
6
Iterative Methods for Linear Systems

6.1. Introduction

Iterative algorithms for solving Ax = b are used when methods such as Gaus-
sian elimination require too much time or too much space. Methods such
Gaussian elimination, which compute the exact answers after a finite number
of steps (in the absence of roundoff!), are called direct methods. In contrast to
direct methods, iterative methods generally do not produce the exact answer
after a finite number of steps but decrease the error by some fraction after
each step. Iteration ceases when the error is less than a user-supplied thresh-
old. The final error depends on how many iterations one does as well as on
properties of the method and the linear system. Our overall goal is to develop
methods which decrease the error by a large amount at each iteration and do
as little work per iteration as possible.

Much of the activity in this field involves exploiting the underlying math-
ematical or physical problem that gives rise to the linear system in order to
design better iterative methods. The underlying problems are often finite
difference or finite element models of physical systems, usually involving a
differential equation. There are many kinds of physical systems, differential
equations, and finite difference and finite element models, and so many meth-
ods. We cannot hope to cover all or even most interesting situations, so we
will limit ourselves to a model problem, the standard finite difference approx-
imation to Poisson’s equation on a square. Poisson’s equation and its close
relation, Laplace’s equation, arise in many applications, including electromag-
netics, fluid mechanics, heat flow, diffusion, and quantum mechanics, to name
a few. In addition to describing how each method works on Poisson’s equation,
we will indicate how generally applicable it is, and describe common variations.

The rest of this chapter is organized as follows. Section 6.2 describes on-line
help and software for iterative methods discussed in this chapter. Section 6.3
describes the formulation of the model problem in detail. Section 6.4 summa-
rizes and compares the performance of (nearly) all the iterative methods in
this chapter for solving the model problem.

265

266 Applied Numerical Linear Algebra

The next five sections describe methods in roughly increasing order of their
effectiveness on the model problem. Section 6.5 describes the most basic it-
erative methods: Jacobi, Gauss–Seidel, successive overrelaxation, and their
variations. Section 6.6 describes Krylov subspace methods, concentrating on
the conjugate gradient method. Section 6.7 describes the fast Fourier trans-
form and how to use it to solve the model problem. Section 6.8 describes block
cyclic reduction. Finally, section 6.9 discusses multigrid, our fastest algorithm
for the model problem. Multigrid requires only O(1) work per unknown, which
is optimal.

Section 6.10 describes domain decomposition, a family of techniques for
combining the simpler methods described in earlier sections to solve more com-
plicated problems than the model problem.

6.2. On-line Help for Iterative Methods

For Poisson’s equation, there will be a short list of numerical methods that
are clearly superior to all the others we discuss. But for other linear systems
it is not always clear which method is best (which is why we talk about so
many!). To help users select the best method for solving their linear systems
among the many available, on-line help is available at NETLIB/templates.
This directory contains a short book [24] and software for most of the it-
erative methods discussed in this chapter. The book is available in both
PostScript (NETLIB/templates/templates.ps) and Hypertext Markup Lan-
guage (NETLIB/templates/template.html). The software is available in Mat-
lab, Fortran, and C++.

The word template is used to describe this book and the software, because
the implementations separate the details of matrix representations from the
algorithm itself. In particular, the Krylov subspace methods (see section 6.6)
require only the ability to multiply the matrix A by an arbitrary vector z. The
best way to do this depends on how A is represented but does not otherwise
affect the organization of the algorithm. In other words, matrix-vector multi-
plication is a “black-box” called by the template. It is the user’s responsibility
to supply an implementation of this black-box.

An analogous templates project for eigenvalue problems is underway. Other
recent textbooks on iterative methods are [15, 134, 212].

For the most challenging practical problems arising from differential equa-
tions more challenging than our model problem, the linear system Ax = b must
be “preconditioned,” or replaced with the equivalent systems M−1Ax = M−1b,
which is somehow easier to solve. This is discussed at length in sections 6.6.5
and 6.10. Implementations, including parallel ones, of many of these techniques
are available on-line in the package PETSc, or Portable Extensible Toolkit for
Scientific computing, at http://www.mcs.anl.gov/petsc/petsc.html [230].

Iterative Methods for Linear Systems 267

6.3. Poisson’s Equation

6.3.1. Poisson’s Equation in One Dimension

We begin with a one-dimensional version of Poisson’s equation,

−d
2v(x)
dx2 = f(x), 0 < x < 1, (6.1)

where f(x) is a given function and v(x) is the unknown function that we want
to compute. v(x) must also satisfy the boundary conditions23 v(0) = v(1) = 0.
We discretize the problem by trying to compute an approximate solution at
N + 2 evenly spaced points xi between 0 and 1: xi = ih, where h = 1

N+1
and 0 ≤ i ≤ N + 1. We abbreviate vi = v(xi) and fi = f (xi). To convert
differential equation (6.1) into a linear equation for the unknowns v1, . . . , vN ,
we use finite differences to approximate

dv(x)
dx

∣∣∣∣
x=(i−.5)h

≈ vi − vi−1

h
,

dv(x)
dx

∣∣∣∣
x=(i+.5)h

≈ vi+1 − vi
h

.

Subtracting these approximations and dividing by h yield the centered differ-
ence approximation

−d
2v(x)
dx2

∣∣∣∣
x=xi

=
2vi − vi−1 − vi+1

h2 − τi, (6.2)

where τi, the so-called truncation error, can be shown to be O(h2 · ‖ d4v
dx4 ‖∞).

We may now rewrite equation (6.1) at x = xi as

−vi−1 + 2vi − vi+1 = h2fi + h2τi,

where 0 < i < N+1. Since the boundary conditions imply that v0 = vN+1 = 0,
we have N equations in N unknowns v1, . . . , vN :

TN ·


v1
...
...
vN

 ≡


2 −1 0

−1
.
. −1

0 −1 2

 ·

v1
...
...
vN



= h2


f1
...
...
fN

+ h2


τ1
...
...
τN

 (6.3)

23These are called Dirichlet boundary conditions. Other kinds of boundary conditions are
also possible.

268 Applied Numerical Linear Algebra

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6.1. Eigenvalues of T21.

or
TNv = h2f + h2τ̄ . (6.4)

To solve this equation, we will ignore τ̄ , since it is small compared to f , to
get

TN v̂ = h2f. (6.5)

(We bound the error v − v̂ later.)
The coefficient matrix TN plays a central role in all that follows, so we will

examine it in some detail. First, we will compute its eigenvalues and eigen-
vectors. One can easily use trigonometric identities to confirm the following
lemma (see Question 6.1).

Lemma 6.1. The eigenvalues of TN are λj = 2(1−cos πj
N+1). The eigenvectors

are zj , where zj(k) =
√

2
N+1 sin(jkπ/(N + 1)). zj has unit two-norm. Let

Z = [z1, . . . , zn] be the orthogonal matrix whose columns are the eigenvectors,
and Λ = diag(λ1, . . . , λn), so we can write TN = ZΛZT .

Figure 6.1 is a plot of the eigenvalues of TN for N = 21.
The largest eigenvalue is λN = 2(1 − cosπ N

N+1) ≈ 4. The smallest
eigenvalue24 is λ1, where for small i

λi = 2
(

1− cos
iπ

N + 1

)
≈ 2

(
1−

(
1− i2π2

2(N + 1)2

))
=
(

iπ

N + 1

)2

.

24Note that λN is the largest eigenvalue and λ1 is the smallest eigenvalue, the opposite of
the convention of Chapter 5.

Iterative Methods for Linear Systems 269

0 5 10 15 20
−1

0

1
Eigenvector 1

0 5 10 15 20
−1

0

1
Eigenvector 2

0 5 10 15 20
−1

0

1
Eigenvector 3

0 5 10 15 20
−1

0

1
Eigenvector 5

0 5 10 15 20
−1

0

1
Eigenvector 11

0 5 10 15 20
−1

0

1
Eigenvector 21

Fig. 6.2. Eigenvectors of T21.

Thus TN is positive definite with condition number λN/λ1 ≈ 4(N + 1)2/π2 for
large N . The eigenvectors are sinusoids with lowest frequency at j = 1 and
highest at j = N , shown in Figure 6.2 for N = 21.

Now we know enough to bound the error, i.e., the difference between the
solution of TN v̂ = h2f and the true solution v of the differential equation:
Subtract equation (6.5) from equation (6.4) to get v − v̂ = h2T−1

N τ̄ . Taking
norms yields

‖v − v̂‖2 ≤ h2‖T−1
N ‖2‖τ̄‖2 ≈ h

2 (N + 1)2

π2 ‖τ̄‖2 = O(‖τ̄‖2) = O

(
h2
∥∥∥∥d4v

dx4

∥∥∥∥
∞

)
,

so the error v− v̂ goes to zero proportionally to h2, provided that the solution
is smooth enough. (‖ d4v

dx4 ‖∞ is bounded.)
From now on we will not distinguish between v and its approximation v̂,

and so will simplify notation by letting TNv = h2f .
In addition to the solution of the linear system h−2TNv = f approximating

the solution of the differential equation (6.1), it turns out that the eigenvalues
and eigenvectors of h−2TN also approximate the eigenvalues and eigenfunctions
of the differential equation: We say that λ̂i is an eigenvalue and ẑi(x) is an
eigenfunction of the differential equation if

−d
2ẑi(x)
dx2 = λ̂iẑi(x) with ẑi(0) = ẑi(1) = 0 .

270 Applied Numerical Linear Algebra

Let us solve for λ̂i and ẑi(x): It is easy to see that ẑi(x) must equal α sin(
√
λ̂ix)+

β cos(
√
λ̂ix) for some constants α and β. The boundary condition ẑi(0) = 0

implies β = 0, and the boundary condition ẑi(1) = 0 implies that
√
λ̂i is

an integer multiple of π, which we can take to be iπ. Thus λ̂i = i2π2 and
ẑi(x) = α sin(iπx) for any nonzero constant α (which we can set to 1). Thus
the eigenvector zi is precisely equal to the eigenfunction ẑi(x) evaluated at the

sample points xj = jh (when scaled by
√

2
N+1). And when i is small, λ̂i = i2π2

is well approximated by h−2·λi = (N+1)2·2(1−cos iπ
N+1) = i2π2+O((N+1)−2).

Thus we see there is a close correspondence between TN (or h−2TN) and the
second derivative operator − d2

dx2 . This correspondence will be the motivation
for the design and analysis of later algorithms.

It is also possible to write down simple formulas for the Cholesky and LU
factors of TN ; see Question 6.2 for details.

6.3.2. Poisson’s Equation in Two Dimensions

Now we turn to Poisson’s equation in two dimensions:

−∂
2v(x, y)
∂x2 − ∂2v(x, y)

∂y2 = f(x, y) (6.6)

on the unit square {(x, y) : 0 < x, y < 1}, with boundary condition v = 0
on the boundary of the square. We discretize at the grid points in the square
which are at (xi, yj) with xi = ih and yj = jh, with h = 1

N+1 . We abbreviate
vij = v(ih, jh) and fij = f(ih, jh), as shown below for N = 3:

1,3
�
�
�
�

v

xj=0

j=1

j=2

j=3

j=4

i=0 i=1 i=2 i=3 i=4

y

h

h

From equation (6.2), we know that we can approximate

−∂
2v(x, y)
∂x2

∣∣∣∣
x=xi,y=yj

≈ 2vi,j − vi−1,j − vi+1,j

h2 and (6.7)

−∂
2v(x, y)
∂y2

∣∣∣∣
x=xi,y=yj

≈ 2vi,j − vi,j−1 − vi,j+1

h2 . (6.8)

Iterative Methods for Linear Systems 271

Adding these approximations lets us write

−∂
2v(x, y)
∂x2 − ∂2v(x, y)

∂y2

∣∣∣∣
x=xi,y=yj

=
4vij − vi−1,j − vi+1,j − vi,j−1 − vi,j+1

h2 − τij , (6.9)

where τij is again a truncation error bounded by O(h2). The heavy (blue)
cross in the middle of the above figure is called the (5-point) stencil of this
equation, because it connects all (5) values of v present in equation (6.9).
From the boundary conditions we know v0j = vN+1,j = vi,0 = vi,N+1 = 0 so
that equation (6.9) defines a set of n = N 2 linear equations in the n unknowns
vij for 1 ≤ i, j ≤ N :

4vij − vi−1,j − vi+1,j − vi,j−1 − vi,j+1 = h2fij . (6.10)

There are two ways to rewrite the n equations represented by (6.10) as a
single matrix equation, both of which we will use later.

The first way is to think of the unknowns vij as occupying an N -by-N
matrix V with entries vij and the right-hand sides h2fij as similarly occupying
an N -by-N matrix h2F . The trick is to write the matrix with i, j entry 4vij −
vi−1,j − vi+1,j − vi,j−1 − vi,j+1 in a simple way in terms of V and TN : Simply
note that

2vij − vi−1,j − vi+1,j = (TN · V)ij ,
2vij − vi,j−1 − vi,j+1 = (V · TN)ij ,

so adding these two equations yields

(TN · V + V · TN)ij = 4vij − vi−1,j − vi+1,j − vi,j−1 − vi,j+1 = h2fij = (h2F)ij

or
TN · V + V · TN = h2F. (6.11)

This is a linear system of equations for the unknown entries of the matrix V ,
even though it is not written in the usual “Ax = b” format, with the unknowns
forming a vector x. (We will write the “Ax = b” format below.) Still, it
is enough to tell us what the eigenvalues and eigenvectors of the underlying
matrix A are, because “Ax = λx” is the same as “TNV + V TN = λV .” Now
suppose that TNzi = λizi and TNzj = λjzj are any two eigenpairs of TN , and
let V = ziz

T
j . Then

TNV + V TN = (TNzi)zTj + zi(zTj TN)

= (λizi)zTj + zi(zTj λj)

= (λi + λj)zizTj
= (λi + λj)V, (6.12)

272 Applied Numerical Linear Algebra

so V = ziz
T
j is an “eigenvector” and λi + λj is an eigenvalue. Since V has

N2 entries, we expect N2 eigenvalues and eigenvectors, one for each pair of
eigenvalues λi and λj of TN . In particular, the smallest eigenvalue is 2λ1 and
the largest eigenvalue is 2λN , so the condition number is the same as in the
one-dimensional case. We rederive this result below using the “Ax = b” format.
See Figure 6.3 for plots of some eigenvectors, represented as surfaces defined
by the matrix entries of zizTj .

Just as the eigenvalues and eigenvectors of h−2TN were good approxima-
tions to the eigenvalues and eigenfunctions of one-dimensional Poisson’s equa-
tion, the same is true of two-dimensional Poisson’s equation, whose eigenvalues
and eigenfunctions are as follows (see Question 6.3):(

− ∂2

∂x2 −
∂2

∂y2

)
sin(iπx) sin(jπy)

= (i2π2 + j2π2) sin(iπx) sin(jπy). (6.13)

The second way to write the n equations represented by equation (6.10)
as a single matrix equation is to write the unknowns vij in a single long N2-
by-1 vector. This requires us to choose an order for them, and we (somewhat
arbitrarily) choose to number them as shown in Figure 6.4, columnwise from
the upper left to the lower right.

For example, when N = 3 one gets a column vector v ≡ [v1, . . . , v9]T . If
we number f accordingly, we can transform equation (6.10) to get

T3×3 ·



v1
v2
...
...
...
v9


≡



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4





v1
v2
...
...
...
v9



= h2



f1
f2
...
...
...
f9


. (6.14)

The −1’s immediately next to the diagonal correspond to subtracting the
top and bottom neighbors −vi−1,j − vi+1,j . The −1’s farther away away from
the diagonal correspond to subtracting the left and right neighbors −vi,j−1 −
vi,j+1. For general N , we confirm in the next section that we get an N2-by-N2

linear system
TN×N · v = h2f, (6.15)

Iterative Methods for Linear Systems 273

0
5

10

0

5

10
0

0.5

1

Eigenvector 1 , 1

0
5

10

0

5

10
−1

0

1

Eigenvector 1 , 2

0
5

10

0

5

10
−1

0

1

Eigenvector 2 , 1

0
5

10

0

5

10
−1

0

1

Eigenvector 2 , 2

2 4 6 8

2

4

6

8

10
Eigenvector 1 , 1

2 4 6 8

2

4

6

8

10
Eigenvector 1 , 2

2 4 6 8

2

4

6

8

10
Eigenvector 2 , 1

2 4 6 8

2

4

6

8

10
Eigenvector 2 , 2

Fig. 6.3. Three-dimensional and contour plots of first four eigenvectors of the 10-by-10
Poisson equation.

274 Applied Numerical Linear Algebra

2v

N -N+2
2v

N
v

��

�
�
�
�

�
�
�
�

��

��
��
��
����
��
��
��

����

N+1
v

N+2
v

2N
v

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

��������

��
��
��
��
�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

N -N+1

�
�
�
�

��
��
��
��

��

1
v

2
v

N
v

��
��
��
��

����

��
��
��
��

����

��
��
��
����
��
��
��

����
V =

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

Fig. 6.4. Numbering the unknowns in Poisson’s equation.

where TN×N has N N -by-N blocks of the form TN + 2IN on its diagonal and
−IN blocks on its offdiagonals:

TN×N =


TN + 2IN −IN
−IN

.

. −IN
−IN TN + 2IN

 . (6.16)

6.3.3. Expressing Poisson’s Equation with Kronecker Products

Here is a systematic way to derive equations (6.15) and (6.16) as well as to
compute the eigenvalues and eigenvectors of TN×N . The method works equally
well for Poisson’s equation in three or more dimensions.

Definition 6.1. Let X be m-by-n. Then vec(X) is defined to be a column
vector of size m · n made of the columns of X stacked atop one another from
left to right.

Note that N2-by-1 vector v defined in Figure 6.4 can also be written v =
vec(V).

To express TN×N as well as compute its eigenvalues and eigenvectors, we
need to introduce Kronecker products.

Definition 6.2. Let A be an m-by-n matrix and B be a p-by-q matrix. Then
A⊗B, the Kronecker product of A and B, is the (m · p)-by-(n · q) matrix a1,1 · B . . . a1,n ·B

...
...

am,1 ·B . . . am,n · B

 .
The following lemma tells us how to rewrite the Poisson equation in terms

of Kronecker products and the vec(·) operator.

Iterative Methods for Linear Systems 275

Lemma 6.2. Let A be m-by-m, B be n-by-n, and X and C be m-by-n. Then
the following properties hold:

1. vec(AX) = (In ⊗ A) · vec(X).

2. vec(XB) = (BT ⊗ Im) · vec(X).

3. The Poisson equation TNV + V TN = h2F is equivalent to

TN×N · vec(V) ≡ (IN ⊗ TN + TN ⊗ IN) · vec(V) = h2vec(F). (6.17)

Proof. We prove only part 3, leaving the other parts to Question 6.4. We start
with the Poisson equation TNV +V TN = h2F as expressed in equation (6.11),
which is clearly equivalent to

vec(TNV + V TN) = vec(TNV) + vec(V TN) = vec(h2F).

By part 1 of the lemma

vec(TNV) = (IN ⊗ TN)vec(V).

By part 2 of the lemma and the symmetry of TN ,

vec(V TN) = (T TN ⊗ IN)vec(V) = (TN ⊗ IN)vec(V).

Adding the last two expressions completes the proof of part 3. 2

The reader can confirm that the expression

TN×N = IN ⊗ TN + TN ⊗ IN

=


TN

. . .
. . .

TN

+


2IN −IN
−IN

.

. −IN
−IN 2IN


from equation (6.17) agrees with equation (6.16).25

To compute the eigenvalues of matrices defined by Kronecker products, like
TN×N , we need the following lemma, whose proof is also part of Question 6.4.

Lemma 6.3. The following facts about Kronecker products hold:

1. Assume that the products A · C and B · D are well defined. Then (A ⊗
B) · (C ⊗D) = (A · C)⊗ (B ·D).

25We can use this formula to compute TN×N in two lines of Matlab:

TN = 2*eye(N) - diag(ones(N-1,1),1) - diag(ones(N-1,1),-1);
TNxN = kron(eye(N),TN) + kron(TN,eye(N));

276 Applied Numerical Linear Algebra

2. If A and B are invertible, then (A⊗B)−1 = A−1 ⊗ B−1.

3. (A⊗B)T = AT ⊗BT .

Proposition 6.1. Let TN = ZΛZT be the eigendecomposition of TN , with
Z = [z1, . . . , zN] the orthogonal matrix whose columns are eigenvectors, and
Λ = diag(λ1, . . . , λN). Then the eigendecomposition of TN×N = I⊗TN+TN⊗I
is

I ⊗ TN + TN ⊗ I = (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T . (6.18)

I⊗Λ + Λ⊗ I is a diagonal matrix whose (iN + j)th diagonal entry, the (i, j)th
eigenvalue of TN×N , is λi,j = λi + λj. Z ⊗ Z is an orthogonal matrix whose
(iN + j)th column, the corresponding eigenvector, is zi ⊗ zj .

Proof. From parts 1 and 3 of Lemma 6.3, it is easy to verify that Z ⊗ Z is
orthogonal, since (Z⊗Z)(Z⊗Z)T = (Z⊗Z)(ZT ⊗ZT) = (Z ·ZT)⊗(Z ·ZT) =
I ⊗ I = I. We can now verify equation (6.18):

(Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T

= (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (ZT ⊗ ZT)
by part 3 of Lemma 6.3

= (Z · I · ZT)⊗ (Z · Λ · ZT) + (Z · Λ · ZT)⊗ (Z · I · ZT)
by part 1 of Lemma 6.3

= (I)⊗ (TN) + (TN)⊗ (I)
= TN×N .

Also, it is easy to verify that I⊗Λ+Λ⊗I is diagonal, with diagonal entry (iN+
j) given by λj + λi, so that equation (6.18) really is the eigendecomposition
of TN×N . Finally, from the definition of Kronecker product, one can see that
column iN + j of Z ⊗ Z is zi ⊗ zj . 2

The reader can confirm that the eigenvector zi ⊗ zj = vec(zjzTi), thus
matching the expression for an eigenvector in equation (6.12).

For a generalization of Proposition 6.1 to the matrix A⊗I+BT ⊗ I , which
arises when solving the Sylvester equation AX − XB = C, see Question 6.5
(and Question 4.6).

Similarly, Poisson’s equation in three dimensions leads to

TN×N×N ≡ TN ⊗ IN ⊗ IN + IN ⊗ TN ⊗ IN + IN ⊗ IN ⊗ TN ,

with eigenvalues all possible triple sums of eigenvalues of TN , and eigenvector
matrix Z ⊗ Z ⊗ Z. Poisson’s equation in higher dimensions is represented
analogously.

Iterative Methods for Linear Systems 277

Method Serial Space Direct or Section
Time Iterative

Dense Cholesky n3 n2 D 2.7.1
Explicit inverse n2 n2 D
Band Cholesky n2 n3/2 D 2.7.3
Jacobi n2 n I 6.5
Gauss–Seidel n2 n I 6.5
Sparse Cholesky n3/2 n · log n D 2.7.4
Conjugate gradients n3/2 n I 6.6
Successive overrelaxation n3/2 n I 6.5
SSOR with Chebyshev accel. n5/4 n I 6.5
Fast Fourier transform n · log n n D 6.7
Block cyclic reduction n · log n n D 6.8
Multigrid n n I 6.9
Lower bound n n

Table 6.1. Order of complexity of solving Poisson’s equation on an N-by-N grid
(n = N2).

6.4. Summary of Methods for Solving Poisson’s Equa-
tion

Table 6.1 lists the costs of various direct and iterative methods for solving
the model problem on an N -by-N grid. The variable n = N2, the number
of unknowns. Since direct methods provide the exact answer (in the absence
of roundoff), whereas iterative methods provide only approximate answers, we
must be careful when comparing their costs, since a low-accuracy answer can be
computed more cheaply by an iterative method than a high-accuracy answer.
Therefore, we compare costs, assuming that the iterative methods iterate often
enough to make the error at most some fixed small value26 (say, 10−6).

The second and third columns of Table 6.1 give the number of arithmetic
operations (or time) and space required on a serial machine. Column 4 indi-
cates whether the method is direct (D) or iterative (I). All entries are meant in
the O(·) sense; the constants depend on implementation details and the stop-
ping criterion for the iterative methods (say, 10−6). For example, the entry for
Cholesky also applies to Gaussian elimination, since this changes the constant
only by a factor of two. The last column indicates where the algorithm is
discussed in the text.

