STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2011 PROBLEM SET 1

1. Here is another way to derive the normal equation without using any calculus. Recall that the null space or kernel of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$\ker(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}$$

while the range space or image is the set

$$\operatorname{im}(A) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}$$

and $\mathbf{b} \in \mathbb{R}^m$.

(a) Show that

$$\ker(A^{\top}A) = \ker(A).$$

(b) Show that

$$\operatorname{im}(A^{\top}A) = \operatorname{im}(A^{\top}).$$

(c) Deduce that

$$A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$$

always has a solution. We call this the normal equation.

- (d) Give an example where $A\mathbf{x} = \mathbf{b}$ has no solution but $A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$ has a solution.
- (e) Show that (a), (b), and (c) are false in general over a field with two elements $\mathbb{F}_2 = \{0, 1\}$ with arithmetic done modulo 2.
- 2. We would like to solve the differential equation

$$\begin{cases} -v''(x) = \frac{m\omega^2}{k}v(x), & 0 < x < 1, \\ v(0) = 0, & v(1) = 0. \end{cases}$$

This comes up when studying a vibrating string with m the mass per unit length and k the stiffness per unit length, both positive constants. We need to determine the function $v:[0,1] \to \mathbb{R}$ and the number $\omega \in \mathbb{R}$. Here v(x) gives us the amplitude of the string at x and and ω gives us the vibration frequency of the string.

(a) Following the technique used in Lecture 3, show that we may discretize the differential equation into the following difference equation

$$\begin{cases} \frac{-v_{i-1} + 2v_i - v_{i+1}}{n^{-2}} = \lambda v_i, & 1 \le i \le n-1, \\ v_0 = 0, & v_n = 0. \end{cases}$$

(b) Show that the difference equation can be rewritten as an eigenvalue problem

$$A\mathbf{v} = \lambda \mathbf{v}$$

where λ is an approximation of $m\omega^2/k$.

3. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$. Suppose we would like to *learn* a function $f: X \to Y$ from a *training* set of data $\{(\mathbf{x}_i, y_i) \in X \times Y \mid i = 1, ..., m\}$. We will assume that f can be expressed as a linear combination

$$f(\mathbf{x}) = \sum_{i=1}^{m} c_i K(\mathbf{x}, \mathbf{x}_i)$$

where $K(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|_2^2/2\sigma^2)$ is a Gaussian kernel. Following the data fitting technique discussed in Lecture 3, describe how one may determine the coefficients $c_1, \ldots, c_m \in \mathbb{R}$ by solving a least squares problem. You will need to describe the least squares problem explicitly: What are the coefficient matrix and the right-hand side.

- **4.** In testing your codes, it is often important to know how to randomly generate matrices with some specified properties. In MATLAB, you can generate a random $m \times n$ matrix X with built-in functions rand(m,n) and randn(m,n), where the entries are drawn respectively from the uniform distribution on the interval (0,1) and the standard normal distribution. For each of the following, write a program that will generate:
 - (a) $n \times n$ real symmetric matrices, i.e. $X^{\top} = X$;
 - (b) $n \times n$ real skew-symmetric matrix, i.e. $X^{\top} = -X$;
 - (c) $n \times n$ non-singular matrices (a.k.a. invertible matrices);
 - (d) $n \times n$ symmetric positive definite Toeplitz matrices;
 - (e) $m \times n$ matrices of rank r, where $r \in \{0, 1, \dots, \min(m, n)\}$ is an unspecified input;
 - (f) $m \times n$ matrices whose entries are uniformly distibuted in $[\alpha, \beta]$, where $\alpha < \beta$ are unspecified inputs;
 - (g) $m \times n$ matrices whose entries are normally distributed with mean μ and variance σ^2 , where μ and σ are unspecified inputs;
 - (h) $m \times n$ matrices whose entries are either 0 or 1 with probabilities p and 1-p respectively, where $p \in (0,1)$ is an unspecified input.