¢ ���g��{';
� ��jV��
fi�Wt
�X�@� � A��1� ��E ������� �sn � � � �1=%�@���
fi��H � ����{"���@�@�1HI����=
�
�������HI�
�d�� ��=�m7� �
<��������Y< ���g� �&��<�
?�@<�< ����
�����
�d����@� ����HI�@�g=
���1� �1<
� ����	�<a�,HI=@� }�$1b�"K0�L�O�$`Us�V$1SiZGb�+|L1+.-.$10�L�OoL10�8T��ZQZ�O -|(%8N2FL1+76g(5SsL1+.-/*,:�A A?B�A :@B�B�:�����<�=%�@j �a� �
�������@�g�,�Y>V��	g< ��=%dg� ��=@AG�
HI=�
�� � ���1H��

@)�v���fT�g� �9
�<�� �9���u0GL�O]1:�-R:\$`Ui+76g(WO�$9$)¬��'L)6g(%LQ8s©eL10�* �9$1:YL1O PQ$1"5-7+76�SN�!>�de� fN�
�dg�@=
��=@A�f\�@�����

�HI�@�

��m p ��HI����
�� �
�������@�g�@�1AG��� � � �@<��,
XA p �^A :9B�C?A��

@)Qw��VD��gr^�G� ���,mR�
�d��@�e���
�������9¤ �aH �&
������
�dg�@���%
 ��� �?����HI� ����� �1<[< ���g� �&� ��< ���@	 � �������,�5d������ �1<
tu�@�����

r
�gHI� ����� ��<��
� ��<�
�=
��=�tu�@��� �

uC1C�{kw�A�E �1=%=��1�Kd��g=%=%�

�=uxk��=�
��
���
��W�1mq���@�Kdg�g�1<�� �1
XAp ��HN	 ��� � ����AGE��^A :9B1C�C��

@)�C���;^�G�Y��j ��� ��� �
nV� ��=�
9�?�#dg�W��� �%mR� ��H ���g�@�W��m��oyitV�#t
�
r ��HI�g<��@HI�@�
 ��
����1�g=#mR���
� ���@�@�1� ���
�������� �?�@�1�1 k��� �&
���� � � � ���@�

HI�
�dg� ��=��1�?jQ�,�
�� �u�@�1HI�g��
�� ��=@�3 �L1"%L1OROa(,O
�V$�SiZGb�+.-R0XP1A A�� B�B)����C�A :@B�C�v��

@)�B���;^�G�Y��j ��� ��� �
nV� ��=�
9�?D �&������

��������� �1�����1< ��� �l	g<��X� �

��������� �1�����1<o< ���g� �&�u=`
�=�
��,HI=����
j��@�
�� � ��� �!����� ��<a<��@<��@��HI����
�� ��=@�? �L1"%L�O7Oa(,O��V$1S
ZGb�+.-R0�P1AG��� A)?A)��A9: :1A :9B�C�w��

@�:�)���;^�G�Y��j ��� ��� �
nV� ��=�
9�?� ��{ p §W���o�
�
���zm���=�
 ��� �!=%HI�X��
�dg<�
l�@����jQ� ��� �����sj ���������
u��m
� ��{ p §�mR���
�d��\=%��<���
����1���1m�������{|=`
�HIHI�

�����u<������ ���
=`
�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10
�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�OV�V$1SiZGb�+.-R0XP1A :�@�� v A�:5��v B B�A :@B�B @��

@�: :���;^�G�Y��j ��� ��� �
nV� ��=�
���� � p ��nV��� � ��§WE?t
����tY� �Tm �1H ��<�
l�1m��g�,=�
�� ��§WE?t
���lHI�
�dg� ��=@�
«ib�S_(5"K-/*�L�O�©q-R0[(%L1"i�
O PX(@ª,"`L ��-R+76_��ZQZ�O -/*�L1+.-/$�0g:�A :1� A1v�B9��A�C1v�A :9B1B?B��

@�: @���tY�G�[��n �&��� ���3� ���
�� ����� �&
��a�1�g= �1� �l�g����H �1< ���@� � �
�� � �&
��aj��WHI�
�dg� ��=@�?x'���
$1b�0G8QL1"K]
 #"%$�ª@Oa(5SN:W-R0"$\- ,i(5"%(50g+.-/L1O-���,bgL�+.-/$10g:�Ag� � �1�@= : @�:K��:.B�@��Ghi����jQ� ��=
�
'
l�1mo� ��=%�@�1�g=
����> ���@=%=@A
E � ����=%����AG��xKA :@B�v?)��

@�:�A���tY�G�[��n �&��� ���c2FL1+."K-
�IJK+'(5"`L1+.-RM1(W�u0GL�O]�:K-7:K��> ���,�
����@�W; �1<�<.AG�����1<��'�#�X� � p < ���[=@AGr\��A :@B�v+@X�
@�:�B���n^�gnV�@� � �&
 � � ����=%dg� ���e�!> ���@�@�������
�������� � p ���� `��� ��
��T§ � � �����@�
uHI�
�dg� ��=#mR� �
�d��

