
STAT 309: MATHEMATICAL COMPUTATIONS I

FALL 2013

PROBLEM SET 2

1. You are not allowed to use the svd for this problem, i.e. no arguments should depend on the
svd of A or A∗. Let W be a subspace of Cn. The subspace W⊥ below is called the orthogonal
complement of W .

W⊥ = {v ∈ Cn | v∗w = 0 for all w ∈W}.

For any subspace W ⊆ Cn, we write PW ∈ Cn×n for an orthogonal projection onto W .
(a) Show that Cn = W ⊕W⊥ and that W = (W⊥)⊥.
(b) Let A ∈ Cm×n. Show that

ker(A∗) = im(A)⊥ and im(A∗) = ker(A)⊥.

(c) Deduce the Fredholm alternative:

Cm = ker(A∗)⊕ im(A) and Cn = im(A∗)⊕ ker(A).

In other words any x ∈ Cn and y ∈ Cm can be written uniquely as

x = x0 + x1, x0 ∈ ker(A), x1 ∈ im(A∗), x∗0x1 = 0,

y = y0 + y1, y0 ∈ ker(A∗), y1 ∈ im(A), y∗0y1 = 0.

(d) Show that

x0 = Pker(A)x, x1 = Pim(A∗)x, y0 = Pker(A∗)y, y1 = Pim(A)y.

(e) Consider the least squares problem for some b ∈ Cm,

min
x∈Cn
‖b−Ax‖2. (1.1)

Show that for any x ∈ Cn,

‖b−Ax‖2 ≥ ‖b0‖2
where b0 = Pker(A∗)b. Deduce that x ∈ Cn is a solution to (1.1) if and only if

Ax = b1 or, equivalently, b−Ax = b0. (1.2)

Why is Ax = b1 consistent?
(f) Show that (1.2) is equivalent (i.e., if and only if) to the normal equation

A∗Ax = A∗b. (1.3)

Caveat : In numerical analysis, it is in general a terrible idea to solve a least squares problem
via its normal equation. Nonetheless (1.3) can be useful in mathematical arguments. We
discussed in the lectures the very limited number of scenarios when it makes sense to solve
(1.3) via Cholesky decomposition.
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(g) Show that the pseudoinverse solution

min

{
‖x‖2 : x ∈ argmin

x∈Cn
‖b−Ax‖2

}
is given by

x1 = Pim(A∗)x

where x ∈ Cn satisfies (1.2).
(h) Let A ∈ Cn×n be normal, i.e., A∗A = AA∗. Show that

ker(A∗) = ker(A) and im(A∗) = im(A)

and deduce that for a normal matrix,

Cn = ker(A)⊕ im(A).

2. Let A,B ∈ Cm×n with n ≤ m. In the lectures, we claim that the solution X ∈ U(n) to

min
X∗X=I

‖A−BX‖F

is given by X = UV ∗ where B∗A = UΣV ∗ is its singular value decomposition. Here we will
prove it and consider some variants.
(a) Show that

‖A−BX‖2F = tr(A∗A) + tr(B∗B)− 2 Re tr(X∗B∗A)

and deduce that the minimization problem is equivalent to

max
X∗X=I

Re tr(X∗B∗A).

(b) Show that

Re tr(X∗B∗A) ≤
n∑
i=1

σi(B
∗A)

for any X ∈ U(n). When is the upper bound attained?
(c) Show that

min
X∗X=I

‖A−BX‖2F =
n∑
i=1

(σi(A)2 − 2σi(B
∗A) + σi(B)2).

(d) Suppose A has full column rank. Show that the following method produces a Hermitian
matrix X ∈ Cn×n that solves

min
X∗=X

‖AX −B‖F . (2.4)

(i) Show that the svd of A takes the form

A = U

[
Σ
O

]
V ∗

where U ∈ U(m), V ∈ U(n), and Σ = diag(σ1, . . . , σn) ∈ Cn×n is a diagonal matrix.
(ii) Show that

‖AX −B‖2F = ‖ΣY − C1‖2F + ‖C2‖2F

where Y = V ∗XV and C =

[
C1

C2

]
= U∗BV .
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(iii) Note that Y must be Hermitian if X is. Show that

‖ΣY − C1‖2F =
n∑
i=1

|σiyii − cii|2 +
∑
j>i

|σiyij − cij |2 + |σjyij − cji|2

and deduce that the minimum value of (2.4) is attained when

yij =
σicij + σjcji
σ2i + σ2j

for all i, j = 1, . . . , n.
(e) Given A ∈ Cn×n. Describe how you would find X ∈ Cn×n that solves

min
det(X)=|det(A)|

‖A−X‖F .

(Hint : Consider the svd of A).

3. Let x ∈ Cm, y ∈ Cn, and A = xy∗ ∈ Cm×n.
(a) Show that rank(A) = 1 iff x and y are both non-zero. Such a matrix is usually called a

rank-1 matrix.
(b) Show that

‖A‖F = ‖A‖2 = ‖x‖2‖y‖2 (3.5)

and that
‖A‖∞ ≤ ‖x‖∞‖y‖1.

What can you say about ‖A‖1?
(c) Let x1, . . . ,xr ∈ Cm be linearly independent and y1, . . . ,yr ∈ Cn be linearly independent.

Let
A = x1y

∗
1 + · · ·+ xry

∗
r .

Show that rank(A) = r. Show that this is not necessarily true if we drop either of the linear
independence conditions.

