
STAT 309: MATHEMATICAL COMPUTATIONS I

FALL 2013

PROBLEM SET 1

The parts marked “Bonus” are optional, i.e., Problems 1(c), 4(d), and 4(e). For Problems 3 and 6,
use any program you like but present your source codes and results in a way that is comprehensible
to someone who is unfamiliar with that program (e.g. comment your codes appropriately). Scilab
and Octave use Matlab syntax but are open source and freely downloadable.

1. Let x ∈ Cn and A ∈ Cm×n. We write ‖x‖2 =
√
x∗x and ‖A‖2 = sup‖x‖2=1‖Ax‖2 for the vector

2-norm and matrix 2-norm respectively.
(a) Show that there is no ambiguity in the notation, i.e., if A ∈ Cn×1 = Cn, then ‖A‖2 is the

same whether we regard it as the vector or matrix 2-norm. What if A ∈ C1×n?
(b) Show that the vector 2-norm is unitarily invariant, i.e.,

‖Ux‖2 = ‖x‖2
for all unitary matrices U ∈ Cn×n.

(c) Bonus: Show that no other vector p-norm is unitarily invariant, 1 ≤ p ≤ ∞, p 6= 2.
(d) Show that the matrix 2-norm is unitarily invariant, i.e.,

‖UAV ‖2 = ‖A‖2
for all unitary matrices U ∈ Cm×m, V ∈ Cn×n.

(e) Show that the Frobenius norm is unitarily invariant, i.e.,

‖UAV ‖F = ‖A‖F
for all unitary matrices U ∈ Cm×m, V ∈ Cn×n. (Hint : First show that ‖A‖2F = tr(A∗A) =
tr(AA∗)).

(f) Let U ∈ Cn×n. Show that the following are equivalent statements:
(i) ‖Ux‖2 = ‖x‖2 for all x ∈ Cn;
(ii) (Ux)∗Uy = x∗y for all x,y ∈ Cn;

(iii) U is unitary.

2. Let A ∈ Cn×n. Let ‖ · ‖ be an operator norm of the form

‖A‖ = max
0 6=v∈Cn

‖Av‖α
‖v‖α

(2.1)

for some vector norm ‖ · ‖α : Cn → [0,∞). Show that if ‖A‖ < 1, then I −A is nonsingular and
furthermore,

1

1 + ‖A‖
≤ ‖(I −A)−1‖ ≤ 1

1− ‖A‖
.

3. We will examine the effect of various parameters on the accuracy of a computed solution to a
nonsingular linear system. Relevant commands in Matlab syntax are given in brackets.
(a) Generate A = [aij ] ∈ Rn×n as follows:

(i) aij randomly generated from a standard normal distribution [randn(n)];
(ii) a Hilbert matrix, i.e., aij = 1/(i+ j − 1) [hilb(n)];

(iii) a Pascal matrix, i.e., the entries aij =
(
i+j
i

)
[pascal(n)];
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(iv) a magic square, i.e., the entries aij ’s are the integers 1, 2, . . . , n2 arranged in a way
that A has equal row, column, and diagonal sums [magic(n)].

hilb(4) =


1 1/2 1/3 1/4

1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

 , pascal(4) =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 , magic(4) =


16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1


For simplicity, we will assume that A is stored exactly with no errors even though this is
only true for those matrices with integer-valued entries.

(b) Generate x and b ∈ Rn as follows:
(i) x = [1, . . . , 1]T [ones(n,1)];
(ii) b = Ax [b = A*x].

(c) For each A generated as above, perform the following for n = 5, 10, 15, . . . , 500.
(i) Solve Ax = b using your program to get x̂ [xhat = A\b]. Note that in general the

result computed by your program will not be exactly the true solution x = A−1b
because of roundoff errors that occurred during computations.

(ii) Compute δb = Ax̂−b and record the values of ‖x− x̂‖/‖x‖, κ(A) = ‖A‖‖A−1‖ and
κ(A)‖δb‖/‖b‖for ‖ · ‖ = ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞.

(iii) Present everything for the n = 5 case but only tabulate the relevant trend for general
n > 5 in a graph.

(d) Discuss and explain the effects of different choices of A, b, ‖ · ‖, and n have on the accuracy
of the computed solution x̂.

(e) Instead of solving the linear system directly, compute A−1 and then x̂ := A−1b [xhat =

inv(A)*b]. Comment on the accuracy of this approach. Provide numerical evidence to
support your conclusion.

(f) Write a program that computes the (1, 1)-entry of the matrix A−1 that does not involve
computing A−1, i.e., if A−1 = [bij ], you want the value b11 but you are not allowed to
compute A−1.