�,��HI�����,=%=
�a	�<��Wr �9j �a� �\�
�� � �,=��9¡X� ��
����1�g=@�c�uJ%�u��}�$1b�"50GL�O A @�B���:�)1B+@@��: :�))�A�:@B�B9:1�

��� � �a��� �
�
�Q~ �[���
@�:)�X��nT��n��@� � �&
 � � ����=%dg���1�e�!> �&� �1<�<��@< ��HI�g< �����
uHI�
�dg� ��=#mR��� ��� ��� ��
����1H �����1���g< ��� ��
�������=
�1�

�g�g=�

�����
�������� � ������=@��xk�!fN����� �W�,
X�@=@A�¢T��� � � �[A ��� �lfN��§T�g� ����dg<����9A�� ���
�����=@A
$^$1SsL1-R0 �R�
L1:,(%8s �L1"`L�OROa(,O -R:�S�L10G8N #"%$Qª@Oa(5S $^(�*�$1S
Z�$1:�-R+.-/$10324(5+76�$98�:W-R0 �V$1SiZgb�+|L�+.-/$10�L1O
��*,-|(50G*5(TL10�8 ��0XP1-R0[(�(5"K-R0�P1Ag� �����@=
��w@��w B�����x`�\EFA�>�d���<�� ���@<��gd�����A�>[�^A :9B1BQ���

@�:9v���nT��n��@� � �&
 � � ����=%dg���1� �1� �lfN�g����E �9j �����g< ��=@�3xkHI��< �a� �
�=%�1<�jQ� ��=�mR���i���g=�

���g�
������ �_HI�@=%dg�,=@�
}�$1b�"50GL�Oq$`Us�V$1S
ZGb�+|L1+.-/$10GL�O� �6�]�:K-.*,:KA :�)���� C A9��B9:1A :9B�B?A��

@�:)wX��nT��n��@� � �&
 � � ����=%dg���1�eA�;^�gfT�G� ��HI���eA���� ���i�g���g� ���

�d��3��E?x`E?f xkHI��<a�,HI�@�
 ��
������l�1m �
> ��� �1<�<��@<q���g<�� �i����<�jQ� ��mR���uhi�g=�

�����
��������?§ ������=@� ¨e6g(^}�$�b�"K0�L1Oq$`U\�gb)Z�(5"%*�$1S
ZGb�+.-R0�P1A
v���: :9w9��:�AQwXA :@B�B @��

@�:9C��V>q� �s�����gn ���g=%��HI�1��yitV�#;\yWE?xkrTA���� �
�� � ��
���jQ�YHI�
�d�� �_m7� �u=%��<�j �����I=%������=%�W=%�
�=u�1m
=
�aHT�g<
 �1���@����=#< ���g� �&���9¡X� ��
����1�g=@�_xk�? #"%$9*K(�(�8�-R0�P1:Y$kUi+76g(��e$1b�"5+76?�g]�SiZ�$1:�-Rb�S�$10l�u(5:,(5M�$1-R"
�g-RSTb�O�L�+.-/$10gA�� �����@= :.BQB)� :)��B��e���X� �a�
k
!�1m�>o�

���1<��@�gH������ �����@� ��=��1mV�ux%E���A :@BQw�v��

@�:9B���nT��nT��n��X�,jQ� �����e�?�#dg�W� ����	�<a�,H �1m �N������{'=%�,<�m � �) `� ���
 ���@��� � �1< ��� ��
����1�c��m
�dg�\�,���1 k��� ��
��� � � � ���@�

HI�
�dg� �!d��1=�	��@�@�!�@<���=%� �[� � �g��� �V$1SiZgb�+|L�+.-/$10�L1O�2FL1+76g(5SsL1+.-/*,:^L10G8
2FL1+76g(5SsL1+.-/*�L�O[�6�]�:K-.*,:KA @?A���:.B+A9��:�B?B�A :9B1C A��

@?@?)��V���gDV��� ���5d�=%�����@=%=@��JK+'(5"%L1+.-RM1(Y��$�O b�+.-/$10F$`U ��ORO - ZG+.-.*Y��]1:�+'(5SN:^L�0�8N�#ZQZGO -/*�L1+.-/$10�:\+|$_+76�(
«^(5b�+."%$�0����,b�L1+.-/$10�:^$`U
�u(%LQ*,+|$1"\ �6�]1:�-/*,:���> ���@�
����@�W; �1<�<.A�������<��'���X� � p < ���[=@AGr\��A :9B1v�v��

@?@�:1��;T�g����� �1< � � �9�!xkHI��<a�,HI�@�
 ��
������l�1m
�d��^§WE?ti���lHI�
�dg� �!��=
�����s;
���g=%�,dg��<���� �

