
STAT 310: MATHEMATICAL COMPUTATIONS II
WINTER 2012

PROBLEM SET 4

Let A ∈ Rn×n be symmetric positive definite and b ∈ Rn. As usual, we write

rk = b−Axk. (0.1)

We assume that x0 is initialized in some manner. In the lectures we assumed x0 = 0 and so r0 = b
but we will do it a little more generally here.

1. Consider the quadratic functional

ϕ(x) = x>Ax− 2b>x.

(a) Show that
∇ϕ(xk) = −2rk

and hence if x∗ ∈ Rn is a stationary point of ϕ, then

Ax∗ = b.

Show also that x∗ must be a minimizer of ϕ.
(b) Consider an iterative method

xk+1 = xk + αkpk (1.2)

where p0,p1,p2, . . . are search directions to be chosen later. Show that if we want αk so
that the function f : R → R,

f(α) = ϕ(xk + αpk)

is minimized, then we must have

αk =
r>k pk

p>k Apk
. (1.3)

(c) Deduce that

ϕ(xk+1)− ϕ(xk) = −
(r>k pk)2

p>k Apk

and therefore ϕ(xk+1) < ϕ(xk) as long as r>k pk 6= 0.

2. Notations here follow those in Problem 1.
(a) Show that if we choose

pk = rk, (2.4)

we obtain the steepest decent method discussed in the lectures.
(b) Let the eigenvalues of A be λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and P ∈ R[t]. Show that

‖P (A)x‖A ≤ max
1≤i≤n

|P (λi)|‖x‖A

for every x ∈ Rn. [Hint: A � 0 and so has an eigenbasis].
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(c) Using (b) and Pα(t) = 1− αt, show that

‖xk − x∗‖A ≤ max
1≤i≤n

|Pα(λi)|‖xk−1 − x∗‖A

for all α ∈ R.
(d) Using properties of Chebyshev polynomials, show that

min
α∈R

max
λn≤t≤λ1

|1− αt|= λ1 − λn

λ1 + λn

and hence deduce that

‖xk − x∗‖A ≤
(

κ− 1
κ + 1

)k

‖x0 − x∗‖A

where κ = λ1/λn is the condition number of A.

3. Notations here follow those in Problem 1. As in Problem 2, we set

p0 = r0, α0 =
r>0 p0

p>0 Ap0
, x1 = x0 + α0p0, r1 = b−Ax1,

but we will no longer require (2.4) for k ≥ 1. Instead for each k ∈ N, we would like to get a
2-dimensional search space

Πk = {xk + ξrk + ηpk−1 ∈ Rn | ξ, η ∈ R}
and determine our next search direction pk from this affine plane.
(a) Show that if we want (ξk, ηk) ∈ R2 so that the function f : R2 → R,

f(ξ, η) = ϕ(xk + ξrk + ηpk−1)

is minimized, then we must have{
ξkr>k Ark + ηkr>k Apk−1 = r>k rk,

ξkr>k Apk−1 + ηkp>k−1Apk−1 = 0.
(3.5)

(b) Show that as long as rk 6= 0, ξk in (3.5) can always be chosen to be non-zero and therefore

pk := rk +
ηk

ξk
pk−1 ∈ Πk (3.6)

is always well-defined and that this choice of pk gives the best descent direction in Πk.
(c) Since (3.6) is only dependent on the ratio ηk/ξk and not on the values of ηk and ξk, we will

let βk−1 = ηk/ξk. Now combine this with (0.1), (1.2), (1.3) and (3.6) to get an iterative
method:

αk =
r>k pk

p>k Apk
,

βk = −
r>k+1Apk

p>k Apk
,

xk+1 = xk + αkpk,

rk+1 = b−Axk+1,

pk+1 = rk+1 + βkpk.

(3.7)

Show that despite what it appears, (3.7) can be achieved with just one matrix-vector
multiply per iteration and that it is identical to the conjugate gradient method derived in
the lectures.

4. Notations here follow those in Problem 3.
(a) Show that the residuals and search directions have the following properties.

(i) p>i rj = 0 for all i < j;
(ii) r>i rj = 0 for all i 6= j;
(iii) p>i Apj = 0 for all i 6= j;
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(iv) span{r0, . . . , rk} = span{p0, . . . ,pk} = span{r0, Ar0, . . . , A
kr0} =: Kk+1(A, r0) for

all k ∈ N.
(b) Show that xk satisfies

ϕ(xk) = min{ϕ(x) | x ∈ x0 + Kk(A, r0)}
and

‖xk − x∗‖A = min{‖x− x∗‖A | x ∈ x0 + Kk(A, r0)}
where x0 + S := {x0 + y | y ∈ S}.

(c) Show that every x ∈ x0 + Kk(A, r0) satisfies

x− x∗ = A−1P (A)r0

for some P ∈ R[t] with deg(P ) ≤ k and P (0) = 1. Deduce that

‖xk − x∗‖A ≤ min
P

max
λn≤t≤λ1

|P (t)|‖x0 − x∗‖A

where the minimum is taken over all P ∈ R[t], deg(P ) ≤ k, P (0) = 1.
(d) Show that the solution to the minimax problem above is given by

Pk(t) =
Tk

(
b + a− 2t

b− a

)
Tk

(
b + a

b− a

)
where λn = a and λ1 = b. Deduce that

‖xk − x∗‖A ≤ 2
(√

κ− 1√
κ + 1

)k

‖xk − x∗‖A

where κ = λ1/λn is the condition number of A.

5. This last problem is for Part II of the course.
(a) Implement Newton’s method ((3.38) in Nocedal and Wright, or from lecture notes).
(b) Apply the method to the following function (Fenton’s function); which you can download

from Mihai’s website, from lecture list area, including with links to the automatic differen-
tiation package discussed in class — if you wish to go this route. If not you may have to
compute the gradient and Hessian by hand. It is also an easy function to code in AMPL if
you want to test your work — but this is not required).

f(x1, x2) =
1
10

[
12 + x2

1 +
1 + x2

2

x2
1

+
x2

1x
2
2 + 100
x4

1x
4
2

]
.

(c) Initialize the method at x = (3, 2). Describe what you observe.
(d) Initialize the method at x = (3, 4). Describe what you observe.
(e) For the cases where the method converges, proposed a way to estimate the order of conver-

gence numerically, and compare to what we discussed theoretically in class.