4. Let A ∈ Rn×n be nonsingular and let 0 6= b ∈ Rn. Let x = A−1b ∈ Rn. In the following,
δA ∈ Rn×n and δb ∈ Rn are some arbitrary matrix and vector. We assume that the norm on A
satisfies ‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Rn×n and all x ∈ Rn.
(a) Show that if δA ∈ Rn×n is any matrix satisfying

‖δA‖
‖A‖

<
1

κ(A)
, (4.2)

then A + δA must be nonsingular. (Hint : If A + δA is singular, then there exists nonzero
v such that (A+ δA)v = 0).

(b) Suppose (A+ δA)(x + δx) = b and x̂ = x + δx. Show that

‖δx‖
‖x̂‖

≤ κ(A)
‖δA‖
‖A‖

. (4.3)

(c) Suppose (A+ δA)(x + δx) = b and x̂ = x + δx and (4.2) is satisfied. Show that

‖δx‖
‖x‖

≤
κ(A)

‖δA‖
‖A‖

1− κ(A)
‖δA‖
‖A‖

.

You may like use the following outline:
(i) Show that

δx = −A−1δAx̂
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and so

‖δx‖ ≤ κ(A)
‖δA‖
‖A‖

(‖x‖+ ‖δx‖).

(ii) Rewrite this inequality as(
1− κ(A)

‖δA‖
‖A‖

)
‖δx‖ ≤ κ(A)

‖δA‖
‖A‖

‖x‖

and use (4.2).

(d) Bonus: Suppose (A + δA)x̂ = b + δb where b̂ = b + δb 6= 0 and x̂ = x + δx 6= 0. Show
that

‖δx‖
‖x̂‖

≤ κ(A)

(
‖δA‖
‖A‖

+
‖δb‖
‖b̂‖

+
‖δA‖
‖A‖

‖δb‖
‖b̂‖

)
. (4.4)

You may like use the following outline:
(i) Show that

δx = A−1(δb− δAx̂)

and so
‖δx‖
‖x̂‖

≤ κ(A)

(
‖δA‖
‖A‖

+
‖δb‖
‖A‖‖x̂‖

)
. (4.5)

(ii) Show that
1

‖x̂‖
≤ ‖A‖+ ‖δA‖

‖b̂‖
. (4.6)

(iii) Combine (4.5) and (2.1) to get (4.4).

(e) Bonus: Suppose (A+ δA)x̂ = b+ δb where b̂ = b+ δb 6= 0 and x̂ = x+ δx 6= 0 and (4.2)
is satisfied. Use the same ideas in (b) to deduce that

‖δx‖
‖x‖

≤
κ(A)

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
1− κ(A)

‖δA‖
‖A‖

.

5. Recall that in the lectures, we mentioned that (i) there are matrix norms that are not submul-
tiplicative and an example is the Hölder ∞-norm; (ii) we may always construct a norm that
approximates the spectral radius of a given matrix A as closely as we want.
(a) Show that if ‖ · ‖ : Cm×n → R is a norm, then there always exists a c > 0 such that the

constant multiple ‖ · ‖c := c‖ · ‖ defines a submultiplicative norm, i.e.,

‖AB ‖c ≤ ‖A‖c‖B ‖c
for any A ∈ Cm×n and B ∈ Cn×p (even if ‖ · ‖ does not have this property). Find the
constant c for the Hölder ∞-norm.

(b) Let J ∈ Cn×n be in Jordan form, i.e.,

J =

J1 . . .

Jk


where each block Jr, for r = 1, . . . , k, has the form

Jr =


λr 1

. . .
. . .
. . . 1

λr

 .



4 STAT 309 ASSIGNMENT 1

Let ε > 0 and Dε = diag(1, ε, ε2, . . . , εn−1). Verify that

D−1ε JDε =

J1,ε . . .

Jk,ε


where Jr,ε is the matrix you obtain by replacing the 1’s on the superdiagonal of Jr by ε’s,

Jr,ε =


λr ε

. . .
. . .
. . . ε

λr


(c) Show that

‖D−1ε JDε‖∞ ≤ ρ(J) + ε.

(d) Hence, or otherwise, show that for any given A ∈ Cn×n and ε > 0, there exists an operator
norm ‖ · ‖ of the form (2.1) with the property that

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

(Hint : Transform A into Jordan form).

6. Let A = [aij ] be an n× n matrix with entries

aij =

{
n+ 1−max(i, j) i ≤ j + 1,

0 i > j + 1.

This is an example of an upper Hessenberg matrix: it is upper triangular except that the entries
on the subdiagonal ai,i+1 may also be non-zero. For n = 12 and n = 25, do the following1:
(a) Compute ‖A‖∞ and ‖A‖1.
(b) Compute ρ(A) and ‖A‖2.
(c) Using Gerschgorin’s theorem, describe the domain that contains all of the eigenvalues.
(d) Compute all of the eigenvalues and singular values of A. How many of the eigenvalues are

real and how many are complex?

1You may use any built-in functions of your program.


