STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2013 PROBLEM SET 5

1. Consider an $n \times n$ tridiagonal matrix of the form

$$T_{\alpha} = \begin{bmatrix} \alpha & -1 & & & \\ -1 & \alpha & -1 & & \\ & -1 & \alpha & -1 & \\ & & -1 & \alpha & -1 \\ & & & -1 & \alpha & -1 \\ & & & & -1 & \alpha \end{bmatrix}$$

where $\alpha \in \mathbb{R}$ is a real parameter.

(a) Verify that the eigenvalues of T_{α} are given by

$$\lambda_j = \alpha - 2\cos(j\theta), \qquad j = 1, \dots, n_j$$

where

$$\theta = \frac{\pi}{n+1}$$

and that an eigenvector associated with each λ_j is

$$\mathbf{q}_{j} = [\sin(j\theta), \sin(2j\theta), \dots, \sin(nj\theta)]^{\mathsf{T}}$$

Under what condition on α does this matrix become positive definite?

(b) If an iterative method with iteration matrix B_{α} is convergent, we define its *asymptotic rate* of convergence as

$$\lim_{m \to \infty} \left(\frac{-\log \|B^m_{\alpha}\|_2}{m} \right)$$

Take $\alpha = 2$.

- (i) Will the Jacobi iteration converge for this matrix? If so, what will its asymptotic rate of convergence be?
- (ii) Will the Gauss-Seidel iteration converge for this matrix? If so, what will its asymptotic rate of convergence be?
- (iii) For which values of ω will the SOR iteration converge?
- 2. In general, a *semi-iterative method* is one that comprises two steps:

$$\mathbf{x}^{(k+1)} = M\mathbf{x}^{(k)} + \mathbf{b}$$
 (Iteration)

and

$$\mathbf{y}^{(m)} = \sum_{k=0}^{m} \alpha_k^{(m)} \mathbf{x}^{(k)}.$$
 (Extrapolation)

As in the lectures, we will assume that M = I - A with $\rho(M) < 1$ and that we are interested to solve $A\mathbf{x} = \mathbf{b}$ for some nonsingular matrix $A \in \mathbb{C}^{n \times n}$. Let

$$\mathbf{e}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}$$
 and $\boldsymbol{\varepsilon}^{(m)} = \mathbf{y}^{(m)} - \mathbf{x}$.

Date: November 26, 2013 (Version 1.2); due: 12 noon, December 9, 2013. Turn in your solutions to Kirsten Wellman in Eckhart 108. No late homeworks will be accepted.

(a) By considering what happens when $\mathbf{x}^{(0)} = \mathbf{x}$, show that it is natural to impose

$$\sum_{k=0}^{m} \alpha_k^{(m)} = 1 \tag{2.1}$$

for all $m \in \mathbb{N} \cup \{0\}$. Henceforth, we will assume that (2.1) is satisfied for all problems in this problem set.

(b) Show that for all $m \in \mathbb{N}$, we may write

$$\boldsymbol{\varepsilon}^{(m)} = P_m(M) \mathbf{e}^{(0)}$$

for some $P_m \in \mathbb{C}[x]$ with $\deg(P_m) = m$ and $P_m(1) = 1$.

(c) Hence deduce that a necessary condition for convergence is that

$$\lim_{m \to \infty} \|P_m(M)\|_2 < 1$$

where $\|\cdot\|_2$ is the spectral norm. Is this condition also sufficient? (d) Consider the case when

$$\alpha_0^{(m)} = \alpha_1^{(m)} = \dots = \alpha_m^{(m)} = \frac{1}{m+1}$$

for all $m \in \mathbb{N} \cup \{0\}$. Show that if a sequence (any sequence, not necessarily one generated as in (Iteration)) is convergent and

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x}$$

then

$$\lim_{m \to \infty} \mathbf{y}^{(m)} = \mathbf{x}$$

Is the converse also true?

3. It is clear that in any semi-iterative method defined by some $M \in \mathbb{C}^{n \times n}$ with $\rho(M) < 1$, we would like to solve the problem

$$\min_{P \in \mathbb{C}[x], \deg(P) = m, P(1) = 1} \|P(M)\|_2.$$
(3.2)

Note that in the lectures, we required the polynomial P to satisfy P(0) = 1. Here we use a different condition, P(1) = 1, motivated by Problem **2**(a).

(a) Show that if $m \ge n$, then a solution to (3.2) is given by

$$P_m(x) = \frac{x^{m-n} \det(xI - M)}{\det(I - M)}.$$

How do we know that the denominator is non-zero?