The methods are listed in increasing order of speed, from slowest (dense

26Alternatively, we could iterate until the error is O(h2) = O((N + 1)−2), the size of the
truncation error. One can show that this would increase the costs of the iterative methods
in Table 6.1 by a factor of O(log n).

278 Applied Numerical Linear Algebra

Cholesky) to fastest (multigrid), ending with a lower bound applying to any
method. The lower bound is n because at least one operation is required per
solution component, since otherwise they could not all be different and also
depend on the input. The methods are also, roughly speaking, in order of de-
creasing generality, with dense Cholesky applicable to any symmetric positive
definite matrix and later algorithms applicable (or at least provably conver-
gent) only for limited classes of matrices. In later sections we will describe the
applicability of various methods in more detail.

The “explicit inverse” algorithm refers to precomputing the explicit inverse
of TN×N , and computing v = T−1

N×Nf by a single matrix-vector multiplication
(and not counting the flops to precompute T−1

N×N). Along with dense Cholesky,
it uses n2 space, vastly more than the other methods. It is not a good method.
Band Cholesky was discussed in section 2.7.3; this is just Cholesky taking
advantage of the fact that there are no entries to compute or store outside a
band of 2N + 1 diagonals.

Jacobi and Gauss–Seidel are classical iterative methods and not particu-
larly fast, but they form the basis for other faster methods: successive overre-
laxation, symmetric successive overrelaxation, and multigrid, our fastest algo-
rithm. So we will study them in some detail in section 6.5.

Sparse Cholesky refers to the algorithm discussed in section 2.7.4: it is
an implementation of Cholesky that avoids storing or operating on the zero
entries of TN×N or its Cholesky factor. Furthermore, we are assuming the
rows and columns of TN×N have been “optimally ordered” to minimize work
and storage (using nested dissection [110, 111]). While sparse Cholesky is
reasonably fast on Poisson’s equation in two dimensions, it it significantly
worse in three dimensions (using O(N6) = O(n2) time and O(N4) = O(n4/3)
space), because there is more “fill-in” of zero entries during the algorithm.

Conjugate gradients, while not particularly fast on our model problem,
are a representative of a much larger class of methods, called Krylov subspace
methods, which are very widely applicable both for linear system solving and
finding eigenvalues of sparse matrices. We will discuss these methods in more
detail in section 6.6.

The fastest methods are block cyclic reduction, the fast Fourier transform
(FFT), and multigrid. In particular, multigrid does only O(1) operations per
solution component, which is asymptotically optimal.

A final warning is that this table does not give a complete picture, since
the constants are missing. For a particular size problem on a particular ma-
chine, one cannot immediately deduce which method is fastest. Still, it is clear
that iterative methods such as Jacobi, Gauss–Seidel, conjugate gradients, and
successive overrelaxation are inferior to the FFT, block cyclic reduction, and
multigrid for large enough n. But they remain of interest because they are
building blocks for some of the faster methods, and because they apply to
larger classes of problems than the faster methods.

All of these algorithms can be implemented in parallel; see the lectures

Iterative Methods for Linear Systems 279

on PARALLEL HOMEPAGE for details. It is interesting that, depending on
the parallel machine, multigrid may no longer be fastest. This is because on
a parallel machine the time required for separate processors to communicate
data to one another may be as costly as the floating point operations, and
other algorithms may communicate less than multigrid.

6.5. Basic Iterative Methods

In this section we will talk about the most basic iterative methods:

Jacobi’s
Gauss–Seidel,
successive overrelaxation (SOR(ω)),
Chebyshev acceleration with symmetric successive overrelaxation
(SSOR(ω)).

These methods are also discussed and their implementations are provided at
NETLIB/ templates.

Given x0, these methods generate a sequence xm converging to the solution
A−1b of Ax = b, where xm+1 is cheap to compute from xm.

Definition 6.3. A splitting of A is a decomposition A = M − K, with M
nonsingular.

A splitting yields an iterative method as follows: Ax = Mx − Kx = b
implies Mx = Kx + b or x = M−1Kx + M−1b ≡ Rx + c. So we can take
xm+1 = Rxm + c as our iterative method. Let us see when it converges.

Lemma 6.4. Let ‖·‖ be any operator norm (‖R‖ ≡ maxx=0
‖Rx‖
‖x‖). If ‖R‖ < 1,

then xm+1 = Rxm + c converges for any x0.

Proof. Subtract x = Rx+c from xm+1 = Rxm+c to get xm+1−x = R(xm−x).
Thus ‖xm+1 − x‖ ≤ ‖R‖ · ‖xm − x‖ ≤ ‖R‖m+1 · ‖x0 − x‖, which converges to
0 since ‖R‖ < 1. 2

Our ultimate convergence criterion will depend on the following property
of R.

Definition 6.4. The spectral radius of R is ρ(R) ≡ max |λ|, where the max-
imum is taken over all eigenvalues λ of R.

Lemma 6.5. For all operator norms ρ(R) ≤ ‖R‖. For all R and for all ε > 0
there is an operator norm ‖ · ‖? such that ‖R‖? ≤ ρ(R) + ε. ‖ · ‖? depends on
both R and ε.

280 Applied Numerical Linear Algebra

Proof. To show ρ(R) ≤ ‖R‖ for any operator norm, let x be an eigenvector for
λ, where ρ(R) = |λ| and so ‖R‖ = maxy=0

‖Ry‖
‖y‖ ≥

‖Rx‖
‖x‖ = ‖λx‖

‖x‖ = |λ|.
To construct an operator norm ‖·‖? such that ‖R‖? ≤ ρ(R)+ε, let S−1RS =

J be in Jordan form. Let Dε = diag(1, ε, ε2, . . . , εn−1). Then

(SDε)−1R(SDε) = Dε
−1JDε

=



λ1 ε
.

. . . ε
λ1

λ2 ε
.

. . . ε
λ2

. . .



,

i.e., a “Jordan form” with ε’s above the diagonal. Now use the vector norm
‖x‖? ≡ ‖(SDε)−1x‖∞ to generate the operator norm

‖R‖? ≡ max
x=0

‖Rx‖?
‖x‖?

= max
x=0

‖(SDε)−1Rx‖∞
‖(SDε)−1x‖∞

= max
y=0

‖(SDε)−1R(SDε)y‖∞
‖y‖∞

= ‖(SDε)−1R(SDε)‖∞
= max

i
|λi|+ ε

= ρ(R) + ε. 2

Theorem 6.1. The iteration xm+1 = Rxm + c converges to the solution of
Ax = b for all starting vectors x0 and for all b if and only if ρ(R) < 1.

Proof. If ρ(R) ≥ 1, choose x0 − x to be an eigenvector of R with eigenvalue
λ where |λ| = ρ(R). Then

(xm+1 − x) = R(xm − x) = · · · = Rm+1(x0 − x) = λm+1(x0 − x)

will not approach 0. If ρ(R) < 1, use Lemma 6.5 to choose an operator norm so
‖R‖? < 1 and then apply Lemma 6.4 to conclude that the method converges.
2

Definition 6.5. The rate of convergence of xm+1 = Rxm + c is r(R) ≡
− log10 ρ(R).

Iterative Methods for Linear Systems 281

r(R) is the increase in the number of correct decimal places in the solution
per iteration, since log10 ‖xm − x‖? − log10 ‖xm+1 − x‖? ≥ r(R) + O(ε). The
smaller is ρ(R), the higher is the rate of convergence, i.e., the greater is the
number of correct decimal places computed per iteration.

Our goal is now to choose a splitting A = M −K so that both

(1) Rx = M−1Kx and c = M−1b are easy to evaluate,

(2) ρ(R) is small.

We will need to balance these conflicting goals. For example, choosing M = I
is good for goal (1) but may not make ρ(R) < 1. On the other hand, choosing
M = A and K = 0 is good for goal (2) but probably bad for goal (1).

The splittings for the methods discussed in this section all share the fol-
lowing notation. When A has no zeros on its diagonal, we write

A = D − L̃− Ũ = D(I − L − U), (6.19)

where D is the diagonal of A, −L̃ is the strictly lower triangular part of A,
DL = L̃, −Ũ is the strictly upper triangular part of A, and DU = Ũ .

6.5.1. Jacobi’s Method

Jacobi’s method can be described as repeatedly looping through the equations,
changing variable j so that equation j is satisfied exactly. Using the notation of
equation (6.19), the splitting for Jacobi’s method is A = D−(L̃+Ũ); we denote
RJ ≡ D−1(L̃+Ũ) = L+U and cJ ≡ D−1b, so we can write one step of Jacobi’s
method as xm+1 = RJxm+cJ . To see that this formula corresponds to our first
description of Jacobi’s method, note that it implies Dxm+1 = (L̃+ Ũ)xm + b,
ajjxm+1,j = −

∑
k=j ajkxm,k + bj , or ajjxm+1,j +

∑
k=j ajkxm,k = bj .

Algorithm 6.1. One step of Jacobi’s method:

for j = 1 to n
xm+1,j = 1

ajj
(bj −

∑
k=j ajkxm,k)

end for

In the special case of the model problem, the implementation of Jacobi’s
algorithm simplifies as follows. Working directly from equation (6.10) and
letting vm,i,j denote the mth value of the solution at grid point i, j, Jacobi’s
method becomes the following.

Algorithm 6.2. One step of Jacobi’s method for two-dimensional Poisson’s
equation:

for i = 1 to N
for j = 1 to N

vm+1,i,j = (vm,i−1,j + vm,i+1,j + vm,i,j−1 + vm,i,j+1 + h2fij)/4

282 Applied Numerical Linear Algebra

end for
end for

In other words, at each step the new value of vij is obtained by “averaging”
its neighbors with h2fij . Note that all new values vm+1,i,j may be computed
independently of one another. Indeed, Algorithm 6.2 can be implemented in
one line of Matlab if the vm+1,i,j are stored in a square array V̂ that includes
an extra first and last row of zeros and first and last column of zeros (see
Question 6.6).

6.5.2. Gauss–Seidel Method

The motivation for this method is that at the jth step of the loop for Jacobi’s
method, we have improved values of the first j−1 components of the solution,
so we should use them in the sum.

Algorithm 6.3. One step of the Gauss–Seidel method:

for j = 1 to n

xm+1,j = 1
ajj

bj −
j−1∑
k=1

ajkxm+1,k︸ ︷︷ ︸
updated x ’s

−
n∑

k=j+1

ajkxm,k︸ ︷︷ ︸
older x’s


end for

For the purpose of later analysis, we want to write this algorithm in the form
xm+1 = RGSxm + cGS . To this end, note that it can first be rewritten as

j∑
k=1

ajkxm+1,k = −
n∑

k=j+1

ajkxm,k + bj . (6.20)

Then using the notation of equation (6.19), we can rewrite equation (6.20) as
(D − L̃)xm+1 = Ũxm + b or

xm+1 = (D − L̃)−1Ũxm + (D − L̃)−1b

= (I − L)−1Uxm + (I − L)−1D−1b

≡ RGSxm + cGS .

As with Jacobi’s method, we consider how to implement the Gauss–Seidel
method for our model problem. In principle it is quite similar, except that we
have to keep track of which variables are new (numbered m + 1) and which
are old (numbered m). But depending on the order in which we loop through
the grid points i, j, we will get different (and valid) implementations of the

Iterative Methods for Linear Systems 283

Gauss–Seidel method. This is unlike Jacobi’s method, in which the order in
which we update the variables is irrelevant. For example, if we update vm,1,1
first (before any other vm,i,j), then all its neighboring values are necessarily
old. But if we update vm,1,1 last, then all its neighboring values are necessarily
new, so we get a different value for vm,1,1. Indeed, there are as many possible
implementations of the Gauss–Seidel method as there are ways to order N2

variables (namely, N2!). But of all these orderings, only two are of interest.
The first is the ordering shown in Figure 6.4; this is called the natural ordering.

The second ordering is called red-black ordering. It is important because
our best convergence results in sections 6.5.4 and 6.5.5 depend on it. To ex-
plain red-black ordering, consider the chessboard-like coloring of the grid of

unknowns below; the B nodes correspond to the black squares on a chess-

board, and the R nodes correspond to the red squares.

R R R

R R

R R R

R R

R R R

B B

B B B

B B

B B B

B B

The red-black ordering is to order the red nodes before the black nodes.
Note that red nodes are adjacent to only black nodes. So if we update all the
red nodes first, they will use only old data from the black nodes. Then when
we update the black nodes, which are only adjacent to red nodes, they will use
only new data from the red nodes. Thus the algorithm becomes the following.

Algorithm 6.4. One step of the Gauss–Seidel method on two-dimensional
Poisson’s equation with red-black ordering:

for all nodes i, j that are red (R)
vm+1,i,j = (vm,i−1,j + vm,i+1,j + vm,i,j−1 + vm,i,j+1 + h2fij)/4

end for

for all nodes i, j that are black (B)
vm+1,i,j = (vm+1,i−1,j + vm+1,i+1,j + vm+1,i,j−1 + vm+1,i,j+1 + h2fij)/4

end for

6.5.3. Successive Overrelaxation

We refer to this method as SOR(ω), where ω is the relaxation parameter.
The motivation is to improve the Gauss–Seidel loop by taking an appropriate

284 Applied Numerical Linear Algebra

weighted average of the xm+1,j and xm,j :

SOR’s xm+1,j = (1− ω)xm,j + ωxm+1,j ,

yielding the following algorithm.

Algorithm 6.5. SOR:

for j = 1 to n
xm+1,j = (1 − ω)xm,j + ω

ajj

[
bj −

∑j−1
k=1 ajkxm+1,k −

∑n
k=j+1 ajkxm,k

]
end for

We may rearrange this to get, for j = 1 to n,

ajjxm+1,j + ω

j−1∑
k=1

ajkxm+1,k = (1 − ω)ajjxm,j − ω
n∑

k=j+1

ajkxm,k + ωbj

or, again using the notation of equation (6.19),

(D − ωL̃)xm+1 = ((1− ω)D + ωŨ)xm + ωb

or

xm+1 = (D − ωL̃)−1((1− ω)D + ωŨ)xm + ω(D − ωL̃)−1b

= (I − ωL)−1((1 − ω)I + ωU)xm + ω(I − ωL)−1D−1b

≡ RSOR(ω)xm + cSOR(ω). (6.21)

We distinguish three cases, depending on the values of ω: ω = 1 is equiv-
alent to the Gauss–Seidel method, ω < 1 is called underrelaxation, and ω > 1
is called overrelaxation. A somewhat superficial motivation for overrelaxation
is that if the direction from xm to xm+1 is a good direction in which to move
the solution, then moving ω > 1 times as far in that direction is better.

In the next two sections, we will show how to pick the optimal ω for the
model problem. This optimality depends on using red-black ordering.

Algorithm 6.6. One step of SOR(ω) on two-dimensional Poisson’s equation
with red-black ordering:

for all nodes i, j that are red (R)
vm+1,i,j = (1− ω)vm,i,j+

ω(vm,i−1,j + vm,i+1,j + vm,i,j−1 + vm,i,j+1 + h2fij)/4
end for

for all nodes i, j that are black (B)
vm+1,i,j = (1− ω)vm,i,j+

ω(vm+1,i−1,j + vm+1,i+1,j + vm+1,i,j−1 + vm+1,i,j+1 + h2fij)/4
end for

Iterative Methods for Linear Systems 285

6.5.4. Convergence of Jacobi’s, Gauss–Seidel, and
SOR(ω) Methods on the Model Problem

It is easy to compute how fast Jacobi’s method converges on the model problem,
since the corresponding splitting is TN×N = 4I − (4I − TN×N), and so RJ =
(4I)−1(4I − TN×N) = I − TN×N/4. Thus the eigenvalues of RJ are 1− λi,j/4,
where the λi,j are the eigenvalues of TN×N :

λi,j = λi + λj = 4− 2
(

cos
πi

N + 1
+ cos

πj

N + 1

)
.

ρ(RJ) is the largest of |1− λi,j/4|, namely,

ρ(RJ) = |1− λ1,1/4| = |1− λN,N/4| = cos
π

N + 1
≈ 1− π2

2(N + 1)2 .

Note that as N grows and T becomes more ill-conditioned, the spectral
radius ρ(RJ) approaches 1. Since the error is multiplied by the spectral radius
at each step, convergence slows down. To estimate the speed of convergence
more precisely, let us compute the number m of Jacobi iterations required to
decrease the error by e−1 = exp(−1). Then m must satisfy (ρ(RJ))m = e−1,
(1− π2

2(N+1)2)m = e−1, or m ≈ 2(N+1)2

π2 = O(N2) = O(n). Thus the number of
iterations is proportional to the number of unknowns. Since one step of Jacobi
costs O(1) to update each solution component or O(n) to update all of them,
it costs O(n2) to decrease the error by e−1 (or by any constant factor less than
1). This explains the entry for Jacobi’s method in Table 6.1.

This is a common phenomenon: the more ill-conditioned the original prob-
lem, the more slowly most iterative methods converge. There are important
exceptions, such as multigrid and domain decomposition, which we discuss
later.

In the next section we will show, provided that the variables in Poisson’s
equation are updated in red-black order (see Algorithm 6.4 and Corollary 6.1),
that ρ(RGS) = ρ(RJ)2 = cos2 π

N+1 . In other words, one Gauss–Seidel
step decreases the error as much as two Jacobi steps. This is a general phe-
nomenon for matrices arising from approximating differential equations with
certain finite difference approximations. This also explains the entry for the
Gauss–Seidel method in Table 6.1; since it is only twice as fast as Jacobi, it
still has the same complexity in the O(·) sense.

For the same red-black update order (see Algorithm 6.6 and Theorem 6.7),
we will also show that for the relaxation parameter 1 < ω = 2/(1+sin π

N+1) < 2

ρ(RSOR(ω)) =
cos2 π

N+1

(1 + sin π
N+1)2 ≈ 1− 2π

N + 1
for large N .

This is in contrast to ρ(R) = 1−O(1
N2) for RJ and RGS . This is the optimal

value for ω; i.e., it minimizes RSOR(ω). With this choice of ω, SOR(ω) is

286 Applied Numerical Linear Algebra

approximately N times faster than Jacobi’s or the Gauss–Seidel method, since
if SOR(ω) takes j steps to decrease the error as much as k steps of Jacobi’s or
the Gauss–Seidel method, then (1− 1

N2)k ≈ (1− 1
N)j , implying 1− k

N2 ≈ 1− j
N

or k ≈ j ·N . This lowers the complexity of SOR(ω) from O(n2) to O(n3/2), as
shown in Table 6.1.

In the next section we will show generally for certain finite difference ma-
trices how to choose ω to minimize ρ(RSOR(ω)).

6.5.5. Detailed Convergence Criteria for Jacobi’s,
Gauss–Seidel, and SOR(ω) Methods

We will give a sequence of conditions that guarantee the convergence of these
methods. The first criterion is simple to apply but is not always applicable, in
particular not to the model problem. Then we give several more complicated
criteria, which place stronger conditions on the matrix A but in return give
more information about convergence. These more complicated criteria are
tailored to fit the matrices arising from discretizing certain kinds of partial
differential equations such as Poisson’s equation.

Here is a summary of the results of this section:

1. If A is strictly row diagonally dominant (Definition 6.6), then Jacobi’s
and the Gauss–Seidel methods both converge, and the Gauss–Seidel
method is faster (Theorem 6.2). Strict row diagonal dominance means
that each diagonal entry of A is larger in magnitude than the sum of the
magnitudes of the other entries in its row.

2. Since our model problem is not strictly row diagonally dominant, the
last result does not apply. So we ask for a weaker form of diagonal dom-
inance (Definition 6.11) but impose a condition called irreducibility on
the pattern of nonzero entries of A (Definition 6.7) to prove convergence
of Jacobi’s and the Gauss–Seidel methods. The Gauss–Seidel method
again converges faster than Jacobi’s method (Theorem 6.3). This result
applies to the model problem.

3. Turning to SOR(ω), we show that 0 < ω < 2 is necessary for convergence
(Theorem 6.4). If A is also positive definite (like the model problem),
0 < ω < 2 is also sufficient for convergence (Theorem 6.5).

4. To quantitatively compare Jacobi’s, Gauss–Seidel, and SOR(ω) methods,
we make one more assumption about the pattern of nonzero entries of A.
This property is called Property A (Definition 6.12) and is equivalent to
saying that the graph of the matrix is bipartite. Property A essentially
says that we can update the variables using red-black ordering. Given
Property A there is a simple algebraic formula relating the eigenvalues
of RJ , RGS, and RSOR(ω) (Theorem 6.6), which lets us compare their

Iterative Methods for Linear Systems 287

rates of convergence. This formula also lets us compute the optimal ω
that makes SOR(ω) converge as fast as possible (Theorem 6.7).

Definition 6.6. A is strictly row diagonally dominant if |aii| >
∑

j=i |aij |
for all i.

Theorem 6.2. If A is strictly row diagonally dominant, Jacobi’s and the
Gauss–Seidel methods both converge. In fact ‖RGS‖∞ ≤ ‖RJ‖∞ < 1.

The inequality ‖RGS‖∞ ≤ ‖RJ‖∞ implies that one step of the worst prob-
lem for the Gauss–Seidel method converges at least as fast as one step of
the worst problem for Jacobi’s method. It does not guarantee that for any
particular Ax = b, the Gauss–Seidel method will be faster than Jacobi’s
method; Jacobi’s method could “accidentally” have a smaller error at some
step. Proof. Again using the notation of equation (6.19), we write RJ = L+U

and RGS = (I − L)−1U . We want to prove

‖RGS‖∞ = ‖|RGS |e‖∞ ≤ ‖|RJ |e‖∞ = ‖RJ‖∞, (6.22)

where e = [1, . . . , 1]T is the vector of all ones. Inequality (6.22) will be true if
can prove the stronger componentwise inequality

|(I − L)−1U | · e = |RGS | · e ≤ |RJ | · e = (|L|+ |U |) · e. (6.23)

Since

|(I − L)−1U | · e ≤ |(I − L)−1| · |U | · e by the triangle inequality

=

∣∣∣∣∣
n−1∑
i=0

Li

∣∣∣∣∣ · |U | · e since Ln = 0

≤
n−1∑
i=0

|L|i · |U | · e by the triangle inequality

= (I − |L|)−1 · |U | · e since |L|n = 0,

inequality (6.23) will be true if can prove the even stronger componentwise
inequality

(I − |L|)−1 · |U | · e ≤ (|L|+ |U |) · e. (6.24)

Since all entries of (I − |L|)−1 =
∑n−1

i=0 |L|i are nonnegative, inequality (6.24)
will be true if we can prove

|U | · e ≤ (I − |L|) · (|L|+ |U |) · e = (|L|+ |U | − |L|2 − |L| · |U |) · e

or
0 ≤ (|L| − |L|2 − |L| · |U |) · e = |L| · (I − |L| − |U |) · e. (6.25)

288 Applied Numerical Linear Algebra

Since all entries of |L| are nonnegative, inequality (6.25) will be true if we can
prove

0 ≤ (I − |L| − |U |) · e or |RJ | · e = (|L|+ |U |)e ≤ e. (6.26)

Finally, inequality (6.26) is true because by assumption ‖|RJ |·e‖∞ = ‖RJ‖∞ =
ρ < 1. 2

An analogous result holds when A is strictly column diagonally dominant
(i.e., AT is strictly row diagonally dominant).

The reader may easily confirm that this simple criterion does not apply to
the model problem, so we need to weaken the assumption of strict diagonal
dominance. Doing so requires looking at the graph properties of a matrix.

Definition 6.7. A is an irreducible matrix if there is no permutation matrix
P such that

PAP T =
[
A11 A12

0 A22

]
.

We connect this definition to graph theory as follows.

Definition 6.8. A directed graph is a finite collection of nodes connected by
a finite collection of directed edges, i.e., arrows from one node to another. A
path in a directed graph is a sequence of nodes n1, . . . , nm with an edge from
each ni to ni+1. A self edge is an edge from a node to itself.

Definition 6.9. The directed graph of A, G(A), is a graph with nodes 1, 2, . . . , n
and an edge from node i to node j if and only if aij = 0.

Example 6.1. The matrix

A =


2 −1
−1 2 −1

−1 2 −1
−1 2


has the directed graph

1 2 3 4

¦

Definition 6.10. A directed graph is called strongly connected if there exists
a path from every node i to every node j. A strongly connected component of
a directed graph is a subgraph (a subset of the nodes with all edges connecting
them) which is strongly connected and cannot be made larger yet still be strongly
connected.

