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The stability of the Gauss-Jordan algorithm with 
partial pivoting for the solution of general systems of 
linear equations is commonly regarded as suspect. It is 
shown that in many respects suspicions are unfounded, 
and in general the absolute error in the solution is 
strictly comparable with that corresponding to Gaussian 
elimination with partial pivoting plus back substitution. 
However, when A is ill conditioned, the residual 
corresponding to the Gauss-Jordan solution will often 
be much greater than that corresponding to the 
Gaussian elimination solution. 
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sense. In fact, a bound is found for an appropriate E, 
which is of the form 

II E II/11 A II -< f ( n ) g ~ - ' ,  (1.2) 

where/2 or I= norms are commonly used , f  (n) is a modest 
function of n, and g is the "g rowth"  factor. The latter 
is defined to be the ratio of the coefficient of maximum 
modulus occurring during the course of  the elimination 
to max t a, j  I. The role played by pivoting is in limiting 
the probable growth. Although, even with partial pivot- 
ing g can attain the value n-~ 2 , in practice it is commonly 
of the order of unity. For  systems of order greater than 
10, the statistical distribution of the rounding errors 
usually ensures tha t f (n )  > n. 

Let us analyze for the moment  the consequences of 
such a result. Suppose for example 

II EIJ~/II A II~ -< n~- ' .  0 .3)  

I f  we write K = II A I1~ I[ A -x I[~, then provided nl3-tx < 
0.1 (say) the relations (1.1) and (1.3) ensure that  

IJ x, - x II~ / II x I1~ -< n~-'~ / (1 - n~3-tK) 
_< (y)n/3-tx. (1.4) 

The accuracy of the computed solution is therefore 
directly dependent on ~, the condit ion number  of A. The 
relations (1.4) imply that 

[1 -- (~°)n~- 'd  II x II~ -< II x~ I1~ (1.5) 
< [1 + (V)n/3-tK I1 x 11~ 

or, from our assumption that nC/-'K < 0.1, certainly that 

(~-) II x f[~ -< [l x~ I1~ -< ( V ) I I  x ]1~. (1.6) 

Hence II x~ I1~ is certainly of the same order of magnitude 
as [] x 11~, and when n~-'K is much smaller than unity, 
the two norms will be almost equal. On the other hand, 
the residual vector r defined by b --  Ax,,, satisfies the 
relations 

1. Introduction 

The essential numerical stability of Gaussian elimi- 
nation with partial pivoting is commonly demonstrated 
by the technique of backward error analysis [1, 2, 3, 4]. 
Such an analysis shows that, when an n X n system is 
solved on a computer working in floating-point arith- 
metic in base ~ with a t-digit mantissa, the computed 
solution xc is the exact solution of some "neighboring" 
system 

( A + E ) x o  = b. (1.1) 

The term "neighboring" is used in a rather loose 
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[[ r I[= = IIb --  Axe  [l~ = II Exc [[~ (1.7) 

In other words, we have a bound for II r Ii~ which 
depends only on the size of the computed solution and 
not upon the condition number of A and therefore not 
upon the accuracy  of xc. The errors in xc are correlated 
in a way which ensures that r is normally much smaller 
than might be expected when K is large. Indeed if we 
take a random vector x, satisfying condition (1.4), then 
for such an xc one can guarantee only that 

]I r II~ = I] b - -  A x o  ]l~ --<'°-H A II~ n~-'~ II x ]]~. (1.8) 

In general approximate solutions of  the same accuracy 
as that given by Gaussian elimination give residuals 
which are larger by a factor K. That  the computed 
solution gives such a small residual may be very im- 
portant  in practice. We may well be more interested 
in the proximity of A x ,  tO b than in the  absolute ac- 
curacy of x~. To emphasize the extraordinary nature 
of the correlation, we remark that the residual given 
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by the computed solution is of the same order of magni- 
tude as that corresponding to the correct ly  rounded 

solution. 

