
STAT 309: MATHEMATICAL COMPUTATIONS I

FALL 2013

PROBLEM SET 5

1. Consider an n× n tridiagonal matrix of the form

Tα =


α −1
−1 α −1

−1 α −1
−1 α −1

−1 α −1
−1 α

 ,
where α ∈ R is a real parameter.
(a) Verify that the eigenvalues of Tα are given by

λj = α− 2 cos(jθ), j = 1, . . . , n,

where

θ =
π

n+ 1
and that an eigenvector associated with each λj is

qj = [sin(jθ), sin(2jθ), . . . , sin(njθ)]T.

Under what condition on α does this matrix become positive definite?
(b) If an iterative method with iteration matrix Bα is convergent, we define its asymptotic rate

of convergence as

lim
m→∞

(
− log‖Bm

α ‖2
m

)
Take α = 2.

(i) Will the Jacobi iteration converge for this matrix? If so, what will its asymptotic
rate of convergence be?

(ii) Will the Gauss-Seidel iteration converge for this matrix? If so, what will its asymp-
totic rate of convergence be?

(iii) For which values of ω will the sor iteration converge?

2. In general, a semi-iterative method is one that comprises two steps:

x(k+1) = Mx(k) + b (Iteration)

and

y(m) =
m∑
k=0

α
(m)
k x(k). (Extrapolation)

As in the lectures, we will assume that M = I −A with ρ(M) < 1 and that we are interested to
solve Ax = b for some nonsingular matrix A ∈ Cn×n. Let

e(k) = x(k) − x and ε(m) = y(m) − x.
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(a) By considering what happens when x(0) = x, show that it is natural to impose

m∑
k=0

α
(m)
k = 1 (2.1)

for all m ∈ N ∪ {0}. Henceforth, we will assume that (2.1) is satisfied for all problems in
this problem set.

(b) Show that for all m ∈ N, we may write

ε(m) = Pm(M)e(0)

for some Pm ∈ C[x] with deg(Pm) = m and Pm(1) = 1.
(c) Hence deduce that a necessary condition for convergence is that

lim
m→∞

‖Pm(M)‖2 < 1

where ‖ · ‖2 is the spectral norm. Is this condition also sufficient?
(d) Consider the case when

α
(m)
0 = α

(m)
1 = · · · = α(m)

m =
1

m+ 1

for all m ∈ N ∪ {0}. Show that if a sequence (any sequence, not necessarily one generated
as in (Iteration)) is convergent and

lim
k→∞

x(k) = x

then

lim
m→∞

y(m) = x.

Is the converse also true?

3. It is clear that in any semi-iterative method defined by some M ∈ Cn×n with ρ(M) < 1, we
would like to solve the problem

min
P∈C[x], deg(P )=m, P (1)=1

‖P (M)‖2. (3.2)

Note that in the lectures, we required the polynomial P to satisfy P (0) = 1. Here we use a
different condition, P (1) = 1, motivated by Problem 2(a).
(a) Show that if m ≥ n, then a solution to (3.2) is given by

Pm(x) =
xm−n det(xI −M)

det(I −M)
.

How do we know that the denominator is non-zero?
(b) From now on assume that M is Hermitian with minimum and maximum eigenvalues

λmin, λmax ∈ R. Define

‖f‖∞ = sup
x∈[λmin,λmax]

|f(x)|.

Emulating our discussions in the lectures, show that for m = 0, 1, . . . , n− 1, the solution to
the relaxed problem

min
P∈C[x], deg(P )=m, P (1)=1

‖P‖∞ (3.3)

would yield an upper bound to (3.2).
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(c) Again by emulating our discussions in the lectures, show that the solution to (3.3) for
λmin = −1 and λmax = +1 is given by the Chebyshev polynomials,

Cm(x) =


cos(m cos−1(x)) −1 ≤ x ≤ 1,

cosh(m cosh−1(x)) x > 1,

(−1)m cosh(m cosh−1(−x)) x < −1.

(d) Hence deduce that the solution to (3.3) for λmin = a and λmax = b is given

Pm(x) =

Cm

(
2x− (b+ a)

b− a

)
Cm

(
2− (b+ a)

b− a

) . (3.4)

Note that this solves (3.3) for all m ∈ N and not just m ≤ n− 1.
(e) Show that the solution in (d) is unique.

4. Let M ∈ Cn×n be Hermitian with ρ(M) = ρ < 1. Moreover, suppose that

λmin = −ρ, λmax = ρ.