� �1�g=`m7� ��H �&
��a�1�g=@� ��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*_�V$1SiZgb�+.-70�P1A�B���:)� @@��:@v A�A :@B�C1C��
@?@ @X���T��� �1����A �s�g§ �1<�< �aj �1��A ��� �?tY��� � �1HI<��,
X� p x%E3§W���G�u� ���g�@�1HI�g<��
��W���

�dg� �1�����1<

m��1�
�� ����� ��
����1�c� ���@�@�1� ���
�������� �9�3�e�@�5d������ ��<�tu�@��� �

 A1B?B�Agxk�������1���Nhi���aj�� ��=
�
k
 ��

��<��X��H ������
����eAG��<��X��H ������
�����AGxkr^A :9B�B?A��

@?@?A��V���g����� ��

�=�x%x%x5�?���@�1�1 k��� �&
���� � � � ���@�
�

�����g� �&
�� � � � ���@�
uHI�
�dg� �ImR���
�d�� �
�� � ��
���jQ�
=%��<���
������3��m
�dg� ���,=%� ��jQ� � �u=
��HN��< �&
�������� ���@=%=%�����W�9¡X����
��������F�G$9*,-|(5+.]!$`Uu
(5+."`$�Oa(5b�S
��0XP1-R0[(�(5"K:Y}�$1b�"50GL�O A @�:�� A?BQ�9��A��?A�A :@B�C�:��

@?@ B���t^��� ����=%=@���
�dg�,� ���
���� ��<��)jQ� ��j ���'���1m � �%
�<��)j_=%�g	g=%���1�@�WHI�
�dg� ��=@�!xk�l���G���Kd (�����1��� ��1� �!t^��� � �a=%=@Ag� ���
�����=@Ae�1Z�(�*,-.L�O[JK:�:�bg(T$10�JK+'(5"%L�+.-RM1(W24(5+76�$98�:VU@$1"
©�-70[(%L1"W�g]�:�+'(5SN:�AG��� �1�@=
A A)���1v��[�
���g< ��� �!r
�gHI� ����� ��<�E?�
�dg� ��=@A :9B1BQ���

@?@��X��yT��� ����<a��� �[����D �1���@�@�1=uHI�
�dg� �lm7� � �N�@<���=%=
��m��g����{|=`
�HIHI�

���a�u=`
�=�
��@HI=��1m�< ���g�����
�9¡X� ��
����1�g=@�4��J%�
2~}�$1b�"K0�L�O�$10�«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A :9��� C)�:5�XC9: @XA :9BQw�C��

@?@1v��VDV�g�
��� ����
��������
���g< ��� ��
������?�1mVE�� p ��¢WE�� ��� �!=%������=%�YH ��

����¤
��@�Kdg����<�� ��

��
HN�g<
���{|�@<��@HI�@�
 ��� �%m7� ��<o� ��<��@�g<���
����1�g=@�3x'�3 #"%$9*K(�(�8�-R0�P1:T$`U\+76g(i�
J%�u� �|� �I*�$109U9(5"%(50�*K(��
£Y$10G$�O b�O b	�q£WL ��L1- �V}Qb�0[(^�
�k�Q���#����� �)Ag� �����@= B B?B���BQ��wX�[�
xk�i�^A�r
�'�z¢���� � A :@B�CQwX��> �1��� �
����HN	�� ���
x`�
�u{'CQw9{ : :�B+@){ p >o�

@?@�wX�V���G;^��� �a< � ���g=%�1�e� ¨e6�(\�
O PX(@ª,"%L�-/*!�#-aPX(50gM�L1O bG(i �"`$Qª@Oa(5SN� p < �&���@� �����3> ���@=%=@A�y
¤�m7� � �[A
:9B�v����

@?@1C���yT��� ����� �1���?��������;i� �������3���,��HI�g�
 ��
������!HI� ���@<[��mq� �&� �1<�<��@<o=%��<��
��a�1���1m�< ���g�����
�9¡X� ��
����1�g=@�cJ � � � ¨g"%L�0g:5LQ*,+.-/$10�:T$10 �V$1SiZGb�+'(5"K:�A p {1@1B�� v?A+@@��v A1C�A :9B1C)��

@?@1B�� p �G;T���4�e�?��HN��<
��a�,��<�� �i�gyitzHI�
�d�� �lm7� �
�dg�!�g���
��,{|�@<��@HI�@�
�HI�
�d�� ���c}�$1b�"K0�L�Oq$kU
�V$1SiZGb�+|L1+.-.$10�L�OoL10�8N�#Z�Z�O -|(%8T2FL1+76g(5SsL1+.-/*,:�A A)�� @1C A9�9@�B?B�A :@B�B)��

