STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2014 PROBLEM SET 1

The parts marked "Bonus" are optional, i.e., Problems $\mathbf{1}(c)$, $\mathbf{4}(d)$, and $\mathbf{4}(e)$. For Problem 3, use any program you like but present your source codes and results in a way that is comprehensible to someone who is unfamiliar with that program (e.g. comment your codes appropriately). Scilab and Octave use Matlab syntax but are open source and freely downloadable.

- 1. Let $\mathbf{x} \in \mathbb{C}^n$ and $A \in \mathbb{C}^{m \times n}$. We write $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^* \mathbf{x}}$ and $\|A\|_2 = \sup_{\|\mathbf{x}\|_2 = 1} \|A\mathbf{x}\|_2$ for the vector 2-norm and matrix 2-norm respectively.
 - (a) Show that there is no ambiguity in the notation, i.e., if $A \in \mathbb{C}^{n \times 1} = \mathbb{C}^n$, then $||A||_2$ is the same whether we regard it as the vector or matrix 2-norm. What if $A \in \mathbb{C}^{1 \times n}$?
 - (b) Show that the vector 2-norm is unitarily invariant, i.e.,

$$||U\mathbf{x}||_2 = ||\mathbf{x}||_2$$

for all unitary matrices $U \in \mathbb{C}^{n \times n}$.

- (c) Bonus: Show that no other vector p-norm is unitarily invariant, $1 \le p \le \infty$, $p \ne 2$.
- (d) Show that the matrix 2-norm is unitarily invariant, i.e.,

$$||UAV||_2 = ||A||_2$$

for all unitary matrices $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$.

(e) Show that the Frobenius norm is unitarily invariant, i.e.,

$$||UAV||_F = ||A||_F$$

for all unitary matrices $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$. (*Hint*: First show that $||A||_F^2 = \operatorname{tr}(A^*A) = \operatorname{tr}(AA^*)$).

- (f) Let $U \in \mathbb{C}^{n \times n}$. Show that the following are equivalent statements:
 - (i) $||U\mathbf{x}||_2 = ||\mathbf{x}||_2$ for all $\mathbf{x} \in \mathbb{C}^n$;
 - (ii) $(U\mathbf{x})^*U\mathbf{y} = \mathbf{x}^*\mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$;
 - (iii) U is unitary.
- **2.** Let $A \in \mathbb{C}^{n \times n}$. Let $\|\cdot\|$ be an operator norm of the form

$$||A|| = \max_{\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^n} \frac{||A\mathbf{v}||_{\alpha}}{||\mathbf{v}||_{\alpha}}$$
(2.1)

for some vector norm $\|\cdot\|_{\alpha}:\mathbb{C}^n\to[0,\infty)$. Show that if $\|A\|<1$, then I-A is nonsingular and furthermore,

$$\frac{1}{1+\|A\|} \le \|(I-A)^{-1}\| \le \frac{1}{1-\|A\|}.$$

- **3.** We will examine the effect of various parameters on the accuracy of a computed solution to a nonsingular linear system. Relevant commands in Matlab syntax are given in brackets.
 - (a) Generate $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ as follows:
 - (i) a_{ij} randomly generated from a standard normal distribution [randn(n)];
 - (ii) a Hilbert matrix, i.e., $a_{ij} = 1/(i+j-1)$ [hilb(n)];
 - (iii) a Pascal matrix, i.e., the entries $a_{ij} = \binom{i+j}{i}$ [pascal(n)];

(iv) a magic square, i.e., the entries a_{ij} 's are the integers $1, 2, \ldots, n^2$ arranged in a way that A has equal row, column, and diagonal sums [magic(n)].

$$\mathtt{hilb(4)} = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix}, \quad \mathtt{pascal(4)} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}, \quad \mathtt{magic(4)} = \begin{bmatrix} 16 & 2 & 3 & 13 \\ 5 & 11 & 10 & 8 \\ 9 & 7 & 6 & 12 \\ 4 & 14 & 15 & 1 \end{bmatrix}$$

For simplicity, we will assume that A is stored exactly with no errors even though this is only true for those matrices with integer-valued entries.