Iterative Methods for Linear Systems 289

Example 6.2. The graph in Example 6.1 is strongly connected. ¦

Example 6.3. Let

A =



1 1
1

1
1

1
1

 ,

which has the directed graph
1

2

3

4

5

6

This graph is not strongly connected, since there is no path to node 1 from
anywhere else. Nodes 4, 5, and 6 form a strongly connected component, since
there is a path from any one of them to any other. ¦

Example 6.4. The graph of the model problem is strongly connected. The
graph is essentially

except that each edge in the grid represents two edges (one in each direction),
and the self edges are not shown. ¦

Lemma 6.6. A is irreducible if and only if G(A) is strongly connected.

Proof. If A = [A11 A12

0 A22
] is reducible, then there is clearly no way to get from

the nodes corresponding to A22 back to the ones corresponding to A11; i.e.,
G(A) is not strongly connected. Similarly, if G(A) is not strongly connected,
renumber the rows (and columns) so that all the nodes in a particular strongly
connected component come first; then the matrix PAP T will be block upper
triangular. 2

Example 6.5. The matrix A in Example 6.3 is reducible.

Definition 6.11. A is weakly row diagonally dominant if for all i, |aii| ≥∑
k=i |aik| with strict inequality at least once.

Theorem 6.3. If A is irreducible and weakly row diagonally dominant, then
both Jacobi’s and Gauss–Seidel methods converge, and ρ(RGS) < ρ(RJ) < 1.

For a proof of this theorem, see [247].

290 Applied Numerical Linear Algebra

Example 6.6. The model problem is weakly diagonally dominant and irre-
ducible but not strongly diagonally dominant. (The diagonal is 4, and the
offdiagonal sums are either 2, 3, or 4.) So Jacobi’s and Gauss–Seidel methods
converge on the model problem. ¦

Despite the above results showing that under certain conditions the Gauss–
Seidel method is faster than Jacobi’s method, no such general result holds.
This is because there are nonsymmetric matrices for which Jacobi’s method
converges and the Gauss–Seidel method diverges, as well as matrices for which
the Gauss–Seidel method converges and Jacobi’s method diverges [247].

Now we consider the convergence of SOR(ω) [247]. Recall its definition:

RSOR(ω) = (I − ωL)−1((1 − ω)I + ωU).

Theorem 6.4. ρ(RSOR(ω)) ≥ |ω − 1|. Therefore 0 < ω < 2 is required for
convergence.

Proof. Write the characteristic polynomial of RSOR(ω) as ϕ(λ) = det(λI −
RSOR(ω)) = det((I − ωL)(λI −RSOR(ω))) = det((λ+ ω − 1)I − ωλL− ωU) so
that

ϕ(0) = ±
n∏
i=1

λi(RSOR(ω)) = ± det((ω − 1)I) = ±(ω − 1)n,

implying maxi
∣∣λi(RSOR(ω))

∣∣ ≥ |ω − 1|. 2

Theorem 6.5. If A is symmetric positive definite, then ρ(RSOR(ω)) < 1 for
all 0 < ω < 2, so SOR(ω) converges for all 0 < ω < 2. Taking ω = 1, we see
that the Gauss–Seidel method also converges.

Proof. There are two steps. We abbreviate RSOR(ω) = R. Using the notation
of equation (6.19), let M = ω−1(D − ωL̃). Then we

(1) define Q = A−1(2M −A) and show <λi(Q) > 0 for all i,

(2) show that R = (Q− I)(Q+ I)−1, implying |λi(R)| < 1 for all i.

For (1), note that Qx = λx implies (2M − A)x = λAx or x∗(2M − A)x =
λx∗Ax. Add this last equation to its conjugate transpose to get x∗(M +M∗−
A)x = (<λ)(x∗Ax). So <λ = x∗(M+M∗−A)x/x∗Ax = x∗(2

ω −1)Dx/x∗Ax >
0 since A and (2

ω − 1)D are positive definite.
To prove (2), note that (Q − I)(Q + I)−1 = (2A−1M − 2I)(2A−1M)−1 =

I −M−1A = R, so by the spectral mapping theorem (Question 4.5)

|λ(R)| =
∣∣∣∣λ(Q)− 1
λ(Q) + 1

∣∣∣∣ =
∣∣∣∣(<λ(Q)− 1)2 + (=λ(Q))2

(<λ(Q) + 1)2 + (=λ(Q))2

∣∣∣∣
1
2

< 1. 2

Together, Theorems 6.4 and 6.5 imply that if A is symmetric positive def-
inite, then SOR(ω) converges if and only if 0 < ω < 2.

Iterative Methods for Linear Systems 291

Example 6.7. The model problem is symmetric positive definite, so SOR(ω)
converges for 0 < ω < 2. ¦

For the final comparison of the costs of Jacobi’s, Gauss–Seidel, and SOR(ω)
methods on the model problem we impose another graph theoretic condition
on A that often arises from certain discretized partial differential equations,
such as Poisson’s equation. This condition will let us compute ρ(RGS) and
ρ(RSOR(ω)) explicitly in terms of ρ(RJ).

Definition 6.12. A matrix T has property A if there exists a permutation P
such that

PTP T =
[
T11 T12

T21 T22

]
,

where T11 and T22 are diagonal. In other words in the graph G(A) the nodes
divide into two sets S1 ∪ S2, where there are no edges between two nodes both
in S1 or both in S2 (ignoring self edges); such a graph is called bipartite.

Example 6.8. Red-black ordering for the model problem. This was introduced
in section 6.5.2, using the following chessboard-like depiction of the graph of

the model problem: The black B nodes are in S1, and the red R nodes are
in S2.

R R R

R R

R R R

R R

R R R

B B

B B B

B B

B B B

B B

As described in section 6.5.2, each equation in the model problem relates
the value at a grid point to the values at its left, right, top, and bottom
neighbors, which are colored differently from the grid point in the middle. In

other words, there is no direct connection from an R node to an R node

or from a B node to a B node. So if we number the red nodes before the
black nodes, the matrix will be in the form demanded by Definition 6.12. For

292 Applied Numerical Linear Algebra

example, in the case of a 3-by-3 grid, we get the following:

P



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


P T

=



4 −1 −1
4 −1 −1

4 −1 −1 −1 −1
4 −1 −1

4 −1 −1
−1 −1 −1 4
−1 −1 −1 4

−1 −1 −1 4
−1 −1 −1 4


. ¦

Now suppose that T has Property A, so we can write (where Di = Tii is
diagonal)

PTP T =
[
D1 T12
T21 D2

]
=
[
D1

D2

]
−
[

0 0
−T21 0

]
−
[

0 −T12
0 0

]
= D − L̃− Ũ .

Definition 6.13. Let RJ (α) = αL + 1
αU . Then RJ (1) = RJ is the iteration

matrix for Jacobi’s method.

Proposition 6.2. The eigenvalues of RJ (α) are independent of α.

Proof.

RJ(α) = −
[

0 1
αD
−1
1 T12

αD−1
2 T21 0

]
has the same eigenvalues as the similar matrix[

I
αI

]−1

RJ (α)
[
I

αI

]
= −

[
0 D−1

1 T12

D−1
2 T21 0

]
= RJ (1). 2

Definition 6.14. Let T be any matrix, with T = D − L̃ − Ũ and RJ (α) =
αD−1L̃ + 1

αD
−1Ũ . If RJ (α)’s eigenvalues are independent of α, then T is

called consistently ordered.

Iterative Methods for Linear Systems 293

It is an easy fact that if T has Property A, such as the model problem,
then PTP T is consistently ordered for the permutation P that makes PTP T =

[T11 T12

T21 T22
] have diagonal T11 and T22. It is not true that consistent ordering

implies a matrix has property A.

Example 6.9. Any block tridiagonal matrix
D1 A1

B1
.
. An−1

Bn−1 Dn


is consistently ordered when the Di are diagonal. ¦

Consistent ordering implies that there are simple formulas relating the
eigenvalues of RJ , RGS , and RSOR(ω) [247].

Theorem 6.6. If A is consistently ordered and ω = 0, then the following are
true:

1) The eigenvalues of RJ appear in ± pairs.

2) If µ is an eigenvalue of RJ and

(λ+ ω − 1)2 = λω2µ2, (6.27)

then λ is an eigenvalue of RSOR(ω).

3) Conversely, if λ = 0 is an eigenvalue of RSOR(ω), then µ in equa-
tion (6.27) is an eigenvalue of RJ .

Proof.

1) Consistent ordering implies that the eigenvalues of RJ (α) are indepen-
dent of α, so RJ = RJ (1) and RJ (−1) = −RJ(1) have same eigenvalues;
hence they appear in ± pairs.

2) If λ = 0 and equation (6.27) holds, then ω = 1 and 0 is indeed an eigen-
value of RSOR(1) = RGS = (I − L)−1U since RGS is singular. Otherwise

0 = det(λI −RSOR(ω))
= det((I − ωL)(λI −RSOR(ω)))
= det((λ+ ω − 1)I − ωλL− ωU)

= det
(√

λω

((
λ+ ω − 1√

λω

)
I −
√
λL− 1√

λ
U

))
= det

((
λ+ ω − 1√

λω

)
I − L− U

)
(
√
λω)n,

where the last equality is true because of Proposition 6.2. Therefore
λ+ω−1√

λω
= µ, an eigenvalue of L+ U = RJ , and (λ+ ω − 1)2 = µ2ω2λ.

294 Applied Numerical Linear Algebra

3) If λ = 0, the last set of equalities works in the opposite direction. 2

Corollary 6.1. If A is consistently ordered, then ρ(RGS) = (ρ(RJ))2. This
means that the Gauss–Seidel method is twice as fast as Jacobi’s method.

Proof. The choice ω = 1 is equivalent to the Gauss–Seidel method, so
λ2 = λµ2 or λ = µ2 2

To get the most benefit from overrelaxation, we would like to find ωopt
minimizing ρ(RSOR(ω)) [247].

Theorem 6.7. Suppose that A is consistently ordered, RJ has real eigenval-
ues, and µ = ρ(RJ) < 1. Then

ωopt =
2

1 +
√

1− µ2
,

ρ(RSOR(ωopt)) = ωopt − 1 =
µ2

[1 +
√

1− µ2]2
,

ρ(RSOR(ω)) =

{
ω − 1, ωopt ≤ ω ≤ 2,

1− ω + 1
2ω

2µ2 + ωµ
√

1− ω + 1
4ω

2µ2, 0 < ω ≤ ωopt.

Proof. Solve (λ+ ω − 1)2 = λω2µ2 for λ. 2

Example 6.10. The model problem is an example: RJ is symmetric, so it has
real eigenvalues. Figure 6.5 shows a plot of ρ(RSOR(ω)) versus ω, along with
ρ(RGS) and ρ(RJ), for the model problem on an N -by-N grid with N = 16
and N = 64. The plots on the left are of ρ(R), and the plots on the right
are semilogarithmic plots of 1− ρ(R). The main conclusion that we can draw
is that the graph of ρ(RSOR(ω)) has a vary narrow minimum, so if ω is even
slightly different from ωopt, the convergence will slow down significantly. The
second conclusion is that if you have to guess ωopt, a large value (near 2) is a
better guess than a small value. ¦

6.5.6. Chebyshev Acceleration and Symmetric SOR (SSOR)

Of the methods we have discussed so far, Jacobi’s and Gauss–Seidel methods
require no information about the matrix to execute them (although proving
that they converge requires some information). SOR(ω) depends on a param-
eter ω, which can be chosen depending on ρ(RJ) to accelerate convergence.
Chebyshev acceleration is useful when we know even more about the spectrum
of RJ than just ρ(RJ) and lets us further accelerate convergence.

Suppose that we convert Ax = b to the iteration xi+1 = Rxi+c using some
method (Jacobi’s, Gauss–Seidel, or SOR(ω)). Then we get a sequence {xi}
where xi → x as i→∞ if ρ(R) < 1.

Iterative Methods for Linear Systems 295

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

w

16 by 16 grid

SOR(w)

Gauss−Seidel

Jacobi

0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

w

16 by 16 grid

Jacobi

Gauss−Seidel

SOR(w)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

w

64 by 64 grid

SOR(w)

Gauss−Seidel

Jacobi

0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

w

64 by 64 grid

Jacobi

Gauss−Seidel

SOR(w)

Fig. 6.5. Convergence of Jacobi’s, Gauss–Seidel, and SOR(ω) methods versus ω on
the model problem on a 16-by-16 grid and a 64-by-64 grid. The spectral radius ρ(R)
of each method (ρ(RJ), ρ(RGS), and ρ(RSOR(ω))) is plotted on the left, and 1− ρ(R)
on the right.

296 Applied Numerical Linear Algebra

Given all these approximations xi, it is natural to ask whether some linear
combination of them, ym =

∑m
i=1 γmixi, is an even better approximation of

the solution x. Note that the scalars γmi must satisfy
∑m

i=0 γmi = 1, since if
x0 = x1 = · · · = x, we want ym = x, too. So we can write the error in ym as

ym − x =
m∑
i=0

γmixi − x

=
m∑
i=0

γmi(xi − x)

=
m∑
i=0

γmiR
i(x0 − x)

= pm(R)(x0 − x), (6.28)

where pm(R) =
∑m

i=0 γmiR
i is a polynomial of degree m with pm(1) =

∑m
i=0 γmi

= 1.

Example 6.11. If we could choose pm to be the characteristic polynomial of
R, then pm(R) = 0 by the Cayley–Hamilton theorem, and we would converge
in m steps. But this is not practical, because we seldom know the eigenvalues
of R and we want to converge much faster than in m = dim(R) steps anyway.
¦

Instead of seeking a polynomial such that pm(R) is zero, we will settle for
making the spectral radius of pm(R) as small as we can. Suppose that we knew

• the eigenvalues of R were real,

• the eigenvalues of R lay in an interval [−ρ, ρ] not containing 1.

Then we could try to choose a polynomial pm where

1) pm(1) = 1,

2) max−ρ≤x≤ρ |pm(x)| is as small as possible.

Since the eigenvalues of pm(R) are pm(λ(R)) (see Problem 4.5), these eigen-
values would be small and so the spectral radius (the largest eigenvalue in
absolute value) would be small.

Finding a polynomial pm to satisfy conditions 1) and 2) above is a clas-
sical problem in approximation theory whose solution is based on Chebyshev
polynomials.

Definition 6.15. The mth Chebyshev polynomial is defined by the recurrence
Tm(x) ≡ 2xTm−1(x)− Tm−2(x), where T0(x) = 1 and T1(x) = x.

Iterative Methods for Linear Systems 297

Chebyshev polynomials have many interesting properties [238]. Here are a
few, which are easy to prove from the definition (see Question 6.7).

Lemma 6.7. Chebyshev polynomials have the following properties:

• Tm(1) = 1.

• Tm(x) = 2m−1xm +O(xm−1).

• Tm(x) =
{

cos(m · arccos x) if |x| ≤ 1,
cosh(m · arccoshx) if |x| ≥ 1.

• |Tm(x)| ≤ 1 if |x| ≤ 1.

• The zeros of Tm(x) are xi = cos((2i− 1)π/(2m)) for i = 1, . . . ,m.

• Tm(x) = 1
2 [(x+

√
x2 − 1)m + (x+

√
x2 − 1)−m] if |x| > 1.

• Tm(1 + ε) ≥ .5(1 +m
√

2ε) if ε > 0.

Here is a table of values of Tm(1 + ε). Note how fast it grows as m grows,
even when ε is tiny (see Figure 6.6).

m ε

10−4 10−3 10−2

10 1.0 1.1 2.2
100 2.2 44 6.9 · 105

200 8.5 3.8 · 103 9.4 · 1011

1000 6.9 · 105 1.3 · 1019 1.2 · 1061

A polynomial with the properties we want is pm(x) = Tm(x/ρ)/Tm(1/ρ).
To see why, note that pm(1) = 1 and that if x ∈ [−ρ, ρ], then |pm(x)| ≤
1/Tm(1/ρ). For example, if ρ = 1/(1 + ε), then |pm(x)| ≤ 1/Tm(1 + ε). As we
have just seen, this bound is tiny for small ε and modest m.

To implement this cheaply, we use the three-term recurrence Tm(x) =
2xTm−1(x) − Tm−2(x) used to define Chebyshev polynomials. This means
that we need only to save and combine three vectors ym, ym−1, and ym−2,
not all the previous xm. To see how this works, let µm ≡ 1/Tm(1/ρ), so
pm(R) = µmTm(R/ρ) and 1

µm
= 2

ρµm−1
− 1

µm−2
by the three-term recurrence in

Definition 6.15. Then

ym − x = pm(R)(x0 − x) by equation (6.28)

= µmTm

(
R

ρ

)
(x0 − x)

= µm

[
2 · R

ρ
· Tm−1

(
R

ρ

)
(x0 − x)− Tm−2

(
R

ρ

)
(x0 − x)

]
by Definition 6.15

298 Applied Numerical Linear Algebra

−1 0 1
−4

−2

0

2

4
T_3

−1 0 1
−4

−2

0

2

4
T_4

−1 0 1
−10

−5

0

5

10
T_5

−1 0 1
−10

−5

0

5

10
T_6

−1 0 1

−200

−100

0

100

200

T_10

−1 0 1
−1

−0.5

0

0.5

1
x 10

5 T_20

Fig. 6.6. Graph of Tm(x) versus x. The dotted lines indicate that |Tm(x)| ≤ 1 for
|x| ≤ 1.

= µm

[
2 · R

ρ
·
pm−1(Rρ)(x0 − x)

µm−1
−
pm−2(Rρ)(x0 − x)

µm−2

]

= µm

[
2 · R

ρ
· ym−1 − x

µm−1
− ym−2 − x

µm−2

]
by equation (6.28)

or
ym =

2µm
µm−1

R

ρ
ym−1 −

µm
µm−2

ym−2 + dm,

where

dm = x− 2µm
µm−1

(
R

ρ

)
x+

µm
µm−2

x

= x− 2µm
µm−1

(
x− c
ρ

)
+

µm
µm−2

x since x = Rx+ c

= µm

(
1
µm
− 2
ρµm−1

+
1

µm−2

)
x+

2µm
ρµm−1

c

=
2µm
ρµm−1

c by the definition of µm.

This yields the algorithm.

Algorithm 6.7. Chebyshev acceleration of xi+1 = Rxi + c:

Iterative Methods for Linear Systems 299

µ0 = 1; µ1 = ρ; y0 = x0; y1 = Rx0 + c
for m = 2, 3, . . .

µm = 1/
(

2
ρµm−1

− 1
µm−2

)
ym = 2µm

ρµm−1
Rym−1 − µm

µm−2
ym−2 + 2µm

ρµm−1
c

end for

Note that each iteration takes just one application of R, so if this is signif-
icantly more expensive than the other scalar and vector operations, this algo-
rithm is no more expensive per step than the original iteration xm+1 = Rxm+c.

Unfortunately, we cannot apply this directly to SOR(ω) for solving Ax = b,
because RSOR(ω) generally has complex eigenvalues, and Chebyshev accelera-
tion requires that R have real eigenvalues in the interval [−ρ, ρ]. But we can
fix this by using the following algorithm.

Algorithm 6.8. SSOR:

1. Take one step of SOR(ω) computing the components of x in the usual
increasing order: xi,1, xi,2, . . . , xi,n,

2. Take one step of SOR(ω) computing backwards: xi,n, xi,n−1, . . . , xi,1.

We will reexpress this algorithm as xi+1 = Eωxi + cω and show that Eω
has real eigenvalues, so we can use Chebyschev acceleration.

Suppose A is symmetric as in the model problem and again write A =
D− L̃− Ũ = D(I −L−U) as in equation (6.19). Since A = AT , U = LT . Use
equation (6.21) to rewrite the two steps of SSOR as

1. xi+ 1
2

= (I − ωL)−1((1 − ω)I + ωU)xi + c1/2 ≡ Lωxi + c1/2,
2. xi = (I − ωU)−1((1 − ω)I + ωL)xi+ 1

2
+ c1 ≡ Uωxi+ 1

2
+ c1.

Eliminating xi+ 1
2

yields xi+1 = Eωxi + ĉ, where

Eω = UωLω

= I + (ω − 2)2(I − ωU)−1(I − ωL)−1 + (ω − 2)(I − ωU)−1

+(ω − 2)(I − ωU)−1(I − ωL)−1(I − ωU).

We claim that Eω has real eigenvalues, since it has the same eigenvalues as the
similar matrix

(I − ωU)Eω(I − ωU)−1

= I + (2− ω)2(I − ωL)−1(I − ωU)−1 + (ω − 2)(I − ωU)−1

+(ω − 2)(I − ωL)−1

= I + (2− ω)2(I − ωL)−1(I − ωLT)−1 + (ω − 2)(I − ωLT)−1

+(ω − 2)(I − ωL)−1,

which is clearly symmetric and so must have real eigenvalues.

300 Applied Numerical Linear Algebra

Example 6.12. Let us apply SSOR(ω) with Chebyshev acceleration to the
model problem. We need to both choose ω and estimate the spectral radius ρ =
ρ(Eω). The optimal ω that minimizes ρ is not known but Young [265, 135] has
shown that the choice ω = 2

1+[2(1−ρ(RJ))]1/2 is a good one, yielding ρ(Eω) ≈ 1−
π

2N . With Chebyshev acceleration the error is multiplied by µm ≈ 1
Tm(1+ π

2N) ≤
2/(1 + m

√
π
N) at step m. Therefore, to decrease the error by a fixed factor

< 1 requires m = O(N1/2) = O(n1/4) iterations. Since each iteration has the
same cost as an iteration of SOR(ω), O(n), the overall cost is O(n5/4). This
explains the entry for SSOR with Chebyshev acceleration in Table 6.1.

In contrast, after m steps of SOR(ωopt), the error would decrease only by
(1 − π

N)m. For example, consider N = 1000. Then SOR(ωopt) requires m =
220 iterations to cut the error in half, whereas SSOR(ωopt) with Chebyshev
acceleration requires only m = 17 iterations. ¦

6.6. Krylov Subspace Methods

These methods are used both to solve Ax = b and to find eigenvalues of A.
They assume that A is accessible only via a “black-box” subroutine that re-
turns y = Az given any z (and perhaps y = AT z if A is nonsymmetric). In
other words, no direct access or manipulation of matrix entries is used. This
is a reasonable assumption for several reasons. First, the cheapest nontrivial
operation that one can perform on a (sparse) matrix is to multiply it by a
vector; if A has m nonzero entries, matrix-vector multiplication costs m mul-
tiplications and (at most) m additions. Second, A may not be represented
explicitly as a matrix but may be available only as a subroutine for computing
Ax.

Example 6.13. Suppose that we have a physical device whose behavior is
modeled by a program, which takes a vector x of input parameters and pro-
duces a vector y of output parameters describing the device’s behavior. The
output y may be an arbitrarily complicated function y = f(x), perhaps re-
quiring the solution of nonlinear differential equations. For example, x could
be parameters describing the shape of a wing and f(x) could be the drag on
the wing, computed by solving the Navier–Stokes equations for the airflow
over the wing. A common engineering design problem is to pick the input x
to optimize the device behavior f(x), where for concreteness we assume that
this means making f (x) as small as possible. Our problem is then to try to
solve f(x) = 0 as nearly as we can. Assume for illustration that x and y are
vectors of equal dimension. Then Newton’s method is an obvious candidate,
yielding the iteration x(m+1) = x(m) − (∇f(x(m)))−1f (x(m)), where ∇f (x(m))
is the Jacobian of f at x(m). We can rewrite this as solving the linear system
(∇f(x(m))) ·δ(m) = f(x(m)) for δ(m) and then computing x(m+1) = x(m)−δ(m).

Iterative Methods for Linear Systems 301

But how do we solve this linear system with coefficient matrix ∇f(x(m)) when
computing f(x(m)) is already complicated? It turns out that we can compute
the matrix-vector product (∇f(x)) · z for an arbitrary vector z so that we can
use Krylov subspace methods to solve the linear system. One way to com-
pute (∇f(x)) · z is with divided differences or by using a Taylor expansion to
see that [f (x + hz) − f(x)]/h ≈ (∇f (x)) · z. Thus, computing (∇f (x)) · z
requires two calls to the subroutine that computes f(·), once with argument
x and once with x + hz. However, sometimes it is difficult to choose h to
get an accurate approximation of the derivative (choosing h too small results
in a loss of accuracy due to roundoff). Another way to compute (∇f(x)) · z
is to actually differentiate the function f . If f is simple enough, this can be
done by hand. For complicated f , compiler tools can take a (nearly) arbitrary
subroutine for computing f(x) and automatically produce another subroutine
for computing (∇f(x)) · z [29]. This can also be done by using the operator
overloading facilities of C++ or Fortran 90, although this is less efficient. ¦

A variety of different Krylov subspace methods exist. Some are suitable for
nonsymmetric matrices, and others assume symmetry or positive definiteness.
Some methods for nonsymmetric matrices assume that AT z can be computed
as well as Az; depending on how A is represented, AT z may or may not be
available (see Example 6.13). The most efficient and best understood method,
the conjugate gradient method (CG), is suitable only for symmetric positive
definite matrices, including the model problem. We will concentrate on CG in
this chapter.