@ A)��V��� �
�e�lx
�� � �&
���jQ�WHI�
�dg� ��=�	X
_=%� �1�,� ���@�@�1HI����=
�
������ ��� �!=%��	g=%���1�@�W�@���
���@�
��������4��J%�
2
�u(5M9-|(��A�A?B�� ��C9:5�Xv9:�A�A[f\�@�,�@HN	�� � :@B�B @��

�[��� ��� � �a��� �
�
�Q~

@ A9:�� �T��¢�������	���� � � ��������{/m ���,�Wj �&��� �&
���������m
�dg�WD �1�g�,�@��= �1< �������
�dgH��c2cL1+76g(5SIL�+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A[v+@X��:)w1B9�9@)Qw�A :@B�B?B��

@ A+@���fT��EF��¢��1�g�����3JK+'(5"%L1+.-RM1(Y��$�O b�+.-/$10F$`Uu©�L�"/PX(\©q-R0[(%L1"W��]1:�+'(5SN:����u� � ���@H ���W> ���@=%=@AGr
�'�
¢�� � � A :9B�w�:��

@ A A���fT�g>o��¢��1�g����A�tY�G§T�GE?�@<�j ���eAg���g�i�g���1dg�g=%�1�eAg���g���g���g=%=%�1<��

��.A�DV���
��� � �
��1�eA��1���?�������
� �1H ���
9�?�
���g< ��� ��
����1���1mq=%������=%�YH ��

����¤_=%�1<aj�� ��= ��=��,�[�@�
���jQ�W� ���@�@�������
�������� ��=@�4��J%�
2
}�$�b�"K0�L1Oq$10���*,-|(50�+.- ��*TL10�8I�g+|L�+.-R:�+.-/*�L�O��V$1S
ZGb�+.-R0�P1A :�)���:?:9C1v)��:?:9B1B�A :9B�C1B��

@ A?B��VD�� � dg�1� �1���!;^�g����� ��< � � �9�?tu�@=
�������1<�=%HI�X�
�d��a���
��@�Kdg���­¡X���@=�mR��� �
�� � �&
���jQ�WHI�
�dg� ��=@�
��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*l�V$1SiZGb�+.-R0XP1A :9��� @1B�w9��A9: @XA :9B�B B��

@ AQ��� � � � <���
��,j[�?hi=%�W��m �
�� � ��
���jQ� ���'�g�g�@HI�,�
 �a�
�dg�\=%�1<a�
������3�1mo=%� ����=%�W< ���g�����
=`
�=�
��,HI=@�
��J%�
2~}�$1b�"K0�L�Oo$10?«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A :@B�� A�C�:5��A1B�B�A :9B�C @��

�y� �����

A
additive projection procedure, 136
ADI, 116

Peaceman-Rachford algorithm, 117
adjacency graph, 71

of PDE matrices, 71
adjoint of a matrix, 7
algebraic multiplicity, 15
Alternating Direction Implicit, see ADI
angle between a vector and a subspace, 130
anisotropic medium, 47
approximate inverse preconditioners, 297

column-oriented, 300
global iteration, 298
for improving a preconditioner, 308

approximate inverse techniques, 375
Arnoldi’s method, 146–157

basic algorithm, 146
breakdown of, 148
with Householder orthogonalization,

149
for linear systems, 151
lucky breakdown, 148
with Modified Gram-Schmidt, 148
practical implementation, 148

Arrow-Hurwicz’s Algorithm, 241
assembled matrix, 60
assembly process, 59

B
banded matrices, 5
bandwidth

of a bus, 327
of a matrix, 5

basis of a subspace, 10
BCG, 209–213

algorithm, 210
transpose-free variants, 213–226

BICGSTAB, 216
Biconjugate Gradient, see BCG

bidiagonal matrices, 5
bilinear form, 56
biorthogonal bases, 35
biorthogonal vectors, 35, 205
biorthogonalization, 204
bipartite graph, 82, 112
block Arnoldi

algorithm, 196
Ruhe’s variant, 197

block diagonal matrices, 5
block FOM, 199
block Gaussian elimination, 385–388

algorithm, 388
block GMRES, 199–200

multiple right-hand sides, 199
block Gram-Schmidt, 197
block Jacobi, 102

as a preconditioner, 353
block Krylov subspace methods, 144, 196–

200
block preconditioners, 309
block relaxation, 98
block tridiagonal matrices, 5, 309

preconditioning, 309
boundary conditions, 45, 46

Dirichlet, 46
mixed, 46
Neumann, 46

C
cache memory, 327
canonical form, 15

Jordan, 16
Schur, 17

Cauchy-Schwartz inequality, 6, 8
Cayley-Hamilton theorem, 144
cell-centered scheme, 64
cell-vertex scheme, 64
centered difference approximation, 48
centered difference formula, 48

