
7
Iterative Algorithms for Eigenvalue
Problems

7.1. Introduction

In this chapter we discuss methods for finding eigenvalues of matrices that
are too large to use the “dense” algorithms of Chapters 4 and 5. In other
words, we seek algorithms that take far less than O(n2) storage and O(n3)
flops. Since the eigenvectors of most n-by-n matrices would take n2 storage to
represent, this means that we seek algorithms that compute just a few user-
selected eigenvalues and eigenvectors of a matrix.

We will depend on the material on Krylov subspace methods developed in
section 6.6, the material on symmetric eigenvalue problems in section 5.2, and
the material on the power method and inverse iteration in section 5.3. The
reader is advised to review these sections.

The simplest eigenvalue problem is to compute just the largest eigenvalue in
absolute value, along with its eigenvector. The power method (Algorithm 4.1)
is the simplest algorithm suitable for this task: Recall that its inner loop is

yi+1 = Axi,

xi+1 = yi+1/‖yi+1‖2,
where xi converges to the eigenvector corresponding to the desired eigenvector
(provided that there is only one eigenvalue of largest absolute value, and x1
is not orthogonal to its eigenvector). Note that the algorithm uses A only
to perform matrix-vector multiplication, so all that we need to run the algo-
rithm is a “black-box” that takes xi as input and returns Axi as output (see
Example 6.13).

A closely related problem is to find the eigenvalue closest to a user-supplied
value σ, along with its eigenvector. This is precisely the situation inverse
iteration (Algorithm 4.2) was designed to handle. Recall that its inner loop is

yi+1 = (A− σI)−1xi,

xi+1 = yi+1/‖yi+1‖2,

363

364 Applied Numerical Linear Algebra

i.e., solving a linear system of equations with coefficient matrix A−σI . Again xi
converges to the desired eigenvector, provided that there is just one eigenvalue
closest to σ (and x1 is not orthogonal to its eigenvector). Any of the sparse
matrix techniques in Chapter 6 or section 2.7.4 could be used to solve for
yi+1, although this is usually much more expensive than simply multiplying
by A. When A is symmetric Rayleigh quotient iteration (Algorithm 5.1) can
also be used to accelerate convergence (although it is not always guaranteed
to converge to the eigenvalue of A closest to σ).

Starting with a given x1, k − 1 iterations of either the power method or
inverse iteration produce a sequence of vectors x1, x2, . . . , xk. These vectors
span a Krylov subspace, as defined in section 6.6.1. In the case of the power
method, this Krylov subspace is Kk(x1, A) = span[x1, Ax1, A

2x1, . . . , A
k−1x1],

and in the case of inverse iteration this Krylov subspace is Kk(x1, (A−σI)−1).
Rather than taking xk as our approximate eigenvector, it is natural to ask
for the “best” approximate eigenvector in Kk, i.e., the best linear combination∑k

i=1 αixi. We took the same approach for solving Ax = b in section 6.6.2,
where we asked for the best approximate solution to Ax = b from Kk. We
will see that the best eigenvector (and eigenvalue) approximations from Kk are
much better than xk alone. Since Kk has dimension k (in general), we can
actually use it to compute k best approximate eigenvalues and eigenvectors.
These best approximations are called the Ritz values and Ritz vectors.

We will concentrate on the symmetric case A = AT . In the last section we
will briefly describe the nonsymmetric case.

The rest of this chapter is organized as follows. Section 7.2 discusses the
Rayleigh–Ritz method, our basic technique for extracting information about
eigenvalues and eigenvectors from a Krylov subspace. Section 7.3 discusses
our main algorithm, the Lanczos algorithm, in exact arithmetic. Section 7.4
analyzes the rather different behavior of the Lanczos algorithm in floating
point arithmetic, and sections 7.5 and 7.6 describe practical implementations
of Lanczos that compute reliable answers despite roundoff. Finally, section 7.7
briefly discusses algorithms for the nonsymmetric eigenproblem.

7.2. The Rayleigh–Ritz Method

Let Q = [Qk, Qu] be any n-by-n orthogonal matrix, where Qk is n-by-k and
Qu is n-by-(n − k). In practice the columns of Qk will be computed by the
Lanczos algorithm (Algorithm 6.10 or Algorithm 7.1 below) and span a Krylov
subspace Kk, and the subscript u indicates that Qu is (mostly) unknown. But
for now we do not care where we get Q.

We will use the following notation (which was also used in equation (6.31):

T = QTAQ = [Qk, Qu]TA[Qk, Qu] =
[
QTkAQk QTkAQu
QTuAQk QTuAQu

]

Iterative Methods for Eigenvalue Problems 365

≡
(k n− k

k Tk Tuk
n− k Tku Tu

)
=

[
Tk T Tku
Tku Tu

]
. (7.1)

When k = 1, Tk is just the Rayleigh quotient T1 = ρ(Q1, A) (see Definition 5.1).
So for k > 1, Tk is a natural generalization of the Rayleigh quotient.

Definition 7.1. The Rayleigh–Ritz procedure is to approximate the eigen-
values of A by the eigenvalues of Tk = QTk TQk. These approximations are
called Ritz values. Let Tk = V ΛV T be the eigendecomposition of Tk. The cor-
responding eigenvector approximations are the columns of QkV and are called
Ritz vectors.

The Ritz values and Ritz vectors are considered optimal approximations
to the eigenvalues and eigenvectors of A for several reasons. First, when Qk
and so Tk are known but Qu and so Tku and Tu are unknown, the Ritz values
and vectors are the natural approximations from the known part of the matrix.
Second, they satisfy the following generalization of Theorem 5.5. (Theorem 5.5
showed that the Rayleigh quotient was a “best approximation” to a single
eigenvalue.) Recall that the columns of Qk span an invariant subspace of A if
and only if AQk = QkR for some matrix R.

Theorem 7.1. The minimum of ‖AQk − QkR‖2 over all k-by-k symmetric
matrices R is attained by R = Tk, in which case ‖AQk−QkR‖2 = ‖Tku‖2. Let
Tk = V ΛV T be the eigendecomposition of Tk. The minimum of ‖APk−PkD‖2
over all n-by-k orthogonal matrices Pk where span(Pk) = span(Qk) and D is
diagonal is also ‖Tku‖2 and is attained by Pk = QkV and D = Λ.

In other words, the columns of QkV (the Ritz vectors) are the “best”
approximate eigenvectors and the diagonal entries of Λ (the Ritz values) are
the “best” approximate eigenvalues in the sense of minimizing the residual
‖APk − PkD‖2.