When a backward error analysis of  Gauss-Jordan 
elimination is attempted, it is found that one cannot 
demonstrate that the computed solution is an exact 
solution of some "neighboring" system with any rea- 
sonable interpretation of the word "neighboring." The 
failure stems from the fact that, with Gauss-Jordan, 
pivoting does not give satisfactory control of "growth."  
Indeed it really is no longer true in general that the 
computed x~ is the solution of a neighboring system. 
For this reason Gauss-Jordan is commonly regarded 
with suspicion by numerical analysts. It is the purpose 
of this paper to demonstrate that this suspicion is only 
partly justified. 

It  should be emphasized that in certain cases such 
as when A is positive definite or diagonally dominant 
it is well known that Gauss-Jordan is stable. 

(iii) For each value of i ¢ r, compute 
(r )  ~ ( r )  

m,.~ = a ~ / a ~  and subtract m~ times equation r 
from equation i. 

The final system Al"+~)x = b °'+~ is clearly such that 
A ~"+1> is diagonal. 

From the choice of r '  it is clear that Im,~l -< 1, 
(i > r), but for i < r there is no such bound on m , ,  
This means that although the growth of elements below 
the diagonal elements is limited as in Gaussian elimina- 
tion with column pivoting (indeed it is Gaussian elimina- 
tion as far as these elements are concerned), growth of 
elements above the diagonal may be arbitrarily large. 
This precludes the possibility of a satisfactory backward 
error analysis analogous to that for Gaussian elimina- 
tion. 

3.  S t a n d a r d  B a c k w a r d  E r r o r  A n a l y s i s  o f  G a u s s - J o r d a n  

2 .  D e s c r i p t i o n  o f  t h e  G a u s s - J o r d a n  A l g o r i t h m  

Since the Gauss-Jordan algorithm with pivoting is 
well known, we shall describe it only briefly. We denote 
the original system by 

A~l~x = b ~1>. (2.1) 

There are n major steps. At the beginning of the rth step 
the original system has been replaced by an equivalent 
system 

A~r)x = b ~> (2.2) 
( r )  in which a~i = 0 ( j=  1, 2 , . . . ,  r - l ;  i # j ) .  This means 

that A (~ is diagonal as far as its first r - 1 columns are 
concerned. The rth major step proceeds as follows. 

(i) Let maxi>,  l a~;>l [ "~ = = a~,,~ [. (In the case of 
ambiguity, r '  is taken to be the smallest such index.) 
(ii) Interchange equations r and r'. 

Fig. l. 

E1 l E 1° e2 1 1 1 e2 1 1 1 
U = e3 1 1 ~ e3 1 1 

e, 1 e, 1 
1 1 

1 0 0 (~)-~ (~)-~ 

--o ~3 1 1 
e4 1 

1 

c2 0 0 (~3~4) -1 ~ 0 0 0 
U =  ~ 0 ~-~ ~ ~3 0 0 

E, 1 e~ 0 
1 1 

Our remarks show that the part  of Gauss-Jordan 
which is suspect is the production of zeros above the 
diagonal. It is convenient for our purposes to think of 
Gauss-Jordan with pivoting as taking place in two 
distinct stages: (i) the reduction to upper triangular 
form by the standard Gaussian elimination algorithm 
with partial pivoting and (ii) the further reduction of 
the triangular system to a diagonal system by an 
elimination process in which pivoting is precluded. 
The reader may easily convince himself that when the 
computing is done in this order the rounding errors 
are the same as in the classical procedure. The essential 
difference between solution by Gaussian elimination 
and by Gauss-Jordan is that in the former the resulting 
upper triangular system is  solved by back-substitution 
and in the latter, by a further elimination to diagonal 
form. We may therefore concentrate on the numerical 
stability of the solution of an upper triangular system 
Ux = c by elimination. 

