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Optimization
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October, 2008 Abstract

In this paper we are trying to analyze the 
common features of the recent advances 
in Structural Convex Optimization: 
polynomial-time interior-point methods, 
smoothing technique, minimization in 
relative scale, and minimization of composite 
functions.
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Convex Optimization is one of the rare 
fields of Numerical Analysis, which benefit 
from existence of well-developed complexity 
theories. In our domain, this theory was 
created in the middle of the seventies in 
a series of papers by A.Nemirovsky and 
D.Yudin (see [8] for full exposition). It 
consists of three parts:
– Classification and description of problem 

instances.
– Lower complexity bounds.
– Optimal methods.

In [8], the complexity of a convex 
optimization problem was linked with its 
level of smoothness introduced by Hölder 
conditions on the first derivatives of 
functional components. It was assumed 
that the only information the optimization 
methods can learn about the particular 
problem instance is the values and derivatives 
of these components at some test points. 
This data can be reported by a special unit 

called oracle, and it is local, which means 
that it is not changing if the function is 
modified far enough from the test point. 
This model of interaction between the 
optimization scheme and the problem data 
is called the local Black Box. At the time of 
its development, this concept fitted very 
well the existing computational practice, 
where the interface between the general 
optimization packages and the problem 
data was established by Fortran subroutines 
created independently by the users.

Black-Box framework allows to speak 
about the lower performance bounds 
for diffierent problem classes in terms of 
informational complexity. That is the lower 
estimate for the number of calls of oracle 
which is necessary for any optimization 
method in order to guarantee delivering an 
ε-solution to any problem from the problem 
class. In this performance measure we do 
not include at all the complexity of auxiliary 
computations of the scheme. 

Let us present these bounds for the most 
important classes of optimization problems 
posed in the form

	 min f(x),			  (1)
	 x∈Q

where Q ⊆ Rn is a bounded closed convex 
set (⎢⎢x⎜⎜ ≤ R, x ∈ Q), and function f is 
convex on Q. In the table below, the first 
column indicates the problem class, the 
second one gives an upper bound for 
allowed number of calls of the oracle in 
the optimization scheme1, and the last 
column gives the lower bound for analytical 
complexity of the problem class, which 
depends on the absolute accuracy ε and the 
class parameters.
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(2)
It is important that these bounds are exact. 
This means that there exist methods, which 
have efficiency estimates on corresponding 
problem classes proportional to the lower 
bounds. The corresponding optimal methods 
were developed in [8,9,19,22,23]. For 
further references, we present a simplified 
version of the optimal method [9] as applied 
to the problem (1) with f ∈ C2:

2

Choose a starting point y0 ∈ Q and set  
x−1 = y0. For k ≥ 0 iterate:

         (3)

	      
As we see, the complexity of each iteration 
of this scheme is comparable with that of the 
simplest gradient method. However, the rate 
of convergence of method (3) is much faster.

After a certain period of time, it became 
clear that, despite its mathematical 
excellence, Complexity Theory of Convex 
Optimization has a hidden drawback. 
Indeed, in order to apply convex 
optimization methods, we need to be 
sure that functional components of our 
problem are convex. However, we can check 
convexity only by analyzing the structure of 
these functions:3 If our function is obtained 
from the basic convex functions by convex 
operations (summation, maximum, etc.), we 
conclude that it is convex. If not, then we 
have to apply general optimization methods 
which usually do not have theoretical 
guarantees for the global performance.

Thus, the functional components of 
the problem are not in the black box the 
moment we check their convexity and 
choose minimization scheme. However, we 
1 If this upper bound is smaller than O(n), then the dimension of the problem is really very big, and we 
cannot afford the method to perform this amount of calls.
2 In method (11)-(13) from [9], we can set ak = 1 + k/2 since in the proof we need only to ensure  
a2

k+1 – a2
k ≤ ak+1.