(d) Given any 0 6= A ∈ Cm×n, show that

rank(A) = min{r ∈ N | A =
∑r

i=1xiy
∗
i }.

In other words, the rank of a matrix is the smallest r so that it may be expressed as a sum
of r rank-1 matrices.

(e) Show the following generalization of (3.5),

‖A‖F ≤
√

rank(A)‖A‖2.
Note that ν rank(A) = ‖A‖2F /‖A‖22 is one of the three notions of numerical ranks that we
discussed. It is often used as a continuous surrogate for matrix rank.

(f) Show that with the nuclear norm we get instead

‖A‖∗ ≤ rank(A)‖A‖2. (3.6)

In other words we could also use ‖A‖∗/‖A‖2 as a continuous surrogate for matrix rank. In
fact, this has been quite popular recently (cf. next problem).

4. Let A ∈ Cm×n be a matrix with missing entries. More precisely we let Ω ⊆ {1, . . . ,m} ×
{1, . . . , n} be a subset of the row and column indices. We know the value of aij if (i, j) ∈ Ω but
not otherwise. Now one way to perform matrix completion, i.e., recovering the missing entries
in A, is to find an X ∈ Cm×n whereby some loss function f is minimized, subjected to the
constraint that xij agrees with all known entries of A:

minimize f(X)
subject to xij = aij for (i, j) ∈ Ω.
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One could argue that the most natural candidate for f is

f(X) = rank(X), (4.7)

but matrix rank is a discrete valued function and techniques of continuous optimization cannot
be applied. A popular alternative is to instead use

f(X) = ‖X‖∗
because nuclear norm is the largest convex function that satisfies (3.6) but this won’t give the
solution to (4.8) in general. Here we will see that an alternative way to solve (4.8) (in principle)
as a continuous problem is via svd.

minimize rank(X)
subject to xij = aij for (i, j) ∈ Ω,

(4.8)

For 1 ≤ r ≤ min(m,n), let fr : Cm×n → [0,∞) be the function

fr(X) =

min(m,n)∑
i=r+1

σi(X)2.

and consider the minimization problem

minimize fr(X)
subject to xij = aij for (i, j) ∈ Ω.

(4.9)

Let Xr be a minimizer of (4.9). Show that

fr(Xr) = 0 if and only if r ≥ rank(X∗)

where X∗ is a minimizer of (4.8). Discuss how this can be used to obtain a solution to (4.8).

5. Let A ∈ Cm×n and b ∈ Cm. We will discuss a variant of Ax ≈ b where the error occurs only in
A. Note that in ordinary least squares we assume that the error occurs only in b while in total
least squares we assume that it occurs in both A and b.
(a) Show that if 0 6= x ∈ Cm, then∥∥∥∥A(I − xx∗

x∗x

)∥∥∥∥2
F

= ‖A‖2F −
‖Ax‖22
x∗x

.

(b) Show that the matrix

E =
(b−Ax)x∗

x∗x
∈ Cm×n

has the smallest 2-norm of all m× n matrices E that satisfy

(A+ E)x = b.

(c) What are the solutions of

min
(A+E)x=b

‖E‖2 and min
(A+E)x=b

‖E‖F ?

The minimum is taken over all E ∈ Rm×n such that (A+E)x = b is consistent (i.e., has a
solution).

(d) Given a ∈ Cn, b ∈ Cm, and δ > 0. Show how to solve the problems

min
‖E‖F≤δ

‖Ea− b‖2 and max
‖E‖F≤δ

‖Ea− b‖2

over all E ∈ Cm×n.
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6. The files required for this problem are in http://www.stat.uchicago.edu/~lekheng/courses/

309/stat309-hw2/. The matrix in processed.mat (Matlab format) or processed.txt (comma
separated, plain text) is a 49×7 matrix where each row is indexed by a country in row.txt and
each column is indexed by a demographic variable in column.txt, ordered as in the respective
files. So for example, if we denote the matrix by A = [aij ] ∈ R49×7, then a23 = −0.2743 is
Austria’s population per square kilometers (row index 2 = Austria, column index 3 = population
per square kilometers). As you probably notice, this matrix has been slightly preprocessed. If
you want to see the raw data, you can find them in raw.txt (e.g. the actual value for Austria’s
population per square kilometers is 84) but you don’t need the raw data for this problem.
(a) Find the first two right singular vectors of A, v1,v2 ∈ R7. Project the data onto the two-

dimensional space spanned by v1 and v2. Plot this in a graph where the x- and y-axes
correspond to v1 and v2 respectively and where the points correspond to the countries —
label each point by the country it corresponds to. Identify the two obvious outliers.

(b) Now do the same with the two left singular vectors of A, u1,u2 ∈ R49, i.e., project the data
onto the two-dimensional space spanned by u1 and u2 and plot this in a graph as before.
Note that in this case, the points correspond to the demographic variables — label them
accordingly.

(c) Overlay the two graphs in (a) and (b). Identify the two demographic variables near the
two outlier countries — these explain why the two countries are outliers.

(d) Remove the two outlier countries and redo (a) with this 47× 7 matrix. This allows you to
see features that were earlier obscured by the outliers. Which two European countries are
most alike Japan?

The graphs in (a) and (b) are called scatter plots and the overlayed one in (c) is called a biplot.
See http://en.wikipedia.org/wiki/Biplot for more information. The reason we didn’t need
to adjust the scale of the axes using the singular values of A like in the Wikipedia description
is because the preprocessing has taken care of the scaling; if we had started from the raw data,
then we would need to deal with this complication.