An examination of this process with an eye to per- 
forming a backward error analysis soon reveals the 
difficulty. This may be exposed by means of a simple 
example. In Figure 1 we show the reduction of a system 
of order 5 to diagonal form. We give only the orders of 
magnitude of the computed quantities. In the original 
triangular matrix it is assumed that all elements are of 
the order of unity except for the diagonal elements u22, 
u~3, u44, which are assumed to be small. We write u ,  = 
e~ ( i= 2,3,4). 

It  will be observed that, except in rare cases when 
cancellation occurs, considerable growth takes place 
and elements are derived which are proportional  to 
products of the reciprocals of the ei. Now in a backward 
error analysis, the equivalent perturbations resulting 
from any stage of reduction are directly proportional  to 
the size of the elements which arise in the reduced 
matrix. Accordingly a backward error analysis shows 
that  the final diagonal set of equations is that which 
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would have arisen from exact computation with U -t- E 
where a bound for I E I is obtained of the form 

1 1 ~ (~3~4) - t  
3 - '  1 1 (541 . 

1 1 
I 

(3.1) 

I f  it i s  nevertheless true that the computed solution is 
as accurate as can be expected, having regard to the con- 
dition U, we cannot expect to establish this via the ver- 
sion of backward error analysis we have just sketched. 
This situation is in striking contrast to that holding for 
back-substitution in a triangular system. There it is easy 
to show that one always obtains an exact solution of 
some system with matrix U q- E where certainly 
] e~s] _< n3 - t  I and hence the small u~ do not ad- 
versely affect the matrix E. However, the fact that E is 
now disappointingly large does not necessarily mean 
that the solution is b o u n d  to be correspondingly poor. 
There will be many sets of equations e n t i r e l y  different 
f rom U x  = c which have e x a c t l y  the same solution! 

We observe that the large perturbations in U are in 
positions which are specially related to the positions of 
the ~. Is it possible that the large perturbations occur 
in just those positions where they have least effect? We 
now show that this is indeed true for the example we 
have just considered. Observe first that the condition of 
U is at least of order (e2e, e4) -~ so that even perturbations 
of order 3-~ only are capable of producing relative 
perturbations in a solution of order (~3e4)3 -~. Since we 
have perturbations of order (e~e~e4)-~3 -t ,  there appears 
to be a danger that we shall get relative perturbations of 
order (~e~e4)-~3 - t  in the solution. This fear proves to be 
unfounded. A first order argument will suffice to es- 
tablish this. We have 

( U q - E ) - ~ c  - U - ~ c  - -  U - ~ E U - ~ c  = x -  ( U - ~ E ) x .  (3.2) 

We are therefore interested in U - ~ E ,  i.e. in the solution 
F of U F  = E .  Let us consider the last column of F. We 
have 

E  Ill 
1 1 1 1 1 f,~ (~2E3~4) -~ 

~2 1 1 1 J~5 (~3.4) -1 

~4 1 f4~ 1 
1 J;~ 1 

(3.3) 

and it is immediately apparent  that in general the orders 
of magnitude of thef t5 are expressed by the relation 

r 51 E 1] 
L A~ 1 

(3.4) 

no square of any E~ is involved. I f  the perturbations of 
order (~2,a~4) -~ in E had occurred in positions (5,5) or 
(5,4), then f ~  and J~5 would have been of the order of 

(~2~3,4) -2. There is little point in trying to regularize this 
approach since the analysis of the next section is much 
more satisfactory, but we may comment  here on one 
consequence of our result. We have mentioned before 
that when ( A q - E ) x  = b then r = b - A x  = E x  and 
II r I1~ -< 11 E I1~ II x / [~ .  W e  have been unable to obtain 
a small E in our analysis of the solution of a triangular 
system by elimination. There appears therefore to be a 
danger that the errors in the computed solution will not 
be correlated in such a way as to give an impressively 
small residual. 

4. Detailed Error Analysis 

The essential numerical stability of  Gauss-Jordan 
may be established by a backward error analysis having 
a somewhat different objective from that described in 
the previous section. For the reasons already given, we 
can restrict ourselves to the consideration of an upper 
triangular system. 