3 Numerical verification of convexity is an extremely difficult problem.

put them into the black box for numerical 
methods. That is the main conceptual 
contradiction of the standard Convex 
Optimization.

Intuitively, we always hope that the 
structure of the problem can be used for 
improving the performance of minimization 
schemes. Unfortunately, structure is a very 
fuzzy notion, which is quite difficult to 
formalize. One possible way to describe 
the structure is to fix the analytical type 
of functional components. For example, 
we can consider the problems with linear 
constraints only. It can help, but this 
approach is very fragile: If we add just a 
single constraint of another type, then we 
get a new problem class, and all theory must 
be redone from scratch.

On the other hand, it is clear that having 
the structure at hand we can play a lot with 
the analytical form of the problem.We can 
rewrite the problem in many equivalent 
settings using non-trivial transformations 
of variables or constraints, introducing 
additional variables, etc. However, this 
would serve almost no purpose without 
fixing a clear final goal. So, let us try to 
understand what it could be. 

As usual, it is better to look at classical 
examples. In many situations the sequential 
reformulations of the initial problem can 
be seen as a part of numerical scheme. We 
start from a complicated problem P and, 
step by step, change its structure towards to 
the moment we get a trivial problem (or, a 
problem which we know how to solve):
	 P → … → ( f *, x*).
A good example of such a strategy is the 
standard approach for solving system of 
linear equations
	 Ax = b.
We can proceed as follows:

1. Check if A is symmetric and positive 
definite. Sometimes this is clear from the 
origin of the matrix.
2. Compute Cholesky factorization of this 
matrix:
	 A = LLT ;
where L is a lower-triangular matrix. 
Form two auxiliary systems
	 Ly = b, LT x = y.
3. Solve these system by sequential 

exclusion of variables.
Imagine for a moment that we do not 

know how to solve the system of linear 
equations. In order to discover the above 
scheme we should apply the following

	   Golden Rules

1. Find a class of problems which  
can be solved very efficiently.a

2. Describe the transformation  
rules for converting the initial  
problem into desired form.

3. Describe the class of problems  
for which these transformation  
rules are applicable.

a In our example, it is the class  
of linear systems with triangular 
matrices. 			          (4)

In Convex Optimization, these rules were 
used already several times for breaking 
down the limitations of Complexity Theory.

Historically, the first example of that 
type is the theory of polynomial-time 
interior-point methods (IPM) based on self-
concordant barriers. In this framework, the 
class of easy problems is formed by problems 
of unconstrained minimization of self-
concordant functions treated by the Newton 
method. This know-how is further used in 
the framework of path-following schemes 
for solving so-called standard minimization 
problems. Finally, it can be shown that by 
a simple barrier calculus this approach can 
be extended onto all convex optimization 
problems with known structure (see [11,18] 
for details). The efficiency estimates of 
corresponding schemes are of the order 
O(υ1/2 ln υ–ε   ) iterations of the Newton 
method, where υ is the parameter of 
corresponding self-concordant barrier. 
Note that for many important feasible 
sets this parameter is smaller than the 
dimension of the space of variables. Hence, 
for the pure Black-Box schemes such an 
efficiency is simply unreachable in view 
of the lower complexity bound for class 
C3 (see (2)). It is interesting that formally 
the modern IPMs look very similar to the 
usual Black-Box schemes (Newton method 
plus path-following approach), which 
were developed in the very early days of 
Nonlinear Optimization [4]. However, this 
is just an illusion. For complexity analysis 
of polynomial-time IPM, it is crucial that 
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they employ the special barrier functions 
which do not satisfy the local Black-Box 
assumptions (see [10] for discussion).

The second example of using the rules 
(4) needs more explanations. By certain 
circumstances, these results were discovered 
with a delay of twenty years. Perhaps they 
were too simple. Or maybe they are in a 
seemingly very sharp contradiction with 
the rigorously proved lower bounds of 
Complexity Theory.