Given a matrix that is not symmetric positive definite, it can be difficult
to pick the best method from the many available. In section 6.6.6 we will
give a short summary of the other methods available, besides CG, along with
advice on which method to use in which situation. We also refer the reader to
the more comprehensive on-line help at NETLIB/templates, which includes a
book [24] and implementations in Matlab, Fortran, and C++. For a survey of
current research in Krylov subspace methods, see [15, 105, 134, 212].

In Chapter 7, we will also discuss Krylov subspace methods for finding
eigenvalues.

6.6.1. Extracting Information about A via Matrix-Vector Multipli-
cation

Given a vector b and a subroutine for computing A · x, what can we deduce
about A? The most obvious thing that we can do is compute the sequence of
matrix-vector products y1 = b, y2 = Ay1, y3 = Ay2 = A2y1, . . . , yn = Ayn−1 =
An−1y1, where A is n-by-n. Let K = [y1, y2, , . . . , yn]. Then we can write

A ·K = [Ay1, . . . , Ayn−1, Ayn] = [y2, . . . , yn, A
ny1]. (6.29)

Note that the leading n − 1 columns of A · K are the same as the trailing
n − 1 columns of K, shifted left by one. Assume for the moment that K is

302 Applied Numerical Linear Algebra

nonsingular, so we can compute c = −K−1Any1. Then

A ·K = K · [e2, e3, . . . , en,−c] ≡ K · C,

where ei is the ith column of the identity matrix, or

K−1AK = C =



0 0 · · · 0 −c1
1 0 · · · 0 −c2
0 1 · · ·

...
...

... 0 · · ·
...

...
...

... · · · 0
...

...
... · · · 1 −cn


.

Note that C is upper Hessenberg. In fact, it is a companion matrix (see sec-
tion 4.5.3), which means that its characteristic polynomial is p(x) = xn +∑n

i=1 cix
i−1. Thus, just by matrix-vector multiplication, we have reduced A

to a very simple form, and in principle we could now find the eigenvalues of A
by finding the zeros of p(x).

However, this simple form is not useful in practice, for the following reasons:

1. Finding c requires n − 1 matrix-vector multiplications by A and then
solving a linear system with K. Even if A is sparse, K is likely to be
dense, so there is no reason to expect solving a linear system with K will
be any easier than solving the original problem Ax = b.

2. K is likely to be very ill-conditioned, so c would be very inaccurately
computed. This is because the algorithm is performing the power method
(Algorithm 4.1) to get the columns yi of K, so that yi is converging to
an eigenvector corresponding to the largest eigenvalue of A. Thus, the
columns of K tend to get more and more parallel.

We will overcome these problems as follows: We will replace K with an
orthogonal matrix Q such that for all k, the leading k columns of K and Q
span the same the same space. This space is called a Krylov subspace. In
contrast to K, Q is well conditioned and easy to invert. Furthermore, we will
compute only as many leading columns of Q as needed to get an accurate
solution (for Ax = b or Ax = λx). In practice we usually need very few
columns compared to the matrix dimension n.

We proceed by writing K = QR, the QR decomposition of K. Then

K−1AK = (R−1QT)A(QR) = C,

implying
QTAQ = RCR−1 ≡ H.

Iterative Methods for Linear Systems 303

Since R and R−1 are both upper triangular and C is upper Hessenberg, it is
easy to confirm that H = RCR−1 is also upper Hessenberg (see Question 6.11).
In other words, we have reduced A to upper Hessenberg form by an orthogonal
transformation Q. (This is the first step of the algorithm for finding eigenval-
ues of nonsymmetric matrices discussed in section 4.4.6.) Note that if A is
symmetric, so is QTAQ = H, and a symmetric matrix which is upper Hes-
senberg must also be lower Hessenberg, i.e., tridiagonal. In this case we write
QTAQ = T .

We still need to show how to compute the columns of Q one at a time,
rather than all of them: Let Q = [q1, . . . , qn]. Since QTAQ = H implies
AQ = QH, we can equate column j on both sides of AQ = QH, yielding

Aqj =
j+1∑
i=1

hi,jqi.

Since the qi are orthonormal, we can multiply both sides of this last equality
by qTm to get

qTmAqj =
j+1∑
i=1

hi,jq
T
mqi = hm,j for 1 ≤ m ≤ j

and so

hj+1,jqj+1 = Aqj −
j∑
i=1

hi,jqi.

This justifies the following algorithm.

Algorithm 6.9. The Arnoldi algorithm for (partial) reduction to Hessenberg
form:

q1 = b/‖b‖2
/* k is the number of columns of Q and H to compute */
for j = 1 to k

z = Aqj
for i = 1 to j

hi,j = qTi z
z = z − hi,jqi

end for
hj+1,j = ‖z‖2
if hj+1,j = 0, quit
qj+1 = z/hj+1,j

end for

304 Applied Numerical Linear Algebra

The qj computed by Arnoldi’s algorithm are often called Arnoldi vectors.
The loop over i updating z can be also be described as applying the modified
Gram–Schmidt algorithm (Algorithm 3.1) to subtract the components in the
directions q1 through qj away from z, leaving z orthogonal to them. Computing
q1 through qk costs k matrix-vector multiplications by A, plus O(k2n) other
work. If we stop the algorithm here, what have we learned about A? Let us
write Q = [Qk, Qu], where Qk = [q1, . . . , qk] and Qu = [qk+1, . . . , qn]. Note that
we have computed only Qk and qk+1; the other columns of Qu are unknown.
Then

H = QTAQ = [Qk, Qu]TA[Qk, Qu] =
[
QTkAQk QTkAQu
QTuAQk QTuAQu

]

≡
(k n− k

k Hk Huk

n− k Hku Hu

)
. (6.30)

Note that Hk is upper Hessenberg, because H has the same property. For
the same reason, Hku has a single (possibly) nonzero entry in its upper right
corner, namely, hk+1,k. Thus, Hu and Huk are unknown; we know only Hk

and Hku.
When A is symmetric, H = T is symmetric and tridiagonal, and the Arnoldi

algorithm simplifies considerably, because most of the hi,j are zero: Write

T =


α1 β1

β1
.
. βn−1

βn−1 αn

 .
Equating column j on both sides of AQ = QT yields

Aqj = βj−1qj−1 + αjqj + βjqj+1.

Since the columns of Q are orthonormal, multiplying both sides this equation
by qj yields qjAqj = αj . This justifies the following version of the Arnoldi
algorithm, called the Lanczos algorithm.

Algorithm 6.10. The Lanczos algorithm for (partial) reduction to symmetric
tridiagonal form.

q1 = b/‖b‖2, β0 = 0, q0 = 0
for j = 1 to k

z = Aqj
αj = qTj z

z = z − αjqj − βj−1qj−1
βj = ‖z‖2

Iterative Methods for Linear Systems 305

if βj = 0, quit
qj+1 = z/βj

end for

The qj computed by the Lanczos algorithm are often called Lanczos vectors.
After k steps of Lanczos, here is what we have learned about A:

T = QTAQ = [Qk, Qu]TA[Qk, Qu]T

=
[
QTkAQk QTkAQu
QTuAQk QTuAQu

]

≡
(k n− k

k Tk Tuk
n− k Tku Tu

)
=

[
Tk T Tku
Tku Tu

]
. (6.31)

Because A is symmetric, we know Tk and Tku = TTuk but not Tu. Tku has a
single (possibly) nonzero entry in its upper right corner, namely, βk. Note that
βk is nonnegative, because it is computed as the norm of z.

We define some standard notation associated with the partial factorization
of A computed by the Arnoldi and Lanczos algorithms.

Definition 6.16. The Krylov subspace Kk(A, b) is span[b,Ab, A2b, . . . , Ak−1b].

We will write Kk instead of Kk(A, b) if A and b are implicit from the context.
Provided that the algorithm does not quit because z = 0, the vectors Qk
computed by the Arnoldi or Lanczos algorithms form an orthonormal basis of
the Krylov subspace Kk. (One can show that Kk has dimension k if and only
if the Arnoldi or Lanczos algorithm can compute qk without quitting first; see
Question 6.12.) We also call Hk (or Tk) the projection of A onto the Krylov
subpace Kk.

Our goal is to design algorithms to solve Ax = b using only the information
computed by k steps of the Arnoldi or Lanczos algorithm. We hope that k can
be much smaller than n, so the algorithms are efficient.

(In Chapter 7 we will use this same information for find eigenvalues of A.
We can already sketch how we will do this: Note that if hk+1,k happens to be
zero, then H (or T) is block upper triangular and so all the eigenvalues of Hk

are also eigenvalues of H, and therefore also of A, since A and H are similar.
The (right) eigenvectors of Hk are eigenvectors of H, and if we multiply them
by Qk, we get eigenvectors of A. When hk+1,k is nonzero but small, we expect
the eigenvalues and eigenvectors of Hk to provide good approximations to the
eigenvalues and eigenvectors of A.)

We finish this introduction by noting that roundoff error causes a num-
ber of the algorithms that we discuss to behave entirely differently from how
they would in exact arithmetic. In particular, the vectors qi computed by

306 Applied Numerical Linear Algebra

the Lanczos algorithm can quickly lose orthogonality and in fact often be-
come linearly dependent. This apparently disastrous numerical instability led
researchers to abandon these algorithms for several years after their discov-
ery. But eventually researchers learned either how to stabilize the algorithms
or that convergence occurred despite instability! We return to these points
in section 6.6.4, where we analyze the convergence of the conjugate gradient
method for solving Ax = b (which is “unstable” but converges anyway), and in
Chapter 7, especially in sections 7.4 and 7.5, where we show how to compute
eigenvalues (and the basic algorithm is modified to ensure stability).

6.6.2. Solving Ax = b Using the Krylov Subspace Kk
How do we solve Ax = b, given only the information available from k steps of
either the Arnoldi or the Lanczos algorithm?

Since the only vectors we know are the columns of Qk, the only place to
“look” for an approximate solution is in the Krylov subspace Kk spanned by
these vectors. In other words, we see the “best” approximate solution of the
form

xk =
k∑
j=1

zkqk = Qk · z, where z = [z1, . . . , zk]T .

Now we have to define “best.” There are several natural but different
definitions, leading to different algorithms. We let x = A−1b denote the true
solution and rk = b−Axk denote the residual.

1. The “best” xk minimizes ‖xk − x‖2. Unfortunately, we do not have
enough information in our Krylov subspace to compute this xk.

2. The “best” xk minimizes ‖rk‖2. This is implementable, and the corre-
sponding algorithms are called MINRES (for minimum residual) when
A is symmetric [192] and GMRES (for generalized minimum residual)
when A is nonsymmetric [213].

3. The “best” xk makes rk ⊥ Kk, i.e., QTk rk = 0. This is sometimes called
the orthogonal residual property, or a Galerkin condition, by analogy to
a similar condition in the theory of finite elements. When A is symmet-
ric, the corresponding algorithm is called SYMMLQ [192]. When A is
nonsymmetric, a variation of GMRES works [209].

4. When A is symmetric and positive definite, it defines a norm ‖r‖A−1 =
(rTA−1r)1/2 (see Lemma 1.3). We say the “best” xk minimizes ‖rk‖A−1 .
This norm is the same as ‖xk−x‖A. The algorithm is called the conjugate
gradient algorithm [143].

When A is symmetric positive definite, the last two definitions of “best”
also turn out to be equivalent.

Iterative Methods for Linear Systems 307

Theorem 6.8. Let A be symmetric, Tk = QTkAQk, and rk = b− Axk, where
xk ∈ Kk. If Tk is nonsingular and xk = QkT

−1
k e1‖b‖2, where ek×1

1 = [1, 0, . . . , 0]T ,
then QTk rk = 0. If A is also positive definite, then Tk must be nonsingular, and
this choice of xk also minimizes ‖rk‖A−1 over all xk ∈ Kk. We also have that
rk = ±‖rk‖2qk+1.

Proof. We drop the subscripts k for ease of notation. Let x = QT−1e1‖b‖2
and r = b−Ax, and assume that T = QTAQ is nonsingular. We confirm that
QT r = 0 by computing

QT r = QT (b− Ax) = QT b−QTAx
= e1‖b‖2 −QTA(QT−1e1‖b‖2)

because the first column of Q is b/‖b‖2
and its other columns are orthogonal to b

= e1‖b‖2 − (QTAQ)T−1e1‖b‖2
= e1‖b‖2 − (T)T−1e1‖b‖2 because QTAQ = T

= 0.

Now assume that A is also positive definite. Then T must be positive
definite and thus nonsingular too (see Question 6.13). Let x̂ = x + Qz be
another candidate solution in K, and let r̂ = b − Ax̂. We need to show that
‖r̂‖A−1 is minimized when z = 0. But

‖r̂‖2A−1 = r̂TA−1r̂ by definition
= (r −AQz)TA−1(r −AQz)

since r̂ = b−Ax̂ = b−A(x+Qz) = r −AQz
= rTA−1rT − 2(AQz)TA−1r + (AQz)TA−1(AQz)
= ‖r‖2A−1 − 2zTQT r + ‖AQz‖2A−1

since (AQz)TA−1r = zTQTAA−1r = zTQT r

= ‖r‖2A−1 + ‖AQz‖2A−1 since QT r = 0,

so ‖r̂‖A−1 is minimized if and only if AQz = 0. But AQz = 0 if and only if
z = 0 since A is nonsingular and Q has full column rank.

To show that rk = ±‖rk‖2qk+1, we reintroduce subscripts. Since xk ∈ Kk,
we must have rk = b−Axk ∈ Kk+1, so rk is a linear combination of the columns
of Qk+1, since these columns span Kk+1. But since QTk rk = 0, the only column
of Qk+1 to which rk is not orthogonal is qk+1. 2

6.6.3. Conjugate Gradient Method

The algorithm of choice for symmetric positive definite matrices is CG. Theo-
rem 6.8 characterizes the solution xk computed by CG. While MINRES might
seem more natural than CG because it minimizes ‖rk‖2 instead of ‖rk‖A−1 , it

308 Applied Numerical Linear Algebra

turns out that MINRES requires more work to implement, is more suscepti-
ble to numerical instabilities, and thus often produces less accurate answers
than CG. We will see that CG has the particularly attractive property that
it can be implemented by keeping only four vectors in memory at one time,
and not k (q1 through qk). Furthermore, the work in the inner loop, beyond
the matrix-vector product, is limited to two dot products, three “saxpy” op-
erations (adding a multiple of one vector to another), and a handful of scalar
operations. This is a very small amount of work and storage.

Now we derive CG. There are several ways to do this. We will start with
the Lanczos algorithm (Algorithm 6.10), which computes the columns of the
orthogonal matrix Qk and the entries of the tridiagonal matrix Tk, along with
the formula xk = QkT

−1
k e1‖b‖2 from Theorem 6.8. We will show how to

compute xk directly via recurrences for three sets of vectors. We will keep only
the most recent vector from each set in memory at one time, overwriting the
old ones. The first set of vectors are the approximate solutions xk. The second
set of vectors are the residuals rk = b−Axk, which Theorem 6.8 showed were
parallel to the Lanczos vectors qk+1. The third set of vectors are the conjugate
gradients pk. The pk are called gradients because a single step of CG can be
interpreted as choosing a scalar ν so that the new solution xk = xk−1 + νpk
minimizes the residual norm ‖rk‖A−1 = (rTk A

−1rk)1/2. In other words, the pk
are used as gradient search directions. The pk are called conjugate, or more
precisely A-conjugate, because pTkApj = 0 if j = k. In other words, the pk are
orthogonal with respect to the inner product defined by A (see Lemma 1.3).

Since A is symmetric positive definite, so is Tk = QTkAQk (see Ques-
tion 6.13). This means we can perform Cholesky on Tk to get Tk = L̂kL̂

T
k =

LkDkL
T
k , where Lk is unit lower bidiagonal and Dk is diagonal. Then using

the formula for xk from Theorem 6.8, we get

xk = QkT
−1
k e1‖b‖2

= Qk(L−Tk D−1
k L−1

k)e1‖b‖2
= (QkL−Tk)(D−1

k L−1
k e1‖b‖2)

≡ (P̃k)(yk),

where P̃k ≡ QkL
−T
k and yk ≡ D−1

k L−1
k e1‖b‖2. Write P̃k = [p̃1, . . . , p̃k]. The

conjugate gradients pi will turn out to be parallel to the columns p̃i of P̃k. We
know enough to prove the following lemma.

Lemma 6.8. The columns p̃i of P̃k are A-conjugate. In other words, P̃ Tk AP̃k
is diagonal.

Proof. We compute

P̃ Tk AP̃k = (QkL
−T
k)TA(QkL−Tk) = L−1

k (QTkAQk)L−Tk = L−1
k (Tk)L−Tk

= L−1
k (LkDkL

T
k)L−Tk = Dk. 2

Iterative Methods for Linear Systems 309

Now we derive simple recurrences for the columns of P̃k and entries of
yk. We will show that yk−1 ≡ [η1, . . . , ηk−1]T is identical to the leading k − 1
entries of yk = [η1, . . . , ηk−1, ηk]T and that P̃k−1 is identical to the leading k−1
columns of P̃k. Therefore we can let

xk = P̃k · yk = [P̃k−1, p̃k] ·
[
yk−1
ηk

]
= P̃k−1yk−1 + p̃kηk = xk−1 + p̃kηk (6.32)

be our recurrence for xk.
The recurrence for the ηk is derived as follows. Since Tk−1 is the leading

(k−1)-by-(k−1) submatrix of Tk, Lk−1 and Dk−1 are also the leading (k−1)-
by-(k − 1) submatrices of Lk and Dk, respectively:

Tk =


α1 β1

β1
.
. βk−1

βk−1 αk


= LkDkL

T
k

=


1

l1
. . .
.

lk−1 1

 ·

d1

. . .
dk−1

dk

 ·


1

l1
. . .
.

lk−1 1


T

=
[

Lk−1
lk−1ê

T
k−1 1

]
· diag(Dk−1, dk) ·

[
Lk−1

lk−1ê
T
k−1 1

]T
,

where êTk−1 = [0, . . . , 0, 1] has dimension k − 1. Similarly, D−1
k−1 and L−1

k−1 are
also the leading (k − 1)-by-(k − 1) submatrices of D−1

k = diag(D−1
k−1, d

−1
k) and

L−1
k =

[
L−1
k−1
? 1

]
,

respectively, where the details of the last row ? do not concern us. This means
that yk−1 = D−1

k−1L
−1
k−1ê1‖b‖2, where ê1 has dimension k− 1, is identical to the

leading k − 1 components of

yk = D−1
k L−1

k e1‖b‖2 =
[
D−1
k−1

d−1
k

]
·
[
L−1
k−1
? 1

]
· e1‖b‖2

=
[
D−1
k−1L

−1
k−1ê1‖b‖2
ηk

]
=
[
yk−1
ηk

]
.

Now we need a recurrence for the columns of P̃k = [p̃1, . . . , p̃k]. Since LTk−1
is upper triangular, so is L−Tk−1, and it forms the leading (k − 1)-by-(k − 1)

310 Applied Numerical Linear Algebra

submatrix of L−Tk . Therefore P̃k−1 is identical to the leading k− 1 columns of

P̃k = QkL
−T
k = [Qk−1, qk]

[
L−Tk−1 ?

0 1

]
= [Qk−1L

−T
k−1, p̃k] = [P̃k−1, p̃k].

From P̃k = QkL
−T
k we get P̃kLTk = Qk or, equating the kth column on both

sides, the recurrence
p̃k = qk − lk−1p̃k−1. (6.33)

Altogether, we have recursions for qk (from the Lanczos algorithm), for
p̃k (from equation (6.33)), and for the approximate solution xk (from equa-
tion (6.32)). All these recursions are short; i.e., they require only the previous
iterate or two to implement. Thus, they together provide the means to com-
pute xk while storing a small number of vectors and doing a small number of
dot products, saxpys, and scalar work in the inner loop.

We still have to simplify these recursions slightly to get the ultimate CG
algorithm. Since Theorem 6.8 tells us that rk and qk+1 are parallel, we can
replace the Lanczos recurrence for qk+1 with the recurrence rk = b − Axk
or equivalently rk = rk−1 − ηkAp̃k (gotten from multiplying the recurrence
xk = xk−1 + ηkp̃k by A and subtracting from b = b). This yields the three
vector recurrences

rk = rk−1 − ηkAp̃k, (6.34)
xk = xk−1 + ηkp̃k from equation (6.32), (6.35)
p̃k = qk − lk−1p̃k−1 from equation (6.33). (6.36)

In order to eliminate qk, substitute qk = rk−1/‖rk−1‖2 and pk ≡ ‖rk−1‖2p̃k
into the above recurrences to get

rk = rk−1 −
ηk

‖rk−1‖2
Apk

≡ rk−1 − νkApk, (6.37)

xk = xk−1 +
ηk

‖rk−1‖2
pk

≡ xk−1 + νkpk, (6.38)

pk = rk−1 −
‖rk−1‖2lk−1

‖rk−2‖2
· pk−1

≡ rk−1 + µk · pk−1. (6.39)

We still need formulas for the scalars νk and µk. As we will see, there are
several equivalent mathematical expression for them in terms of dot products
of vectors computed by the algorithm. Our ultimate formulas are chosen to
minimize the number of dot products needed and because they are more stable
than the alternatives.

Iterative Methods for Linear Systems 311

To get a formula for νk, first we multiply both sides of equation (6.39) on
the left by pTkA, and use the fact that pk and pk−1 are A-conjugate (Lemma 6.8)
to get

pTkApk = pTkArk−1 + 0 = rTk−1Apk. (6.40)

Then, multiply both sides of equation (6.37) on the left by rTk−1 and use the
fact that rTk−1rk = 0 (since the ri are parallel to the columns of the orthogonal
matrix Q) to get

νk =
rTk−1rk−1

rTk−1Apk

=
rTk−1rk−1

pTkApk
by equation (6.40). (6.41)

(Equation (6.41) can also be derived from a property of νk in Theorem 6.8,
namely, that it minimizes the residual norm

‖rk‖2A−1 = rTk A
−1rk

= (rk−1 − νkApk)TA−1(rk−1 − νkApk) by equation (6.37)
= rk−1A

−1rTk−1 − 2νkpTk rk−1 + ν2
kp
T
kApk.

This expression is a quadratic function of νk, so it can be easily minimized by
setting its derivative with respect to νk to zero and solving for νk. This yields

νk =
pTk rk−1

pTkApk

=
(rk−1 + µk · pk−1)T rk−1

pTkApk
by equation (6.39)

=
rTk−1rk−1

pTkApk
,

where we have used the fact that pTk−1rk−1 = 0, which holds since rk−1 is
orthogonal to all vectors in Kk−1, including pk−1.)

To get a formula for µk, multiply both sides of equation (6.39) on the left
by pTk−1A and use the fact that pk and pk−1 are A-conjugate (Lemma 6.8) to
get

µk = −
pTk−1Ark−1

pTk−1Apk−1
. (6.42)

The trouble with this formula for µk is that it requires another dot product,
pTk−1Ark−1, besides the two required for νk. So we will derive another formula
requiring no new dot products.

312 Applied Numerical Linear Algebra

We do this by deriving an alternate formula for νk: Multiply both sides of
equation (6.37) on the left by rTk , again use the fact that rTk−1rk = 0, and solve
for νk to get

νk = − rTk rk

rTk Apk
. (6.43)

Equating the two expressions (6.41) and (6.43) for νk−1 (note that we
have subtracted 1 from the subscript), rearranging, and comparing to equa-
tion (6.42) yield our ultimate formula for µk:

µk = −
pTk−1Ark−1

pTk−1Apk−1

=
rTk−1rk−1

rTk−2rk−2
. (6.44)

Combining recurrences (6.37), (6.38), and (6.39) and formulas (6.41) and
(6.44) yields our final implementation of the conjugate gradient algorithm.