Let us concentrate for the moment  on the operations 
which reduce the first equation u l l x l  q -  . • • q -  u , , , x , ,  = C l  

to an equation involving Xl only. Described in a simpli- 
fied notation this is achieved by subtracting in succession 
Y2 times equation 2, y~ times equation 3, . . . ,  y,, times 
equation n from the first equation. Forgetting rounding 
errors for the moment  we have 

U12 - -  y2u22 = 0, 

u13 - -  y2u~3 - -  y3u33 = 0, (4.1) 

uxn - -  y2u2,~ - -  y 3 u 3 ,  - -  . . . .  y,~u .... = 0,J 

and the final derived equation is 

u l l x l  = c l  - -  y2c2 - -  y~c~ . . . . .  y , ,c , , .  (4.2) 

In practice the computed Yi and x~ are determined by 
the relations 

y,  = f l [ (u~,-  y,u~)/u~3], [ 

i ( / (4.3) 

y,,  = fl [ ( u x , , -  y,~u.~. - y w , , , -  . . . .  y,,-lu,~-~,n)/u,~,. ], i 
x~ = f l [ ( c , -y~c~  . . . . .  y .c . ) /u . ] .  ) 

/ 

In other words, yl and x~ are derived by solving the 
triangular system. 

u22y2 = U12, U2372 + u33y3 = ttl~, 

u 2 , y z  + u3ny~ + " ' "  + U , . n y n  = UX,, 

c~y~ q -  c~y3 q -  " ' "  q -  c n y n  + U l l X l  = Cl,  (4.4) 

by t h e  f o r w a r d  s u b s t i t u t i o n  p r o c e s s ,  and we know from 
the conventional analysis of back-substitution in Gaus- 
sian elimination [3] that this process is v e r y  stable. 
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Indeed the compu ted  values satisfy exactly equat ions 
of  the form 

u._,2(1 + e22)3~2 = ur_,(1 + ~r.,), 

u,.,,(l+e2,~)y.,. + u3, , ( l+~, ,)y~ + . . .  + 
+ a,,, ,(l+e,,, ,)y,,  = tq, ,( l+e, , , ) ,  

c..,(l+e2)y2 + c:~(l+e,)y~ + . . -  + c, , , ,( l+e,,)y,  
-~- l l l l ( l -~eH)X1  = c~(l+ex).  (4.5) 

We are not  interested in the most  precise bounds  
for the ~,.j and E,. It  will suffice for our purposes  to ob- 
serve that  certainly 

( l - - e ) "  < 1 + e , i  _< ( I W e ) " ,  (4.6)  
( l - - e )  '~ _< , ,  _< ( 1 + , ) " ,  

though most  of  the e , j  and e, will satisfy stricter bounds;  
here e is a bound for the relative error made in an 
ari thmetic operat ion.  See, e.g. [3]. (On a typical com- 
puter employing rounding,  e = ½3~-t). This means  that  
x~ is precisely the first componen t  of  the exact solution 
x (" of  the "ne ighbor ing  sys tem."  

( U + ~ U ( ~ ) ) x  (~) = c + ~c ") (4.7) 

where certainly 

I~U/t/ I < n~ I UI,  I6c"~l  -< ne ] c I- (4.8) 

Turning  now to the second componen t  &, we see by 
exactly the same type of a rgument  that  it is precisely 
the second c o m p o n e n t  of  the exact solution of a neigh- 
boring system. 