Proof. We temporarily drop the subscripts k on Tk and Qk to simplify
notation, so we can write the k-by-k matrix T = QTAQ. Let R = T + Z. We
want to show ‖AQ −QR‖22 is minimized when Z = 0. We do this by using a
disguised form of the Pythagorean theorem:

‖AQ −QR‖22 = λmax
[
(AQ−QR)T (AQ−QR)

]
by Part 7 of Lemma 1.7

= λmax
[
(AQ−Q(T + Z))T (AQ −Q(T + Z))

]
= λmax

[
(AQ−QT)T (AQ−QT)− (AQ−QT)T (QZ)

−(QZ)T (AQ −QT) + (QZ)T (QZ)
]

366 Applied Numerical Linear Algebra

= λmax
[
(AQ−QT)T (AQ−QT)− (QTAQ− T)Z

−ZT (QTAQ − T) + ZTZ
]

= λmax
[
(AQ−QT)T (AQ−QT) + ZTZ

]
because QTAQ = T

≥ λmax
[
(AQ−QT)T (AQ−QT)

]
by Question 5.5, since ZTZ is
symmetric positive semidefinite

= ‖AQ−QT‖22 by Part 7 of Lemma 1.7.

Restoring subscripts, it is easy to compute the minimum value

‖AQk −QkTk‖2 = ‖(QkTk +QuTku)− (QkTk)‖2 = ‖QuTku‖2 = ‖Tku‖2.

If we replace Qk by any product QkU where U is another orthogonal matrix,
then the columns of Qk and QkU span the same space, and

‖AQk −QkR‖2 = ‖AQkU −QkRU‖2 = ‖A(QkU)− (QkU)(UTRU)‖2.

These quantities are still minimized when R = Tk, and by choosing U = V
so that UTTkU is diagonal, we solve the second minimization problem in the
statement of the theorem. 2

This theorem justifies using Ritz values as eigenvalue approximations. When
Qk is computed by the Lanczos algorithm, in which case (see equation (6.31))

T =
[
Tk TTku
Tku Tu

]
=

α1 β1

β1
.
. βk−1

βk−1 αk βk
βk αk+1 βk+1

βk+1
.
. βn−1

βn−1 αn

,

then it is easy to compute all the quantities in Theorem 7.1. This is because
there are good algorithms for finding eigenvalues and eigenvectors of the sym-
metric tridiagonal matrix Tk (see section 5.3) and because the residual norm is
simply ‖Tku‖2 = βk. (From the Lanczos algorithm we know that βk is nonneg-
ative.) This simplifies the error bounds on the approximate eigenvalues and
eigenvectors in the following theorem.

Theorem 7.2. Let Tk, Tku, and Qk be as in equation (7.1). If Qk is computed
by the Lanczos algorithm, let βk be the single (possibly) nonzero entry in the
upper right corner of Tku. Let Tk = V ΛV T be the eigendecomposition of Tk,
where V = [v1, . . . , vk] is orthogonal and Λ = diag(θ1, . . . , θk). Then

Iterative Methods for Eigenvalue Problems 367

1. There are k eigenvalues α1, . . . , αk of A (not necessarily the largest k)
such that |θi − αi| ≤ ‖Tku‖2 for i = 1, . . . , k. If Qk is computed by the
Lanczos algorithm, then |θi − αi| ≤ ‖Tku‖2 = βk.

2. ‖A(Qkvi)− (Qkvi)θi‖2 = ‖Tkuvi‖2. Thus, the difference between the Ritz
value θi and some eigenvalue α of A is at most ‖Tkuvi‖2, which may be
much smaller than ‖Tku‖2. If Qk is computed by the Lanczos algorithm,
then ‖Tkuvi‖2 = βk|vi(k)|, where vi(k) is the kth (bottom) entry of vi.
This formula lets us compute the residual ‖A(Qkvi)−(Qkvi)θi‖2 cheaply,
i.e., without multiplying any vector by Qk or by A.

3. Without any further information about the spectrum of Tu, we cannot
deduce any useful error bound on the Ritz vector Qkvi. If we know that
the gap between θi and any other eigenvalue of Tk or Tu is at least g,
then we can bound the angle θ between Qkvi and a true eigenvector of A
by

1
2

sin 2θ ≤ ‖Tku‖2
g

. (7.2)

If Qk is computed by the Lanczos algorithm, then the bound simplifies to

1
2

sin 2θ ≤ βk
g
.

Proof.

1. The eigenvalues of T̂ = [Tk 0
0 Tu

] include θ1 through θk. Since

‖T̂ − T‖2 =
∥∥∥∥[0 T Tku

Tku 0

]∥∥∥∥
2

= ‖Tku‖2,

Weyl’s theorem (Theorem 5.1) tells us that the eigenvalues of T̂ and T
differ by at most ‖Tku‖2. But the eigenvalues of T and A are identical,
proving the result.

2. We compute

‖A(Qkvi)− (Qkvi)θi‖2 = ‖QTA(Qkvi)−QT (Qkvi)θi‖2

=
∥∥∥∥[Tkvi

Tkuvi

]
−
[
viθi
0

]∥∥∥∥
2

=
∥∥∥∥[0

Tkuvi

]∥∥∥∥
2

since Tkvi = θivi

= ‖Tkuvi‖2.

Then by Theorem 5.5, A has some eigenvalue α satisfying |α − θi| ≤
‖Tkuvi‖2. If Qk is computed by the Lanczos algorithm, then ‖Tkuvi‖2 =
βk|vi(k)|, because only the top right entry of Tku, namely, βk, is nonzero.

368 Applied Numerical Linear Algebra

3. We reuse Example 5.4 to show that we cannot deduce a useful error bound
on the Ritz vector without further information about the spectrum of Tu:

T =
[

1 + g ε
ε 1

]
,

where 0 < ε < g. We let k = 1 and Q1 = [e1], so T1 = 1 + g and
the approximate eigenvector is simply e1. But as shown in Example 5.4,
the eigenvectors of T are close to [1, ε/g]T and [−ε/g, 1]T . So without
a lower bound on g, i.e., the gap between the eigenvalue of Tk and all
the other eigenvalues, including those of Tu, we cannot bound the error
in the computed eigenvector. If we do have such a lower bound, we can
apply the second bound of Theorem 5.4 to T and T + E = diag(Tk, Tu)
to derive equation (7.2). ¦

7.3. The Lanczos Algorithm in Exact Arithmetic

The Lanczos algorithm for finding eigenvalues of a symmetric matrix A com-
bines the Lanczos algorithm for building a Krylov subspace (Algorithm 6.10)
with the Rayleigh–Ritz procedure of the last section. In other words, it builds
an orthogonal matrix Qk = [q1, . . . , qk] of orthogonal Lanczos vectors and ap-
proximates the eigenvalues of A by the Ritz values (the eigenvalues of the
symmetric tridiagonal matrix Tk = QTkAQk), as in equation (7.1).

Algorithm 7.1. Lanczos Algorithm in exact arithmetic for finding eigenval-
ues and eigenvectors of A = AT :

q1 = b/‖b‖2, β0 = 0, q0 = 0
for j = 1 to k

z = Aqj
αj = qTj z

z = z − αjqj − βj−1qj−1
βj = ‖z‖2
if βj = 0, quit
qj+1 = z/βj
Compute eigenvalues, eigenvectors, and error bounds of Tk

end for

In this section we explore the convergence of the Lanczos algorithm by de-
scribing a numerical example in some detail. This example has been chosen to
illustrate both typical convergence behavior, as well as some more problematic
behavior, which we call misconvergence. Misconvergence can occur because
the starting vector q1 is nearly orthogonal to the eigenvector of the desired
eigenvalue or when there are multiple (or very close) eigenvalues.

