
STAT 310: MATHEMATICAL COMPUTATIONS II
WINTER 2012

PROBLEM SET 3

In the following, we will let 〈 ·, · 〉 be an inner product on Rn and ‖ · ‖ be the norm induced. If
A � 0, we write 〈x,y〉A = x>Ay and ‖x‖2

A = x>Ax. The special case A = I will be denoted
〈x,y〉2 and ‖x‖2 as usual. Recall that for a subspace V ≤ Rn, its orthogonal complement is
V ⊥ := {x ∈ Rn | 〈x,v〉2 = 0 for all v ∈ V }.

1. Let {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Rn be an increasing sequence of subspaces of Rn. In pure math
parlance, such a sequence is often called a flag or a filtration. Suppose we would like to solve
Ax = b where A � 0. Let x∗ be its unique solution. Consider the following methods

Orthogonal residual: For k ∈ N, let wk ∈ Vk be such that

Awk − b ∈ V ⊥k . (1.1)

Minimal residual: For k ∈ N, let xk ∈ Vk be such that

xk ∈ argmin
x∈Vk

‖Ax− b‖2. (1.2)

Minimal A-error: For k ∈ N, let yk ∈ Vk be such that

yk ∈ argmin
y∈Vk

‖y − x∗‖A. (1.3)

Minimal A−1-residual: For k ∈ N, let zk ∈ Vk be such that

zk ∈ argmin
z∈Vk

‖Az− b‖A−1 . (1.4)

(a) Which of wk, xk, yk and zk as defined above are unique?
(b) Which of wk, xk, yk, zk as defined above are equal for all k ∈ N?
(c) Show that if A is only nonsingular, then (a) and (b) are false in general but wk and xk will

still converge to x∗.

2. Let A ∈ Rn×n. Recall that a subspace V ≤ Rn is said to be A-invariant if

A(V ) ⊆ V,

i.e. Av ∈ V for all v ∈ V . Let Kk(A,b) = span{b, Ab, . . . , Ak−1b} be the kth Krylov subspace.
(a) Let A be nonsingular. Prove that the following statements are equivalent.

(i) b, Ab, . . . , Akb are linearly dependent.
(ii) Kk(A,b) = Kk+1(A,b).
(iii) Kk(A,b) is A-invariant.
(iv) There exists an A-invariant subspace V ≤ Rn with dim(V ) ≤ k and b ∈ V .
(v) A−1b ∈ Kk(A,b).

(b) Show that Kn(A,b) is the intersection of all A-invariant subspaces in Rn containing b.
(c) Show that

K∞(A,b) = Kn(A,b) = Km(A,b)

where m is the degree of the minimal polynomial of A.
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(d) Recall that the Arnoldi algorithm quits at step j if hj+1,j = 0. Show that if this happens
and A is nonsingular, then

A−1b ∈ Kj(A,b).

3. In general, if we apply Gram-Schmidt algorithm to linearly independent vectors a1, . . . ,an ∈ Rn

to obtain orthonormal q1, . . . ,qn, we get a k-term recurrence

rkkqk = ak −
∑k−1

i=1
rikqi (3.5)

where
rik = q>i ak and |rkk| =

∥∥∥ak −
∑k−1

i=1
rikqi

∥∥∥
2
.

(a) Show that when applied to the Krylov sequence b, Ab, . . . , Ak−1b where A � 0, we always
get a three-term recurrence in (3.5). How is this related to Lanczos algorithm?

(b) Consider the continuous analogue of this process where we apply Gram-Schmidt to f1, . . . , fn ∈
L2[−1, 1]. Here the matrix A ∈ Rn×n is replaced by the linear operator A : L2[−1, 1] →
L2[−1, 1] defined by

(Af)(x) = xf(x)
for any f ∈ L2[−1, 1], i.e. A is the ‘multiplication by x’ operator. Write down a continuous
analogue of the Lanczos algorithm for this choice of A.

(c) Show that when applied to the Krylov sequence with f(x) = 1 playing the role of b, we get

xqk(x) = βk−1qk−1(x) + αkqk(x) + βk+1qk+1(x)

where β0 = 0 and q0(x) = 0 and for k ∈ N,

αk = 0, βk =
1
2

(
1− 1

4k2

)−1/2

.

These are known as the Legendre polynomials1 and could also be obtained by applying
Gram-Schmidt to the Krylov sequence 1, x, x2, x3, . . . directly.

4. Suppose we would like to solve Ax = b where A � 0 using the conjugate gradient method.
(a) Show that the sequence of iterates and residuals generated by the conjugate gradient satisfies

xk = pk−1(A)b, rk = qk(A)b

where pk−1 ∈ R[x] has degree k − 1 and

qk(x) = xpk−1(x)− 1.

(b) Show that if
pk−1(t) = c0 + c1t + · · ·+ ck−1t

k−1,

then the coefficients (c0, c1, . . . , ck−1)> ∈ Rk is a solution of the following linear system
b>Ab b>A2b · · · b>Akb
b>A2b b>A3b · · · b>Ak+1b

...
...

. . .
...

bT Akb b>Ak+1b · · · b>A2k+1b




c0

c1
...

ck−1

 =


b>b
b>Ab

...
b>Ak−1b

 .

1We could also get other orthogonal polynomials if we choose an inner product like

〈f, g〉w =

Z 1

−1

f(x)g(x)w(x) dx

with an appropriate choice of weight function w. Here we used w(x) = 1 to get the Legendre polynomials. Had we

used w(x) = 1/
√

1− x2, we would have obtained the Chebyshev polynomials that we discussed last time.