439

��� � { ��� ���

centerpoint, 415
CG algorithm, see Conjugate Gradient algo-

rithm
CG for normal equations, 236, 237
CGNE, 237

algorithm, 238
optimality, 238

CGNR, 236
algorithm, 236
optimality, 236

CGS, 214–216
algorithm, 216

characteristic polynomial, 3
Chebyshev

acceleration, 358
Chebyshev polynomials, 186–192, 194, 356–

364
complex, 188, 203
and ellipses, 188
optimality, 189–191
for preconditioning, 356
real, 187

Cimmino’s method, 233
circuit switching, 328
coarse-grain, 353
coefficient matrix, 95
coloring vertices, 81
column reordering, 74
Compressed Sparse Column storage, see

CSC
Compressed Sparse Row storage, see CSR
Concus, Golub, and Widlund algorithm, 260
condition number, 40

for normal equation systems, 230
condition numbers and CG, 180
Conjugate Gradient algorithm, 174–181

algorithm, 178
alternative formulations, 178
convergence, 191, 192
derivation, 174, 177
eigenvalue estimates, 180
for the normal equations, 236
preconditioned, 244

Conjugate Gradient Squared, see CGS
Conjugate Residual algorithm, 181
consistent matrix norms, 8
consistent orderings, 112–116
control volume, 63
convection-diffusion equation, 47
convergence

factor, 105

general, 105
specific, 105

of GMRES, 193
of the Minimal Residual method, 135
rate, 105
of relaxation methods, 104
of Schwarz procedures, 402

COO storage scheme, 84
coordinate storage format, see COO
Courant characterization, 26
Craig’s method, 238
CRAY T3D, 329
CSC storage format, 85

matvecs in, 335
CSR storage format, 85, 272

matvecs in, 335
cut-edges, 416
Cuthill-McKee ordering, 77

D
data coherence, 327
data-parallel, 326
defective eigenvalue, 15
derogatory, 15
determinant, 3
DIA storage format, 85, 338

matvecs in, 338
diagonal

compensation, 285
dominance, 108, 109
form of matrices, 16
matrices, 5

diagonal storage format, see DIA
diagonalizable matrix, 16
diagonally dominant matrix, 109
diagonally structured matrices, 85
diameter of a graph, 417
diameter of a triangle, 58
DIOM, 154–157, 175

algorithm, 156
direct IOM, see DIOM
direct sum of subspaces, 10, 33
directed graph, 71
Dirichlet boundary conditions, 45, 46
distributed

computing, 325
ILU, 372
memory, 328
sparse matrices, 341, 373

divergence of a vector, 46
divergence operator, 46

{ ��� ��� ��� �
domain decomposition

convergence, 402
and direct solution, 387
full matrix methods, 411
induced preconditioners, 407
Schur complement approaches, 406
Schwarz alternating procedure, 394

domain sweep, 396
double orthogonalization, 148
double-striping, 418
DQGMRES, 168–172, 258

algorithm, 169

E
EBE preconditioner, 376
EBE regularization, 377
edge in a graph, 71
eigenspace, 10
eigenvalues, 3

definition, 3
from CG iteration, 180
index, 16, 17
of an orthogonal projector, 37

eigenvector, 3
left, 4
right, 4

Eisenstat’s implementation, 248, 263
Eisenstat’s trick, see Eisenstat’s implementa-

tion
Element-By-Element preconditioner, see

EBE preconditioner
ELL storage format, 86

matvecs in, 339
Ell storage format, 339
elliptic operators, 44
Ellpack-Itpack storage format, see ELL stor-

age format
energy norm, 32, 236, 238
error projection methods, 129
Euclidean inner product, 6
Euclidean norm, 7

F
Faber-Manteuffel theorem, 184
factored approximate inverse, 306
fast solvers, 47, 383
FGMRES, 255–258

algorithm, 256
fictitious domain methods, 387
Fiedler vector, 416
field of values, 23

fill-in elements, 275
fine-grain algorithms, 353
finite difference scheme, 47

for 1-D problems, 50
for 2-D problems, 54
for the Laplacean, 49
upwind schemes, 51

finite element method, 44, 55
finite volume method, 63
flexible GMRES, see FGMRES
flexible iteration, 255
flux vector, 63
FOM, 151

algorithm, 152
with restarting, 153

Frobenius norm, 8
frontal methods, 60, 376
full matrix methods, 411–413
Full Orthogonalization Method, see FOM

G
Galerkin conditions, 124
Gastinel’s method, 139
gather operation, 336
Gauss-Seidel iteration, 95

backward, 97
for normal equations, 231

in parallel, 378
symmetric, 97

Gaussian elimination, 60, 176, 269–273, 278,
282, 283, 285–287, 368, 369, 383

block, 385
frontal methods, 376
IKJ variant, 271
in IOM and DIOM, 156
in Lanczos process, 176
parallel, 409
parallelism in, 71
reordering in, 75
in skyline format, 295
sparse, 70