Anyway, now everything looks almost 
evident. Indeed, in accordance to Rule 1 
in (4), we need to find a class of very easy 
problems. And this class can be discovered 
directly in Table (2)! To see that, let us 
compare the complexity of the classes 
C1 and C2 for the accuracy of 1% (ε = 
10−2). Note that in this case, the accuracy-
dependent factors in the efficiency estimates 
vary from ten to ten thousands. So, the 
natural question is:

Can the easy problems from C2 help us 
somehow in finding an approximate solution 
to the difficult problems from C1?

And the evident answer is: Yes, of course! 
It is a simple exercise in Calculus to show 
that we can always approximate a Lipschitz-
continuous nonsmooth convex function 
on a bounded convex set with a uniform 
accuracy ε > 0 by a smooth convex function 
with Lipschitz-continuous gradient. We 
pay for the accuracy of approximation by a 
large Lipschitz constant M for the gradient, 
which should be of the order O . Putting 
this bound for M in the efficiency estimate 
of C2 in (2), we can see that in principle, it 
is possible to minimize nonsmooth convex 
functions by the oracle-based gradient 
methods with analytical complexity O  . 
But what about the Complexity Theory? It 
seems that it was proved that such efficiency 
is just impossible. 

It is interesting that in fact we do not 
get any contradiction. Indeed, in order 
to minimize a smooth approximation of 
nonsmooth function by an oracle-based 
scheme, we need to change the initial oracle. 
Therefore, from  mathematical point of 
view, we violate the Black-Box assumption. 
On the other hand, in the majority of 
practical applications this change is not 

difficult. Usually we can work directly with 
the structure of our problem, at least in the 
cases when it is created by us.

Thus, the basis of the smoothing technique 
[12,13] is formed by two ingredients: 
the above observation, and a trivial but 
systematic way for approximating a 
nonsmooth function by a smooth one. 
This can be done for convex functions 
represented explicitly in a max-form:

	 f(x) = max { 〈Ax − b, u 〉 − φ(u),
	          u∈Qd

where Qd is a bounded and convex dual 
feasible set and φ(u) is a concave function. 
Then, choosing a nonnegative strongly 
convex function d(u), we can define a 
smooth function
fμ(x) = max { 〈Ax − b, u 〉 − φ(u) − μ · d(u)} 	
           u∈Qd 		    	          (5)

which approximates the initial objective. 
Indeed, denoting Dd = max d(u),
		         u∈Qd

we get
	 f(x) ≥ fμ(x) ≥ f(x)  μDd.

At the same time, the gradient of function 
fμ is Lipschitz-continuous with Lipschitz 
constant of the order of O  (see [12]) for 
details).

Thus, we can see that for an 
implementable definition (5), we get a 
possibility to solve problem (1) in O  
iterations of the fast gradient method 
(3). In order to see the magnitude of the 
improvement, let us look at the following 
example:

            (6)

where Δn ∈ R n is a standard simplex. Then 
the properly implemented smoothing 
technique ensures the following rate of 
convergence:

    
If we apply to problem (6) the standard 
subgradient methods (e.g. [14]), we can 
guarantee only

    
Thus, up to a logarithmic factor, for 
obtaining the same accuracy, the methods 
based on smoothing technique need only 
a square root of iterations of the usual 
subgradient scheme. Taking into account, 
that usually the subgradient methods are 
allowed to run many thousands or even 
millions of iterations, the gain of the 
smoothing technique in computational time 
can be enormously big.4

It is interesting, that for problem (6) the 
computation of the smooth approximation is 
very cheap. Indeed, let us use for smoothing 
the entropy function:

Then the smooth approximation (5) of the 
objective function in (6) has the following 
compact representation:

Thus, the complexity of the oracle for f(x) 
and fμ(x) is similar. Note that again, as in 
the polynomial-time IPM theory, we apply 
the standard oracle-based method ((3) in 
this case) to a function which does not 
satisfy the Black-Box assumptions.