- (b) Generate **x** and **b** $\in \mathbb{R}^n$ as follows:
 - (i) $\mathbf{x} = [1, ..., 1]^{\mathsf{T}} [ones(n, 1)];$
 - (ii) $\mathbf{b} = A\mathbf{x}$ [b = A*x].
- (c) For each A generated as above, perform the following for $n = 5, 10, 15, \dots, 500$.
 - (i) Solve $A\mathbf{x} = \mathbf{b}$ using your program to get $\hat{\mathbf{x}}$ [xhat = A\b]. Note that in general the result computed by your program will not be exactly the true solution $\mathbf{x} = A^{-1}\mathbf{b}$ because of roundoff errors that occurred during computations.
 - (ii) Compute $\delta \mathbf{b} = A\widehat{\mathbf{x}} \mathbf{b}$ and record the values of $\|\mathbf{x} \widehat{\mathbf{x}}\|/\|\mathbf{x}\|$, $\kappa(A) = \|A\|\|A^{-1}\|$ and $\kappa(A)\|\delta \mathbf{b}\|/\|\mathbf{b}\|$ for $\|\cdot\| = \|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$.
 - (iii) Present everything for the n=5 case but only tabulate the relevant trend for general n>5 in a graph.
- (d) Discuss and explain the effects of different choices of A, \mathbf{b} , $\|\cdot\|$, and n have on the accuracy of the computed solution $\hat{\mathbf{x}}$.
- (e) Instead of solving the linear system directly, compute A^{-1} and then $\hat{\mathbf{x}} := A^{-1}\mathbf{b}$ [xhat = inv(A)*b]. Comment on the accuracy of this approach. Provide numerical evidence to support your conclusion.
- (f) Write a program that computes the (1,1)-entry of the matrix A^{-1} that does not involve computing A^{-1} , i.e., if $A^{-1} = [b_{ij}]$, you want the value b_{11} but you are not allowed to compute A^{-1} .
- **4.** Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and let $\mathbf{0} \neq \mathbf{b} \in \mathbb{R}^n$. Let $\mathbf{x} = A^{-1}\mathbf{b} \in \mathbb{R}^n$. In the following, $\delta A \in \mathbb{R}^{n \times n}$ and $\delta \mathbf{b} \in \mathbb{R}^n$ are some arbitrary matrix and vector. We assume that the norm on A satisfies $||A\mathbf{x}|| \leq ||A|| ||\mathbf{x}||$ for all $A \in \mathbb{R}^{n \times n}$ and all $\mathbf{x} \in \mathbb{R}^n$.
 - (a) Show that if $\delta A \in \mathbb{R}^{n \times n}$ is any matrix satisfying

$$\frac{\|\delta A\|}{\|A\|} < \frac{1}{\kappa(A)},\tag{4.2}$$

then $A + \delta A$ must be nonsingular. (*Hint*: If $A + \delta A$ is singular, then there exists nonzero \mathbf{v} such that $(A + \delta A)\mathbf{v} = \mathbf{0}$).

(b) Suppose $(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$ and $\hat{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x}$. Show that

$$\frac{\|\delta \mathbf{x}\|}{\|\hat{\mathbf{x}}\|} \le \kappa(A) \frac{\|\delta A\|}{\|A\|}.\tag{4.3}$$

(c) Suppose $(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$ and $\hat{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x}$ and (4.2) is satisfied. Show that

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\kappa(A) \frac{\|\delta A\|}{\|A\|}}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}}.$$

You may like use the following outline:

(i) Show that

$$\delta \mathbf{x} = -A^{-1}\delta A \hat{\mathbf{x}}$$

and so

$$\|\delta \mathbf{x}\| \le \kappa(A) \frac{\|\delta A\|}{\|A\|} (\|\mathbf{x}\| + \|\delta \mathbf{x}\|).$$

(ii) Rewrite this inequality as

$$\left(1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}\right) \|\delta \mathbf{x}\| \le \kappa(A) \frac{\|\delta A\|}{\|A\|} \|\mathbf{x}\|$$

and use (4.2).