Iterative Methods for Eigenvalue Problems 369

The title of this section indicates that we have (nearly) eliminated the
effects of roundoff error on our example. Of course, the Matlab code (HOME-
PAGE/Matlab/LanczosFullReorthog.m) used to produce the example below
ran in floating point arithmetic, but we implemented Lanczos (in particular
the inner loop of Algorithm 6.10) in a particularly careful and expensive way
in order to make it mimic the exact result as closely as possible. This careful
implementation is called Lanczos with full reorthogonalization, as indicated in
the titles of the figures below.

In the next section we will explore the same numerical example using the
original, inexpensive implementation of Algorithm 6.10, which we call Lanc-
zos with no reorthogonalization in order to contrast it with Lanczos with full
reorthogonalization. (We will also explain the difference in the two implementa-
tions.) We will see that the original Lanczos algorithm can behave significantly
differently from the more expensive “exact” algorithm. Nevertheless, we will
show how to use the less expensive algorithm to compute eigenvalues reliably.

Example 7.1. We illustrate the Lanczos algorithm and its error bounds by
running a large example, a 1000-by-1000 diagonal matrix A, most of whose
eigenvalues were chosen randomly from a normal Gaussian distribution. Fig-
ure 7.1 is a plot of the eigenvalues. To make later plots easy to understand,
we have also sorted the diagonal entries of A from largest to smallest, so
λi(A) = aii, with corresponding eigenvector ei, the ith column of the identity
matrix. There are a few extreme eigenvalues, and the rest cluster near the
center of the spectrum. The starting Lanczos vector q1 has all equal entries,
except for one, as described below.

There is no loss in generality in experimenting with a diagonal matrix, since
running Lanczos on A with starting vector q1 is equivalent to running Lanczos
on QTAQ with starting vector QT q1 (see Question 7.1).

To illustrate convergence, we will use several plots of the sort shown in
Figure 7.2. In this figure the eigenvalues of each Tk are shown plotted in
column k, for k = 1 to 9 on the top, and for k = 1 to 29 on the bottom, with
the eigenvalues of A plotted in an extra column at the right. Thus, column
k has k pluses, one marking each eigenvalue of Tk. We have also color-coded
the eigenvalues as follows: The largest and smallest eigenvalues of each Tk are
shown in black, the second largest and second smallest eigenvalues are red, the
third largest and third smallest eigenvalues are green, and the fourth largest
and fourth smallest eigenvalues are blue. Then these colors recycle into the
interior of the spectrum.

To understand convergence, consider the largest eigenvalue of each Tk; these
black pluses are on the top of each column. Note that they increase monoton-
ically as k increases; this is a consequence of the Cauchy interlace theorem,
since Tk is a submatrix of Tk+1 (see Question 5.4). In fact, the Cauchy inter-
lace theorem tells us more, that the eigenvalues of Tk interlace those of Tk+1,
or that λi(Tk+1) ≥ λi(Tk) ≥ λi+1(Tk+1) ≥ λi+1(Tk). In other words, λi(Tk)

370 Applied Numerical Linear Algebra

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4
Eigenvalues of A

Fig. 7.1. Eigenvalues of the diagonal matrix A.

increases monotonically with k for any fixed i, not just i = 1 (the largest eigen-
value). This is illustrated by the colored sequences of pluses moving right and
up in the figure.

A completely analogous phenomenon occurs with the smallest eigenvalues:
The bottom black plus sign in each column of Figure 7.2 shows the smallest
eigenvalue of each Tk, and these are monotonically decreasing as k increases.
Similarly, the ith smallest eigenvalue is also monotonically decreasing. This is
also a simple consequence of the Cauchy interlace theorem.

Now we can ask to which eigenvalue of A the eigenvalue λi(Tk) can converge
as k increases. Clearly the largest eigenvalue of Tk, λ1(Tk), ought to converge
to the largest eigenvalue of A, λ1(A). Indeed, if Lanczos proceeds to step k = n
(without quitting early because some βk = 0), then Tn and A are similar, and
so λ1(Tn) = λ1(A). Similarly, the ith largest eigenvalue λi(Tk) of Tk must
increase monotonically and converge to the ith largest eigenvalue λi(A) of A
(provided that Lanczos does not quit early). And the ith smallest eigenvalue
λk+1−i(Tk) of Tk must similarly decrease monotonically and converge to the
ith smallest eigenvalue λn+1−i(A) of A.

All these converging sequences are represented by sequences of pluses of a
common color in Figure 7.2 and other figures in this section. Consider the right
graph in Figure 7.2: For k larger than about 15, the topmost and bottom-most
black pluses form horizontal rows next to the extreme eigenvalues of A, which
are plotted in the rightmost column; this demonstrates convergence. Similarly,
the outermost sequences of red pluses form horizontal rows next to the second

Iterative Methods for Eigenvalue Problems 371

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4
9 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4
29 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

Fig. 7.2. The Lanczos algorithm applied to A. The first 9 steps are shown on the
top, and the first 29 steps are shown on the bottom. Column k shows the eigenvalues
of Tk, except that the rightmost columns (column 10 on the left and column 30 on the
right) show all the eigenvalues of A.

largest and second smallest eigenvalues of A in the rightmost column; they
converge later than the outermost eigenvalues. A blow-up of this behavior for
more Lanczos steps is shown in the top two graphs of Figure 7.3.

To summarize the above discussion, extreme eigenvalues, i.e., the largest
and smallest ones, converge first, and the interior eigenvalues converge last.
Furthermore, convergence is monotonic, with the ith largest (smallest) eigen-
value of Tk increasing (decreasing) to the ith largest (smallest) eigenvalue of
A, provided that Lanczos does not stop prematurely with some βk = 0.

Now we examine the convergence behavior in more detail, compute the
actual errors in the Ritz values, and compare these errors with the error bounds
in part 2 of Theorem 7.2. We run Lanczos for 99 steps on the same matrix
pictured in Figure 7.2 and display the results in Figure 7.3. The top left graph

372 Applied Numerical Linear Algebra

in Figure 7.3 shows only the largest eigenvalues, and the top right graph shows
only the smallest eigenvalues.

The middle two graphs in Figure 7.3 show the errors in the four largest
computed eigenvalues (on the left) and the four smallest computed eigenvalues
(on the right). The colors in the middle graphs match the colors in the top
graphs. We measure and plot the errors in three ways:

• The global errors (the solid lines) are given by |λi(Tk) − λi(A)|/|λi(A)|.
We divide by |λi(A)| in order to normalize all the errors to lie between 1
(no accuracy) and about 10−16 (machine epsilon, or full accuracy). As k
increases, the global error decreases monotonically, and we expect it to
decrease to machine epsilon, unless Lanczos quits prematurely.

• The local errors (the dotted lines) are given by
minj |λi(Tk)−λj(A)|/|λi(A)|. The local error measures the smallest dis-
tance between λi(Tk) and the nearest eigenvalue λj(A) of A, not just the
ultimate value λi(A). We plot this because sometimes the local error is
much smaller than the global error.