(a) Show that the Pm’s in (3.4) satisfy a three-term recurrence relation

Cm+1

(
1

ρ

)
Pm+1(x) =

2x

ρ
Cm

(
1

ρ

)
Pm(x)− Cm−1

(
1

ρ

)
Pm−1(x)

for all m ∈ N.
(b) Show that the semi-iterative method with α

(m)
k given by the coefficient of Pm in (3.4) may

be written as

y(m+1) = ωm+1(My(m) − y(m−1) + b) + y(m−1)

where ω1 = 1 and

ωm+1 =
2Cm(1/ρ)

ρCm+1(1/ρ)

for m = 0, 1, 2, . . . . This is a slightly different Chebyshev method where we choose the

normalization (2.1) instead of α
(m)
m = 1 in the lecture.

(c) Show that

‖Pm(M)‖2 =
1

Cm(1/ρ)
=

1

cosh(mσ)

where σ = cosh−1(1/ρ). Deduce that ‖Pm(M)‖2 is a strictly decreasing sequence for all
m = 0, 1, 2 . . . .

(d) Show that

e−σ = (ω − 1)1/2

where

ω =
2

1 +
√

1− ρ2
(4.5)

and deduce that

‖Pm(M)‖2 =
2(ω − 1)m/2

1 + (ω − 1)m
.

(e) Hence show that (ωm)∞m=0 is strictly decreasing for m ≥ 2 and that

lim
m→∞

ωm = ω.
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5. Let M ∈ Cn×n be nonsingular with ρ(M) < 1 and suppose we are interested in solving

Mx = b. (5.6)

(a) Show that sor applied to the system[
I −M
−M I

] [
x
z

]
=

[
b
b

]
(5.7)

yields the following iterations

x(m+1) = ω(Mz(m) − x(m) + b) + x(m),

z(m+1) = ω(Mx(m+1) − z(m) + b) + z(m),

for m = 0, 1, 2, . . . .
(b) Define the sequence of iterates y(m) by

y(m) =

{
x(k) if m = 2k,

z(k) if m = 2k + 1.

Show that the iterations obtained in (a) are exactly the iterations in Problem 4(b). This
shows that sor applied to (5.7) is equivalent to Chebyshev applied to (5.6) but with ωm = ω
for all m ∈ N. Note that if ω is chosen to be the value in (4.5), then this is in fact the
optimal sor parameter.

6. Let A ∈ Rn×n be symmetric positive definite and b ∈ Rn. As usual, we write

rk = b−Axk. (6.8)

We assume that x0 is initialized in some manner. In the lectures we assumed x0 = 0 and so
r0 = b but we will do it a little more generally here. Consider the quadratic functional

ϕ(x) = xTAx− 2bTx.

(a) Show that

∇ϕ(xk) = −2rk

and hence if x∗ ∈ Rn is a stationary point of ϕ, then

Ax∗ = b.

Show also that x∗ must be a minimizer of ϕ.
(b) Consider an iterative method

xk+1 = xk + αkpk (6.9)

where p0,p1,p2, . . . are search directions to be chosen later. Show that if we want αk so
that the function f : R→ R,

f(α) = ϕ(xk + αpk)

is minimized, then we must have

αk =
rTkpk

pT
kApk

. (6.10)

(c) Deduce that

ϕ(xk+1)− ϕ(xk) = −
(rTkpk)

2

pT
kApk

and therefore ϕ(xk+1) < ϕ(xk) as long as rTkpk 6= 0.
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(d) Show that if we choose
pk = rk, (6.11)

we obtain the steepest decent method discussed in the lectures.
(e) Let the eigenvalues of A be λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and P ∈ R[t]. Show that

‖P (A)x‖A ≤ max
1≤i≤n

|P (λi)|‖x‖A

for every x ∈ Rn. [Hint: A � 0 and so has an eigenbasis].
(f) Using (e) and Pα(t) = 1− αt, show that if we have (6.11), then

‖xk − x∗‖A ≤ max
1≤i≤n

|Pα(λi)|‖xk−1 − x∗‖A

for all α ∈ R.
(g) Using properties of Chebyshev polynomials, show that

min
α∈R

max
λn≤t≤λ1

|1− αt|= λ1 − λn
λ1 + λn

and hence deduce that

‖xk − x∗‖A ≤
λ1 − λn
λ1 + λn

‖xk−1 − x∗‖A.

7. In this problem, you are required to randomly generate sparse matrices and sparse symmetric
matrices of specified densities, i.e., proportion of nonzero elements, [cf. sprandn and sprandsym

in Matlab/Octave/Scilab]. Modify the diagonal elements of your sparse matrices so that they
are diagonally dominant and do likewise so that your sparse symmetric matrices are positive
definite.
(a) Implement Gaussian elimination with partial pivoting and Gauss-Seidel method. Com-

pare their speeds and accuracies on a range of diagonally dominant matrices of varying
dimensions and densities.

(b) Implement Cholesky factorization and steepest descent method. Compare their speeds and
accuracies on a range of symmetic positive definite matrices of varying dimensions and
densities.

(c) Comment on your findings in (a) and (b) with relevant numerical evidence presented in
graphs and/or tables.