An inexplicable blindness to the 
possibility to reduce the complexity of 
nonsmooth optimization problems with 
known structure is not restricted to the 
smoothing technique only. As it was 
shown in [7], very similar results can be 
obtained by the extra-gradient method by 
G. Korpelevich [6] using the fact that this 
method is optimal for the class of variational 
inequalities with Lipschitz-continuous 
operator (for these problems it converges 
as O . Actually, in a verbal form, the 
optimality of the extra-gradient method 
was known already for a couple of decades. 
However, a rigorous proof of this important 
fact and discussion of its consequences for 
Structural Nonsmooth Optimization was 
published only in [7], after discovering the 
smoothing technique.

To conclude this section, let us discuss 
the last example of acceleration strategies 
in Structural Optimization. Consider 
the problem of minimizing the composite 

4 It is easy to see that the standard subgradient methods for nonsmooth convex minimization need indeed O
operations to converge. Consider a univariate function f(x) = ⏐x⏐, x ∈ R. Let us look at the subgradient process: 

It easy to see that
 

 However, the step-size sequence is optimal [8].
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objective function:

                           
(7)

where the function f is a convex 
diffierentiable function on dom Ψ with 
Lipschitz-continuous gradient, and function 
Ψ is an arbitrary closed convex function. 
Since Ψ can be even discontinuous, in 
general this problem is very difficult. 
However, if we assume that function Ψ 
is simple, then the situation is changing. 
Indeed, suppose that for any −y ∈ dom Ψ 
we are able to solve explicitly the following 
auxiliary optimization problem:

        

                         
(8)

(compare with (3)). Then it becomes possible 
to develop for problem (7) fast gradient 
methods (similar to (3)), which have the 
rate of convergence of the order O  
(see [15] for details; similar technique was 
developed in [3]). Note that the formulation 
(7) can be also seen as a part of Structural 
Optimization since we use the knowledge 
of the structure of its objective function 
directly in the optimization methods. 

Conclusion
In this paper, we have considered several 
examples of significant acceleration of the 
usual oracle-based methods. Note that the 
achieved progress is visible only because of 
the supporting complexity analysis. It is 
interesting that all these methods have some 
prototypes proposed much earlier:

− Optimal method (3) is very similar to 
the heavy point method: 

      xk+1 = xk − α ∇ f(xk ) + β(xk − xk − 1),

where α and β are some fixed positive 
coefficients (see [20] for historical details).

− Polynomial-time IPM are very similar 
to some variants of the classical barrier 
methods [4].
− The idea to apply smoothing for 
solving minimax problems is also 
not new (see [21] and the references 
therein).

At certain moments of time, these ideas 
were quite new and attractive. However, 
they did not result in a significant change 
in computational practice since they were 
not provided with a convincing complexity 

analysis. Indeed, many other schemes 
have similar theoretical justifications and 
it was not clear at all why these particular 
suggestions deserve more attention. 
Moreover, even now, when we know that 
the modified variants of some old methods 
give excellent complexity results, we cannot 
say too much about the theoretical efficiency 
of the original schemes.

Thus, we have seen that in Convex 
Optimization the complexity analysis 
plays an important role in selecting the 
promising optimization methods among 
hundreds of others. Of course, it is based 
on investigation of the worst-case situation. 
However, even this limited help is important 
for choosing the perspective directions for 
further research. This is true especially 
now, when the development of Structural 
Optimization makes the problem settings 
and corresponding efficiency estimates more 
and more interesting and diverse.

The size of this paper does not allow us to 
discuss other interesting setting of Structural 
Convex Optimization (e.g. optimization 
in relative scale [16, 17]). However, we 
hope that even the presented examples can 
help the reader to find new and interesting 
research directions in this promising field 
(see, for example, [1,2,5]).