• The error bounds (the dashed lines) are the quantities
|βkvi(k)|/|λi(A)| computed by the algorithm (except for the normaliza-
tion by |λi(A)|, which of course the algorithm does not know!).

The bottom two graphs in Figure 7.3 show the eigenvector components
of the Lanczos vectors qk for the four eigenvectors corresponding to the four
largest eigenvalues (on the left) and for the four eigenvectors corresponding
to the four smallest eigenvalues (on the right). In other words, they plot
qTk ej = qk(j), where ej is the jth eigenvector of the diagonal matrix A, for
k = 1 to 99 and for j = 1 to 4 (on the left) and j = 997 to 1000 (on the
right). The components are plotted on a logarithmic scale, with “+” and “o”
to indicate whether the component is positive or negative, respectively. We
use these plots to help explain convergence below.

Now we use Figure 7.3 to examine convergence in more detail. The largest
eigenvalue of Tk (topmost black pluses in the top left graph of Figure 7.3)
begins converging to its final value (about 2.81) right away, is correct to six
decimal places after 25 Lanczos steps, and is correct to machine precision by
step 50. The global error is shown by the solid black line in the middle left
graph. The local error (the dotted black line) is the same as the global error
after not too many steps, although it can be “accidentally” much smaller if
an eigenvalue λi(Tk) happens to fall close to some other λj(A) on its way to
λi(A). The dashed black line in the same graph is the relative error bound
computed by the algorithm, which overestimates the true error up to about
step 75. Still, the relative error bound correctly indicates that the largest
eigenvalue is correct to several decimal digits.

The second through fourth largest eigenvalues (the topmost red, green and
blue pluses in the top left graph of Figure 7.3) converge in a similar fashion,

Iterative Methods for Eigenvalue Problems 373

0 10 20 30 40 50 60 70 80 90 100
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
99 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

0 10 20 30 40 50 60 70 80 90 100
−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1
99 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

True errors and error bounds, in eigenvalues 1 to 4

Lanczos step

G
lo

ba
l E

rr
or

 (
so

lid
),

 L
oc

al
 E

rr
or

 (
do

tte
d)

, B
ou

nd
 (

da
sh

ed
)

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

True errors and error bounds, in eigenvalues 997 to 1000

Lanczos step

G
lo

ba
l E

rr
or

 (
so

lid
),

 L
oc

al
 E

rr
or

 (
do

tte
d)

, B
ou

nd
 (

da
sh

ed
)

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lanczos vector components for eigenvectors 1 to 4

Lanczos step

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

)

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lanczos vector components for eigenvectors 997 to 1000

Lanczos step

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

)

Fig. 7.3. 99 steps of Lanczos applied to A. The the largest eigenvalues are shown
on the left, and the smallest on the right. The top two graphs show the eigenvalues
themselves, the middle two graphs the errors (global = solid, local = dotted, bounds
= dashed), and the bottom two graphs show eigencomponents of Lanczos vectors. The
colors in a column of three graphs match.

374 Applied Numerical Linear Algebra

with eigenvalue i converging slightly faster than eigenvalue i+1. This is typical
behavior of the Lanczos algorithm.

The bottom left graph of Figure 7.3 measures convergence in terms of
the eigenvector components qTk ej . To explain this graph, consider what hap-
pens to the Lanczos vectors qk as the first eigenvalue converges. Convergence
means that the corresponding eigenvector e1 nearly lies in the Krylov subspace
spanned by the Lanczos vectors. In particular, since the first eigenvalue has
converged after k = 50 Lanczos steps, this means that e1 must very nearly be
a linear combination of q1 though q50. Since the qk are mutually orthogonal,
this means qk must also be orthogonal to e1 for k > 50. This is borne out by
the black curve in the bottom left graph, which has decreased to less than 10−7

by step 50. The red curve is the component of e2 in qk, and this reaches 10−8

by step 60. The green curve (third eigencomponent) and blue curve (fourth
eigencomponent) get comparably small a few steps later.

Now we discuss the smallest four eigenvalues, whose behavior is described
by the three graphs on the right of Figure 7.3. We have chosen the matrix
A and starting vector q1 to illustrate certain difficulties that can arise in the
convergence of the Lanczos algorithm to show that convergence is not always
as straightforward as in the case of the four eigenvalues just examined.

In particular, we have chosen q1(999), the eigencomponent of q1 in the
direction of the second smallest eigenvalue (−2.81), to be about 10−7, which is
105 times smaller than all the other components of q1, which are equal. Also,
we have chosen the third and fourth smallest eigenvalues (numbers 998 and
997) to be nearly the same: −2.700001 and −2.7.

The convergence of the smallest eigenvalue of Tk to λ1000(A) ≈ −3.03 is
uneventful, similar to the largest eigenvalues. It is correct to 16 digits by step
40.

The second smallest eigenvalue of Tk, shown in red, begins by misconverging
to the third smallest eigenvalue of A, near −2.7. Indeed, the dotted red line in
the middle right graph of Figure 7.3 shows that λ999(Tk) agrees with λ998(A)
to six decimal places for Lanczos steps 40 < k < 50. The corresponding error
bound (the red dashed line) tells us that λ999(Tk) equals some eigenvalue of A
to three or four decimal places for the same values of k. The reason λ999(Tk)
misconverges is that the Krylov subspace starts with a very small component of
the corresponding Krylov subspace e999, namely, 10−7. This can be seen by the
red curve in bottom right graph, which starts at 10−7 and takes until step 45
before a large component of e999 appears. Only at this point, when the Krylov
subspace contains a sufficiently large component of the eigenvector e999, can
λ999(Tk) start converging again to its final value λ999(A) ≈ −2.81, as shown
in the top and middle right graphs. Once this convergence has set in again,
the component of e999 starts decreasing again and becomes very small once
λ999(Tk) has converged to λ999(A) sufficiently accurately. (For a quantitative
relationship between the convergence rate and the eigencomponent qT1 e999, see
the theorem of Kaniel and Saad discussed below.)

Iterative Methods for Eigenvalue Problems 375

0 10 20 30 40 50 60 70 80 90 100
−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1
99 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

Fig. 7.4. Lanczos applied to A, where the starting vector q1 is orthogonal to the
eigenvector corresponding to the second smallest eigenvalue −2.81. No approximation
to this eigenvalue is computed.

Indeed, if q1 were exactly orthogonal to e999, so qT1 e999 = 0 rather than
just qT1 e999 = 10−7, then all later Lanczos vectors would also be orthogonal to
q1. This means λ999(Tk) would never converge to λ999(A). (For a proof, see
Question 7.3.) We illustrate this in Figure 7.4, where we have modified q1 just
slightly so that qT1 e999 = 0. Note that no approximation to λ999(A) ≈ −2.81
ever appears.

Fortunately, if we choose q1 at random, it is extremely unlikely to be or-
thogonal to an eigenvector. We can always rerun Lanczos with a different
random q1 to provide more “statistical” evidence that we have not missed any
eigenvalues.