( U + 6 U ( 2 ) ) x  (2) = c + 5c c'~. (4.9) 

The matr ix  6U (') is null in its first row. (The first equa- 
t ion is not involved in the reduction of  the second equa- 
tion.) Similarly the first c o m p o n e n t  of  (3C (2) is zero. We 
certainly have 

I~U(211<_ ( n - - 1 ) ~ l U ] ,  Ific(2)]_< ( n - - 1 ) e l c l  (4.10) 

and hence a f o r t i o r i  

I~U (2) 1 _< n , ]  UI ,  18c(2>1 _< , ' e f c l .  (4.11) 

In general x~ is precisely the rth c o m p o n e n t  of  the exact 
solution x (r~ of  a neighboring system 

( U + ~ U ( ~ ) ) x  (~) = c + ~c (~), (4.12) 

where certainly /~U (~), and/~c (~), which are null in their 
first r - -  1 rows, satisfy 

I ~u(r)  I ~ He I U l, I ~c(r) I ~ lie I C I" (4.13) 

The essential difference between solving the t r iangular  
system Ux = c by Gauss - Jo rdan  and by back-subst i-  
tution is that  whereas for  the latter the whole of  the 
computed  solution is the exact solution of  a single 
neighboring system 

( U + 6 U ) x  = c + 6c (4.14) 

(indeed it is easy to avoid having any per turba t ion  6c), 

with the former  each componen t  belongs to the exact 
solution of  a neighboring system but it is a d i f ferent  
neighboring s y s t em  f o r  each one. We now analyze the 
consequences of  this last remark.  I f  x is the exact solu- 
t ion of Ux = c, then if 

( U - q - 6 u ( r ) ) x  (r) = e .3f_ 6c (r) (4.15) 

we have 

X (r) ~- (U-~-~U(r)) - l c  -t- ( U  "Jl- ~U(r))--16e(r), 
= x + e ~'~ + f ( " )  (say), (4.16) 

where 

i / e C r ) [ l < (  ![ u ~  L/ JI-a-u~' [-] "~llx][, (4.17) 

II U-1 II II *c (~) II (4.18) 
Ilf (r) [I < I - I] u - '  II II ~f(r' II" 

Remember ing  that  c = U x  and therefore 

Ilcll  -< II UI[ l [xl l ,  

we find 

II e ") + f(r)iI 
< ne[ll u -1 l[ [l s 11 + II a - '  11 II a I[] II x II (4 .19)  
--  1 - -  n e H S - ~ l ]  IIUI] 

I f  we use the I= no rms  we have 

I[ x (~) - x I1~ < 2ne ( [[ U-~ I1~ II _uIl~ '~ 
II x II ~ - \ 1 - ne II u II ~ II u - '  II ~, /  (4 .20)  

= 2ne K 
I - -  ne~" 

In all cases these inequalities hold only under  the 
(r) a ssumpt ion  that  ne~ < 1. N o w  since x~ = x~ , we 

certainly have 

f x~ - x~ I = lx~/~ - x~ I -< m a x ,  J x~" - x ,  I 
= II x"~ - x I1~ (4 .21)  

and hence 

I! II ~IX -- xl,~o = max Ix~ -- x,I  
2neK (4.22) 

_< max  II x(~ - x I'~ -< i - n ~  il x I!~. 

This result is precisely what  we would have obta ined 
had the same ~ U and 6c given all the compu ted  compo-  
nents. 

Now when back-subst i tu t ion is used to solve a tri- 
angular  set, it is well known (see e.g. [3], pp. 99-107) 
that  the compu ted  solution is often more  accurate  than 
one would expect, having regard to the size of  the 6 U and 
~c derived by a backward-e r ro r  analysis. However ,  this 
is not of  great impor tance  here. R e m e m b e r  that  we are 
pr imari ly  interested in the solution of  a system of equa-  
t ions with a full, square matr ix,  and  the solution of  the 
t r iangular  system is merely the second half  of  the 
process. In  going f rom the original system to the tri- 
angular  system, errors  comparab l e  with these corre-  
sponding  to (4.22) above  will a l ready have been made.  
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Table I. 

Original System 
MATRIX 

.826354 .432175  . 6 1 3 2 5 6  .614227 
.000547 . 8 1 4 7 1 2  .816328 

.915316 .814275 
.982176 

Equation I A~er First Reduction 
.826354 .0000~ --643.076 -644.352 

Equations I and 2 After Second Reduction 
.826354 .000(O 

.000547 

Final Diagonal System 
.826354 . ~  

.000547 

R.H.S. 