Algorithm 6.11. Conjugate gradient algorithm:

k = 0; x0 = 0; r0 = b; p1 = b;
repeat

k = k + 1
z = A · pk
νk = (rTk−1rk−1)/(pTk z)
xk = xk−1 + νkpk
rk = rk−1 − νkz
µk+1 = (rTk rk)/(r

T
k−1rk−1)

pk+1 = rk + µk+1pk
until ‖rk‖2 is small enough

The cost of the inner loop for CG is one matrix-vector product z = A · pk,
two inner products (by saving the value of rTk rk from one loop iteration to
the next), three saxpys, and a few scalar operations. The only vectors that
need to be stored are the current values of r, x, p, and z = Ap. For more
implementation details, including how to decide if “‖rk‖2 is small enough,” see
NETLIB/templates/templates.html.

6.6.4. Convergence Analysis of the Conjugate Gradient Method

We begin with a convergence analysis of CG that depends only on the condition
number of A. This analysis will show that the number of CG iterations needed
to reduce the error by a fixed factor less than 1 is proportional to the square
root of the condition number. This worst-case analysis is a good estimate for
the speed of convergence on our model problem, Poisson’s equation. But it

Iterative Methods for Linear Systems 313

severely underestimates the speed of convergence in many other cases. After
presenting the bound based on the condition number, we describe when we
can expect faster convergence.

We start with the initial approximate solution x0 = 0. Recall that xk
minimizes the A−1-norm of the residual rk = b−Axk over all possible solutions
xk ∈ Kk(A, b). This means xk minimizes

‖b−Az‖2A−1 ≡ f(z) = (b−Az)TA−1(b−Az) = (x− z)TA(x− z)

over all z ∈ Kk = span[b, Ab,A2b, . . . , Ak−1b]. Any z ∈ Kk(A, b) may be written
z =

∑k−1
j=0 αjA

jb = pk−1(A)b = pk−1(A)Ax, where pk−1(ξ) =
∑k−1

j=0 αjξ
j is a

polynomial of degree k − 1. Therefore,

f(z) = [(I − pk−1(A)A)x]TA[(I − pk−1(A)A)x]
≡ (qk(A)x)TA(qk(A)x)
= xT qk(A)Aqk(A)x,

where qk(ξ) ≡ 1 − pk−1(ξ) · ξ is a degree-k polynomial with qk(0) = 1. Note
that (qk(A))T = qk(A) because A = AT . Letting Qk be the set of all degree-k
polynomials which take the value 1 at 0, this means

f (xk) = min
z∈Kk

f(z) = min
qk∈Qk

xT qk(A)Aqk(A)x. (6.45)

To simplify this expression, write the eigendecomposition A = QΛQT and let
QTx = y so that

f (xk) = min
z∈Kk

f(z) = min
qk∈Qk

xT (qk(QΛQT))(QΛQT)(qk(QΛQT))x

= min
qk∈Qk

xT (Qqk(Λ)QT)(QΛQT)(Qqk(Λ)QT)x

= min
qk∈Qk

yT qk(Λ)Λqk(Λ)y

= min
qk∈Qk

yT · diag(qk(λi)λiqk(λi)) · y

= min
qk∈Qk

n∑
i=1

yi
2λi(qk(λi))2

≤ min
qk∈Qk

(
max

λi∈λ(A)
(qk(λi))2

) n∑
i=1

yi
2λi

= min
qk∈Qk

(
max

λi∈λ(A)
(qk(λi))2

)
f(x0)

since x0 = 0 implies f (x0) = xTAx = yTΛy =
∑n

i=1 yi
2λi. Therefore,

‖rk‖2A−1

‖r0‖2A−1

=
f (xk)
f(x0)

≤ min
qk∈Q

max
λi∈λ(A)

(qk(λi))2

314 Applied Numerical Linear Algebra

or
‖rk‖A−1

‖r0‖A−1
≤ min

qk∈Q
max

λi∈λ(A)
|qk(λi)|.

We have thus reduced the question of how fast CG converges to a question
about polynomials: How small can a degree-k polynomial qk(ξ) be when ξ
ranges over the eigenvalues of A, while simultaneously satisfying qk(0) = 1?
Since A is positive definite, its eigenvalues lie in the interval [λmin, λmax], where
0 < λmin ≤ λmax, so to get a simple upper bound we will instead seek a degree-
k polynomial q̂k(ξ) that is small on the whole interval [λmin, λmax] and 1 at
0. A polynomial q̂k(ξ) that has this property is easily constructed from the
Chebyshev polynomials Tk(ξ) discussed in section 6.5.6. Recall that |Tk(ξ)| ≤ 1
when |ξ| ≤ 1 and increases rapidly when |ξ| > 1 (see Figure 6.6). Now let

q̂k(ξ) = Tk

(
λmax + λmin − 2ξ
λmax − λmin

)/
Tk

(
λmax + λmin

λmax − λmin
.

)
It is easy to see that q̂(0) = 1, and if ξ ∈ [λmin, λmax], then∣∣∣∣λmax + λmin − 2ξ

λmax − λmin

∣∣∣∣ ≤ 1,

so

‖rk‖A−1

‖r0‖A−1
≤ min

qk∈Q
max

λi∈λ(A)
|qk(λi)|

≤ 1
Tk(λmax+λmin

λmax−λmin
)

=
1

Tk(κ+1
κ−1)

=
1

Tk(1 + 2
κ−1)

, (6.46)

where κ = λmax/λmin is the condition number of A.
If the condition number κ is near 1, 1 + 2/(κ − 1) is large, 1/Tk(1 + 2

κ−1)
is small, and convergence is rapid. If κ is large, convergence slows down, with
the convergence rate

1
Tk(1 + 2

κ−1)
≤ 2

1 + 2k√
κ−1

.

Example 6.14. For the N -by-N model problem, κ = O(N2), so after k steps
of CG the residual is multiplied by about (1 − O(N−1))k, the same as SOR
with optimal overrelaxation parameter ω. In other words, CG takes O(N) =
O(n1/2) iterations to converge. Since each iteration costs O(n), the overall cost
is O(n3/2). This explains the entry for CG in Table 6.1. ¦

This analysis using the condition number does not explain all the impor-
tant convergence behavior of CG. The next example shows that the entire
distribution of eigenvalues of A is important, not just the ratio of the largest
to the smallest one.

Iterative Methods for Linear Systems 315

0 20 40 60 80 100 120 140 160 180 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Relative Residual vs. Number of CG Iterations

Fig. 6.7. Graph of relative residuals computed by CG.

Example 6.15. Let us consider Figure 6.7, which plots the relative residual
‖rk‖2/‖r0‖2 at each CG step for eight different linear systems. The relative
residual ‖rk‖2/‖r0‖2 measures the speed of convergence; our implementation
of CG terminates when this ratio sinks below 10−13, or after k = 200 steps,
whichever comes first.

All eight linear systems shown have the same dimension n = 104 and
the same condition number κ ≈ 4134, yet their convergence behaviors are
radically different. The uppermost (dash-dot) line is 1/Tk(1 + 2

κ−1), which
inequality (6.46) tells us is an upper bound on ‖rk‖A−1/‖r0‖A−1 . It turns out
the graphs of ‖rk‖2/‖r0‖2 and the graphs of ‖rk‖A−1/‖r0‖A−1 are nearly the
same, so we plot only the former, which are easier to interpret.

The solid line is ‖rk‖2/‖r0‖2 for Poisson’s equation on a 100-by-100 grid
with a random right-hand side b. We see that the upper bound captures its
general convergence behavior. The seven dashed lines are plots of ‖rk‖2/‖r0‖2
for seven diagonal linear systems Dix = b, numbered from D1 on the left to
D7 on the right. Each Di has the same dimension and condition number as
Poisson’s equation, so we need to study them more closely to understand their
differing convergence behaviors.

We have constructed each Di so that its smallest mi and largest mi eigen-
values are identical to those of Poisson’s equation, with the remaining n− 2mi

eigenvalues equal to the geometric mean of the largest and smallest eigenval-
ues. In other words, Di has only di = 2mi + 1 distinct eigenvalues. We let
ki denote the number of CG iterations it takes for the solution of Dix = b to

316 Applied Numerical Linear Algebra

reach ‖rk‖2/‖r0‖2 ≤ 10−13. The convergence properties are summarized in the
following table:

Example number i 1 2 3 4 5 6 7
Number of distinct eigenvalues di 3 11 41 81 201 401 5000
Number of steps to converge ki 3 11 27 59 94 134 > 200

We see that the number ki of steps required to converge grows with the number
di of distinct eigenvalues. D7 has the same spectrum as Poisson’s equation,
and converges about as slowly.

In the absence of roundoff, we claim that CG would take exactly ki = di
steps to converge. The reason is that we can find a polynomial qdi(ξ) of degree
di that is zero at the eigenvalues αj of A, while qdi(0) = 1, namely,

qdi(ξ) =

∏di
j=1(αj − ξ)∏di
j=1(αj)

.

Equation (6.45) tells us that after di steps, CG minimizes ‖rdi‖2A−1 = f(xdi)
over all possible degree-di polynomials equaling 1 at 0. Since qdi is one of those
polynomials and qdi(A) = 0, we must have ‖rdi‖2A−1 = 0, or rdi = 0. ¦

One lesson of Example 6.15 is that if the largest and smallest eigenvalues
of A are few in number (or clustered closely together), then CG will converge
much more quickly than an analysis based just on A’s condition number would
indicate.

Another lesson is that the behavior of CG in floating point arithmetic can
differ significantly from its behavior in exact arithmetic. We saw this because
the number di of distinct eigenvalues frequently differed from the number ki
of steps required to converge, although in theory we showed that they should
be identical. Still, di and ki were of the same order of magnitude.

Indeed, if one were to perform CG in exact arithmetic and compare the
computed solutions and residuals with those computed in floating point arith-
metic, they would very probably diverge and soon be quite different. Still, as
long as A is not too ill-conditioned, the floating point result will eventually
converge to the desired solution of Ax = b, and so CG is still very useful.
The fact that the exact and floating point results can differ dramatically is
interesting but does not prevent the practical use of CG.

When CG was discovered, it was proven that in exact arithmetic it would
provide the exact answer after n steps, since then rn+1 would be orthogonal
to n other orthogonal vectors r1 through rn, and so must be zero. In other
words, CG was thought of as a direct method rather than an iterative method.
When convergence after n steps did not occur in practice, CG was considered
unstable and then abandoned for many years. Eventually it was recognized as
a perfectly good iterative method, often providing quite accurate answers after
k ¿ n steps.

Iterative Methods for Linear Systems 317

Recently, a subtle backward error analysis was devised to explain the ob-
served behavior of CG in floating point and explain how it can differ from
exact arithmetic [121]. This behavior can also include long “plateaus” in the
convergence, with ‖rk‖2 decreasing little for many iterations, interspersed with
periods of rapid convergence. This behavior can be explained by showing that
CG applied to Ax = b in floating point arithmetic behaves exactly like CG
applied to Ãx̃ = b̃ in exact arithmetic, where Ã is close to A in the following
sense: Ã has a much larger dimension than A, but Ã’s eigenvalues all lie in
narrow clusters around the eigenvalues of A. Thus the plateaus in convergence
correspond to the polynomial qk underlying CG developing more and more
zeros near the eigenvalues of Ã lying in a cluster.

6.6.5. Preconditioning

In the previous section we saw that the convergence rate of CG depended on
the condition number of A, or more generally the distribution of A’s eigenval-
ues. Other Krylov subspace methods have the same property. Preconditioning
means replacing the system Ax = b with the system M−1Ax = M−1b, where
M is an approximation to A with the properties that

1. M is symmetric and positive definite,

2. M−1A is well conditioned or has few extreme eigenvalues,

3. Mx = b is easy to solve.

A careful, problem-dependent choice of M can often make the condition num-
ber of M−1A much smaller than the condition number of A and thus accelerate
convergence dramatically. Indeed, a good preconditioner is often necessary for
an iterative method to converge at all, and much current research in iterative
methods is directed at finding better preconditioners (see also section 6.10).

We cannot apply CG directly to the system M−1Ax = M−1b, because
M−1A is generally not symmetric. We derive the preconditioned conjugate
gradient method as follows. Let M = QΛQT be the eigendecomposition of
M , and define M1/2 ≡ QΛ1/2QT . Note that M 1/2 is also symmetric positive
definite, and (M1/2)2 = M . Now multiply M−1Ax = M−1b through by M1/2

to get the new symmetric positive definite system (M−1/2AM−1/2)(M1/2x) =
M−1/2b, or Âx̂ = b̂. Note that Â and M−1A have the same eigenvalues since
they are similar (M−1A = M−1/2ÂM1/2). We now apply CG implicitly to the
system Âx̂ = b̂ in such a way that avoids the need to multiply by M−1/2. This
yields the following algorithm.

Algorithm 6.12. Preconditioned CG algorithm:

k = 0; x0 = 0; r0 = b; p1 = M−1b; y0 = M−1r0
repeat

318 Applied Numerical Linear Algebra

k = k + 1
z = A · pk
νk = (yTk−1rk−1)/(pTk z)
xk = xk−1 + νkpk
rk = rk−1 − νkz
yk = M−1rk
µk+1 = (yTk rk)/(yTk−1rk−1)
pk+1 = yk + µk+1pk

until ‖rk‖2 is small enough

Theorem 6.9. Let A and M be symmetric positive definite, Â = M−1/2AM1/2,
and b̂ = M−1/2b. The CG algorithm applied to Âx̂ = b̂,

k = 0; x̂0 = 0; r̂0 = b̂; p̂1 = b̂;
repeat

k = k + 1
ẑ = Â · p̂k
ν̂k = (r̂Tk−1r̂k−1)/(p̂Tk ẑ)
x̂k = x̂k−1 + ν̂kp̂k
r̂k = r̂k−1 − ν̂k ẑ
µ̂k+1 = (r̂Tk r̂k)/(r̂Tk−1r̂k−1)
p̂k+1 = r̂k + µ̂k+1p̂k

until ‖r̂k‖2 is small enough

and Algorithm 6.12 are related as follows:

µ̂k = µk,

ν̂k = νk,

ẑ = M−1/2z,

x̂k = M1/2xk,

r̂k = M−1/2rk,

p̂k = M1/2pk.

Therefore, xk converges to M−1/2 times the solution of Âx̂ = b̂, i.e., to
M−1/2Â−1b̂ = A−1b.

For a proof, see Question 6.14.
Now we describe some common preconditioners. Note that our twin goals of

minimizing the condition number of M−1A and keeping Mx = b easy to solve
are in conflict with one another: Choosing M = A minimizes the condition
number of M−1A but leaves Mx = b as hard to solve as the original problem.
Choosing M = I makes solving Mx = b trivial but leaves the condition number
of M−1A unchanged. Since we need to solve Mx = b in the inner loop of the
algorithm, we restrict our discussion to those M for which solving Mx = b is
easy, and describe when they are likely to decrease the condition number of
M−1A.

Iterative Methods for Linear Systems 319

• If A has widely varying diagonal entries, we may use the simple diagonal
preconditioner M = diag(a11, . . . , ann). One can show that among
all possible diagonal preconditioners, this choice reduces the condition
number of M−1A to within a factor of n of its minimum value [242].
This is also called Jacobi preconditioning.

• As a generalization of the first preconditioner, let

A =

 A11 · · · A1b
...

. . .
...

Ab1 · · · Abb


be a block matrix, where the diagonal blocks Aii are square. Then among
all block diagonal preconditioners

M =

 M11
. . .

Mbb

 ,
where Mii and Aii have the same dimensions, the choice Mii = Aii
minimizes the condition number of M−1/2AM−1/2 to within a factor
of b [68]. This is also called block Jacobi preconditioning.

• Like Jacobi, SSOR can also be used to create a (block) preconditioner.

• An incomplete Cholesky factorization LLT of A is an approximation
A ≈ LLT , where L is limited to a particular sparsity pattern, such as
the original pattern of A. In other words, no fill-in is allowed during
Cholesky. Then M = LLT is used. (For nonsymmetric problems, there
is a corresponding incomplete LU preconditioner.)

• Domain decomposition is used when A represents an equation (such as
Poisson’s equation) on a physical region Ω. So far, for Poisson’s equation,
we have let Ω be the unit square. More generally, the region Ω may be
broken up into disjoint (or slightly overlapping) subregions Ω = ∪jΩj ,
and the equation may be solved on each subregion independently. For
example, if we are solving Poisson’s equation and if the subregions are
squares or rectangles, these subproblems can be solved very quickly using
FFTs. Solving these subproblem corresponds to a block diagonal M (if
the subregions are disjoint) or a product of block diagonal M (if the
subregions overlap). This is discussed in more detail in section 6.10.

A number of these preconditioners have been implemented in the software
packages PETSc [230] and PARPRE (NETLIB/scalapack/parpre.tar.gz).

320 Applied Numerical Linear Algebra

6.6.6. Other Krylov Subspace Algorithms for Solving Ax = b

So far we have concentrated on the symmetric positive definite linear sys-
tems and minimized the A−1-norm of the residual. In this section we describe
methods for other kinds of linear systems and offer advice on which method to
use, based on simple properties of the matrix. See Figure 6.8 for a summary,
[15, 105, 134, 212] and NETLIB/templates for details, and NETLIB/templates
in particular for more comprehensive advice on choosing a method, along with
software.

Any system Ax = b can be changed to a symmetric positive definite system
by solving the normal equations ATAx = AT b (or AAT y = b, x = AT y).
This includes the least squares problem minx ‖Ax− b‖2. This lets us use CG,
provided that we can multiply vectors both by A and AT . Since the condition
number of ATA or AAT is the square of the condition number of A, this
method can lead to slow convergence if A is ill conditioned but is fast if A is
well-conditioned (or ATA has a “good” distribution of eigenvalues, as discussed
in section 6.6.4).

We can minimize the two-norm of the residual instead of the A−1-norm
when A is symmetric positive definite. This is called the minimum residual
algorithm, or MINRES [192]. Since MINRES is more expensive than CG and is
often less accurate because of numerical instabilities, it is not used for positive
definite systems. But MINRES can be used when the matrix is symmetric
indefinite, whereas CG cannot. In this case, we can also use the SYMMLQ
algorithm of Paige and Saunders [192], which produces a residual rk ⊥ Kk(A, b)
at each step.

Unfortunately, there are few matrices other than symmetric matrices where
algorithms like CG exist that simultaneously

1. either minimize the residual ‖rk‖2 or keep it orthogonal rk ⊥ Kk,

2. require a fixed number of dot products and saxpy’s in the inner loop,
independent of k.

Essentially, algorithms satisfying these two properties exist only for matrices
of the form eiθ(T + σI), where T = TT (or TH = (HT)T for some symmetric
positive definite H), θ is real, and σ is complex [100, 249]. For these symmetric
and special nonsymmetric A, it turns out we can find a short recurrence, as
in the Lanczos algorithm, for computing an orthogonal basis [q1, . . . , qk] of
Kk(A, b). The fact that there are just a few terms in the recurrence for updating
qk means that it can be computed very efficiently.

This existence of short recurrences no longer holds for general nonsym-
metric A. In this case, we can use Arnoldi’s algorithm. So instead of the
tridiagonal matrix Tk = QTkAQk, we get a fully upper Hessenberg matrix
Hk = QTkAQk. The GMRES algorithm (generalized minimum residual) uses
this decomposition to choose xk = Qkyk ∈ Kk(A, b) to minimize the residual

‖rk‖2 = ‖b−Axk‖2

Iterative Methods for Linear Systems 321

= ‖b− AQkyk‖2
= ‖b− (QHQT)Qkyk‖2 by equation (6.30)
= ‖QT b−HQTQkyk‖2 since Q is orthogonal

=
∥∥∥∥e1‖b‖2 −

[
Hk Huk

Hku Hu

]
·
[
yk
0

]∥∥∥∥
2

by equation (6.30) and since the first column of
Q = [Qk, Qu] is b/‖b‖2

=
∥∥∥∥e1‖b‖2 −

[
Hk

Hku

]
yk

∥∥∥∥
2
.

Since only the first row of Hku is nonzero, this is a (k+1)-by-k upper Hessenberg
least squares problem for the entries of yk. Since it is upper Hessenberg, the QR
decomposition needed to solve it can be accomplished with k Givens rotations,
at a cost of O(k2) instead of O(k3). Also, the storage required is O(kn), since
Qk must be stored. One way to limit the growth in cost and storage is to
restart GMRES, i.e., taking the answer xk computed after k steps, restarting
GMRES to solve the linear system Ad = rk = b − Axk, and updating the
solution to get xk+d; this is called GMRES(k). Still, even GMRES(k) is more
expensive than CG, where the cost of the inner loop does not depend on k at
all.

Another approach to nonsymmetric linear systems is to abandon comput-
ing an orthonormal basis of Kk(A, b) and compute a nonorthonormal basis that
again reduces A to (nonsymmetric) tridiagonal form. This is called the non-
symmetric Lanczos method and requires matrix-vector multiplication by both
A and AT . This is important because AT z is sometimes harder (or impossible)
to compute (see Example 6.13). The advantage of tridiagonal form is that it is
much easier to solve with a tridiagonal matrix than a Hessenberg one. The dis-
advantage is that the basis vectors may be very ill conditioned and may in fact
fail to exist at all, a phenomenon called breakdown. The potential efficiency
has led to a great deal of research on avoiding or alleviating this instability
(look-ahead Lanczos) and to competing methods, including biconjugate gra-
dients and quasi-minimum residuals. There are also some versions that do
not require multiplication by AT , including conjugate gradients squared, and
bi-conjugate gradient stabilized. No one method is best in all cases.

Figure 6.8 shows a decision tree giving simple advice on which method to
try first, assuming that we have no other deep knowledge of the matrix A (such
as that it arises from the Poisson equation).

6.7. Fast Fourier Transform

In this section i will always denote
√
−1.

We begin by showing how to solve the two-dimensional Poisson’s equa-
tion in a way requiring multiplication by the matrix of eigenvectors of TN .

322 Applied Numerical Linear Algebra

Is storage
expensive?

A available?T A definite?

Largest and smallest
eigenvalues known?

Is A well-
conditioned?

A symmetric?

Try CG with
Chebyshev Accel.

Try CGTry GMRES

Is A well-
conditioned?

Try CG on
normal equations

Try QMR Try MINRES

GMRES(k)

No Yes

NoNo Yes No YesYes Yes No

No Yes No Yes

Try CGS or
Bi-CGStab or

Fig. 6.8. Decision tree for choosing an iterative algorithm for Ax = b. Bi-CGStab =
bi-conjugate gradient stabilized. QMR = quasi-minimum residuals.

A straightforward implementation of this matrix-matrix multiplication would
cost O(N3) = O(n3/2) operations, which is expensive. Then we show how
this multiplication can be implemented using the FFT in only O(N2 logN) =
O(n log n) operations, which is within a factor of log n of optimal.

This solution is a discrete analogue of the Fourier series solution of the
original differential equation (6.1) or (6.6). Later we will make this analogy
more precise.

Let TN = ZΛZT be the eigendecomposition of TN , as defined in Lemma 6.1.
We begin with the formulation of the two-dimensional Poisson’s equation in
equation (6.11):

TNV + V TN = h2F.

Substitute TN = ZΛZT and multiply by the ZT on the left and Z on the right
to get

ZT (ZΛZT)V Z + ZTV (ZΛZT)Z = ZT (h2F)Z

or
ΛV ′ + V ′Λ = h2F ′,

where V ′ = ZTV Z and F ′ = ZTFZ. The (j, k)th entry of this last equation is

(ΛV ′ + V ′Λ)jk = λjv
′
jk + v′jkλk = h2f ′jk,

which can be solved for v′jk to get

v′jk =
h2f ′jk
λj + λk

.

This yields the first version of our algorithm.

Algorithm 6.13. Solving the two-dimensional Poisson’s equation using the
eigendecomposition TN = ZΛZT :

Iterative Methods for Linear Systems 323

1) F ′ = ZTFZ

2) For all j and k, v′jk =
h2f ′jk
λj+λk

3) V = ZV ′ZT

The cost of step 2 is 3N2 = 3n operations, and the cost of steps 1 and 3
is 4 matrix-matrix multiplications by Z and ZT = Z, which is 8N3 = 8n3/2

operations using a conventional algorithm. In the next section we show how
multiplication by Z is essentially the same as computing a discrete Fourier
transform, which can be done in O(N2 logN) = O(n log n) operations using
the FFT.