GCR, 182–184
Generalized Conjugate Residual, see GCR
geometric multiplicity, 15
Gershgorin discs, 110
Gershgorin’s theorem, 109
global iteration, 298–300, 305
global reduction operations, 332
GMRES, 157–172, 184, 193–196

algorithm, 158
block algorithm, 199

���[� { ��� ���

breakdown, 163, 164
convergence, 193
flexible variant, 250, 255–258
Householder version, 158
lucky breakdown, 164
parallel implementation, 331
with polynomial preconditioning, 363
practical implementation, 160
relation with FOM, 164, 166
with restarting, 167
stagnation, 167
truncated, 168

grade of a vector, 144
Gram-Schmidt algorithm, 11–12, 314

block, 197
cancellations in, 148
modified, 11
standard, 11

graph, 71
bipartite, 82
coloring, 81, 403
directed, 71
edges, 71
Laplacean of a, 416
partitioning, 382, 413

geometric, 414
graph theory techniques, 417
spectral techniques, 416
type, 384

undirected, 71
vertices, 71

H
Hankel matrix, 208
harmonic functions, 46
Harwell-Boeing collection, 89, 90
Hausdorff’s convex hull theorem, 23
heap-sort, in ILUT, 291
Hermitian inner product, 6
Hermitian matrices, 4, 24
Hermitian Positive Definite, 31
Hessenberg matrices, 5
Hölder norms, 7
Householder algorithm, 12
Householder orthogonalization

in Arnoldi’s method, 149
Householder reflectors, 12
HPD, see Hermitian Positive Definite
hypercube, 329

I

idempotent, 10, 33
if and only if, 3
iff, see if and only if
ILQ

factorization, 315
preconditioning, 314

ILU, 268–297
distributed, 372
factorization, 268

instability in, 293, 297
general algorithm, 270
IKJ version, 272
ILUS, 294–297

algorithm, 296
modified, 285–286
preconditioner, 268

for Schur complement, 409
static pattern, 273
with threshold, see ILUT and ILUTP
with multi-elimination, see ILUM
zero pattern, 270

ILU(0), 265, 268, 274–276
algorithm, 275
distributed factorization, 374
for distributed sparse matrices, 373
for red-black ordering, 366

ILU(1), 278
ILUM, 370
ILUT, 286–293

algorithm, 287
analysis, 288
implementation, 290
with pivoting, see ILUTP

ILUTP, 293
for normal equations, 312

incomplete
orthogonalization

algorithm, 154
incomplete factorization, 265, 268

Gram-Schmidt, 315
ILQ, 314, 315
QR, 315

incomplete Gram-Schmidt, 316
Incomplete LQ, see ILQ
Incomplete LU, see ILU
Incomplete Orthogonalization Method, see

IOM
indefinite inner product, 207
independent set orderings, 79
independent sets, 79, 368

maximal, 80

{ ��� ��� ���[�
index of an eigenvalue, 16, 17
indirect addressing, 69
induced norm, 8
induced preconditioners, 407
inhomogeneous medium, 47
inner products, 5

indefinite, 207
invariant subspace, 10, 130
inverse LU factors, 306
IOM, 154

algorithm, 154
direct version, 154

irreducibility, 83
irreducible, 27
isometry, 7
iteration matrix, 102, 104

J
j-diagonal, 340
Jacobi iteration, 95

for the normal equations, 233
JAD storage format, 340

definition, 340
in level scheduling, 348
matvecs in, 341

jagged diagonal format, see JAD storage for-
mat

jagged diagonals, 340
Jordan block, 17
Jordan box, 17
Jordan canonical form, 16
Jordan submatrix, 17
Joukowski mapping, 188

K
kernel, 9, 10
Krylov subspace, 144

dimension of a, 144
invariant, 145
methods, 143

Krylov subspace methods, 204

L
Lanczos algorithm, 172, 173

algorithm, 173, 205
biorthogonalization, 204
breakdown, 206

incurable, 207
lucky, 207
serious, 207

for linear systems, 208

look-ahead version, 207
loss of orthogonality, 173
modified Gram-Schmidt version, 173
nonsymmetric, 204
and orthogonal polynomials, 173
partial reorthogonalization, 173
practical implementations, 207
selective reorthogonalization, 173
symmetric case, 172

Laplacean, see Laplacean operator
Laplacean operator, 46, 55

of a graph, 416
least-squares polynomials, 359
least-squares problem, 229
left eigenvector, 4
left versus right preconditioning, 255
level of fill-in, 278
level scheduling, 345–348

for 5-point matrices, 345
for general matrices, 346

level set orderings, 76, 417
line relaxation, 99
linear mappings, 2
linear span, 9
linear system, 38, 95

existence of a solution, 38
right-hand side of a, 38
singular, 38
unknown of a, 38

linked lists, 88
local Schur complement, 393
Look-ahead Lanczos algorithm, 207
lower triangular matrices, 5
LQ factorization, 314

algorithm, 315
lucky breakdowns, 148

M
mask, 320
matrix, 1

addition, 2
adjoint of a, 7
banded, 5
bidiagonal, 5
canonical forms, 15
characteristic polynomial, 3
diagonal, 5
diagonal dominant, 108
diagonal form, 16
diagonalizable, 16
Hermitian, 4, 21, 24