Another source of “misconvergence” are (nearly) multiple eigenvalues, such
as the the third smallest eigenvalue λ998(A) = −2.700001 and the fourth
smallest eigenvalue λ997(A) = −2.7. By examining λ998(Tk), the bottom-
most green curve in the top right and middle right graphs of Figure 7.3, we
see that during Lanczos steps 50 < k < 75, λ998(Tk) misconverges to about
−2.7000005, halfway between the two closest eigenvalues of A. This is not
visible at the resolution provided by the top right graph but is evident from
the horizontal segment of the solid green line in the middle right graph during
Lanczos steps 50 < k < 75. At step 76 rapid convergence to the final value
λ998(A) = −2.700001 sets in again.

Meanwhile, the fourth smallest eigenvalue λ997(Tk), shown in blue, has
misconverged to a value near λ996(A) ≈ −2.64; the blue dotted line in the
middle right graph indicates that λ997(Tk) and λ996(A) agree to up to nine
decimal places near step k = 61. At step k = 65 rapid convergence sets in
again to the final value λ997(A) = −2.7. This can also be seen in the bottom

376 Applied Numerical Linear Algebra

0 10 20 30 40 50 60 70 80 90 100
−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1
99 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

Fig. 7.5. Lanczos applied to A, where the third and fourth smallest eigenvalues are
equal. Only one approximation to this double eigenvalue is computed.

right graph, where the eigenvector components of e997 and e998 grow again
during step 50 < k < 65, after which rapid convergence sets in and they again
decrease.

Indeed, if λ997(A) were exactly a double eigenvalue, we claim that Tk would
never have two eigenvalues near that value but only one (in exact arithmetic).
(For a proof, see Question 7.3.) We illustrate this in Figure 7.5, where we have
modified A just slightly so that it has two eigenvalues exactly equal to −2.7.
Note that only one approximation to λ998(A) = λ997(A) = −2.7 ever appears.

Fortunately, there are many applications were it is sufficient to find one
copy of each eigenvalue rather than all multiple copies. Also, it is possible to
use “block Lanczos” to recover multiple eigenvalues (see the algorithms cited
in section 7.6).

Examining other eigenvalues in the top right graph of Figure 7.3, we see
that misconvergence is quite common, as indicated by the frequent short hor-
izontal segments of like-colored pluses, which then drop off to the right to the
next smaller eigenvalue. For example, the seventh smallest eigenvalue is well-
approximated by the fifth (black), sixth (red), and seventh (green) smallest
eigenvalues of Tk at various Lanczos steps.

These misconvergence phenomena explain why the computable error bound
provided by part 2 of Theorem 7.2 is essential to monitor convergence. If the
error bound is small, the computed eigenvalue is indeed a good approximation
to some eigenvalue, even if one is “missing.” ¦

There is another error bound, due to Kaniel and Saad, that sheds light on
why misconvergence occurs. This error bound depends on the angle between
the starting vector q1 and the desired eigenvectors, the Ritz values, and the

Iterative Methods for Eigenvalue Problems 377

desired eigenvalues. In other words, it depends on quantities unknown during
the computation, so it is not of practical use. But it shows that if q1 is nearly
orthogonal to the desired eigenvector, or if the desired eigenvalue is nearly
multiple, then we can expect slow convergence. See [195, sect. 12-4] for details.

7.4. The Lanczos Algorithm in Floating Point Arith-
metic

The example in the last section described the behavior of the “ideal” Lanczos
algorithm, essentially without roundoff. We call the corresponding careful but
expensive implementation of Algorithm 6.10 Lanczos with full reorthogonaliza-
tion to contrast it with the original inexpensive implementation, which we call
Lanczos with no reorthogonalization (HOMEPAGE/Matlab/LanczosNoReorthog.m).
Both algorithms are shown below.

Algorithm 7.2. Lanczos algorithm with full or no reorthogonalization for
finding eigenvalues and eigenvectors of A = AT :

q1 = b/‖b‖2, β0 = 0, q0 = 0
for j = 1 to k

z = Aqj
αj = qTj z{
z = z −

∑j−1
i=1 (zT qi)qi, z = z −

∑j−1
i=1 (zT qi)qi full reorthogonalization

z = z − αjqj − βj−1qj−1 no reorthogonalization
βj = ‖z‖2
if βj = 0, quit
qj+1 = z/βj
Compute eigenvalues, eigenvectors, and error bounds of Tk

end for

Full reorthogonalization corresponds to applying the Gram–Schmidt or-
thogonalization process “z = z−

∑j−1
i=1 (zT qi)qi” twice in order to almost surely

make z orthogonal to q1 through qj−1. (See Algorithm 3.1 as well as [195, sect.
6-9] and [169, chap. 7] for discussions of when “twice is enough.”) In exact
arithmetic, we showed in section 6.6.1 that z is orthogonal to q1 through qj−1
without reorthogonalization. Unfortunately, we will see that roundoff destroys
this orthogonality property, upon which all of our analysis has depended so
far.

This loss of orthogonality does not cause the algorithm to behave com-
pletely unpredictably. Indeed, we will see that the price we pay is to get
multiple copies of converged Ritz values. In other words, instead of Tk having
one eigenvalue nearly equal to λi(A) for k large, it may have many eigenvalues
nearly equal to λi(A). This is not a disaster if one is not concerned about

378 Applied Numerical Linear Algebra

computing multiplicities of eigenvalues and does not mind the resulting de-
layed convergence of interior eigenvalues. See [56] for a detailed description of
a Lanczos implementation that operates in this fashion, and NETLIB/lanczos
for the software itself.

But if accurate multiplicities are important, then one needs to keep the
Lanczos vectors (nearly) orthogonal. So one could use the Lanczos algorithm
with full reorthogonalization, as we did in the last section. But one can easily
confirm that this costs O(k2n) flops instead of O(kn) flops for k steps, and
O(kn) space instead of O(n) space, which may be too high a price to pay.

Fortunately, there is a middle ground between no reorthogonalization and
full reorthogonalization, which nearly gets the best of both worlds. It turns
out that the qk lose their orthogonality in a very systematic way by developing
large components in the directions of already converged Ritz vectors. (This is
what leads to multiple copies of converged Ritz values.) This systematic loss
of orthogonality is illustrated by the next example and explained by Paige’s
theorem below. We will see that by monitoring the computed error bounds, we
can conservatively predict which qk will have large components of which Ritz
vectors. Then we can selectively orthogonalize qk against just those few prior
Ritz vectors, rather than against all the earlier qis at each step, as with full
reorthogonalization. This keeps the Lanczos vectors (nearly) orthogonal for
very little extra work. The next section discusses selective orthogonalization
in detail.

Example 7.2. Figure 7.7 shows the convergence behavior of 149 steps of Lanc-
zos on the matrix in Example 7.1. The graphs on the right are with full re-
orthogonalization, and the graphs on the left are with no reorthogonalization.
These graphs are similar to those in Figure 7.3, except that the global error is
omitted, since this clutters the middle graphs.

Figure 7.6 plots the smallest singular value σmin(Qk) versus Lanczos step
k. In exact arithmetic, Qk is orthogonal and so σmin(Qk) = 1. With roundoff,
Qk loses orthogonality starting at around step k = 70, and σmin(Qk) drops to
.01 by step k = 80, which is where the top two graphs in Figure 7.7 begin to
diverge visually.