.722872 

.154248 

.109844 

.602286 

-121.146 

.00(OI30 --72.2644 --43.9726 

. ~  . 0 9 1 5 5 1 6  .0564772 

.00(O00 .0130000 .341074 

.0000(O . ~  .000336315 

.915316 . ~  --.389482 
.982176 .602286 

Table II. 

Solutions, Errors and Residuals 

Gauss-Jordan Back-substitution 

Solution Error Solution Error 

Solution 
correct to 
6 figures 

0.412746 -0.000409 0.413503 0.000348 0.413155 
0.614835 -0.000092 0.614260 -.000667 0.614927 

-0.425516 0.000001 -0.425516 .000001 -0.425517 
0.613216 0.000000 0.613216 . ~  0.613216 

Residual Residual 

0.000378. • 0.000(0742-- 
-0.000000714. - -0.000000399- • 
-0.000000855. • -0.000000855. - 
-0.000000038- • --0.000000038. • 

Hence the rather exceptional accuracy often obtained 
in back-substi tution avails us little. 

We may summarize this by saying that  when we 
solve a square system A x  = b by Gaussian elimination 
the computed  solution is the exact solution of  some 
neighboring system ( A + E ) x  = b, and the bound  for E 
does not  involve K. When it is solved by Gauss-Jordan,  
the computed  solution is not the exact solution of  such 
a neighboring system but the error 11 x~ - x [I is of  just  
the same order of  magnitude as that  corresponding to 
an xc, which is the solution of  such a system. 

An analogous  situation has already been diagnosed 
in the case of  matrix inversion by Gaussian elimination 
and back-substi tution. It is not the case that  the com- 
puted inverse X is the exact inverse of  some (A-t-E) 

where 1] EII has a bound  which does not  involve K. It  
is true, however, that  the r th column xr is the rth col- 
umn of  the exact inverse of  some neighboring (A+Er) ,  

but it is a different Er for each column. 
Turning now to the residual, the fact that  it is a dif- 

ferent 6U Cr) for each componen t  is quite serious in its 

implications, and the residuals corresponding to the 
Gauss-Jordan solution are often larger than those cor-  
responding to back-substi tut ion by a factor  of  order 
~. Note  that  this merely means that  the Gauss -Jordan  
solution gives a residual which is commonly  of  the 
order of  magni tude  one natural ly associates with its 
accuracy;  the solution by back-subst i tut ion gives a 
much smaller residual then one would expect, and this 
performance is at tained only because of  a special cor- 
relation in the errors. 

5. Numerical Example 

The points made above are illustrated by a simple 
example of  order  four  having just  one small pivot. In 
Table I we give the successive steps in the Gauss -Jordan  
reduction. The computa t ion  was done  in 6-digit floating- 
point  decimal arithmetic, but  for  easier recognit ion 
s tandard floating-point notat ion is not  used. Equat ions  
which are unmodified in any reduct ion stage are not  
repeated. Observe that  in the first stage o f  reduction,  
growth by a factor  o f  1,000 occurs in elements of  the 
first equation as a result of  the use o f  the pivot u~2 = 
.000547. In Table II  we give the computed  solutions 
obtained with Gauss-Jordan  and Gaussian elimination 
respectively, and for compar ison  we give also the 
correctly rounded solution. The errors are of  the order  
o f  magni tude to be expected having regard to the 
condit ion number  o f  the tr iangular matrix;  the back- 
substitution gave marginally larger errors. (Note  that  
for fairer comparison,  back-subst i tut ion was done  
without  accumulat ion of  inner-products.)  Turning  
now to the residuals, we see that  the first residual 
corresponding to Gauss-Jordan  is far larger than that  
corresponding to back-substi tution.  The large compo-  
nent of  the residual arises in the first equation, and the 
backward  error  analysis of  Section 3 forecasts this 
since for this example it is in the first equat ion that  we 
have the large componen ts  o f  E. 
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