
STAT 309: MATHEMATICAL COMPUTATIONS I

FALL 2012

PROBLEM SET 3

1. You are not allowed to use the svd for this problem, i.e. no arguments should depend on the
svd of A or A∗. Let W be a subspace of Cn. The subspace W⊥ below is called the orthogonal
complement of W .

W⊥ = {v ∈ Cn | v∗w = 0 for all w ∈W}.
For any subspace W ⊆ Cn, we write PW ∈ Cn×n for the projection onto W .
(a) Show that Cn = W ⊕W⊥ and that W = (W⊥)⊥.
(b) Let A ∈ Cm×n. Show that

ker(A∗) = im(A)⊥ and im(A∗) = ker(A)⊥.

(c) Deduce the Fredholm alternative:

Cm = ker(A∗)⊕ im(A) and Cn = im(A∗)⊕ ker(A).

In other words any x ∈ Cm and y ∈ Cn can be written uniquely as

x = x0 + x1, x0 ∈ ker(A), x1 ∈ im(A∗), x∗0x1 = 0,

y = y0 + y1, y0 ∈ ker(A∗), y1 ∈ im(A), y∗0y1 = 0.

(d) Show that

x0 = Pker(A)x, x1 = Pim(A∗)x, y0 = Pker(A∗)y, y1 = Pim(A)y.

(e) Consider the least squares problem for some b ∈ Cm,

min
x∈Cn
‖b−Ax‖2. (1.1)

Show that for any x ∈ Cn,
‖b−Ax‖2 ≥ ‖b0‖2

where b0 = Pker(A∗)b. Deduce that x ∈ Cn is a solution to (1.1) if and only if

Ax = b1 or, equivalently, b−Ax = b0. (1.2)

Why is Ax = b1 consistent?
(f) Show that (1.2) is equivalent (i.e. if and only if) to the normal equation

A∗Ax = A∗b. (1.3)

Caveat : In numerical analysis, it is an unforgivable sin to solve a least squares problem
using its normal equation. Nonetheless (1.3) can be useful in mathematical arguments; just
don’t ever use it for computations, instead use (1.2).

(g) Show that the pseudoinverse solution

min

{
‖x‖2 : x ∈ argmin

x∈Cn
‖b−Ax‖2

}
is given by

x1 = Pim(A∗)x

where x ∈ Cn satisfies (1.2).
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(h) Let A ∈ Cn×n be normal, i.e. A∗A = AA∗. Show that

ker(A∗) = ker(A) and im(A∗) = im(A)

and deduce that for a normal matrix,

Cn = ker(A)⊕ im(A).

2. Let A,B ∈ Cm×n with n ≤ m. In the lectures, we claim that the solution X ∈ U(n) to

min
X∗X=I

‖A−BX‖F

is given by X = UV ∗ where B∗A = UΣV ∗ is its singular value decomposition. Here we will
prove it and consider some variants.
(a) Show that

‖A−BX‖2F = tr(A∗A) + tr(B∗B)− 2 Re tr(X∗B∗A)

and deduce that the minimization problem is equivalent to

max
X∗X=I

Re tr(X∗B∗A).

(b) Show that

Re tr(X∗B∗A) ≤
n∑
i=1

σi(B
∗A)

for any X ∈ U(n). When is the upper bound attained?
(c) Show that

min
X∗X=I

‖A−BX‖2F =

m∑
i=1

(σi(A)2 − 2σi(B
∗A) + σi(B)2).

(d) Suppose A has full column rank. Show that the following method produces a Hermitian
matrix X ∈ Cn×n that solves

min
X∗=X

‖AX −B‖F . (2.4)

(i) Show that the svd of A takes the form

A = U

[
Σ
O

]
V ∗

where U ∈ U(m), V ∈ U(n), and Σ = diag(σ1, . . . , σn) ∈ Cn×n is a diagonal matrix.
(ii) Show that

‖AX −B‖2F = ‖ΣY − C1‖2F + ‖C2‖2F

where Y = V ∗XV and C =

[
C1

C2

]
= U∗BV .

(iii) Note that Y must be Hermitian if X is. Show that

‖ΣY − C1‖2F =
n∑
i=1

|σiyii − cii|2 +
∑
j>i

|σiyij − cij |2 + |σjyij − cji|2

and deduce that the minimum value of (2.4) is attained when

yij =
σicij + σjcji
σ2
i + σ2

j

for all i, j = 1, . . . , n.
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(e) Given A ∈ Cn×n. Describe how you would find X ∈ Cn×n that solves

min
det(X)=|det(A)|

‖A−X‖F .

(Hint : Consider the svd of A).

3. Let x ∈ Cm, y ∈ Cn, and A = xy∗ ∈ Cm×n.
(a) Show that rank(A) = 1 iff x and y are both non-zero. Such a matrix is usually called a

rank-1 matrix.
(b) Show that

‖A‖F = ‖A‖2 = ‖x‖2‖y‖2 (3.5)

and that
‖A‖∞ ≤ ‖x‖∞‖y‖1.

What can you say about ‖A‖1?
(c) Let x1, . . . ,xr ∈ Cm be linearly independent and y1, . . . ,yr ∈ Cn be linearly independent.