(Using the language of Kronecker products introduced in section 6.3.3, and
in particular the eigendecomposition of TN×N from Proposition 6.1,

TN×N = I ⊗ TN + TN ⊗ I = (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T ,

we can rewrite the formula justifying Algorithm 6.13 as follows:

vec(V) = (TN×N)−1 · vec(h2F)
= ((Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T)−1 · vec(h2F)
= (Z ⊗ Z)−T · (I ⊗ Λ + Λ⊗ I)−1 · (Z ⊗ Z)−1 · vec(h2F)
= (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I)−1 · (ZT ⊗ ZT) · vec(h2F). (6.47)

We claim that doing the indicated matrix-vector multiplications from right to
left is mathematically the same as Algorithm 6.13; see Question 6.9. This also
shows how to extend the algorithm to Poisson’s equation in higher dimensions.)

6.7.1. The Discrete Fourier Transform

In this subsection, we will number the rows and columns of matrices from 0 to
N − 1 instead of from 1 to N .

Definition 6.17. The discrete Fourier transform (DFT) of an N -vector x
is the vector y = Φx, where Φ is an N -by-N matrix defined as follows. Let
ω = e

−2πi
N = cos 2π

N − i · sin
2π
N , a principal Nth root of unity. Then φjk = ωjk.

The inverse discrete Fourier transform (IDFT) of y is the vector x = Φ−1y.

Lemma 6.9.
1√
N

Φ is a symmetric unitary matrix, so Φ−1 = 1
NΦ∗ = 1

N Φ̄.

Proof. Clearly Φ = ΦT , so Φ̄ = Φ∗, and we need only show Φ · Φ̄ = N · I.
Compute (ΦΦ̄)lj =

∑N−1
k=0 φlkφ̄kj =

∑N−1
k=0 ωlkω̄kj =

∑N−1
k=0 ωk(l−j), since ω̄ =

ω−1. If l = j, this sum is clearly N . If l = j, it is a geometric sum with value
1−ωN(l−j)

1−ωl−j = 0, since ωN = 1. 2

Thus, both the DFT and IDFT are just matrix-vector multiplications and
can be straightforwardly implemented in 2N2 flops. This operation is called

324 Applied Numerical Linear Algebra

a DFT because of its close mathematical relationship to two other kinds of
Fourier analyses:

the Fourier transform F (ζ) =
∫∞
−∞ e

−2πiζxf(x)dx
and its inverse f(x) =

∫∞
−∞ e

+2πiζxF (ζ)dζ
the Fourier series cj =

∫ 1
0 e
−2πijxf(x)dx

where f is periodic on [0, 1]
and its inverse f(x) =

∑∞
j=−∞ e

+2πijxcj

the DFT yj = (Φx)j =
∑N−1

k=0 e−2πijk/Nxk
and its inverse xk = (Φ−1y)k = 1

N

∑N−1
j=0 e+2πijk/Nyj

We will make this close relationship more concrete in two ways. First, we
will show how to solve the model problem using the DFT and then the original
Poisson’s equation (6.1) using Fourier series. This example will motivate us to
find a fast way to multiply by Φ, because this will give us a fast way to solve
the model problem. This fast way is called the fast Fourier transform or FFT.
Instead of 2N2 flops, it will require only about 3

2N log2 N flops, which is much
less. We will derive the FFT by stressing a second mathematical relationship
shared among the different kinds of Fourier analyses: reducing convolution to
multiplication.

In Algorithm 6.13 we showed that to solve the discrete Poisson equation
TNV + V TN = h2F for V required the ability to multiply by the N -by-N
matrix Z, where

zjk =

√
2

N + 1
sin

π(j + 1)(k + 1)
N + 1

.

(Recall that we number rows and columns from 0 to N − 1 in this section.)
Now consider the (2N + 2)-by-(2N + 2) DFT matrix Φ, whose j, k entry is

exp
(
−2πijk
2N + 2

)
= exp

(
−πijk
N + 1

)
= cos

πjk

N + 1
− i · sin πjk

N + 1
.

Thus the N -by-N matrix Z consists of −
√

2
N+1 times the imaginary part of

the second through (N + 1)st rows and columns of Φ. So if we can multiply
efficiently by Φ using the FFT, then we can multiply efficiently by Z. (To
be most efficient, one modifies the FFT algorithm, which we describe below,
to multiply by Z directly; this is called the fast sine transform. But one
can also just use the FFT.) Thus, multiplying ZF quickly requires an FFT-
like operation on each column of F , and multiplying FZ requires the same
operation on each row. (In three dimensions, we would let V be an N -by-N -
by-N array of unknowns and apply the same operation to each of the 3N2

sections parallel to the coordinate axes.)

6.7.2. Solving the Continuous Model Problem Using Fourier Series

We now return to numbering rows and columns of matrices from 1 to N .

Iterative Methods for Linear Systems 325

In this section we show how the algorithm for solving the discrete model
problem is a natural analogue of using Fourier series to solve the original
differential equation (6.1). We will do this for the one-dimensional model
problem.

Recall that Poisson’s equation on [0, 1] is − d2v
dx2 = f(x) with boundary

conditions v(0) = v(1). To solve this, we will expand v(x) in a Fourier series:
v(x) =

∑∞
j=1 αj sin(jπx). (The boundary condition v(1) = 0 tells us that no

cosine terms appear.) Plugging v(x) into Poisson’s equation yields

∞∑
j=1

αj(j2π2) sin(jπx) = f(x).

Multiply both sides by sin(kπx), integrate from 0 to 1, and use the fact that∫ 1
0 sin(jπx) sin(kπx)dx = 0 if j = k and 1/2 if j = k to get

αk =
2

k2π2

∫ 1

0
sin(kπx)f (x)dx

and finally

v(x) =
∞∑
j=1

(
2

j2π2

∫ 1

0
sin(jπy)f(y)dy

)
sin(jπx). (6.48)

Now consider the discrete model problem TNv = h2f . Since TN = ZΛZT ,
we can write v = T−1

N h2f = ZΛ−1ZTh2f , so

vk =
N∑
j=1

zkj
h2

λj
(ZT f)j =

N∑
j=1

sin
πjk

N + 1

(
h2

λj

√
2

N + 1
(ZT f)j

)
, (6.49)

where √
2

N + 1
(ZT f)j =

√
2

N + 1

N∑
l=1

√
2

N + 1
sin
(

πjl

N + 1

)
fl

= 2
N∑
l=1

1
N + 1

sin(
πjl

N + 1
)fl

≈ 2
∫ 1

0
sin(πjy)f(y)dy,

since the last sum is just a Riemann sum approximation of the integral. Fur-
thermore, for small j, recall that h2

λj
≈ 1

j2π2 . So we see how the solution of the
discrete problem (6.49) approximates the solution of the continuous problem
(6.48), with multiplication by ZT corresponding to multiplication by sin(jπx)
and integration, and multiplication by Z corresponding to summing the differ-
ent Fourier components.

326 Applied Numerical Linear Algebra

6.7.3. Convolutions

The convolution is an important operation in Fourier analysis, whose definition
depends on whether we are doing Fourier transforms, Fourier series, or the
DFT:

Fourier transform (f ∗ g)(x) ≡
∫∞
−∞ f(x− y)g(y)dy

Fourier series (f ∗ g)(x) ≡
∫ 1

0 f(x− y)g(y)dy
DFT If a = [a0, . . . , aN−1, 0, . . . , 0]T and

b = [b0, . . . , bN−1, 0, . . . , 0]T are 2N -vectors
then a ∗ b ≡ c = [c0, . . . , c2N−1]T , where
ck =

∑k
j=0 ajbk−j

To illustrate the use of the discrete convolution, consider polynomial mul-
tiplication. Let a(x) =

∑N−1
k=0 akx

k and b(x) =
∑N−1

k=0 bkx
k be degree-(N − 1)

polynomials. Then their product c(x) ≡ a(x) · b(x) =
∑2N−1

k=0 ckx
k, where the

coefficients c0, . . . , c2N−1 are given by the discrete convolution.
One purpose of the Fourier transform, Fourier series, or DFT is to convert

convolution into multiplication. In the case of the Fourier transform, F(f∗g) =
F(f) · F(g); i.e., the Fourier transform of the convolution is the product of the
Fourier transforms. In the case of Fourier series, cj(f ∗ g) = cj(f) · cj(g);
i.e., the Fourier coefficients of the convolution are the product of the Fourier
coefficients. The same is true of the discrete convolution.

Theorem 6.10. Let a = [a0, . . . , aN−1, 0, . . . , 0]T and b = [b0, . . . , bN−1, 0, . . . , 0]T

be vectors of dimension 2N , and let c = a ∗ b = [c0, . . . , c2N−1]T . Then
(Φc)k = (Φa)k · (Φb)k.

Proof. If a′ = Φa, then a′k =
∑2N−1

j=0 ajω
kj , the value of the polynomial

a(x) ≡
∑N−1

j=0 ajx
j at x = ωk. Similarly b′ = Φb means b′k =

∑N−1
j=0 bjω

kj =
b(ωk) and c′ = Φc means c′k =

∑2N−1
j=0 cjω

kj = c(ωk). Therefore

a′k · b′k = a(ωk) · b(ωk) = c(ωk) = c′k

as desired. 2

In other words, the DFT is polynomial evaluation at the points ω0, . . . , ωN−1,
and conversely the IDFT is polynomial interpolation, producing the coefficients
of a polynomial given its values at ω0, . . . , ωN−1.

6.7.4. Computing the Fast Fourier Transform

We will derive the FFT via its interpretation as polynomial evaluation just
discussed. The goal is to evaluate a(x) =

∑N−1
k=0 akx

k at x = ωj for 0 ≤ j ≤
N − 1. For simplicity we will assume N = 2m. Now write

a(x) = a0 + a1x + a2x
2 + · · ·+ aN−1x

N−1

= (a0 + a2x
2 + a4x

4 + · · ·) + x(a1 + a3x
2 + a5x

4 + · · ·)
≡ aeven(x2) + x · aodd(x2).

Iterative Methods for Linear Systems 327

Thus, we need to evaluate two polynomials aeven and aodd of degree N
2 − 1

at (ωj)2, 0 ≤ j ≤ N −1. But this is really just N
2 points ω2j for 0 ≤ j ≤ N

2 −1,
since ω2j = ω2(j+N

2).
Thus evaluating a polynomial of degree N −1 = 2m−1 at all N Nth roots

of unity is the same as evaluating two polynomials of degree N
2 − 1 at all N

2
N
2 th roots of unity and then combining the results with N multiplications and
additions. This can be done recursively.

Algorithm 6.14. FFT (recursive version):

function FFT(a, N)
if N = 1

return a
else

a′even = FFT(aeven, N/2)
a′odd = FFT(aodd, N/2)
ω = e−2πi/N

w = [ω0, . . . , ωN/2−1]
return a′ = [a′even +w. ∗ a′odd, a′even − w. ∗ a′odd]

endif

Here .∗ means componentwise multiplication of arrays (as in Matlab), and we
have used the fact that ωj+N/2 = −ωj .

Let the cost of this algorithm be denoted C(N). Then we see that C(N)
satisfies the recurrence C(N) = 2C(N/2) + 3N/2 (assuming that the powers
of ω are precomputed and stored in tables). To solve this recurrence write

C(N) = 2C
(
N

2

)
+

3N
2

= 4C
(
N

4

)
+ 2 · 3N

2
= 8C

(
N

8

)
+ 3 · 3N

2
= · · ·
= log2 N ·

3N
2
.

To compute the FFT of each column (or each row) of an N -by-N matrix
therefore costs log2N · 3N

2

2 . This complexity analysis justifies the entry for the
FFT in Table 6.1.

In practice, implementations of the FFT use simple nested loops rather
than recursion in order to be as efficient as possible; see NETLIB/fftpack.
In addition, these implementations sometimes return the components in bit-
reversed order: This means that instead of returning y0, y1, . . . , yN−1, where
y = Φx, the subscripts j are reordered so that the bit patterns are reversed.
For example, if N = 8, the subscripts run from 0 = 0002 to 7 = 1112. The
following table shows the normal order and the bit-reversed order:

328 Applied Numerical Linear Algebra

normal increasing order bit-reversed order
0 = 0002 0 = 0002
1 = 0012 4 = 1002
2 = 0102 2 = 0102
3 = 0112 6 = 1102
4 = 1002 1 = 0012
5 = 1012 5 = 1012
6 = 1102 3 = 0112
7 = 1112 7 = 1112

The inverse FFT undoes this reordering and returns the results in their
original order. Therefore, these algorithms can be used for solving the model
problem, provided that we divide by the appropriate eigenvalues, whose sub-
scripts correspond to bit-reversed order. (Note that Matlab always returns
results in normal increasing order.)

6.8. Block Cyclic Reduction

Block cyclic reduction is another fast (O(N2 log2 N)) method for the model
problem but is slightly more generally applicable than the FFT-based solution.
The fastest algorithms for the model problem on vector computers are often a
hybrid of block cyclic reduction and FFT.

First we describe a simple but numerically unstable version version of the
algorithm; then we say a little about how to stabilize it. Write the model
problem as 

A −I
−I

. −I
−I A


 x1

...
xN

 =

 b1
...
bN

 ,

where we assume that N , the dimension of A = TN + 2IN , is odd. Note also
that xi and bi are N -vectors.

We use block Gaussian elimination to combine three consecutive sets of
equations,

+ [−xj−2 +Axj−1 −xj = bj−1],
+A∗ [−xj−1 +Axj −xj+1 = bj],

+ [−xj +Axj+1 −xj+2 = bj+1],

thus eliminating xj−1 and xj+1:

−xj−2 + (A2 − 2I)xj − xj+2 = bj−1 +Abj + bj+1.

Iterative Methods for Linear Systems 329

Doing this for every set of three consecutive equations yields two sets of
equations: one for the xj with j even,

B −I
−I B −I

−I
. −I

−I B




x2
x4
...

xN−1

 =


b1 +Ab2 + b3
b3 +Ab4 + b5

...
bN−2 +AbN−1 + bN

 , (6.50)

where B = 2I − A2, and one set of equations for the xj with j odd, which we
can solve after solving equation (6.50) for the odd xj :

A
A

. . .
A



x1
x3
...
xN

 =


b1 + x2

b3 + x2 + x4
...

bN + xN−1

 .
Note that equation (6.50) has the same form as the original problem, so

we may repeat this process recursively. For example, at the next step we get
C −I
−I C −I

−I
. −I

−I C


 x4
x8
...

 =


...
...
...

 , where C = B2 − 2I,

and 
B

B
. . .

B


 x2
x6
...

 =


...
...
...

 .
We repeat this until only one equation is left, which we solve another way.
We formalize this algorithm as follows: Assume N = N0 = 2k+1 − 1, and

let Nr = 2k+1−r − 1. Let A(0) = A and bj
(0) = bj for j = 1, . . . , N .

Algorithm 6.15. Block cyclic reduction:

1) Reduce:

for r = 0 to k − 1
A(r+1) = (A(r))2 − 2I
for j = 1 to Nr+1

bj
(r+1) = b2j−1

(r) +A(r)b2j
(r) + b2j+1

(r)

end for
end for

330 Applied Numerical Linear Algebra

Comment: at the rth step the problem is reduced to
A(r) −I
−I

. −I
−I A(r)


 x1

(r)

...
xNr

(r)

 =

 b1
(r)

...
bNr

(r)



2) A(k)x(k) = b(k) is solved another way.

3) Backsolve:

for r = k − 1, . . . , 0
for j = 1 to Nr+1

x2j
(r) = xj

(r+1)

end for
for j = 1 to Nr step 2

solve A(r)xj
(r) = bj

(r) + xj−1
(r) + xj+1

(r) for x(r)
j

(we take x(r)
0 = x

(r)
Nr+1 ≡ 0)

end for
end for

Finally, x = x(0) is the desired result.

This simple approach has two drawbacks:

1) It is numerically unstable because A(r) grows quickly: ‖A(r)‖ ∼ ‖A(r−1)‖2 ≈
42r , so in computing bj (r+1), the b2j±1

(r) are lost in roundoff.

2) A(r) has bandwidth 2r + 1 if A is tridiagonal, so it soon becomes dense
and thus expensive to multiply or solve.

Here is a fix for the second drawback. Note that A(r) is a polynomial pr(A)
of degree 2r:

p0(A) = A and pr+1(A) = (pr(A))2 − 2I.

Lemma 6.10. Let t = 2 cos θ. Then pr(t) = pr(2 cos θ) = 2 cos(2rθ).

Proof. This is a simple trigonometric identity. 2

Note that pr(t) = 2 cos(2r arccos(t2)) = 2T2r(t2) where T2r(·) is a Chebyshev
polynomial (see section 6.5.6).

Lemma 6.11. pr(t) =
∏2r
j=1(t− tj), where tj = 2 cos(π 2j−1

2r).

Iterative Methods for Linear Systems 331

Proof. The zeros of the Chebyshev polynomials are given in Lemma 6.7. 2

Thus A(r) =
∏2r
j=1(A − 2 cos(π 2j−1

2r)), so solving A(r)z = c is equivalent
to solving 2r tridiagonal systems with tridiagonal coefficient matrices A +
2 cos(π 2j−1

2r), each of which costs O(N) via tridiagonal Gaussian elimination
or Cholesky.

More changes are needed to have a numerically stable algorithm. The final
algorithm is due to Buneman and described in [46, 45].

We analyze the cost of the simple algorithm as follows; the stable algorithm
is analogous. Multiplying by a tridiagonal matrix or solving a tridiagonal
system of size N costs O(N) flops. Therefore multiplying by A(r) or solving a
system with A(r) costs O(2rN) flops, since A(r) is the product of 2r tridiagonal
matrices. The inner loop of step 1) of the algorithm therefore costs N

2r+1 ·
O(2rN) = O(N2) flops to update the Nr+1 ≈ N

2r+1 vectors b(r+1)
j . A(r+1) is not

computed explicitly. Since the loop in step 1) is executed k ≈ log2 N times,
the total cost of step 1) is O(N2 log2 N). For similar reasons, step 2) costs
O(2kN) = O(N2) flops, and step 3) costs O(N2 log2 N) flops, for a total cost
of O(N2 log2 N) flops. This justifies the entry for block cyclic reduction in
Table 6.1.

This algorithm generalizes to any block tridiagonal matrix with a sym-
metric matrix A repeated along the diagonal and a symmetric matrix F that
commutes with A (FA = AF) repeated along the offdiagonals. See also Ques-
tion 6.10. This is a common situation when solving linear systems arising from
discretized differential equations such as Poisson’s equation.

6.9. Multigrid

Multigrid methods were invented for partial differential equations such as Pois-
son’s equation, but they work on a wider class of problems too. In contrast to
other iterative schemes that we have discussed so far, multigrid’s convergence
rate is independent of the problem size N , instead of slowing down for larger
problems. As a consequence, it can solve problems with n unknowns in O(n)
time or for a constant amount of work per unknown. This is optimal, modulo
the (modest) constant hidden inside the O(·).

Here is why the other iterative algorithms that we have discussed cannot
be optimal for the model problem. In fact, this is true of any iterative al-
gorithm that computes approximation xm+1 by averaging values of xm and
the right-hand side b from neighboring grid points. This includes Jacobi’s,
Gauss–Seidel, SOR(ω), SSOR with Chebyshev acceleration (the last three with
red-black ordering), and any Krylov subspace method based on matrix-vector
multiplication with the matrix TN×N ; this is because multiplying a vector by
TN×N is also equivalent to averaging neighboring grid point values. Suppose
that we start with a right-hand side b on a 31-by-31 grid, with a single nonzero
entry, as shown in the upper left of Figure 6.9. The true solution x is shown

332 Applied Numerical Linear Algebra

0

20

0

20

0

0.5

1

Right Hand Side

0

20

0

20

0

0.5

1

True Solution

0

20

0

20

0

0.5

1

5 steps of Jacobi

0

20

0

20

0

0.5

1

Best 5 step solution

Fig. 6.9. Limits of averaging neighboring grid points.

in the upper right of the same figure; note that it is everywhere nonzero and
gets smaller as we get farther from the center. The bottom left plot in Fig-
ure 6.9 shows the solution xJ,5 after 5 steps of Jacobi’s method, starting with
an initial solution of all zeros. Note that the solution xJ,5 is zero more than
5 grid points away from the center, because averaging with neighboring grid
points can “propagate information” only one grid point per iteration, and the
only nonzero value is initially in the center of the grid. More generally, after k
iterations only grid points within k of the center can be nonzero. The bottom
right figure shows the best possible solution xBest,5 obtainable by any “nearest
neighbor” method after 5 steps: it agrees with x on grid points within 5 of
the center and is necessarily 0 farther away. We see graphically that the error
xBest,5−x is equal to the size of x at the sixth grid point away from the center.
This is still a large error; by formalizing this argument, one can show that it
would take at least O(log n) steps on an n-by-n grid to decrease the error by
a constant factor less than 1, no matter what “nearest-neighbor” algorithm
is used. If we want to do better than O(log n) steps (and O(n log n) cost),
we need to “propagate information” farther than one grid point per iteration.
Multigrid does this by communicating with nearest neighbors on coarser grids,
where a nearest neighbor on a coarse grid can be much farther away than a
nearest neighbor on a fine grid.

Multigrid uses coarse grids to do divide-and-conquer in two related senses.

Iterative Methods for Linear Systems 333

First, it obtains an initial solution for an N -by-N grid by using an (N/2)-
by-(N/2) grid as an approximation, taking every other grid point from the
N -by-N grid. The coarser (N/2)-by-(N/2) grid is in turn approximated by an
(N/4)-by-(N/4) grid, and so on recursively. The second way multigrid uses
divide-and-conquer is in the frequency domain. This requires us to think of
the error as a sum of eigenvectors, or sine-curves of different frequencies. Then
the work that we do on a particular grid will eliminate the error in half of the
frequency components not eliminated on other grids. In particular, the work
performed on a particular grid—averaging the solution at each grid point with
its neighbors, a variation of Jacobi’s method—makes the solution smoother,
which is equivalent to getting rid of the high-frequency error. We will illustrate
these notions further below.

6.9.1. Overview of Multigrid on Two-Dimensional Poisson’s Equa-
tion

We begin by stating the algorithm at a high level and then fill in details.
As with block cyclic reduction (section 6.8), it turns out to be convenient to
consider a (2k − 1)-by-(2k − 1) grid of unknowns rather than the 2k-by-2k grid
favored by the FFT (section 6.7). For understanding and implementation, it
is convenient to add the nodes at the boundary, which have the known value
0, to get a (2k + 1)-by-(2k + 1) grid, as shown in Figures 6.10 and 6.13. We
also let Nk = 2k − 1.

We will let P (i) denote the problem of solving a discrete Poisson equation on
a (2i + 1)-by-(2i + 1) grid with (2i− 1)2 unknowns, or equivalently a (Ni + 2)-
by-(Ni + 2)) grid with N2

i unknowns. The problem P (i) is specified by the
right-hand side b(i) and implicitly the grid size 2i−1 and the coefficient matrix
T (i) ≡ TNi×Ni . An approximate solution of P (i) will be denoted x(i). Thus, b(i)

and x(i) are (2i − 1)-by-(2i − 1) arrays of values at each grid point. (The zero
boundary values are implicit.) We will generate a sequence of related problems
P (i), P (i−1), P (i−2), . . . , P (1) on increasingly coarse grids, where the solution
to P (i−1) is a good approximation to the error in the solution of P (i).

To explain how multigrid works, we need some operators that take a prob-
lem on one grid and either improve it or transform it to a related problem on
another grid:

• The solution operator S takes a problem P (i) and its approximate solution
x(i) and computes an improved x(i):

improved x(i) = S(b(i), x(i)). (6.51)

The improvement is to damp the “high-frequency components” of the
error. We will explain what this means below. It is implemented by av-
eraging each grid point value with its nearest neighbors and is a variation
of Jacobi’s method.

334 Applied Numerical Linear Algebra

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 1

1

11

1

1

11

1

1

112

(3)

2

2

2

2

2

Points labeled 2 are
part of next coarser grid

Points labeled 1 are
part of next coarser grid

 7 by 7 grid of unknowns 3 by 3 grid of unknowns 1 by 1 grid of unknowns
P : 9 by 9 grid of points P : 5 by 5 grid of points P : 3 by 3 grid of points

(2) (1)

Fig. 6.10. Sequence of grids used by two-dimensional multigrid.

