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What is Numerical Analysis? (a.k.a Scientific Computing)

The definitions are becoming shorter...

• Webster’s New Collegiate Dictionary (1973):

”The study of quantitative approximations to the solutions of

mathematical problems including consideration of the errors and

bounds to the errors involved.”

• The American Heritage Dictionary (1992):

”The study of approximate solutions to mathematical problems,

taking into account the extent of possible errors.”

• L. N. Trefethen, Oxford University (1992):

”The study of algorithms for the problems of continuous

mathematics.”
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Numerical Analysis: How It All Started

Numerical analysis motivated the development of the earliest computers.

• Ballistics

• Solution of PDE’s

• Data Analysis

Early pioneers included:

J. von Neumann, A. M. Turing

In the beginning...

von Neumann & Goldstine (1947):
”Numerical Inversion of Matrices of High Order”
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Numerical Linear Algebra

Numerical Linear Algebra (NLA) is a small but active area of research:

Less than 200 active, committed persons. But the community involves

many scientists.
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Top Ten Algorithms in Science (Jack Dongarra, 2000)

1. Metropolis Algorithm for Monte Carlo

2. Simplex Method for Linear Programming

3. Krylov Subspace Iteration Methods

4. The Decompositional Approach to Matrix Computations

5. The Fortran Optimizing Compiler

6. QR Algorithm for Computing Eigenvalues

7. Quicksort Algorithm for Sorting

8. Fast Fourier Transform

9. Integer Relation Detection

10. Fast Multipole Method

• Red: Algorithms within the exclusive domain of NLA research.

• Blue: Algorithms strongly (though not exclusively) connected to NLA research.
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Three important components in solving NLA problems

• Development and analysis of numerical algorithms.

• Perturbation theory.

• Software.
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A Fundamental Problem

Problem: Suppose

Ax = b + r,

where A is an m× n matrix, and b is a given vector.

Goal: Determine r such that

‖r‖ = min .
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Important Parameters

• The relationship between m and n:

– Overdetermined vs. ’square’ vs. Underdetermined.

– Uniqueness of solution.

• The rank of the matrix A. (Difficult to handle if a small

perturbation in A will change rank.)

• Choice of norm.

• Structure of A:

– Sparsity.

– Specialized matrices such as Hankel or Toeplitz.

• Origin of problem: ideally, can make use of this in developing an

algorithm.
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Some Perturbation Theory

Given Ax = b,

and the perturbed system (A + ∆A)y = b + δ,

it can be shown that if

‖∆‖
‖A‖ ≤ ε,

‖δ‖
‖b‖ ≤ ε, ρ < 1,

then
‖x− y‖
‖x‖ ≤ 2ε

1− ρ
· κ(A),

where ρ = ‖∆‖ · ‖A−1‖ = ‖∆‖ · κ(A)/‖A‖,

and κ(A) = ‖A‖ · ‖A−1‖.
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The Condition Number

The quantity

κ(A) = ‖A‖ · ‖A−1‖

is called the condition number of A (or the condition number of the

linear system).

Note:

• Even if ε is small, a large κ can be destructive.

• A special relationship between A and b may further determine the

conditioning of the problem.

A detailed theory of condition numbers:

John Rice, 1966.
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Stability: Algorithm vs. Problem

• Fundamentally important to distinguish between the conditioning of

the problem and the stability of the algorithm.

• Even if an algorithm is stable, not all problems can be solved using

it.

• Making the problem well-posed → responsibility of modeller.

Making the algorithm stable → responsibility of numerical analyst.

• A good algorithm is one for which a small change in the input of a

well-posed problem causes a small change in the output.
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Solving Linear Systems

1. Gaussian Elimination.

2. The QR decomposition.

3. The Cholesky method.

4. Iterative solution.
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A Little Bit About Gaussian Elimination

Not off to a good start...:

The famous statistician Hotelling derived bounds so pessimistic that he

recommended not to use it for large problems.

But this is a story with a happy end:

• Goldstine and von Neumann’s analysis of the Cholesky method for

fixed point arithmetic.

• Wilkinson’s complete round-off error analysis of Gaussian

Elimination in 1961.

Those developments were turning points for GE and it has become one

of the most commonly used algorithms.
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The Silent Killer (a.k.a round-off errors)

Round-off errors are quietly accumulated in every computation, and

should not be overlooked!

There is an error inherent in any computer’s most basic arithmetic

operations:

fl(x + y) = x(1 + ε) + y(1 + ε) = x̄ + ȳ.

Gaussian Elimination with pivoting is equivalent to performing the

decomposition

ΠA = L · U.

Π is a permutation matrix, L and U are lower and upper triangular.