Let
A = x1y

∗
1 + · · ·+ xry

∗
r .

Show that rank(A) = r. Show that this is not necessarily true if we drop either of the linear
independence conditions.

(d) Given any 0 6= A ∈ Cm×n, show that

rank(A) = min{r ∈ N | A =
∑r

i=1xiy
∗
i }.

In other words, the rank of a matrix is the smallest r so that it may be expressed as a sum
of r rank-1 matrices.

(e) Show the following generalization of (3.5),

‖A‖F ≤
√

rank(A)‖A‖2.
Note that rankcs(A) = ‖A‖2F /‖A‖22 is the ‘computer scientist’s numerical rank,’ one of
the three notions of numerical ranks that we discussed. It is often used as a continuous
surrogate for matrix rank.

(f) Show that with the nuclear norm we get instead

‖A‖∗ ≤ rank(A)‖A‖2. (3.6)

In other words we could also use ‖A‖∗/‖A‖2 as a continuous surrogate for matrix rank. In
fact, this has been quite popular recently.

4. Let A ∈ Cm×n and b ∈ Cm. We will discuss a variant of Ax ≈ b where the error occurs only in
A. Note that in ordinary least squares we assume that the error occurs only in b while in total
least squares we assume that it occurs in both A and b.
(a) Show that if 0 6= x ∈ Cm, then∥∥∥∥A(I − xx∗

x∗x

)∥∥∥∥2

F

= ‖A‖2F −
‖Ax‖22
x∗x

.

(b) Show that the matrix

E =
(b−Ax)x∗

x∗x
∈ Cm×n

has the smallest 2-norm of all m× n matrices E that satisfy

(A+ E)x = b.

(c) What are the solutions of

min
(A+E)x=b

‖E‖2 and min
(A+E)x=b

‖E‖F ?
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(d) Given a ∈ Cn, b ∈ Cm, and δ > 0. Show how to solve the problems

min
‖E‖F≤δ

‖Ea− b‖2 and max
‖E‖F≤δ

‖Ea− b‖2

over all E ∈ Cm×n.

5. Let A ∈ Cm×n be a matrix with missing entries. More precisely we let Ω ⊆ {1, . . . ,m} ×
{1, . . . , n} be a subset of the row and column indices. We know the value of aij if (i, j) ∈ Ω but
not otherwise. Now one way to recover the matrix A is to find an X ∈ Cm×n whereby some loss
function f is minimized, subjected to the constraint that xij agrees with all known entries of A:

minimize f(X)
subject to xij = aij for (i, j) ∈ Ω.

One could argue that the most natural candidate for f is

f(X) = rank(X), (5.7)

but matrix rank is a discrete valued function and techniques of continuous optimization cannot
be applied. A popular alternative is to instead use

f(X) = ‖X‖∗
because nuclear norm is the largest convex function that satisfies (3.6). Here we will see how
we may nonetheless solve the rank-mimization problem (in principle)

minimize rank(X)
subject to xij = aij for (i, j) ∈ Ω,

(5.8)

(a) For 1 ≤ r ≤ min(m,n), let fr : Cm×n → [0,∞) be the function1

fr(X) =

min(m,n)∑
i=r+1

σi(X)2.

and consider the minimization problem

minimize fr(X)
subject to xij = aij for (i, j) ∈ Ω.

(5.9)

Let Xr be a minimizer of (5.9) and X∗ be a minimizer of (5.8). Show that

fr(Xr) = 0 if and only if r ≥ rank(X∗).

(b) Deduce that the smallest r ∈ {1, . . . ,min(m,n)} such that the minimum value of (5.9) is 0
would have the property that

Xr = X∗.

(c) Implement this strategy in Matlab. Start with r = min(m,n) and solve (5.9) using any
means you know. If the minimum is 0, reduce r by 1 and repeat. Keep doing this until you
get to a value of r where the minimum is non-zero. Then the previous value of r and the
corresponding Xr is the solution to (5.8).

1Motivated by the ‘optimization theorist’s numerical rank’ that we discussed in lectures:

rankot(A) := min

{
r ∈ N

∣∣∣∣
∑

i≥r+1 σi(A)
2∑

i≥1 σi(A)2
≤ τ

}
.
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(d) Test how well your algorithm works by generating a random matrix A ∈ R20×10 of rank 5,
removing 50% of its entries at random (so #Ω = 100), and then use your algorithm to find
X∗. Now check how well X∗ agrees with your original A by computing∑

(i,j)/∈Ω(aij − xij)2∑
(i,j)/∈Ω a

2
ij

. (5.10)

Repeat this experiment 40 times by generating 20 random A’s with standard normal entries
and another 20 with standard uniform (0, 1) entries (i.e. use randn and rand respectively).
Record the value of (5.10) and rank(X∗) each time.

(e) Modify your algorithm so that it now works for A ∈ {1, 2, 3, 4, 5}m×n, i.e. a matrix whose
entries are random integers between 1 and 5. Now you need to find some way to round off
the entries of your output so that your algorithm yields X∗ ∈ {1, 2, 3, 4, 5}m×n. Repeat (d)
for 40 random A ∈ {1, 2, 3, 4, 5}20×10 (use randi to generate your A).