(d) Bonus: Suppose $(A + \delta A)\hat{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$ where $\hat{\mathbf{b}} = \mathbf{b} + \delta \mathbf{b} \neq \mathbf{0}$ and $\hat{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x} \neq \mathbf{0}$. Show that

$$\frac{\|\delta \mathbf{x}\|}{\|\hat{\mathbf{x}}\|} \le \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \mathbf{b}\|}{\|\hat{\mathbf{b}}\|} + \frac{\|\delta A\|}{\|A\|} \frac{\|\delta \mathbf{b}\|}{\|\hat{\mathbf{b}}\|} \right). \tag{4.4}$$

You may like use the following outline:

(i) Show that

$$\delta \mathbf{x} = A^{-1} (\delta \mathbf{b} - \delta A \hat{\mathbf{x}})$$

and so

$$\frac{\|\delta \mathbf{x}\|}{\|\hat{\mathbf{x}}\|} \le \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \mathbf{b}\|}{\|A\|\|\hat{\mathbf{x}}\|} \right). \tag{4.5}$$

(ii) Show that

$$\frac{1}{\|\hat{\mathbf{x}}\|} \le \frac{\|A\| + \|\delta A\|}{\|\hat{\mathbf{b}}\|}.\tag{4.6}$$

- (iii) Combine (4.5) and (2.1) to get (4.4).
- (e) Bonus: Suppose $(A + \delta A)\hat{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$ where $\hat{\mathbf{b}} = \mathbf{b} + \delta \mathbf{b} \neq \mathbf{0}$ and $\hat{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x} \neq \mathbf{0}$ and (4.2) is satisfied. Use the same ideas in (b) to deduce that

$$\frac{\|\delta\mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(A)\left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta\mathbf{b}\|}{\|\mathbf{b}\|}\right)}{1 - \kappa(A)\frac{\|\delta A\|}{\|A\|}}.$$

- 5. Recall that in the lectures, we mentioned that (i) there are matrix norms that are not submultiplicative and an example is the Hölder ∞ -norm; (ii) we may always construct a norm that approximates the spectral radius of a given matrix A as closely as we want.
 - (a) Show that if $\|\cdot\|: \mathbb{C}^{m\times n} \to \mathbb{R}$ is a norm, then there always exists a c > 0 such that the constant multiple $\|\cdot\|_c := c\|\cdot\|$ defines a submultiplicative norm, i.e.,

$$||AB||_c \le ||A||_c ||B||_c$$

for any $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$ (even if $\|\cdot\|$ does not have this property). Find the constant c for the Hölder ∞ -norm.

(b) Let $J \in \mathbb{C}^{n \times n}$ be in Jordan form, i.e.,

$$J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_k \end{bmatrix}$$

where each block J_r , for r = 1, ..., k, has the form

$$J_r = \begin{bmatrix} \lambda_r & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_r \end{bmatrix}.$$

Let $\varepsilon > 0$ and $D_{\varepsilon} = \operatorname{diag}(1, \varepsilon, \varepsilon^2, \dots, \varepsilon^{n-1})$. Verify that

$$D_{\varepsilon}^{-1}JD_{\varepsilon} = \begin{bmatrix} J_{1,\varepsilon} & & & \\ & \ddots & & \\ & & J_{k,\varepsilon} \end{bmatrix}$$

where $J_{r,\varepsilon}$ is the matrix you obtain by replacing the 1's on the superdiagonal of J_r by ε 's,

$$J_{r,\varepsilon} = \begin{bmatrix} \lambda_r & \varepsilon & & & \\ & \ddots & \ddots & \\ & & \ddots & \varepsilon \\ & & & \lambda_r \end{bmatrix}$$

(c) Show that

$$||D_{\varepsilon}^{-1}JD_{\varepsilon}||_{\infty} \le \rho(J) + \varepsilon.$$

 $||D_{\varepsilon}^{-1}JD_{\varepsilon}||_{\infty} \leq \rho(J) + \varepsilon.$ (d) Hence, or otherwise, show that for any given $A \in \mathbb{C}^{n \times n}$ and $\varepsilon > 0$, there exists an operator norm $\|\cdot\|$ of the form (2.1) with the property that

$$\rho(A) \le ||A|| \le \rho(A) + \varepsilon.$$

(Hint: Transform A into Jordan form).