This algorithm guarantees that

max
i≥j

|%i,j | = 1 and max
j≥i

|ui,j | ≤ 2n−1.
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Wilkinson’s Backward Error Analysis

By Wilkinson, GE with pivoting is equivalent to solving

(A + E)y = b,

where

‖E‖∞ ≤ 8n3G‖A‖∞u + O(u2)

and

|ui,j | ≤ G.

u is the machine roundoff unit.

Backward Error Analysis: shows how the original data matrix has

been perturbed in the presence of round-off errors.

Importance: the error can be bounded.
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The Simplex Algorithm

Wilkinson’s work enabled development of algorithms for many classes of

problems.

Consider Linear Programing problem: Given

Ax = b where A is m× n, with m < n,

determine x such that x ≥ 0 and cT x = min.

Basic algorithm (due to Dantzig): the basis

A(k) = [ai1 , ai2 , . . . , aim ] is replaced by

A(k+1) = [ai1 , . . . , aip−1 , aiq , aip+1 , . . . , aim ],

so that A(k+1) differs from A(k) by one column.

The approximants x(k) and x(k+1) satisfy

A(k)x(k) = b; A(k+1)x(k+1) = b.
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Simplex (cont.)

Given Π(k)A(k) = L(k)U (k), we seek a method for computing

Π(k+1)A(k+1) = L(k+1)U (k+1),

within O(m2) operations.

Bartels & G. :

A stable algorithm for applying the method.

Classical algorithm is based on Gauss-Jordan elimination, which is stable

for limited classes of matrices. Here we encounter the classical problem

of sparsity vs. stability.
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Linear Algebra and Optimization

NLA plays an important role in optimization:

• Strong connection between a formulation of a linear system, and a

minimization formulation. (Example: CG, which we will talk about

soon.)

• Even in nonlinear optimization, the majority of computing time is

spent on solving the linear systems involved!
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Example: Quadratic Programming

Equality-constrained quadratic programs:

Minimize 1
2xT Ax− xT c subject to BT x = d.

Lagrange Multipliers formulation: define

φ(x, y) = xT Ax− xT c + λT (BT x− d)

and compute its stationary points:

∇φ = 0.

Ku =



 A B

BT 0







 x

λ



 =



 c

d




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Updating and Downdating

Shows up in a variety of applications. Examples:

• Data fitting

• Kalman filters

• Signal processing
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Example: Least Squares

Determine x such that

‖b−Ax‖2 = min .

Popular method: The QR factorization. (Better than forming the

Normal Equations!)

How to generate an orthogonal matrix Q? — Use the modified

Gram-Schmidt method, Householder Transformations or Givens

Rotations.

Don’t use classical Gram-Schmidt!

Frequently a row or a column of A are added or deleted: important and

delicate theory.
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The Singular Value Decomposition (SVD)

Let A be an m× n matrix. The singular value decomposition is

A = UΣV T , where UT U = Im; V T V = In;

and

Σ =





σ1 0 · · · 0

0 σ2
. . .

...
... 0

. . . 0
...

. . . σn

... 0

...
...

0 0





.
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SVD (cont.)

• The singular values are typically ordered monotonically:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

• The non-zero singular values of A are the square roots of the

non-zero eigenvalues of AT A:

σi(A) =
(
λi(AT A)

)1/2
.

• Stable algorithm for computing the decomposition: G. & Kahan,

1965.
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The SVD is very useful in numerous applications of great

importance

In addition to its enormous importance in NLA algorithms, the SVD is

useful in areas of applications of importance to the whole scientific

community, and has influenced many people’s lives!

• Vision and motion analysis

• Signal processing

• Search engines and data mining (Google!)
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Examples of Use of the SVD

1. Truncated SVD as an optimal low rank approximation

2. The least squares problem

3. Determining the rank of a matrix
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Example: low rank approximation

Let A be an m× n matrix of rank r. The matrix Ak such that

‖A−Ak‖2 = min

is simply the matrix given by Ak = UΣkV T , where

Σ =





σ1 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . σk 0

. . .
...

...
. . .

. . . 0
. . .

...
...

. . .
. . .

. . .
...

0 0 0





.
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Computing the SVD

Many ways...

A popular method (G. & Kahan, 1965):

Bi-diagonalization.

Find X such that XT X = Im ; Y such that Y T Y = In and

B =





α1 β1 · · · 0

0
. . .

. . .
...

...
. . .

. . . βn−1

0 · · · 0 αn




,

such that

XT AY = (B 0)T .

By using a variant of the QR method, the matrix B is diagonalized.
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Cyclic Reduction

Consider the system


 I F

FT I







 u

v



 =



 g

h



 .

The matrix of the system is said to have Property A.

Easy to eliminate u:

(I − FT F )v = h− FT g.

The matrix I − FT F can be reordered in some cases, to have the same

structure as above: can repeat this procedure again and again,

eliminating half of the remaining unknowns at each step.