����� { ��� ���

Hessenberg, 5
irreducible, 83
Jordan canonical form, 16
multiplication, 2
nonnegative, 4, 26
nonsingular, 3
norm of a, 8
normal, 4, 21
orthogonal, 5
outer product, 5
positive definite, 30–32
powers of a, 19
reduction, 15
Schur form, 17
self-adjoint, 7, 403
singular, 3
skew-Hermitian, 4
skew-symmetric, 4
spectral radius, 4
spectrum, 3
square, 3
symmetric, 4
Symmetric Positive Definite, 31, 112
trace, 4
transpose, 2
transpose conjugate, 2
triangular, 5
tridiagonal, 5
unitary, 4

matrix-by-vector product, 334
dense matrices, 334
for distributed matrices, 344
in DIA format, 338
in Ellpack format, 339
in triad form, 339

mesh generation, 61
mesh size, 58
message passing, 328
MILU, 285–286
minimal degree ordering, 88
Minimal Residual iteration, 133

algorithm, 134
convergence, 135

min-max theorem, 24
mixed boundary conditions, 45, 46
� -matrix, 26, 269, 310
modified Gram-Schmidt, 148
Modified ILU, see MILU
Modified Sparse Row storage, see MSR
molecule, 48
moment matrix, 208

in Lanczos procedure, 208
MR iteration, see Minimal Residual iteration
MSR storage format, 85
multi-elimination, 368, 369
multicolor orderings, 81
multicoloring, 364–368

for general sparse matrices, 367
multifrontal methods, 381
multinode expansion algorithm, 420
multiple eigenvalue, 15
multiple vector pipelines, 325
multiplicative projection process, 138
multiplicative Schwarz preconditioning, 399
multiprocessing, 325

N
natural ordering, 54
near singularity, 40
nested-dissection ordering, 88
Neumann boundary conditions, 45, 46
Neumann polynomials, 355
nonnegative matrix, 4, 26
nonsingular matrix, 3
norm

Euclidean, 7
Hölder, 7
induced, 8
of matrices, 8
$ -norm, 8
of vectors, 5

normal derivative, 56
normal equations, 229
normal matrix, 4, 21
null space, 9, 10

of a projector, 33

O
Object Oriented Programming, 334
oblique projection methods, 204
oblique projector, 35
operator

elliptic, 44
Laplacean, 46

optimality of projection methods, 126
order relation for matrices, 26
ORTHODIR, 182–184
orthogonal

complement, 10
matrix, 5
projector, 10, 35
vectors, 10

{ ��� ��� ���a�
orthogonality, 10

between vectors, 10
of a vector to a subspace, 10

ORTHOMIN, 182–184
orthonormal, 10
outer product matrices, 5
overdetermined systems, 229
overlapping domains, 385
over-relaxation, 97

P
p-norm, 8
packet switching, 328
parallel architectures, 326
parallel sparse techniques, 72
parallelism, 324

forms of, 324
partial differential equations, 44
partial Schur decomposition, 18
partition, 100
partition vector, 416
partitioning, 384
PDE, see partial differential equations
PE, see Processing Element
Peaceman-Rachford algorithm, 117
peripheral node, 417
permutation matrices, 5, 73
permutations, 72
Perron-Frobenius theorem, 27
perturbation analysis, 39
Petrov-Galerkin conditions, 122–124
physical mesh versus graph, 72
pipelining, 324
polynomial approximation, 144
polynomial preconditioning, 352, 354–364
positive definite matrix, 6, 25, 30–32
positive matrix, 26
positive real matrix, see positive definite ma-

trix
positive semidefinite, 25
preconditioned

CG, 244
efficient implementations, 248
left, 246
for the normal equations, 259
parallel implementation, 330
split, 247
symmetry in, 245

fixed-point iteration, 103
GMRES, 250

comparison, 253

flexible variant, 255, 256
left preconditioning, 250
right preconditioning, 252
split preconditioning, 253

preconditioner, 103
preconditioning, 102, 244

EBE, 376
incomplete LU, 268
induced, 407
Jacobi, 265
normalequationsfor normal equations,