In particular, starting at step k = 80 in the top left graph of Figure 7.7, the
second smallest (red) eigenvalue λ2(Tk), which had converged to λ2(A) ≈ 2.7
to almost 16 digits, leaps up to λ1(A) ≈ 2.81 in just a few steps, yielding a
“second copy” of λ1(A) along with λ1(Tk) (in black). (This may be hard to see,
since the red pluses overwrite and so obscure the black pluses.) This transition
can be seen in the leap in the dashed red error bound in the middle left graph.
Also, this transition was “foreshadowed” by the increasing component of e1
in the bottom left graph, where the black curve starts rising again at step
k = 50 rather than continuing to decrease to machine epsilon, as it does with
full reorthogonalization in the bottom right graph. Both of these indicate
that the algorithm is diverging from its exact path (and that some selective

Iterative Methods for Eigenvalue Problems 379

0 20 40 60 80 100 120 140
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Smallest singular value of first k Lanczos vectors

Lanczos step

Fig. 7.6. Lanczos algorithm without reorthogonalization applied to A. The smallest
singular value σmin(Qk) of the Lanczos vector matrix Qk is shown for k = 1 to 149.
In the absence of roundoff, Qk is orthogonal, and so all singular values should be one.
With roundoff, Qk becomes rank deficient.

orthogonalization is called for). After the second copy of λ1(A) has converged,
the component of e1 in the Lanczos vectors starts dropping again, starting a
little after step k = 80.

Similarly, starting at about step k = 95, a second copy of λ2(A) appears
when the blue curve (λ4(Tk)) in the upper left graph moves from about λ3(A) ≈
2.6 to λ2(A) ≈ 2.7. At this point we have two copies of λ1(A) ≈ 2.81 and two
copies of λ2(A). This is a bit hard to see on the graphs, since the pluses
of one color obscure the pluses of the other color (red overwrites black, and
blue overwrites green). This transition is indicated by the dashed blue error
bound for λ4(Tk) in the middle left graph rising sharply near k = 95 and is
foreshadowed by the rising red curve in the bottom left graph, which indicates
that the component of e2 in the Lanczos vectors is rising. This component
peaks near k = 95 and starts dropping again.

Finally, around step k = 145, a third copy of λ1(A) appears, again indicated
and foreshadowed by changes in the two bottom left graphs. If we were to
continue the Lanczos process, we would periodically get additional copies of
many other converged Ritz values. ¦

The next theorem provides an explanation for the behavior seen in the
above example, and hints at a practical criterion for selectively orthogonalizing
Lanczos vectors. In order not to be overwhelmed by taking all possible roundoff
errors into account, we will draw on others’ experience to identify those few
rounding errors that are important, and simply ignore the rest [195, sect. 13-
4]. This lets us summarize the Lanczos algorithm with no reorthogonalization

380 Applied Numerical Linear Algebra

0 50 100 150
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
149 steps of Lanczos (no reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

0 50 100 150
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
149 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

True local error and error bounds, in eigenvalues 1 to 4

Lanczos step

Lo
ca

l E
rr

or
 (

do
tte

d)
, B

ou
nd

 (
da

sh
ed

)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

True local error and error bounds, in eigenvalues 1 to 4

Lanczos step

Lo
ca

l E
rr

or
 (

do
tte

d)
, B

ou
nd

 (
da

sh
ed

)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lanczos vector components for eigenvectors 1 to 4

Lanczos step

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lanczos vector components for eigenvectors 1 to 4

Lanczos step

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

)

Fig. 7.7. 149 step of Lanczos applied to A. Column 150 (at the right of the top
graphs) shows the eigenvalues of A. In the left graphs, no reorthogonalization is done.
In the right graphs, full reorthogonalization is done.

Iterative Methods for Eigenvalue Problems 381

in one line:
βjqj+1 + fj = Aqj − αjqj − βj−1qj−1. (7.3)

In this equation the variables represent the values actually stored in the ma-
chine, except for fj , which represents the roundoff error incurred by evaluat-
ing the right-hand side and then computing βj and qj+1. The norm ‖fj‖2 is
bounded by O(ε‖A‖), where ε is machine epsilon, which is all we need to know
about fj . In addition, we will write Tk = V ΛV T exactly, since we know that
the roundoff errors occurring in this eigendecomposition are not important.
Thus, Qk is not necessarily an orthogonal matrix, but V is.

Theorem 7.3. Paige. We use the notation and assumptions of the last para-
graph. We also let Qk = [q1, . . . , qk], V = [v1, . . . , vk], and Λ = diag(θ1, . . . , θk).
We continue to call the columns yk,i = Qkvi of QkV the Ritz vectors and the
θi the Ritz values. Then

yTk,iqk+1 =
O(ε‖A‖)
βk|vi(k)| .

In other words the component yTk,iqk+1 of the computed Lanczos vector
qk+1 in the direction of the Ritz vector yk,i = Qkvi is proportional to the
reciprocal of βk|vi(k)|, which is the error bound on the corresponding Ritz
value θi (see Part 2 of Theorem 7.2). Thus, when the Ritz value θi converges
and its error bound βk|vi(k)| goes to zero, the Lanczos vector qk+1 acquires a
large component in the direction of Ritz vector yk,i. Thus, the Ritz vectors
become linearly dependent, as seen in Example 7.2. Indeed, Figure 7.8 plots
both the error bound |βkvi(k)|/|λi(A)| ≈ |βkvi(k)|/‖A‖ and the Ritz vector
component yTk,iqk+1 for the largest Ritz value (i = 1, the top graph) and for
the second largest Ritz value (i = 2, the bottom graph) of our 1000-by-1000
diagonal example. According to Paige’s theorem, the product of these two
quantities should be O(ε). Indeed it is, as can be seen by the symmetry of the
curves about the middle line

√
ε of these semilogarithmic graphs.

Proof of Paige’s theorem. We start with equation (7.3) for j = 1 to j = k, and
write these k equations as the single equation

AQk = QkTk + [0, . . . , 0, βkqk+1] + Fk

= QkTk + βkqk+1e
T
k + Fk,

where eTk is the k-dimensional row vector [0, . . . , 0, 1] and Fk = [f1, . . . , fk] is
the matrix of roundoff errors. We simplify notation by dropping the subscript
k to get AQ = QT + βqeT + F . Multiply on the left by QT to get QTAQ =
QTQT + βQT qeT + QTF . Since QTAQ is symmetric, we get that QTQT +
βQT qeT +QTF equals its transpose or, rearranging this equality,

0 = (QTQT − TQTQ) + β(QT qeT − eqTQ) + (QTF − F TQ). (7.4)

382 Applied Numerical Linear Algebra

If θ and v are a Ritz value and Ritz vector, respectively, so that Tv = θv, then
note that

vTβ(eqTQ)v = [βv(k)] · [qT (Qv)] (7.5)

is the product of error bound βv(k) and the Ritz vector component qT (Qv) =
qT y, which Paige’s theorem says should be O(ε‖A‖). Our goal is now to
manipulate equation (7.4) to get an expression for eqTQ alone, and then use
equation (7.5).

