STAT 310: MATHEMATICAL COMPUTATIONS II WINTER 2012 PROBLEM SET 3

In the following, we will let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n and $\|\cdot\|$ be the norm induced. If $A \succ 0$, we write $\langle \mathbf{x}, \mathbf{y} \rangle_A = \mathbf{x}^\top A \mathbf{y}$ and $\|\mathbf{x}\|_A^2 = \mathbf{x}^\top A \mathbf{x}$. The special case A = I will be denoted $\langle \mathbf{x}, \mathbf{y} \rangle_2$ and $\|\mathbf{x}\|_2$ as usual. Recall that for a subspace $V \leq \mathbb{R}^n$, its orthogonal complement is $V^{\perp} := \{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{v} \rangle_2 = 0 \text{ for all } \mathbf{v} \in V\}.$

1. Let $\{0\} = V_0 \subset V_1 \subset V_2 \subset \cdots \subset \mathbb{R}^n$ be an increasing sequence of subspaces of \mathbb{R}^n . In pure math parlance, such a sequence is often called a *flag* or a *filtration*. Suppose we would like to solve $A\mathbf{x} = \mathbf{b}$ where $A \succ 0$. Let \mathbf{x}^* be its unique solution. Consider the following methods

Orthogonal residual: For $k \in \mathbb{N}$, let $\mathbf{w}_k \in V_k$ be such that

$$A\mathbf{w}_k - \mathbf{b} \in V_k^{\perp}.\tag{1.1}$$

Minimal residual: For $k \in \mathbb{N}$, let $\mathbf{x}_k \in V_k$ be such that

$$\mathbf{x}_k \in \underset{\mathbf{x} \in V_k}{\operatorname{argmin}} \| A\mathbf{x} - \mathbf{b} \|_2.$$
(1.2)

Minimal A-error: For $k \in \mathbb{N}$, let $\mathbf{y}_k \in V_k$ be such that

$$\mathbf{y}_k \in \underset{\mathbf{y} \in V_k}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}^*\|_A.$$
(1.3)

Minimal A^{-1} -residual: For $k \in \mathbb{N}$, let $\mathbf{z}_k \in V_k$ be such that

$$\mathbf{z}_k \in \underset{\mathbf{z} \in V_k}{\operatorname{argmin}} \| A\mathbf{z} - \mathbf{b} \|_{A^{-1}}.$$
(1.4)

- (a) Which of \mathbf{w}_k , \mathbf{x}_k , \mathbf{y}_k and \mathbf{z}_k as defined above are unique?
- (b) Which of \mathbf{w}_k , \mathbf{x}_k , \mathbf{y}_k , \mathbf{z}_k as defined above are equal for all $k \in \mathbb{N}$?
- (c) Show that if A is only nonsingular, then (a) and (b) are false in general but \mathbf{w}_k and \mathbf{x}_k will still converge to \mathbf{x}^* .
- **2.** Let $A \in \mathbb{R}^{n \times n}$. Recall that a subspace $V \leq \mathbb{R}^n$ is said to be A-invariant if

$$A(V) \subseteq V,$$

i.e. $A\mathbf{v} \in V$ for all $\mathbf{v} \in V$. Let $K_k(A, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b}, \dots, A^{k-1}\mathbf{b}\}$ be the *k*th Krylov subspace. (a) Let A be nonsingular. Prove that the following statements are equivalent.

- (i) $\mathbf{b}, A\mathbf{b}, \dots, A^k\mathbf{b}$ are linearly dependent.
- (ii) $K_k(A, \mathbf{b}) = K_{k+1}(A, \mathbf{b}).$
- (iii) $K_k(A, \mathbf{b})$ is A-invariant.
- (iv) There exists an A-invariant subspace $V \leq \mathbb{R}^n$ with $\dim(V) \leq k$ and $\mathbf{b} \in V$.
- (v) $A^{-1}\mathbf{b} \in K_k(A, \mathbf{b}).$
- (b) Show that $K_n(A, \mathbf{b})$ is the intersection of all A-invariant subspaces in \mathbb{R}^n containing **b**.
- (c) Show that

$$K_{\infty}(A, \mathbf{b}) = K_n(A, \mathbf{b}) = K_m(A, \mathbf{b})$$

where m is the degree of the minimal polynomial of A.

Date: January 29, 2012 (Version 1.4); due: February 3, 2012.