311
polynomial, 354–364

with Chebyshev polynomials, 356
with least-squares polynomials, 359
with Neumann polynomials, 355

and relaxation scheme, 103
SOR, 265
SSOR, 265

probing, 409
Processing Element (PE), 325
profile, 79
projection

operator, see projector
orthogonal to, 33
parallel to, 33

projection methods, 122
additive, 136
approximate problem, 123
definitions, 122
error bounds, 129
general, 123
matrix representation, 124
multiplicative, 138
oblique, 122, 204
one-dimensional, 131
optimality, 126
orthogonal, 122, 124
prototype, 124
residual, 127
theory, 126

projector, 10, 32–38, 101
existence, 34
matrix representation, 35
oblique, 35
orthogonal, 35

eigenvalues, 37
properties, 37

prolongation operator, 101, 398
property A, 112
pseudo-peripheral node, 417

����� { ��� ���

Q
QMR, 209–213

algorithm, 212
approximation, 212

QR decomposition, 11
Quasi-GMRES, 168

algorithm, 168
Quasi-Minimal Residual, see QMR
quasi-Schur form, 18
quick-split, in ILUT, 291
quotient graph, 72

R
range, 2, 9, 10

of a projector, 33
rank, 10

full, 10
Rayleigh quotient, 23, 24
real Schur form, 18
recursive graph bisection, 418
red-black ordering, 364
reduced system, 318, 387
reducible, 27
reduction of matrices, 15
reduction operations, 332
reflectors, 12
regular splitting, 107
regularization, 241
relaxation methods

block, 98
convergence, 104

reordering, 74
reordering rows, columns, 72
reorthogonalization, 11
residual norm steepest descent, 135
residual projection methods, 127
restarted FOM, 153
restriction operator, 101, 397
reverse communication, 333
right versus left preconditioning, 255
right-hand side, 38, 95

multiple, 199
row projection methods, 231, 378

parallel, 378
row reordering, 74
row sum, 285

S
saddle-point problems, 238
SAXPY, 131, 301, 332

parallel, 332

sparse, 301
scatter and gather operations, 336–337
Schur complement, 387

approaches, 406
and direct solution, 387
for finite-element partitionings, 392
local, 391
methods, 407
properties, 388
for vertex partitionings, 389

Schur form, 17
example, 18
nonuniqueness, 19
partial, 18
quasi, 18
real, 18

Schwarz alternating procedure, 385, 394
additive, 401
algorithm, 395
multiplicative, 394

search subspace, 122
section of an operator, 145
self preconditioning, 301

convergence behavior, 303
self-adjoint, 7, 403
semisimple, 15
separators, 414
set decomposition, 100
shared memory computers, 326
similarity transformation, 15
simple eigenvalue, 15
singular matrix, 3
singular values, 9
sites (in graph partitioning), 420
skew-Hermitian

matrices, 4, 21, 186
part, 31

skew-symmetric matrices, 4
skyline solvers, 79
SOR, 97

convergence, 112
iteration, 95
multicolor sweep, 368
for SPD matrices, 112

span of � vectors, 9
sparse, 59
sparse Gaussian elimination, 70, 88
sparse matrices

adjacency graph, 70, 71
basic operations, 86
direct methods, 88

{ ��� ��� �����
graph representation, 70
matrix-by-vector operation, 87
permutation and reordering, 72
storage, 83–86

sparse matrix-by-vector product, 87
sparse skyline storage format, see SSK
sparse triangular system solution, 87
sparse-sparse mode computations, 300
sparse-sparse mode computations, 300
sparsity, 68
SPARSKIT, 89–91
SPD, see Symmetric Positive Definite
spectral bisection, 416
spectral radius, 4
spectrum of a matrix, 3
splitting, 97
square matrices, 3
SSK storage format, 295
SSOR, 97
steepest descent, 131
stencil, 48
stereographic projection, 415
Stieljes algorithm, 174
stiffness matrix, 59, 61
Stokes problem, 240
storage format

COO, 84
CSC, 85
CSR, 85, 272
ELL, 86
MSR, 85
SSK, 295

storage of sparse matrices, 83–86
structured sparse matrix, 69
subdomain, 373
subspace, 9

direct sum, 10
of approximants, 122
of constraints, 122
orthogonal, 10
sum, 10

Successive Over-Relaxation, see SOR
symbolic factorization, 88
symmetric Gauss Seidel, 97
symmetric matrices, 4
Symmetric Positive Definite, 31, 112
Symmetric SOR, see SSOR
symmetric squaring, 315
symmetry in preconditioned CG, 245

T

test problems, 88
TFQMR, 219

algorithm, 224
topological sorting, 346
trace, 4
Transpose-Free QMR, see TFQMR
triad operation, 339
triangular systems, 344

distributed, 375
level scheduling, 346
sparse, 344

tridiagonal matrices, 5

U
unassembled matrix, 60
under-determined, 230
undirected graph, 71
unitary matrices, 4
unstructured sparse matrix, 69
upper triangular matrices, 5
upwind schemes, 51
Uzawa’s algorithm, 239

V
variable preconditioner, 255
vector

computers, 325
operations, 331
orthogonality, 10
processors, 325
of unknowns, 95
updates, 131, 332

parallel, 332
vertex (in a graph), 71

W
wavefronts, 346
weak formulation, 56
weakly diagonally dominant matrix, 109
Winget regularization, 377

Z
Zarantonello’s lemma, 189