To this end, we now invoke more simplifying assumptions about roundoff:
Since each column of Q is gotten by dividing a vector z by its norm, the
diagonal of QTQ is equal to 1 to full machine precision; we will suppose that it
is exactly 1. Furthermore, the vector z′ = z−αjqj = z− (qTj z)qj computed by
the Lanczos algorithm is constructed to be orthogonal to qj , so it is also true
that qj+1 and qj are orthogonal to nearly full machine precision. Thus qTj+1qj =
(QTQ)j+1,j = O(ε); we will simply assume (QTQ)j+1,j = 0. Now write QTQ =
I + C + CT , where C is lower triangular. Because of our assumptions about
roundoff, C is in fact nonzero only on the second subdiagonal and below. This
means

QTQT − TQTQ = (CT − TC) + (CTT − TCT),

where we can use the zero structures of C and T to easily show that CT −TC
is strictly lower triangular and CTT − TCT is strictly upper triangular. Also,
since e is nonzero only in its last entry, eqTQ is nonzero only in the last row.
Furthermore, the structure of QTQ just described implies that the last two
entries of the last row of eqTQ are zero. So in particular, eqTQ is also strictly
lower triangular and QT qeT is strictly upper triangular. Applying the fact that
eqTQ and CT − TC are both strictly lower triangular to equation (7.4) yields

0 = (CT − TC)− βeqTQ+ L, (7.6)

where L is the strict lower triangle of QTF −F TQ. Multiplying equation (7.6)
on the left by vT and on the right by v, using equation (7.5) and the fact that
vT (CT − TC)v = vTCvθ − θvTCv = 0, yields

vTβ(eqTQ)v = [βv(k)] · [qT (Qv)] = vTLv.

Since |vTLv| ≤ ‖L‖ = O(‖QTF − F TQ‖) = O(‖F‖) = O(ε‖A‖), we get

[βv(k)] · [qT (Qv)] = O(ε‖A‖),

which is equivalent to Paige’s theorem. 2

7.5. The Lanczos Algorithm with Selective Orthogonal-
ization

We discuss a variation of the Lanczos algorithm which has (nearly) the high ac-
curacy of the Lanczos algorithm with full reorthogonalization but (nearly) the

Iterative Methods for Eigenvalue Problems 383

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error Bounds and Lanczos vector components for Ritz vector 1

Lanczos step

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

),
 b

ou
nd

 (
da

sh
ed

)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error Bounds and Lanczos vector components for Ritz vector 2

Lanczos step

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

),
 b

ou
nd

 (
da

sh
ed

)

Fig. 7.8. Lanczos with no reorthogonalization applied to A. The first 149 steps are
shown for the largest eigenvalue (in black, at top) and for the second largest eigenvalue
(in red, at bottom). The dashed lines are error bounds as before. The lines marked
by x’s and o’s show yTk,iqk+1, the component of Lancos vector k+ 1 in the direction of
the Ritz vector for the largest Ritz value (i = 1, at top) or for the second largest Ritz
value (i = 2, at bottom).

384 Applied Numerical Linear Algebra

low cost of the Lanczos algorithm with no reorthogonalization. This algorithm
is called the Lanczos algorithm with selective orthogonalization. As discussed
in the last section, our goal is to keep the computed Lanczos vectors qk as nearly
orthogonal as possible (for high accuracy) by orthogonalizing them against as
few other vectors as possible at each step (for low cost). Paige’s theorem (The-
orem 7.3 in the last section) tells us that the qk lose orthogonality because they
acquire large components in the direction of Ritz vectors yi,k = Qkvi whose
Ritz values θi have converged, as measured by the error bound βk|vi(k)| be-
coming small. This phenomenon was illustrated in Example 7.2.

Thus, the simplest version of selective orthogonalization simply monitors
the error bound βk|vi(k)| at each step, and when it becomes small enough, the
vector z in the inner loop of the Lanczos algorithm is orthogonalized against
yi,k: z = z − (yTi,kz)yi,k. We consider βk|vi(k)| to be small when it is less than√
ε‖A‖, since Paige’s theorem tells us that the vector component |yTi,kqk+1| =
|yTi,kz/‖z‖2| is then likely to exceed

√
ε. (In practice we may replace ‖A‖ by

‖Tk‖, since ‖Tk‖ is known and ‖A‖ may not be.) This leads to the following
algorithm

Algorithm 7.3. The Lanczos algorithm with selective orthogonalization for
finding eigenvalues and eigenvectors of A = AT .

q1 = b/‖b‖2, β0 = 0, q0 = 0
for j = 1 to k

z = Aqj
αj = qTj z

z = z − αjqj − βj−1qj−1
/* Selectively orthogonalize against converged Ritz vectors */
for all i ≤ k such that βk|vi(k)| ≤ √ε‖Tk‖

z = z − (yTi,kz)yi,k
end for
βj = ‖z‖2
if βj = 0, quit
qj+1 = z/βj
Compute eigenvalues, eigenvectors, and error bounds of Tk

end for

The following example shows what will happen to our earlier 1000-by-
1000 diagonal matrix when this algorithm is used (HOMEPAGE/Matlab/
LanczosSelectiveOrthog.m).

Example 7.3. The behavior of the Lanczos algorithm with selective orthog-
onalization is visually indistinguishable from the behavior of the Lanczos al-
gorithm with full orthogonalization shown in the three graphs on the right
of Figure 7.7. In other words, selective orthogonalization provided as much
accuracy as full orthogonalization.

Iterative Methods for Eigenvalue Problems 385

The smallest singular values of all the Qk were greater than 1−10−8, which
means that selective orthogonalization did keep the Lanczos vectors orthogonal
to about half precision, as desired.

Figure 7.9 shows the Ritz values of the Ritz vectors selected for reorthogo-
nalization. Since the selected Ritz vectors correspond to converged Ritz values
and the largest and smallest Ritz values converge first, there are two graphs:
the large converged Ritz values are at the top, and the small converged Ritz
values are at the bottom. The top graph matches the Ritz values shown in
the upper right graph in Figure 7.7 that have converged to at least half preci-
sion. All together, 1485 Ritz vectors were selected for orthogonalization of a
total possible 149*150/2 = 11175. Thus, selective orthogonalization did only
1485/11175 ≈ 13% as much work to keep the Lanczos vectors (nearly) orthog-
onal as full reorthogonalization.