References
1. A. d'Aspremont, O. Banerjee, and L. El 

Ghaoui. First-Order Methods for Sparse 
Covariance Selection. SIAM Journal on 
Matrix Analysis and its Applications, 30(1), 
56-66, (2008).

2. O. Banerjee, L. El Ghaoui, and A. 
d'Aspremont. Model Selection Through 
Sparse Maximum Likelihood Estimation. 
Journal of Machine Learning Research, 9, 
485-516 (2008).

3. A. Beck and M. Teboulle. A Fast Iterative 
Shrinkage-Threshold Algorithm Linear 
Inverse Problems. Research Report, 
Technion (2008).

4. A.V. Fiacco and G.P. McCormick. Nonlinear 
Programming: Sequential Uncon strained 
Minimization Technique. John Wiley, New 
York, 1968.

5. S. Hoda, A. Gilpin, and J. Pena. Smoothing 
techniques for computing Nash equilibria 
of sequential games. Research Report. 
Carnegie Mellon University, (2008).

6. G.M. Korpelevich. The extragradient 
method for finding saddle points and other 
problems. Matecon 12, 747-756 (1976).

7. A. Nemirovski. Prox-method with rate 
of convergence O(1/t) for variational 

inequalities with Lipschitz continuous 
monotone operators and smooth convex 
concave saddle point problems. SIAM 
Journal on Optimization, 15, 229-251 
(2004).

8. A. Nemirovsky and D. Yudin. Problem 
Complexity and Method Efficiency in 
Optimization. Wiley, New-York, 1983.

9. Yu. Nesterov. A method for unconstrained 
convex minimization problem with the 
rate of convergence O . Doklady AN 
SSSR (translated as Soviet Mathematics 
Doklady), 269(3), 543-547 (1983).

10. Yu. Nesterov. Interior-point methods: 
An old and new approach to nonlinear 
progamming. Mathematical Programming, 
79(1-3), 285-297 (1997).

11. Yu. Nesterov. Introductory Lectures on 
Convex Optimization. Kluwer, Boston, 
2004.

12. Yu. Nesterov. Smooth minimization of 
non-smooth functions. CORE Discussion 
Paper 2003/12 (2003). Published in 
Mathematical Programming, 103 (1), 127-
152 (2005).

13. Yu. Nesterov. Excessive gap technique in 
nonsmooth convex minimization. SIAM 
Journal on Optimization, 16 (1), 235-249 
(2005).

14. Yu. Nesterov. Primal-dual subgradient 
methods for convex problems. 
Mathematical Programming (2007)

15. Yu. Nesterov. Gradient methods for 
minimizing composite objective function. 
CORE Discussion Paper 2007/76, (2007).

16. Yu. Nesterov. Rounding of convex sets 
and efficient gradient methods for linear 
programming problems. Optimization 
Methods and Software, 23(1), 109-135 
(2008).

17. Yu. Nesterov. Unconstrained convex 
minimization in relative scale. Accepted by 
Mathematics of Operations Research.

18. Yu. Nesterov, A. Nemirovskii. Interior 
point polynomial methods in convex 
programming: Theory and Applications. 
SIAM, Philadelphia, 1994.

19. B.T. Polyak. A general method of solving 
extremum problems. Soviet Mat. Dokl. 8, 
593-597 (1967)

20. B. Polyak. Introduction to Optimization. 
Optimization Software, New York, 1987.

21. R. Polyak. Smooth Optimization Methods 
for Minimax Problems. SIAM J. Control 
and Optimization, 26(6), 1274-1286 
(1988).

22. N.Z. Shor. Minimization Methods for 
Nondiffierentiable Functions. Springer-
Verlag, Berlin, 1985.

23. S.P. Tarasov, L.G. Khachiyan, and 
I.I. Erlikh. The Method of Inscribed 
Ellipsoids. Soviet Mathematics Doklady, 37, 
226− 230 (1988).

(7)