(b) From now on assume that M is Hermitian with minimum and maximum eigenvalues $\lambda_{\min}, \lambda_{\max} \in \mathbb{R}$. Define

$$||f||_{\infty} = \sup_{x \in [\lambda_{\min}, \lambda_{\max}]} |f(x)|.$$

Emulating our discussions in the lectures, show that for m = 0, 1, ..., n-1, the solution to the relaxed problem

$$\min_{P \in \mathbb{C}[x], \deg(P) = m, P(1) = 1} \|P\|_{\infty}$$
(3.3)

would yield an upper bound to (3.2).

(c) Again by emulating our discussions in the lectures, show that the solution to (3.3) for $\lambda_{\min} = -1$ and $\lambda_{\max} = +1$ is given by the Chebyshev polynomials,

$$C_m(x) = \begin{cases} \cos(m\cos^{-1}(x)) & -1 \le x \le 1, \\ \cosh(m\cosh^{-1}(x)) & x > 1, \\ (-1)^m\cosh(m\cosh^{-1}(-x)) & x < -1. \end{cases}$$

(d) Hence deduce that the solution to (3.3) for $\lambda_{\min} = a$ and $\lambda_{\max} = b$ is given

$$P_m(x) = \frac{C_m\left(\frac{2x - (b+a)}{b-a}\right)}{C_m\left(\frac{2 - (b+a)}{b-a}\right)}.$$
(3.4)

Note that this solves (3.3) for all $m \in \mathbb{N}$ and not just $m \leq n-1$.

- (e) Show that the solution in (d) is unique.
- **4.** Let $M \in \mathbb{C}^{n \times n}$ be Hermitian with $\rho(M) = \rho < 1$. Moreover, suppose that

$$\lambda_{\min} = -\rho, \quad \lambda_{\max} = \rho.$$

(a) Show that the P_m 's in (3.4) satisfy a three-term recurrence relation

$$C_{m+1}\left(\frac{1}{\rho}\right)P_{m+1}(x) = \frac{2x}{\rho}C_m\left(\frac{1}{\rho}\right)P_m(x) - C_{m-1}\left(\frac{1}{\rho}\right)P_{m-1}(x)$$

for all $m \in \mathbb{N}$.

(b) Show that the semi-iterative method with $\alpha_k^{(m)}$ given by the coefficient of P_m in (3.4) may be written as

$$\mathbf{y}^{(m+1)} = \omega_{m+1}(M\mathbf{y}^{(m)} - \mathbf{y}^{(m-1)} + \mathbf{b}) + \mathbf{y}^{(m-1)}$$

where $\omega_1 = 1$ and

$$\omega_{m+1} = \frac{2C_m(1/\rho)}{\rho C_{m+1}(1/\rho)}$$

for $m = 0, 1, 2, \ldots$ This is a slightly different Chebyshev method where we choose the normalization (2.1) instead of $\alpha_m^{(m)} = 1$ in the lecture.

(c) Show that

$$||P_m(M)||_2 = \frac{1}{C_m(1/\rho)} = \frac{1}{\cosh(m\sigma)}$$

where $\sigma = \cosh^{-1}(1/\rho)$. Deduce that $||P_m(M)||_2$ is a strictly decreasing sequence for all m = 0, 1, 2...

(d) Show that

$$e^{-\sigma} = (\omega - 1)^{1/2}$$

where

$$\omega = \frac{2}{1 + \sqrt{1 - \rho^2}}$$
(4.5)

and deduce that

$$||P_m(M)||_2 = \frac{2(\omega - 1)^{m/2}}{1 + (\omega - 1)^m}$$

(e) Hence show that $(\omega_m)_{m=0}^{\infty}$ is strictly decreasing for $m \geq 2$ and that

$$\lim_{m \to \infty} \omega_m = \omega$$

5. Let $M \in \mathbb{C}^{n \times n}$ be nonsingular with $\rho(M) < 1$ and suppose we are interested in solving

$$M\mathbf{x} = \mathbf{b}.\tag{5.6}$$

(a) Show that SOR applied to the system

$$\begin{bmatrix} I & -M \\ -M & I \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix}$$
(5.7)

yields the following iterations

$$\begin{aligned} \mathbf{x}^{(m+1)} &= \omega(M\mathbf{z}^{(m)} - \mathbf{x}^{(m)} + \mathbf{b}) + \mathbf{x}^{(m)}, \\ \mathbf{z}^{(m+1)} &= \omega(M\mathbf{x}^{(m+1)} - \mathbf{z}^{(m)} + \mathbf{b}) + \mathbf{z}^{(m)}, \end{aligned}$$

for $m = 0, 1, 2, \dots$

(b) Define the sequence of iterates $\mathbf{y}^{(m)}$ by

$$\mathbf{y}^{(m)} = \begin{cases} \mathbf{x}^{(k)} & \text{if } m = 2k, \\ \mathbf{z}^{(k)} & \text{if } m = 2k+1 \end{cases}$$

Show that the iterations obtained in (a) are exactly the iterations in Problem 4(b). This shows that SOR applied to (5.7) is equivalent to Chebyshev applied to (5.6) but with $\omega_m = \omega$ for all $m \in \mathbb{N}$. Note that if ω is chosen to be the value in (4.5), then this is in fact the optimal SOR parameter.

6. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite and $\mathbf{b} \in \mathbb{R}^n$. As usual, we write

$$\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k. \tag{6.8}$$

We assume that \mathbf{x}_0 is initialized in some manner. In the lectures we assumed $\mathbf{x}_0 = \mathbf{0}$ and so $\mathbf{r}_0 = \mathbf{b}$ but we will do it a little more generally here. Consider the quadratic functional

$$\varphi(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} A \mathbf{x} - 2 \mathbf{b}^{\mathsf{T}} \mathbf{x}$$

(a) Show that

$$\nabla \varphi(\mathbf{x}_k) = -2\mathbf{r}_k$$

and hence if $\mathbf{x}_* \in \mathbb{R}^n$ is a stationary point of φ , then

$$A\mathbf{x}_* = \mathbf{b}.$$

Show also that \mathbf{x}_* must be a minimizer of φ .

(b) Consider an iterative method

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k \tag{6.9}$$

where $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \ldots$ are search directions to be chosen later. Show that if we want α_k so that the function $f : \mathbb{R} \to \mathbb{R}$,

$$f(\alpha) = \varphi(\mathbf{x}_k + \alpha \mathbf{p}_k)$$

is minimized, then we must have

$$\alpha_k = \frac{\mathbf{r}_k^\mathsf{T} \mathbf{p}_k}{\mathbf{p}_k^\mathsf{T} A \mathbf{p}_k}.$$
(6.10)

(c) Deduce that

$$\varphi(\mathbf{x}_{k+1}) - \varphi(\mathbf{x}_k) = -\frac{(\mathbf{r}_k^{\mathsf{T}} \mathbf{p}_k)^2}{\mathbf{p}_k^{\mathsf{T}} A \mathbf{p}_k}$$

and therefore $\varphi(\mathbf{x}_{k+1}) < \varphi(\mathbf{x}_k)$ as long as $\mathbf{r}_k^\mathsf{T} \mathbf{p}_k \neq 0$.

(d) Show that if we choose

$$\mathbf{p}_k = \mathbf{r}_k,\tag{6.11}$$

we obtain the steepest decent method discussed in the lectures.

(e) Let the eigenvalues of A be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ and $P \in \mathbb{R}[t]$. Show that

$$\|P(A)\mathbf{x}\|_{A} \le \max_{1 \le i \le n} |P(\lambda_{i})| \|\mathbf{x}\|_{A}$$

for every $\mathbf{x} \in \mathbb{R}^n$. [*Hint:* $A \succ 0$ and so has an eigenbasis].

(f) Using (e) and $P_{\alpha}(t) = 1 - \alpha t$, show that if we have (6.11), then

$$\|\mathbf{x}_k - \mathbf{x}_*\|_A \le \max_{1 \le i \le n} |P_\alpha(\lambda_i)| \|\mathbf{x}_{k-1} - \mathbf{x}_*\|_A$$

for all $\alpha \in \mathbb{R}$.

(g) Using properties of Chebyshev polynomials, show that

$$\min_{\alpha \in \mathbb{R}} \max_{\lambda_n \le t \le \lambda_1} |1 - \alpha t| = \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}$$

and hence deduce that

$$\|\mathbf{x}_k - \mathbf{x}_*\|_A \le \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n} \|\mathbf{x}_{k-1} - \mathbf{x}_*\|_A.$$

- 7. In this problem, you are required to randomly generate *sparse* matrices and sparse symmetric matrices of specified *densities*, i.e., proportion of nonzero elements, [cf. sprandn and sprandsym in Matlab/Octave/Scilab]. Modify the diagonal elements of your sparse matrices so that they are diagonally dominant and do likewise so that your sparse symmetric matrices are positive definite.
 - (a) Implement Gaussian elimination with partial pivoting and Gauss-Seidel method. Compare their speeds and accuracies on a range of diagonally dominant matrices of varying dimensions and densities.
 - (b) Implement Cholesky factorization and steepest descent method. Compare their speeds and accuracies on a range of symmetric positive definite matrices of varying dimensions and densities.
 - (c) Comment on your findings in (a) and (b) with relevant numerical evidence presented in graphs and/or tables.