• The restriction operator R takes a right-hand side b(i) from problem P (i)

and maps it to b(i−1), which is an approximation on the coarser grid:

b(i−1) = R(b(i)). (6.52)

Its implementation also requires just a weighted average with nearest
neighbors on the grid.

• The interpolation operator In takes an approximate solution x(i−1) for
P (i−1) and converts it to an approximate solution x(i) for the problem
P (i) on the next finer grid:

x(i) = In(x(i−1)). (6.53)

Its implementation also requires just a weighted average with nearest
neighbors on the grid.

Since all three operators are implemented by replacing values at each grid
point by some weighted averages of nearest neighbors, each operation costs
just O(1) per unknown, or O(n) for n unknowns. This is the key to the low
cost of the ultimate algorithm.

Multigrid V-Cycle

This is enough to state the basic algorithm, the multigrid V-cycle (MGV).

Algorithm 6.16. MGV (the lines are numbered for later reference):

function MGV (b(i), x(i)) ... replace an approximate solution x(i)

... of P (i) with an improved one
if i = 1 ... only one unknown

compute the exact solution x(1) of P (1)

return x(1)

else

Iterative Methods for Linear Systems 335

1) x(i) = S(b(i), x(i)) ... improve the solution
2) r(i) = T (i) · x(i) − b(i) ... compute the residual
3) d(i) = In(MGV (4 ·R(r(i)), 0)) ... solve recursively

... on coarser grids
4) x(i) = x(i) − d(i) ... correct fine grid solution
5) x(i) = S(b(i), x(i)) ... improve the solution again

return x(i)

endif

In words, the algorithm does the following:

1. Starts with a problem on a fine grid (b(i), x(i)).

2. Improves it by damping the high-frequency error: x(i) = S(b(i), x(i)).

3. Computes the residual r(i) of the approximate solution x(i).

4. Approximates the fine grid residual r(i) on the next coarser grid: R(r(i)).

5. Solves the coarser problem recursively, with a zero initial guess: MGV (4·
R(r(i)), 0). The factor 4 appears because of the h2 factor in the right-
hand side of Poisson’s equation, which changes by a factor of 4 from fine
grid to coarse grid.

6. Maps the coarse solution back to the fine grid:
di = In(MGV (R(r(i)), 0))

7. Subtracts the correction computed on the coarse grid from the fine grid
solution: x(i) = x(i) − d(i).

8. Improves the solution some more: x(i) = S(b(i), x(i)).

We justify the algorithm briefly as follows (we do the details later). Suppose
(by induction) that d(i) is the exact solution to the equation

T (i) · d(i) = r(i) = T (i) · x(i) − b(i).

Rearranging, we get
T (i) · (x(i) − d(i)) = b(i)

so that x(i) − d(i) is the desired solution.
The algorithm is called a V-cycle, because if we draw it schematically in

(grid number i, time) space, with a point for each recursive call to MGV, it
looks like Figure 6.11, starting with a call to MGV(b(5), x(5)) in the upper left
corner. This calls MGV on grid 4, then 3, and so on down to the coarsest grid
1 and then back up to grid 5 again.

Knowing only that the building blocks S, R, and In replace values at grid
points by certain weighted averages of their neighbors, we know enough to do

336 Applied Numerical Linear Algebra

2

3

4

5
��
��
��
��

�
�
�
�

��
��
��
��

����

�
�
�
�

1

��
��
��
��

 i

�
�
�
�

��
��
��
��

�
�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

time

Fig. 6.11. MGV.

a O(·) complexity analysis of MGV. Since each building block does a constant
amount of work per grid point, it does a total amount of work proportional to
the number of grid points. Thus, each point at grid level i on the “V” in the
V-cycle will cost O((2i−1)2) = O(4i) operations. If the finest grid is at level k
with n = O(4k) unknowns, then the total cost will be given by the geometric
sum

k∑
i=1

O(4i) = O(4k) = O(n).

Full Multigrid

The ultimate multigrid algorithm uses the MGV just described as a building
block. It is called full multigrid (FMG):

Algorithm 6.17. FMG:

function FMG(b(k), x(k)) ... return an accurate solution x(k) of P (k)

solve P (1) exactly to get x(1)

for i = 2 to k
x(i) = MGV (b(i), In(x(i−1)))

end for

In words, the algorithm does the following:

1. Solves the simplest problem P (1) exactly.

2. Given a solution x(i−1) of the coarse problem P (i−1), maps it to a starting
guess x(i) for the next finer problem P (i): In(x(i−1)).

Iterative Methods for Linear Systems 337

2

3

4

5

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��1

�
�
�

�
�
�

 i

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

time

Fig. 6.12. FMG.

3. Solves the finer problem using the MGV with this starting guess: MGV (b(i),
In(x(i−1))).

Now we can do the overall O(·) complexity analysis of FMG. A picture of
FMG in (grid number i, time) space is shown in Figure 6.12. There is one
“V” in this picture for each call to MGV in the inner loop of FMG. The “V”
starting at level i costs O(4i) as before. Thus the total cost is again given by
the geometric sum

k∑
i=1

O(4i) = O(4k) = O(n),

which is optimal, since it does a constant amount of work for each of the n
unknowns. This explains the entry for multigrid in Table 6.1.

A Matlab implementation of multigrid (both for the one and two-dimensional
model problems) is available at HOMEPAGE/Matlab/MG README.html.

6.9.2. Detailed Description of Multigrid on One-Dimensional Pois-
son’s Equation

Now we will explain in detail the various operators S, R, and In composing
the multigrid algorithm and sketch the convergence proof. We will do this for
Poisson’s equation in one dimension, since this will capture all the relevant
behavior but is simpler to write. In particular, we can now consider a nested
set of one-dimensional problems instead of two-dimensional problems, as shown
in Figure 6.13.

As before we denote by P (i) the problem to be solved on grid i, namely, T (i) ·
x(i) = b(i), where as before Ni = 2i−1 and T (i) ≡ TNi . We begin by describing
the solution operator S, which is a form of weighted Jacobi convergence.

Solution Operator in One Dimension

In this subsection we drop the superscripts on T (i), x(i), and b(i) for simplicity
of notation. Let T = ZΛZT be the eigendecomposition of T , as defined in

338 Applied Numerical Linear Algebra

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

 2 2
��
��
��
��

 2

(1)

 2 2 1 1 1

Points labeled 2 are
part of next coarser grid

Points labeled 1 are
part of next coarser grid

 7 unknowns 3 unknowns 1 unknown
P : 1D grid of 9 points P : 1D grid of 5 points P : 1D grid of 3 points

(3) (2)

Fig. 6.13. Sequence of grids used by one-dimensional multigrid.

Lemma 6.1. The standard Jacobi’s method for solving Tx = b is xm+1 = Rxm+
c, where R = I − T/2 and c = b/2. We consider weighted Jacobi convergence
xm+1 = Rwxm+ cw, where Rw = I−wT/2 and cw = wb/2; w = 1 corresponds
to the standard Jacobi’s method. Note that Rw = Z(I − wΛ/2)ZT is the
eigendecomposition of Rw. The eigenvalues of Rw determine the convergence
of weighted Jacobi in the usual way: Let em = xm−x be the error at the mth
iteration of weighted Jacobi convergence so that

em = Rwem−1

= Rmw e0

= (Z(I −wΛ/2)ZT)me0

= Z(I − wΛ/2)mZT e0

so

ZT em = (I − wΛ/2)mZT e0 or (ZT em)j = (I − wΛ/2)mjj(Z
T e0)j .

We call (ZT em)j the jth frequency component of the error em, since em =
Z(ZT em) is a sum of columns of Z weighted by the (ZT em)j , i.e., a sum of
sinusoids of varying frequencies (see Figure 6.2). The eigenvalues λj(Rw) = 1−
wλj/2 determine how fast each frequency component goes to zero. Figure 6.14
plots λj(Rw) for N = 99 and varying values of the weight w.

When w = 2
3 and j > N

2 , i.e., for the upper half of the frequencies λj , we
have |λj(Rw)| ≤ 1

3 . This means that the upper half of the error components
(ZT em)j are multiplied by 1

3 or less at every iteration, independently of N .
Low-frequency error components are not decreased as much, as we will see in
Figure 6.15. So weighted Jacobi convergence with w = 2

3 is good at decreasing
the high-frequency error.

Thus, our solution operator S in equation (6.51) consists of taking one step
of weighted Jacobi convergence with w = 2

3 :

S(b, x) = R2/3 · x + b/3. (6.54)

When we want to indicate the grid i on which R2/3 operates, we will instead

write R(i)
2/3.

Figure 6.15 shows the effect of taking two steps of S for i = 6, where we
have 2i − 1 = 63 unknowns. There are three rows of pictures, the first row

Iterative Methods for Linear Systems 339

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1/3

-1/3

w=1

w=2/3

w=1/2

Fig. 6.14. Graph of the spectrum of Rw for N = 99 and w = 1 (Jacobi’s method),
w = 1/2 and w = 2/3.

showing the initial solution and error and the following two rows showing the
solution xm and error em after successive applications of S. The true solution
is a sine curve, shown as a dotted line in the leftmost plot in each row. The
approximate solution is shown as a solid line in the same plot. The middle
plot shows the error alone, including its two-norm in the label at the bottom.
The rightmost plot shows the frequency components of the error ZT em. One
can see in the rightmost plots that as S is applied, the right (upper) half of the
frequency components are damped out. This can also be seen in the middle and
left plots, because the approximate solution grows smoother. This is because
high-frequency error looks like “rough” error and low-frequency error looks like
“smooth” error. Initially, the norm of the vector decreases rapidly, from 1.65
to 1.055, but then decays more gradually, because there is little more error in
the high frequencies to damp. Thus, it only makes sense to do a few iterations
of S at a time.

Recursive Structure of Multigrid

Using this terminology, we can describe the recursive structure of multigrid as
follows. What multigrid does on the finest grid P (k), is to damp the upper half
of the frequency components of the error in the solution. This is accomplished
by the solution operator S, as just described. On the next coarser grid, with
half as many points, multigrid damps the upper half of the remaining frequency
components in the error. This is because taking a coarser grid, with half as
many points, makes frequencies appear twice as high, as illustrated in the
example below.

340 Applied Numerical Linear Algebra

0 32 64
−1.5

−1

−0.5

0

0.5

1

1.5
Solution after 0 steps

True (dotted)
Approx (solid)

0 32 64
−0.5

0

0.5
Error

Norm = 1.65
0 32 64

−0.5

0

0.5
Error in Frequency Coordinates

0 32 64
−1.5

−1

−0.5

0

0.5

1

1.5
Solution after 1 steps

True (dotted)
Approx (solid)

0 32 64
−0.5

0

0.5
Error

Norm = 1.055
0 32 64

−0.5

0

0.5
Error in Frequency Coordinates

0 32 64
−1.5

−1

−0.5

0

0.5

1

1.5
Solution after 2 steps

True (dotted)
Approx (solid)

0 32 64
−0.5

0

0.5
Error

Norm = 0.9176
0 32 64

−0.5

0

0.5
Error in Frequency Coordinates

Fig. 6.15. Illustration of weighted Jacobi convergence.

Iterative Methods for Linear Systems 341

Upper half ofUpper
half of
freqs.

Upper
half of
freqs.

Schematic Description of Multigrid

Frequency j

j

Component
Error

frequencies on P (4)

on P(3)on P(2)

P
(1)

(Z e)T
0

Fig. 6.16. Schematic description of how multigrid damps error components.

Example 6.16.

N = 12, k = 4
low frequency, k < N

2
sin π·k·j

12
for 1 ≤ j ≤ 11

fine grid,
2 4 8 106

N = 6, k = 4
high frequency, k > N

2
sin π·4·j

6
for 1 ≤ j ≤ 5

coarse grid,
21 3 4 5

¦

On the next coarser grid, the upper half of the remaining frequency compo-
nents are damped, and so on, until we solve the exact (one unknown) problem
P (1). This is shown schematically in Figure 6.16. The purpose of the restric-
tion and interpolation operators is to change an approximate solution on one
grid to one on the next coarser or next finer grid.

Restriction Operator in One Dimension

Now we turn to the restriction operator R, which takes a right-hand side r(i)

from problem P (i) and approximates it on the next coarse grid, yielding r(i−1).

342 Applied Numerical Linear Algebra

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
Restriction by Smoothing

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
Restriction by Sampling

Fig. 6.17. Restriction from a grid with 24 − 1 = 15 points to a grid with 23 − 1 = 7
points. (0 boundary values also shown.)

The simplest way to compute r(i−1) would be to simply sample r(i) at the
common grid points of the coarse and fine grids. But it is better to compute
r(i−1) at a coarse grid point by averaging values of r(i) on neighboring fine grid
points: the value at a coarse grid point is .5 times the value at the corresponding
fine grid point, plus .25 times each of the fine grid point neighbors. We call
this smoothing. Both methods are illustrated in Figure 6.17.

So altogether, we write the restriction operation as

r(i−1) = R(r(i))
≡ P i−1

i · r(i)

=



1
4

1
2

1
4
1
4

1
2

1
4
1
4

1
2

1
4

.
1
4

1
2

1
4

 · r
(i). (6.55)

The subscript i and superscript i− 1 on the matrix P i−1
i indicate that it maps

from the grid with 2i − 1 points to the grid with 2i−1 − 1 points.
In two dimensions, restriction involves averaging with the eight nearest

neighbors of each grid points: 1
4 times the grid cell value itself, plus 1

8 times
the four neighbors to the left, right, top, and bottom, plus 1

16 times the four
remaining neighbors at the upper left, lower left, upper right, and lower right.

Iterative Methods for Linear Systems 343

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
Coarse Grid Function

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
Interpolated Fine Grid Function

Fig. 6.18. Interpolation from a grid with 23− 1 = 7 points to a grid with 24 − 1 = 15
points. (0 boundary values also shown.)

Interpolation Operator in One Dimension

The interpolation operator In takes an approximate solution d(i−1) on a coarse
grid and maps it to a function d(i) on the next finer grid. The solution d(i−1)

is interpolated to the finer grid as shown in Figure 6.18: we do simple linear
interpolation to fill in the values on the fine grid (using the fact that the
boundary values are known to be zero). Mathematically, we write this as

d(i) = In(d(i−1)) ≡ P ii−1 · d(i−1) =



1
2
1
1
2

1
2

1
. . .

1
2

. . . 1
2

. . . 1
1
2


· x(i−1). (6.56)

The subscript i− 1 and superscript i on the matrix P ii−1 indicate that it maps
from the grid with 2i−1 − 1 points to the grid with 2i − 1 points.

Note that P ii−1 = 2 · (P i−1
i)T . In other words, interpolation and smoothing

are essentially transposes of one another. This fact will be important in the
convergence analysis later.

In two dimensions, interpolation again involves averaging the values at
coarse nearest neighbors of a fine grid point (one neighbor if the fine grid point

344 Applied Numerical Linear Algebra

is also a coarse grid point; two neighbors if the fine grid point’s nearest coarse
neighbors are to the left and right or top and bottom; and four neighbors
otherwise).

Putting It All Together

Now we run the algorithm just described for eight iterations on the problem
pictured in the top two plots of Figure 6.19; both the true solution x (on the
top left) and right-hand side b (on the top right) are shown. The number
of unknowns is 27 − 1 = 127. We show how multigrid converges in the bot-
tom three plots. The middle left plot shows the ratio of consecutive residuals
‖rm+1‖/‖rm‖, where the subscript m is the number of iterations of multigrid
(i.e., calls to FMG, or Algorithm 6.17). These ratios are about .15, indicating
that the residual decreases by more than a factor of 6 with each multigrid
iteration. This quick convergence is indicated in the middle right plot, which
shows a semilogarithmic plot of ‖rm‖ versus m; it is a straight line with slope
log10(.15) as expected. Finally, the bottom plot plots all eight error vectors
xm−x. We see how they smooth out and become parallel on a semilogarithmic
plot, with a constant decrease between adjacent plots of log10(.15).

Figure 6.20 shows a similar example for a two-dimensional model problem.

Convergence Proof

Finally, we sketch a convergence proof that shows that the overall error in an
FMG “V”-cycle is decreased by a constant less than 1, independent of grid size
Nk = 2k−1. This means that the number of FMG V-cycles needed to decrease
the error by any factor less than 1 is independent of k, and so the total work
is proportional to the cost of a single FMG V-cycle, i.e., proportional to the
number of unknowns n.

We will simplify the proof by looking at one V-cycle and assuming by
induction that the coarse grid problem is solved exactly [42]. In reality, the
coarse grid problem is not solved quite exactly, but this rough analysis suffices
to capture the spirit of the proof: that low-frequency error is eliminated on
the coarser grid and high-frequency error is eliminated on the fine grid.

Now let us write all the formulas defining a V-cycle and combine them all to
get a single formula of the form “new e(i) = M ·e(i),” where e(i) = x(i)−x is the
error and M is a matrix whose eigenvalues determine the rate of convergence;
our goal is to show that they are bounded away from 1, independently of i.
The line numbers in the following table refer to Algorithm 6.16.

Iterative Methods for Linear Systems 345

0 50 100
−1

−0.5

0

0.5

1
True Solution

0 50 100
−1

−0.5

0

0.5

1
Right Hand Side

2 4 6 8
0

0.2

0.4

0.6

0.8

1
norm(res(m+1))/norm(res(m))

iteration number m
2 4 6 8

10
−6

10
−4

10
−2

10
0

norm(res(m))

iteration number m

20 40 60 80 100 120
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error of each iteration

Fig. 6.19. Multigrid solution of one-dimensional model problem.

346 Applied Numerical Linear Algebra

0
10

20

0

10

20
−2

−1

0

1

True Solution

0
10

20

0

10

20
−4

−2

0

2

Right Hand Side

5 10 15 20
0

0.2

0.4

0.6

0.8

1
norm(res(m+1))/norm(res(m))

iteration number m
0 5 10 15 20

10
−8

10
−6

10
−4

10
−2

10
0

10
2

norm(res(m))

iteration number m

Fig. 6.20. Multigrid solution of two-dimensional model problem.

(a) x(i) = S(b(i), x(i)) = R
(i)
2/3x

(i) + b(i)/3
by line 1) and equation (6.54),

(b) r(i) = T (i) · x(i) − b(i)
by line 2),

d(i) = In(MGV (4 · R(r(i)), 0))
by line 3)

= In(
[
T (i−1)

]−1
(4 ·R(r(i))))

by our assumption that the
coarse grid problem is solved exactly

= In(
[
T (i−1)

]−1
(4 · P i−1

i r(i)))
by equation (6.55)

(c) = P ii−1(
[
T (i−1))

]−1
(4 · P i−1

i r(i)))
by equation (6.56)

(d) x(i) = x(i) − d(i)

by line 4)
(e) x(i) = S(b(i), x(i)) = R

(i)
2/3x

(i) + b(i)/3
by line 5).

In order to get equations updating the error e(i), we subtract the identity
x = R

(i)
2/3x+ b(i)/3 from lines (a) and (e) above, 0 = T (i) ·x− b(i) from line (b),

Iterative Methods for Linear Systems 347

and x = x from line (d) to get
(a) e(i) = R

(i)
2/3e

(i),
(b) r(i) = T (i) · e(i),
(c) d(i) = P ii−1(

[
T (i−1)

]−1
(4 · P i−1

i r(i))),
(d) e(i) = e(i) − d(i),
(e) e(i) = R

(i)
2/3e

(i).
Substituting each of the above equations into the next yields the following

formula, showing how the error is updated by a V-cycle:

new e(i) = R
(i)
2/3

{
I − P ii−1 ·

[
T (i−1)

]−1
· (4 · P i−1

i T (i))
}
R

(i)
2/3 · e

(i)

≡ M · e(i). (6.57)

Now we need to compute the eigenvalues of M . We first simplify equa-
tion (6.57), using the facts that P ii−1 = 2 · (P i−1

i)T and

T (i−1) = 4 · P i−1
i T (i)P ii−1 = 8 · P i−1

i T (i)(P i−1
i)T (6.58)

(see Question 6.15). Substituting these into the expression for M in equa-
tion (6.57) yields

M = R
(i)
2/3

{
I − (P i−1

i)T ·
[
P i−1
i T (i)(P i−1

i)T
]−1
· (P i−1

i T (i))
}
R

(i)
2/3

or, dropping indices to simplify notation,

M = R2/3

{
I − P T ·

[
PTP T

]−1 · PT
}
R2/3. (6.59)

We continue, using the fact that all the matrices composing M (T , R2/3,
and P) can be (nearly) diagonalized by the eigenvector matrices Z = Z(i) and
Z(i−1) of T = T (i) and T (i−1), respectively: Recall that Z = ZT = Z−1, T =
ZΛZ, and R2/3 = Z(I −Λ/3)Z ≡ ZΛRZ. We leave it to the reader to confirm
that Z(i−1)PZ(i) = ΛP , where ΛP is almost diagonal (see Question 6.15):

λP,jk =


(+1 + cos πj2i)/

√
8 if k = j,

(−1 + cos πj2i)/
√

8 if k = 2i − j,
0 otherwise.

(6.60)

This lets us write

ZMZ = (ZR2/3Z)

·
{
I − (ZP TZ(i−1)) ·

[
(Z(i−1)PZ)(ZTZ)(ZP TZ(i−1))

]−1

·(Z(i−1)PZ)(ZTZ)
}
· (ZR2/3Z)

= ΛR ·
{
I − ΛTP

[
ΛPΛΛTP

]−1
ΛPΛ

}
· ΛR.

348 Applied Numerical Linear Algebra

The matrix ZMZ is similar to M since Z = Z−1 and so has the same eigen-
values as M . Also, ZMZ is nearly diagonal: it has nonzeros only on its main
diagonal and “perdiagonal” (the diagonal from the lower left corner to the
upper right corner of the matrix). This lets us compute the eigenvalues of T
explicitly.

Theorem 6.11. The matrix M has eigenvalues 1/9 and 0, independent of
i. Therefore multigrid converges at a fixed rate independent of the number of
unknowns.

For a proof, see Question 6.15. For a more general analysis, see [266].
For an implementation of this algorithm, see Question 6.16. The Web site

[89] contains pointers to an extensive literature, software, and so on.

6.10. Domain Decomposition

Domain decomposition for solving sparse systems of linear equations is a topic
of current research. See [48, 114, 203] and especially [230] for recent surveys.
We will give only simple examples.

The need for methods beyond those we have discussed arises from of the
irregularity and size of real problems and also from the need for algorithms
for parallel computers. The fastest methods that we have discussed so far,
those based on block cyclic reduction, the FFT, and multigrid, work best
(or only) on particularly regular problems such as the model problem, i.e.,
Poisson’s equation discretized with a uniform grid on a rectangle. But the
region of solution of a real problem may not be a rectangle but more irregular,
representing a physical object like a wing (see Figure 2.12). Figure 2.12 also
illustrates that there may be more grid points in regions where the solution is
expected to be less smooth than in regions with a smooth solution. Also, we
may have more complicated equations than Poisson’s equation or even different
equations in different regions. Independent of whether the problem is regular,
it may be too large to fit in the computer memory and may have to be solved
“in pieces.” Or we may want to break the problem into pieces that can be
solved in parallel on a parallel computer.

Domain decomposition addresses all these issues by showing how to sys-
tematically create “hybrid” methods from the simpler methods discussed in
previous sections. These simpler methods are applied to smaller and more reg-
ular subproblems of the overall problem, after which these partial solutions are
“pieced together” to get the overall solution. These subproblems can be solved
one at a time if the whole problem does not fit into memory, or in parallel on
a parallel computer. We give examples below. There are generally many ways
to break a large problem into pieces, many ways to solve the individual pieces,
and many ways to piece the solutions together. Domain decomposition theory
does not provide a magic way to choose the best way to do this in all cases

Iterative Methods for Linear Systems 349

but rather a set of reasonable possibilities to try. There are some cases (such
as problems sufficiently like Poisson’s equation) where the theory does yield
“optimal methods” (costing O(1) work per unknown).

We divide our discussion into two parts, nonoverlapping methods and over-
lapping methods.

6.10.1. Nonoverlapping Methods

This method is also called substructuring or a Schur complement method in the
literature. It has been used for decades, especially in the structural analysis
community, to break large problems into smaller ones that fit into computer
memory.