Figure 7.10 shows how the Lanczos algorithm with selective reorthogonal-
ization keeps the Lanczos vectors orthogonal just to the Ritz vectors for the
largest two Ritz values. The graph at the top is a superposition of the two
graphs in Figure 7.8, which show the error bounds and Ritz vectors compo-
nents for the Lanczos algorithm with no reorthogonalization. The graph at the
bottom is the corresponding graph for the Lanczos algorithm with selective or-
thogonalization. Note that at step k = 50, the error bound for the largest
eigenvalue (the dashed black line) has reached the threshold of

√
ε. The Ritz

vector is selected for orthogonalization (as shown by the top black pluses in the
top of Figure 7.9), and the component in this Ritz vector direction disappears
from the bottom graph of Figure 7.10. A few steps later, at k = 58, the error
bound for the second largest Ritz value reaches

√
ε, and it too is selected for

orthogonalization. The error bounds in the top graph continue to decrease
to machine epsilon ε and stay there, whereas the error bounds in the bottom
graph eventually grow again. ¦

7.6. Beyond Selective Orthogonalization

Selective orthogonalization is not the end of the story, because the symmetric
Lanczos algorithm can be made even less expensive. It turns out that once a
Lanczos vector has been orthogonalized against a particular Ritz vector y, it
takes many steps before the Lanczos vector again requires orthogonalization
against y. So much of the orthogonalization work in Algorithm 7.3 can be
eliminated. Indeed, there is a simple and inexpensive recurrence for deciding
when to reorthogonalize [222, 190]. Another enhancement is to use the error
bounds to efficiently distinguish between converged and “misconverged” eigen-
values [196]. A state-of-the-art implementation of the Lanczos algorithm is de-
scribed in [123]. A different software implementation is available in ARPACK
(NETLIB/scalapack/readme.arpack [169, 231]).

If we apply Lanczos to the shifted and inverted matrix (A−σI)−1, then we
expect the eigenvalues closest to σ to converge first. There are other methods

386 Applied Numerical Linear Algebra

0 50 100 150
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
Ritz values whose vectors are selected for orthogonalization

Lanczos step

R
itz

 v
al

ue
s

0 50 100 150
−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1
Ritz values whose vectors are selected for orthogonalization

Lanczos step

R
itz

 v
al

ue
s

Fig. 7.9. The Lanczos algorithm with selective orthogonalization applied to A. The
Ritz values whose Ritz vectors are selected for orthogonalization are shown.

to “precondition” a matrix A to converge to certain eigenvalues more quickly.
For example, Davidson’s method [59] is used in quantum chemistry problems,
where A is strongly diagonally dominant. It is also possible to combine David-
son’s method with Jacobi’s method [227].

7.7. Iterative Algorithms for the Nonsymmetric Eigen-
problem

When A is nonsymmetric, the Lanczos algorithm described above is no longer
applicable. There are two alternatives.

The first alternative is to use the Arnoldi algorithm (Algorithm 6.9). Re-
call that the Arnoldi algorithm computes an orthogonal basis Qk of a Krylov
subspace Kk(q1, A) such that QTkAQk = Hk is upper Hessenberg rather than
symmetric tridiagonal. The Rayleigh–Ritz procedure is again to approximate

Iterative Methods for Eigenvalue Problems 387

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error Bounds and Lanczos vector components for Ritz vectors 1 to 2

Lanczos step (no reorthogonalization)

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

),
 b

ou
nd

 (
da

sh
ed

)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error Bounds and Lanczos vector components for Ritz vectors 1 to 2

Lanczos step (selective orthogonalization)

ei
ge

nc
om

po
ne

nt
 (

+
 =

 p
os

, o
 =

 n
eg

),
 b

ou
nd

 (
da

sh
ed

)

Fig. 7.10. The Lanczos algorithm with selective orthogonalization applied to A. The
top graph show the first 149 step of the Lanczos algorithm with no reorthogonalization,
and the bottom graph shows the Lanczos algorithm with selective orthogonalization.
The largest eigenvalue is shown in black, and the second largest eigenvalue is shown
in red. The dashed lines are error bounds as before. The lines marked by x’s and o’s
show yTk,iqk+1, the component of Lancos vector k+ 1 in the direction of the Ritz vector
for the largest Ritz value (i = 1, in black) or for the second largest Ritz value (i = 2,
in red). Note that selective orthogonalization eliminates components these components
after the first selective orthogonalizations at steps 50 (i = 1) and 58 (i = 2).

388 Applied Numerical Linear Algebra

the eigenvalues of A by the eigenvalues of Hk. Since A is nonsymmetric, its
eigenvalues may be complex and/or badly conditioned, so many of the at-
tractive error bounds and monotonic convergence properties enjoyed by the
Lanczos algorithm and described in section 7.3 no longer hold. Nonethe-
less, effective algorithms and implementations exist. Good references include
[152, 169, 210, 214, 215, 231] and the book [211]. The latest software is de-
scribed in [169, 231] and may be found in NETLIB/scalapack/readme.arpack.
The Matlab command speig (for “sparse eigenvalues”) uses this software.

A second alternative is to use the nonsymmetric Lanczos algorithm. This al-
gorithm attempts to reduce A to nonsymmetric tridiagonal form by a nonorthog-
onal similarity. The hope is that it will be easier to find the eigenvalues of a
(sparse!) nonsymmetric tridiagonal matrix than the Hessenberg matrix pro-
duced by the Arnoldi algorithm. Unfortunately, the similarity transformations
can be quite ill-conditioned, which means that the eigenvalues of the tridiag-
onal and of the original matrix may greatly differ. In fact, it is not always
possible to find an appropriate similarity because of a phenomenon known as
“breakdown” [41, 132, 133, 197]. Attempts to repair breakdown by by a pro-
cess called “lookahead” have been proposed, implemented, and analyzed in
[16, 18, 54, 55, 63, 106, 200, 263, 264].

Finally, it is possible to apply subspace iteration (Algorithm 4.3) [19],
Davidson’s algorithm [214], or the Jacobi–Davidson algorithm [228] to the
sparse nonsymmetric eigenproblem.

7.8. References and Other Topics for Chapter 7

In addition to the references in sections 7.6 and 7.7, there are a number of good
surveys available on algorithms for sparse eigenvalues problems: see [17, 50,
123, 161, 195, 211, 260]. Parallel implementations are also discussed in [75].

In section 6.2 we discussed the existence of on-line help to choose from
among the variety of iterative methods available for solving Ax = b. A similar
project is underway for eigenproblems and will be incorporated in a future
edition of this book.

7.9. Questions for Chapter 7

Question 7.1. (Easy) Confirm that running the Arnoldi algorithm (Algo-
rithm 6.9) or the Lanczos algorithm (Algorithm 6.10) on A with starting vector
q yields the identical tridiagonal matrices Tk (or Hessenberg matrices Hk) as
running on QTAQ with starting vector QT q.

Question 7.2. (Medium) Let λi be a simple eigenvalue of A. Confirm that
if q1 is orthogonal to the corresponding eigenvector of A, then the eigenvalues
of the tridiagonal matrices Tk computed by the Lanczos algorithm in exact
arithmetic cannot converge to λi in the sense that the largest Tk computed

Iterative Methods for Eigenvalue Problems 389

cannot have λi as an eigenvalue. Show by means of a 3-by-3 example, that an
eigenvalue of some other Tk can equal λi “accidentally.”

Question 7.3. (Medium) Confirm that no symmetric tridiagonal matrix Tk
computed by the Lanczos algorithm can have an exactly multiple eigenvalue.
Show that if A has a multiple eigenvalue, then Lanczos applied to A must
break down before the last step.