Resulting algorithm reminiscent of FFT! — O(N2 log N) operations to

solve the system.
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Example: Poisson’s equation (1D)

Consider the ordinary differential equation on [0,1]:

−u′′(x) = f(x) ,

u(0) = a, u(1) = b.

Discretizing using centered schemes on a uniform mesh,

the matrix associated with the linear system is:

A =





2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2





.
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Red/black re-ordering

R B R

4

B R B R B

1 5 2 6 3 7 8
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Red/black re-ordering (cont.)

After scaling by 1/2, the linear system can be written as:


 I F

FT I







 u(r)

u(b)



 =



 s(r)

s(b)



 .

And now, do it again...
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Iterative Methods

For large sparse linear systems, Gaussian Elimination may not be a good

algorithm, due to the fill-in.

Iterative methods are based on computing a sequence of approximations

x(k), starting with an initial guess x(0), and ideally converging

’sufficiently close’ to the solution after a ’reasonable’ number of

iterations.
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The (50 years old!) Conjugate Gradient

The celebrated Conjugate Gradient algorithm (Hestenes & Stiefel [1952])

is an optimal approximation in the following sense: At the nth iteration,

x(n) − x(0) ∈ Kn(A)

= span{r(0), Ar(0), A2r(0), · · · , An−1r(0)}

such that

‖x− x(n)‖A = ‖b−Ax(n)‖A−1 = ‖r(n)‖A−1

= min
u∈Kn(A)

‖x− u‖A

The idea is based on picking directions p(k) such that

p(i)T

Ap(j) = 0 for i )= j.
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CG (cont.)

The iterations are computed by

x(k+1) = x(k) + αkp(k).

The residual satisfies

r(k+1) = r(k) − αkAp(k).

The CG method is optimal in that the error is minimized over the Krylov

subspace in the energy norm ‖e‖A ≡ eT Ae. The sequence of errors

satisfies

‖en‖A ≤ ‖en−1‖A.

The beauty of the method is that p(k) can be chosen so that the iterate

x(k+1) really minimizes the error over the whole Krylov subspace, not

only over span(x(k), p(k)).
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CG as an Optimization Algorithm

The p(k) can be thought of as search directions in a nonlinear

optimization problem!

The problem is:

minimize φ(x) = 1
2xT Ax− xT b

Equating the gradient of φ to zero takes us (obviously) to the beloved

combination of characters

Ax = b.

The direction p(k) and the step length αk can be determined

mathematically by the formulation of the problem.
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Iterative Solution

Consider the linear system Ax = b. The splitting

A = M −N ; Mx = Nx + b

leads to the ‘fundamental’ iterative scheme: Mxk+1 = Nxk + b (∗).

Define the error and the iteration matrix: ek = x− xk; K = M−1N.

We obtain ek → 0 as k →∞, if ρ(K) < 1.

We assume it is “easy” to solve (∗), which is equivalent to

(∗∗)





Mzk = rk ≡ b−Axk ≡ Aek

xk+1 = xk + zk
.
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Examples of Splittings

1. Domain Decomposition:

I
 II

A =





A1 B1

. . .
...

Ar Br

BT
1 . . . BT

r Q





M =





A1

. . .

Ar

Q




, N = −





B1

...

Br

BT
1 . . . BT

r 0




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Examples of Splittings (cont.)

2. Non-symmetric problems:

A =
A + AT

2
+

A−AT

2
= M −N

Concus & G.: The Conjugate gradient and Chebyshev methods will

converge, provided that for any real vector u we have

uT Mu > 0.
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Software

A large number of software packages are available, and their quality gets

better and better.

Where should you start your journey? —

An invaluable source is Netlib, a numerical software distribution system.

• LINPACK

• EISPACK

• FISHPACK

• MATLAB

Recent important package:

ATLAS: Automatically Tuned Linear Algebra Software.
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Hot Areas of Research

• Model reduction problems

• Polynomial eigenvalue problems

• PDE solvers in 3D

• Parallel processing
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Parallel Processing

Architecture aspects:

mesh processing, blocking sizes, software pipelining strategies, register

allocations, memory hierarchy, memory distribution, . . .

Algorithmic aspects:

Multi-color orderings, recursive approach,

’locality’, . . .

What goes around comes around...:

In some cases old methods that have been ’dead’ for a long time have

been resurrected, since they are good for parallel environments. (Simple

example: the Jacobi algorithm.)
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Future

Scientific Computing is driven by technology:

1. New devices and environments.

2. New problems that will require new techniques.
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Personalities
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Founding Fathers

The wonderful people who were the ’founding fathers’ of the field:

1. J. H. Wilkinson

2. A. S. Householder

3. G. E. Forsythe

4. H. Rutishauser

and many others...