For simplicity we will illustrate this method using the usual Poisson’s equa-
tion with Dirichlet boundary conditions discretized with a 5-point stencil but
on an L-shaped region rather than a square. This region may be decomposed
into two domains: a small square and a large square of twice the side length,
where the small square is connected to the bottom of the right side of a larger
square. We will design a solver that can exploit our ability to solve problems
quickly on squares.

In the figure below, the number of each grid point is shown for a coarse
discretization (the number is above and to the left of the corresponding grid
point; only grid points interior to the “L” are numbered).

���� ������������������

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

����������������

����

4

9 8 7 6 5 30 2 1

311011121314

1516171819

2021222324

2526272829

3

Note that we have numbered first the grid points inside the two subdomains
(1 to 4 and 5 to 29) and then the grid points on the boundary (30 and 31).
The resulting matrix is

350 Applied Numerical Linear Algebra

4 -1 -1
-1 4 -1 -1
-1 4 -1

-1 -1 4 -1
4 -1 -1 -1

-1 4 -1 -1
-1 4 -1 -1

-1 4 -1 -1
-1 4 -1

-1 4 -1 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1
-1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1

-1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1
-1 4 -1

-1 -1 4 -1
-1 -1 4 -1

-1 -1 4 -1
-1 -1 4

-1 -1 4 -1
-1 -1 -1 4

≡ A ≡

 A11 0 A13

0 A22 A23

AT13 AT23 A33

 .
Here, A11 = T2×2, A22 = T5×5, and A33 = T2×1 ≡ T2 + 2I2, where TN is

defined in equation (6.3) and TN×N is defined in equation (6.14). One of the
most important properties of this matrix is that A12 = 0, since there is no
direct coupling between the interior grid points of the two subdomains. The
only coupling is through the boundary, which is numbered last (grid points 30
and 31). Thus A13 contains the coupling between the small square and the
boundary, and A23 contains the coupling between the large square and the
boundary.

To see how to take advantage of the special structure of A to solve Ax = b,
write the block LU decomposition of A as follows:

A =

 I 0 0
0 I 0

AT13A
−1
11 AT23A

−1
22 I

 ·
 I 0 0

0 I 0
0 0 S

 ·
 A11 0 A13

0 A22 A23
0 0 I

 ,
where

S = A33 −AT13A
−1
11 A13 −AT23A

−1
22 A23 (6.61)

Iterative Methods for Linear Systems 351

is called the Schur complement of the leading principal submatrix containing
A11 and A22. Therefore, we may write
A−1 = A−1

11 0 −A−1
11 A13

0 A−1
22 −A−1

22 A23
0 0 I

 ·
 I 0 0

0 I 0
0 0 S−1

 ·
 I 0 0

0 I 0
−AT13A

−1
11 −AT23A

−1
22 I

 .
Therefore, to multiply a vector by A−1 we need to multiply by the blocks in
the entries of this factored form of A−1, namely, A13 and A23 (and their trans-
poses), A−1

11 and A−1
22 , and S−1. Multiplying by A13 and A23 is cheap because

they are very sparse. Multiplying by A−1
11 and A−1

22 is also cheap because we
chose these subdomains to be solvable by FFT, block cyclic reduction, multi-
grid, or some other fast method discussed so far. It remains to explain how to
multiply by S−1.

Since there are many fewer grid points on the boundary than in the subdo-
mains, A33 and S have a much smaller dimension than A11 and A22; this effect
grows for finer grid spacings. S is symmetric positive definite, as is A, and (in
this case) dense. To compute it explicitly one would need to solve with each
subdomain once per boundary grid point (from the A−1

11 A13 and A−1
22 A23 terms

in (6.61)). This can certainly be done, after which one could factor S using
dense Cholesky and proceed to solve the system. But this is expensive, much
more so than just multiplying a vector by S, which requires just one solve
per subdomain using equation (6.61). This makes a Krylov subspace–based
iterative method such as CG look attractive (section 6.6), since these methods
require only multiplying a vector by S. The number of matrix-vector multi-
plications CG requires depends on the condition number of S. What makes
domain decomposition so attractive is that S turns out to be much better con-
ditioned that the original matrix A (a condition number that grows like O(N)
instead of O(N2)), and so convergence is fast [114, 203].

More generally, one has k > 2 subdomains, separated by boundaries (see
Figure 6.21, where the heavy lines separate subdomains). If we number the
nodes in each subdomain consecutively, followed by the boundary nodes, we
get the matrix

A =


A1,1 0 A1,k+1

. . .
...

0 Ak,k Ak,k+1

AT1,k+1 · · · ATk,k+1 Ak+1,k+1

 , (6.62)

where again we can factor it by factoring each Ai,i independently and forming
the Schur complement S = Ak+1,k+1 −

∑k
i=1 A

T
i,k+1A

−1
i,i Ai,k+1.

In this case, when there is more than one boundary segment, S has further
structure that can be exploited to precondition it. For example, by numbering
the grid points in the interior of each boundary segment before the grid points

352 Applied Numerical Linear Algebra

at the intersection of boundary segments, one gets a block structure as in A.
The diagonal blocks of S are complicated but may be approximated by T

1/2
N ,

which may be inverted efficiently using the FFT [35, 36, 37, 38, 39]. To sum-
marize the state of the art, by choosing the preconditioner for S appropriately,
one can make the number of steps of conjugate gradient independent of the
number of boundary grid points N [229].

6.10.2. Overlapping Methods

The methods in the last section were called nonoverlapping because the do-
mains corresponding to the nodes in Ai,i were disjoint, leading to the block
diagonal structure in equation (6.62). In this section we permit overlapping
domains, as shown in the figure below. As we will see, this overlap permits us
to design an algorithm comparable in speed with multigrid but applicable to
a wider set of problems.

The rectangle with a dashed boundary in the figure is domain Ω1, and the
square with a solid boundary is domain Ω2. We have renumbered the nodes
so that the nodes in Ω1 are numbered first and the nodes in Ω2 are numbered
last, with the nodes in the overlap Ω1 ∩ Ω2 in the middle.

��

�
�
�
�

��

�
�
�
�

����

��
��
��
��

���� ������ ������

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

���� ������ ������

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

���� ������ ������

1

2

35

6

7

8

14

16

15

17

18

19

20

21

22

24

23

25

26

27

28

29

30

31

4

9

10

11

12

13

Ω1

2Ω

These domains are shown in the matrix A below, which is the same matrix
as in section 6.10.1 but with its rows and columns ordered as shown above:

Iterative Methods for Linear Systems 353

4 -1 -1
-1 4 -1
-1 4 -1 -1

-1 -1 4 -1
-1 4 -1 -1

-1 -1 4 -1
-1 4 -1 -1

-1 -1 4 -1 -1
-1 4 -1 -1

-1 -1 4 -1 -1
-1 4 -1 -1

-1 4 -1 -1
-1 4 -1

-1 -1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1
-1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1

-1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1
-1 4 -1

-1 -1 4 -1
-1 -1 4 -1

-1 -1 4 -1
-1 -1 4

We have indicated the boundaries between domains in the way that we
have partitioned the matrix: The single lines divide the matrix into the nodes
associated with Ω1 (1 through 10) and the rest Ω \ Ω1 (11 through 31). The
double lines divide the matrix into the nodes associated with Ω2 (7 through
31) and the rest Ω \Ω2 (1 through 6). The submatrices below are subscripted
accordingly:

A =
[

AΩ1 ,Ω1 AΩ1 ,Ω\Ω1

AΩ\Ω1 ,Ω1 AΩ\Ω1 ,Ω\Ω1

]
=

[
AΩ\Ω2 ,Ω\Ω2 AΩ\Ω2 ,Ω2

AΩ2 ,Ω\Ω2 AΩ2 ,Ω2

]
.

We conformally partition vectors such as

x =
[

xΩ1

xΩ\Ω1

]
=
[
x(1 : 10)
x(11 : 31)

]
=

[
xΩ\Ω2

xΩ2

]
=

[
x(1 : 6)
x(7 : 31)

]
.

Now we have enough notation to state two basic overlapping domain decom-
position algorithms. The simplest one is called the additive Schwarz method for
historical reasons but could as well be called overlapping block Jacobi iteration
because of its similarity to (block) Jacobi iteration from sections 6.5 and 6.6.5.

354 Applied Numerical Linear Algebra

Algorithm 6.18. Additive Schwarz method for updating an approximate so-
lution xi of Ax = b to get a better solution xi+1:

r = b− Axi /* compute the residual */
xi+1 = 0
xi+1 ,Ω1 = xi ,Ω1 +A−1

Ω1 ,Ω1
· rΩ1 /* update the solution on Ω1 */

xi+1 ,Ω2 = xi+1 ,Ω2 +A−1
Ω2 ,Ω2

· rΩ2 /* update the solution on Ω2 */

This algorithm also be written in one line as

xi+1 = xi +
[
A−1

Ω1 ,Ω1
· rΩ1

0

]
+

[
0

A−1
Ω2 ,Ω2

· rΩ2

]
.

In words, the algorithm works as follows: The update A−1
Ω1 ,Ω1

rΩ1 corresponds
to solving Poisson’s equation just on Ω1, using boundary conditions at nodes
11, 14, 17, 18, and 19, which depend on the previous approximate solution xi.
The update A−1

Ω2 ,Ω2
rΩ2 is analogous, using boundary conditions at nodes 5 and

6 depending on xi.
In our case the Ωi are rectangles, so any one of our earlier fast methods,

such as multigrid, could be used to solve A−1
Ωi ,ΩirΩi . Since the additive Schwarz

method is iterative, it is not necessary to solve the problems on Ωi exactly.
Indeed, the additive Schwarz method is typically used as a preconditioner

for a Krylov subspace method like conjugate gradients (see section 6.6.5). In
the notation of section 6.6.5, the preconditioner M is given by

M−1 =
[
A−1

Ω1 ,Ω1
0

0 0

]
+

[
0 0
0 A−1

Ω2 ,Ω2

]
.

If Ω1 and Ω2 did not overlap, then M−1 would simplify to[
A−1

Ω1 ,Ω1
0

0 A−1
Ω2 ,Ω2

]

and we would be doing block Jacobi iteration. But we know that Jacobi’s
method does not converge particularly quickly, because “information” about
the solution from one domain can only move slowly to the other domain across
the boundary between them (see the discussion at the beginning of section 6.9).
But as long as the overlap is a large enough fraction of the two domains, infor-
mation will travel quickly enough to guarantee fast convergence. Of course we
do not want too large an overlap, because this increases the work significantly.
The goal in designing a good domain decomposition method is to choose the
domains and the overlaps so as to have fast convergence while doing as little
work as possible; we say more on how convergence depends on overlap below.

Iterative Methods for Linear Systems 355

From the discussion in section 6.5, we know that the Gauss–Seidel method
is likely to be more effective than Jacobi’s method. This is the case here as
well, with the overlapping block Gauss–Seidel method (more commonly called
the multiplicative Schwarz method) often being twice as fast as additive block
Jacobi iteration (the additive Schwarz method).

Algorithm 6.19. Multiplicative Schwarz method for updating an approxi-
mate solution xi of Ax = b:

(1) rΩ1 = (b−Axi)Ω1 /* compute residual of xi on Ω1 */
(2) xi+ 1

2 ,Ω1
= xi ,Ω1 + A−1

Ω1 ,Ω1
· rΩ1 /* update solution on Ω1 */

(2′) xi+ 1
2 ,Ω\Ω1

= xi ,Ω\Ω1

(3) rΩ2 = (b−Axi+ 1
2
)Ω2 /* compute residual of xi+ 1

2
on Ω2 */

(4) xi+1 ,Ω2 = xi+ 1
2 ,Ω2

+ A−1
Ω2 ,Ω2

· rΩ2 /* update solution on Ω2 */
(4′) xi+1 ,Ω\Ω2 = xi+ 1

2 ,Ω\Ω2

Note that lines (2′) and (4′) do not require any data movement, provided that
xi+ 1

2
and xi+1 overwrite xi.

This algorithm first solves Poisson’s equation on Ω1 using boundary data
from xi, just like Algorithm 6.18. It then solves Poisson’s equation on Ω2, but
using boundary data that has just been updated. It may also be used as a
preconditioner for a Krylov subspace method.

In practice more domains than just two (Ω1 and Ω2) are used. This is done
if the domain of solution is more complicated or if there are many independent
parallel processors available to solve independent problems A−1

Ωi ,ΩirΩi or just
to keep the subproblems A−1

Ωi ,ΩirΩi small and inexpensive to solve.
Here is a summary of the theoretical convergence analysis of these methods

for the model problem and similar elliptic partial differential equations. Let h
be the mesh spacing. The theory predicts how many iterations are necessary to
converge as a function of h as h decreases to 0. With two domains, as long as
the overlap region Ω1∩Ω2 is a nonzero fraction of the total domain Ω1∪Ω2, the
number of iterations required for convergence is independent of h as h goes to
zero. This is an attractive property and is reminiscent of multigrid, which also
converged at a rate independent of mesh size h. But the cost of an iteration
includes solving subproblems on Ω1 and Ω2 exactly, which may be comparable
in expense to the original problem. So unless the solutions on Ω1 and Ω2 are
very cheap (as with the L-shaped region above), the cost is still high.

Now suppose we have many domains Ωi, each of size H À h. In other
words, think of the Ωi as the regions bounded by a coarse mesh with spac-
ing H, plus some cells beyond the boundary, as shown by the dashed line in
Figure 6.21.

Let δ < H be the amount by which adjacent domains overlap. Now let H,
δ, and h all go to zero such that the overlap fraction δ/H remains constant,

356 Applied Numerical Linear Algebra

H

H

Ωi

δ

h

h

Fig. 6.21. Coarse and fine discretizations of an L-shaped region.

and H À h. Then the number of iterations required for convergence grows
like 1/H , i.e., independently of the fine mesh spacing h. This is close to, but
still not as good as, multigrid, which does a constant number of iterations and
O(1) work per unknown.

Attaining the performance of multigrid requires one more idea, which, per-
haps not surprisingly, is similar to multigrid. We use an approximation AH
of the problem on the coarse grid with spacing H to get a coarse grid precon-
ditioner in addition to the fine grid preconditioners A−1

Ωi ,Ωi . We need three
matrices to describe the algorithm. First, let AH be the matrix for the model
problem discretized with coarse mesh spacing H. Second, we need a restriction
operator R to take a residual on the fine mesh and restrict it to values on the
coarse mesh; this is essentially the same as in multigrid (see section 6.9.2).
Finally, we need an interpolation operator to take values on the coarse mesh
and interpolate them to the fine mesh; as in multigrid this also turns out to
be RT .

Algorithm 6.20. Two-level additive Schwarz method for updating an approx-
imate solution xi of Ax = b to get a better solution xi+1:

xi+1 = xi
for i = 1 to the number of domains Ωi

rΩi = (b− Axi)Ωi
xi+1 ,Ωi = xi+1 ,Ωi +A−1

Ωi ,Ωi · rΩi
endfor
xi+1 = xi+1 +RTA−1

C Rr

As with Algorithm 6.18, this method is typically used as a preconditioner
for a Krylov subspace method.

Convergence theory for this algorithm, which is applicable to more general
problems than Poisson’s equation, says that as H, δ, and h shrink to 0 with

Iterative Methods for Linear Systems 357

δ/H staying fixed, the number of iterations required to converge is independent
of H, h or δ. This means that as long as the work to solve the subproblems
A−1

Ωi ,Ωi and A−1
H is proportional to the number of unknowns, the complexity is

as good as multigrid.
It is probably evident to the reader that implementing these methods in a

real world problem can be complicated. There is software available on-line that
implements many of the building blocks described here and also runs on parallel
machines. It is called PETSc, for Portable Extensible Toolkit for Scientific
computing. PETSc is available at http://www.mcs.anl.gov/petsc/petsc.html
and is described briefly in [230].

6.11. References and Other Topics for Chapter 6

Up-to-date surveys of modern iterative methods are given in [15, 105, 134, 212],
and their parallel implementations are also surveyed in [75]. Classical methods
such as Jacobi’s, Gauss–Seidel, and SOR methods are discussed in detail in
[247, 135]. Multigrid methods are discussed in [42, 183, 184, 258, 266] and the
references therein; [89] is a Web site with pointers to an extensive bibliography,
software, and so on. Domain decomposition are discussed in [48, 114, 203, 230].
Chebyshev and other polynomials are discussed in [238]. The FFT is discussed
in any good textbook on computer science algorithms, such as [3] and [246].
A stabilized version of block cyclic reduction is found in [46, 45].

6.12. Questions for Chapter 6

Question 6.1. (Easy) Prove Lemma 6.1.

Question 6.2. (Easy) Prove the following formulas for triangular factoriza-
tions of TN .

1. The Cholesky factorization TN = BT
NBN has a upper bidiagonal Cholesky

factor BN with

BN (i, i) =

√
i+ 1
i

and BN (i, i+ 1) =

√
i

i+ 1
.

2. The result of Gaussian elimination with partial pivoting on TN is TN =
LNUN , where the triangular factors are bidiagonal:

LN (i, i) = 1 and LN (i+ 1, i) = − i

i+ 1
,

UN (i, i) =
i+ 1
i

and UN (i, i+ 1) = −1.

358 Applied Numerical Linear Algebra

3. TN = DND
T
N , where DN is the N -by-(N + 1) upper bidiagonal matrix

with 1 on the main diagonal and −1 on the superdiagonal.

Question 6.3. (Easy) Confirm equation (6.13).

Question 6.4. (Easy)

1. Prove Lemma 6.2.

2. Prove Lemma 6.3.

3. Prove that the Sylvester equation AX −XB = C is equivalent to
(In ⊗ A−BT ⊗ Im)vec(X) = vec(C).

4. Prove that vec(AXB) = (BT ⊗A) · vec(X).

Question 6.5. (Medium) Suppose that An×n is diagonalizable, so A has n
independent eigenvectors: Axi = αixi, or AX = XΛA, where X = [x1, . . . , xn]
and ΛA = diag(αi). Similarly, suppose that Bm×m is diagonalizable, so b has m
independent eigenvectors: Byi = βiyi, or BY = Y ΛB, where Y = [y1, . . . , ym]
and ΛB = diag(βj). Prove the following results.

1. The mn eigenvalues of Im⊗A+B⊗ In are λij = αi+βj , i.e., all possible
sums of pairs of eigenvalues of A and B. The corresponding eigenvectors
are zij , where zij = xi⊗yj , whose (km+ l)th entry is xi(k)yj(l). Written
another way,

(Im ⊗ A+ B ⊗ In)(Y ⊗X) = (Y ⊗X) · (Im ⊗ ΛA + ΛB ⊗ In). (6.63)

2. The Sylvester equation AX + XBT = C is nonsingular (solvable for X ,
given any C) if and only if the sum αi + βj = 0 for all eigenvalues αi
of A and βj of B. The same is true for the slightly different Sylvester
equation AX + XB = C (see also Question 4.6).

3. The mn eigenvalues of A ⊗ B are λij = αiβj , i.e., all possible products
of pairs of eigenvalues of A and B. The corresponding eigenvectors are
zij , where zij = xi ⊗ yj , whose (km + l)th entry is xi(k)yj(l). Written
another way,

(B ⊗A)(Y ⊗X) = (Y ⊗X) · (ΛB ⊗ ΛA). (6.64)

Question 6.6. (Easy; Programming) Write a one-line Matlab program to im-
plement Algorithm 6.2: one step of Jacobi’s algorithm for Poisson’s equation.
Test it by confirming that it converges as fast as predicted in section 6.5.4.

Question 6.7. (Hard) Prove Lemma 6.7.

Iterative Methods for Linear Systems 359

Question 6.8. (Medium; Programming) Write a Matlab program to solve the
discrete model problem on a square using FFTs. The inputs should be the di-
mension N and a square N -by-N matrix of values of fij . The outputs should be
an N -by-N matrix of solution vij and the residual ‖TN×Nv−h2f‖2/(‖TN×N‖2 ·
‖v‖). You should also produce three-dimensional plots of f and v. Use the fft
built in to Matlab. Your program should not have to be more than a few lines
long if you use all the features of Matlab that you can. Solve it for several
problems whose solutions you know and several you do not:

1. fjk = sin(jπ/(N + 1)) · sin(kπ/(N + 1).

2. fjk = sin(jπ/(N+1))·sin(kπ/(N+1)+sin(3jπ/(N+1))·sin(5kπ/(N+1).

3. f has a few sharp spikes (both positive and negative) and is 0 elsewhere.
This approximates the electrostatic potential of charged particles located
at the spikes and with charges proportional to the heights (positive or
negative) of the spikes. If the spikes are all positive, this is also the
gravitational potential.

Question 6.9. (Medium) Confirm that evaluating the formula in (6.47) by
performing the matrix-vector multiplications from right to left is mathemati-
cally the same as Algorithm 6.13.

Question 6.10. (Medium; Hard)

1. (Hard) Let A and H be real symmetric n-by-n matrices that commute,
i.e., AH = HA. Show that there is an orthogonal matrix Q such that
QAQT = diag(α1, . . . , αn) and QHQT = diag(θ1, . . . , θn) are both diag-
onal. In other words, A and H have the same eigenvectors. Hint: First
assume A has distinct eigenvalues, and then remove this assumption.

2. (Medium) Let

T̂ =


α θ

θ
.
. θ

θ α


be a symmetric tridiagonal Toeplitz matrix, i.e., a symmetric tridiagonal
matrix with constant α along the diagonal and θ along the offdiagonals.
Write down simple formulas for the eigenvalues and eigenvectors of T̂ .
Hint: Use Lemma 6.1.

3. (Hard) Let

T =


A H

H
.
. H

H A



360 Applied Numerical Linear Algebra

be an n2-by-n2 block tridiagonal matrix, with n copies of A along the
diagonal. Let QAQT = diag(α1, . . . , αn) be the eigendecomposition of
A, and let QHQT = diag(θ1, . . . , θn) be the eigendecomposition of H as
above. Write down simple formulas for the n2 eigenvalues and eigenvec-
tors of T in terms of the αi, θi, and Q. Hint: Use Kronecker products.

4. (Medium) Show how to solve Tx = b in O(n3) time. In contrast, how
much bigger are the running times of dense LU factorization and band
LU factorization?

5. (Medium) Suppose that A and H are (possibly different) symmetric tridi-
agonal Toeplitz matrices, as defined above. Show how to use the FFT to
solve Tx = b in just O(n2 log n) time.

Question 6.11. (Easy) Suppose that R is upper triangular and nonsingular
and that C is upper Hessenberg. Confirm that RCR−1 is upper Hessenberg.

Question 6.12. (Medium) Confirm that the Krylov subspace Kk(A, y1) has
dimension k if and only if the Arnoldi algorithm (Algorithm 6.9) or the Lanczos
algorithm (Algorithm 6.10) can compute qk without quitting first.

Question 6.13. (Medium) Confirm that when An×n is symmetric positive
definite and Qn×k has full column rank, then T = QTAQ is also symmetric
positive definite. (For this question, Q need not be orthogonal.)

Question 6.14. (Medium) Prove Theorem 6.9.

Question 6.15. (Medium; Hard)

1. (Medium) Confirm equation (6.58).

2. (Medium) Confirm equation (6.60).

3. (Hard) Prove Theorem 6.11.

Question 6.16. (Medium; Programming) A Matlab program implementing
multigrid to solve the discrete model problem on a square is available on the
class homepage at HOMEPAGE/Matlab/MG README.html. Start by run-
ning the demonstration (type “makemgdemo” and then “testfmgv”). Then,
try running testfmg for different right-hand sides (input array b), different
numbers of weighted Jacobi convergence steps before and after each recursive
call to the multigrid solver (inputs jac1 and jac2), and different numbers of
iterations (input iter). The software will plot the convergence rate (ratio of
consecutive residuals); does this depend on the size of b? the frequencies in b?
the values of jac1 and jac2? For which values of jac1 and jac2 is the solution
most efficient?

Iterative Methods for Linear Systems 361

Question 6.17. (Medium; Programming) Using a fast model problem solver
from either Question 6.8 or Question 6.16, use domain decomposition to build
a fast solver for Poisson’s equation on an L-shaped region, as described in
section 6.10. The large square should be 1-by-1 and the small square should
be .5-by-.5, attached at the bottom right of the large square. Compute the
residual in order to show that your answer is correct.

Question 6.18. (Hard) Fill in the entries of a table like Table 6.1, but for
solving Poisson’s equation in three dimensions instead of two. Assume that
the grid of unknowns is N×N×N , with n = N3. Try to fill in as many entries
of columns 2 and 3 as you can.