(d) Recall that the Arnoldi algorithm quits at step j if $h_{j+1,j} = 0$. Show that if this happens and A is nonsingular, then

$$A^{-1}\mathbf{b} \in K_i(A, \mathbf{b}).$$

3. In general, if we apply Gram-Schmidt algorithm to linearly independent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^n$ to obtain orthonormal $\mathbf{q}_1, \ldots, \mathbf{q}_n$, we get a k-term recurrence

$$r_{kk}\mathbf{q}_k = \mathbf{a}_k - \sum_{i=1}^{k-1} r_{ik}\mathbf{q}_i \tag{3.5}$$

where

$$r_{ik} = \mathbf{q}_i^{\mathsf{T}} \mathbf{a}_k$$
 and $|r_{kk}| = \left\| \mathbf{a}_k - \sum_{i=1}^{k-1} r_{ik} \mathbf{q}_i \right\|_2$.

- (a) Show that when applied to the Krylov sequence $\mathbf{b}, A\mathbf{b}, \ldots, A^{k-1}\mathbf{b}$ where $A \succ 0$, we always get a three-term recurrence in (3.5). How is this related to Lanczos algorithm?
- (b) Consider the continuous analogue of this process where we apply Gram-Schmidt to $f_1, \ldots, f_n \in L^2[-1, 1]$. Here the matrix $A \in \mathbb{R}^{n \times n}$ is replaced by the linear operator $A : L^2[-1, 1] \to L^2[-1, 1]$ defined by

$$(Af)(x) = xf(x)$$

for any $f \in L^2[-1, 1]$, i.e. A is the 'multiplication by x' operator. Write down a continuous analogue of the Lanczos algorithm for this choice of A.

(c) Show that when applied to the Krylov sequence with f(x) = 1 playing the role of **b**, we get

$$xq_k(x) = \beta_{k-1}q_{k-1}(x) + \alpha_k q_k(x) + \beta_{k+1}q_{k+1}(x)$$

where $\beta_0 = 0$ and $q_0(x) = 0$ and for $k \in \mathbb{N}$,

$$\alpha_k = 0, \qquad \beta_k = \frac{1}{2} \left(1 - \frac{1}{4k^2} \right)^{-1/2}.$$

These are known as the Legendre polynomials¹ and could also be obtained by applying Gram-Schmidt to the Krylov sequence $1, x, x^2, x^3, \ldots$ directly.

4. Suppose we would like to solve $A\mathbf{x} = \mathbf{b}$ where $A \succ 0$ using the conjugate gradient method. (a) Show that the sequence of iterates and residuals generated by the conjugate gradient satisfies

$$\mathbf{x}_k = p_{k-1}(A)\mathbf{b}, \quad \mathbf{r}_k = q_k(A)\mathbf{b}$$

where $p_{k-1} \in \mathbb{R}[x]$ has degree k-1 and

$$q_k(x) = xp_{k-1}(x) - 1$$

(b) Show that if

$$p_{k-1}(t) = c_0 + c_1 t + \dots + c_{k-1} t^{k-1}$$

then the coefficients $(c_0, c_1, \ldots, c_{k-1})^{\top} \in \mathbb{R}^k$ is a solution of the following linear system

$$\begin{bmatrix} \mathbf{b}^{\top} A \mathbf{b} & \mathbf{b}^{\top} A^{2} \mathbf{b} & \cdots & \mathbf{b}^{\top} A^{k} \mathbf{b} \\ \mathbf{b}^{\top} A^{2} \mathbf{b} & \mathbf{b}^{\top} A^{3} \mathbf{b} & \cdots & \mathbf{b}^{\top} A^{k+1} \mathbf{b} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{b}^{T} A^{k} \mathbf{b} & \mathbf{b}^{\top} A^{k+1} \mathbf{b} & \cdots & \mathbf{b}^{\top} A^{2k+1} \mathbf{b} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{k-1} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{\top} \mathbf{b} \\ \mathbf{b}^{\top} A \mathbf{b} \\ \vdots \\ \mathbf{b}^{\top} A^{k-1} \mathbf{b} \end{bmatrix}$$

$$\langle f,g \rangle_w = \int_{-1}^1 f(x)g(x)w(x) \, dx$$

¹We could also get other orthogonal polynomials if we choose an inner product like

with an appropriate choice of weight function w. Here we used w(x) = 1 to get the Legendre polynomials. Had we used $w(x) = 1/\sqrt{1-x^2}$, we would have obtained the Chebyshev polynomials that we discussed last time.