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The Symmetric Eigenproblem and
Singular Value Decomposition

5.1. Introduction

We discuss perturbation theory (in section 5.2), algorithms (in sections 5.3
and 5.4), and applications (in section 5.5 and elsewhere) of the symmetric
eigenvalue problem. We also discuss its close relative, the SVD. Since the

eigendecomposition of the symmetric matrix H = [ 0 AT

A 0 ] and the SVD of A

are very simply related (see Theorem 3.3), most of the perturbation theorems
and algorithms for the symmetric eigenproblem extend to the SVD.

As discussed at the beginning of Chapter 4, one can roughly divide the
algorithms for the symmetric eigenproblem (and SVD) into two groups: direct
methods and iterative methods. This chapter considers only direct methods,
which are intended to compute all (or a selected subset) of the eigenvalues
and (optionally) eigenvectors, costing O(n3) operations for dense matrices.
Iterative methods are discussed in Chapter 7.

Since there has been a great deal of recent progress in algorithms and
applications of symmetric eigenproblems, we will highlight three examples:

• A high-speed algorithm for the symmetric eigenproblem based on divide-
and-conquer is discussed in section 5.3.3. This is the fastest available
algorithm for finding all eigenvalues and all eigenvectors of a large dense
or banded symmetric matrix (or the SVD of a general matrix). It is sig-
nificantly faster than the previous “workhorse” algorithm, QR iteration.
16

• High-accuracy algorithms based on the dqds and Jacobi algorithms are
discussed in sections 5.2.1, 5.4.2, and 5.4.3. These algorithms can find

16There is yet more recent work [199, 201] on an algorithm based on inverse iteration
(Algorithm 4.2), which may provide a still faster and more accurate algorithm. But as of
September 1996 the theory and software were still under development.
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tiny eigenvalues (or singular values) more accurately than alternative
algorithms like divide-and-conquer, although sometimes more slowly.

• Section 5.5 discusses a “nonlinear” vibrating system, described by a dif-
ferential equation called the Toda flow. Its continuous solution is closely
related to the intermediate steps of the QR algorithm for the symmetric
eigenproblem.

Following Chapter 4, we will continue to use a vibrating mass-spring system
as a running example to illustrate features of the symmetric eigenproblem.

Example 5.1. Symmetric eigenvalue problems often arise in analyzing me-
chanical vibrations. Example 4.1 presented one such example in detail; we will
use notation from that example, so the reader is advised to review it now. To
make the problem in Example 4.1 symmetric, we need to assume that there is
no damping, so the differential equations of motion of the mass-spring system
become Mẍ(t) = −Kx(t), where M = diag(m1, . . . ,mn) and

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . . . . . . . .
−kn−1 kn−1 + kn −kn

−kn kn

 .

Since M is nonsingular, we can rewrite this as ẍ(t) = −M−1Kx(t). If we seek
solutions of the form x(t) = eγtx(0), then we get eγtγ2x(0) = −M−1Keγtx(0),
or M−1Kx(0) = −γ2x(0). In other words, −γ2 is an eigenvalue and x(0) is
an eigenvector of M−1K. Now M−1K is not generally symmetric, but we
can make it symmetric as follows. Define M1/2 = diag(m1/2

1 , . . . ,m
1/2
n ), and

multiply M−1Kx(0) = −γ2x(0) by M1/2 on both sides to get

M−1/2Kx(0) = M−1/2K(M−1/2M1/2)x(0) = −γ2M1/2x(0)

or K̂x̂ = −γ2x̂, where x̂ = M1/2x(0) and K̂ = M−1/2KM−1/2. It is easy to
see that

K̂ =



k1+k2
m1

−k2√
m1m2

−k2√
m1m2

k2+k3
m2

−k3√
m2m3

. . . . . . . . .
−kn−1√

mn−2mn−1

kn−1+kn
mn−1

−kn√
mn−1mn

−kn√
mn−1mn

kn
mn


is symmetric. Thus each eigenvalue −γ2 of K̂ is real, and each eigenvector
x̂ = M1/2x(0) of K̂ is orthogonal to the others.
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In fact, K̂ is a tridiagonal matrix, a special form to which any symmetric
matrix can be reduced, using Algorithm 4.6, specialized to symmetric matrices
as described in section 4.4.7. Most of the algorithms in section 5.3 for finding
the eigenvalues and eigenvectors of a symmetric matrix assume that the matrix
has initially been reduced to tridiagonal form.

There is another way to express the solution to this mechanical vibra-
tion problem, using the SVD. Define KD = diag(k1, . . . , kn) and K

1/2
D =

diag(k1/2
1 ,. . . , k

1/2
n ). Then K can be factored as K = BKDB

T , where

B =


1 −1

. . . . . .
. . . −1

1

 ,
as can be confirmed by a small calculation. Thus

K̂ = M−1/2KM−1/2

= M−1/2BKDB
TM−1/2

= (M−1/2BK
1/2
D ) · (K1/2

D BTM−1/2)

= (M−1/2BK
1/2
D ) · (M−1/2BK

1/2
D )T

≡ GGT . (5.1)

Therefore the singular values of G = M−1/2BK
1/2
D are the square roots of the

eigenvalues of K̂, and the left singular vectors of G are the eigenvectors of K̂,
as shown in Theorem 3.3. Note that G is nonzero only on the main diagonal
and on the first superdiagonal. Such matrices are called bidiagonal, and most
algorithms for the SVD begin by reducing the matrix to bidiagonal form, using
the algorithm in section 4.4.7.

Note that the factorization K̂ = GGT implies that K̂ is positive definite,
since G is nonsingular. Therefore the eigenvalues −γ2 of K̂ are all positive.
Thus γ is pure imaginary, and the solutions of the original differential equation
x(t) = eγtx(0) are oscillatory with frequency |γ|.

For a Matlab solution of a vibrating mass-spring system, see
HOMEPAGE/Matlab/massspring.m. For a Matlab animation of the vibra-
tions of a similar physical system, see demo/continue/fun-extras/miscellaneous/
bending. ¦

5.2. Perturbation Theory

Suppose that A is symmetric, with eigenvalues α1 ≥ · · · ≥ αn and corre-
sponding unit eigenvectors q1, . . . , qn. Suppose E is also symmetric, and let
Â = A + E have perturbed eigenvalues α̂1 ≥ · · · ≥ α̂n and corresponding per-
turbed eigenvectors q̂1, . . . , q̂n. The major goal of this section is to bound the
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differences between the eigenvalues αi and α̂i, and between the eigenvectors qi
and q̂i in terms of the “size” of E. Most of our bounds will use ‖E‖2 as the size
of E, except for section 5.2.1, which discusses “relative” perturbation theory.

We already derived our first perturbation bound for eigenvalues in Chap-
ter 4, where we proved Corollary 4.1: Let A be symmetric with eigenvalues
α1 ≥ · · · ≥ αn. Let A+ E be symmetric with eigenvalues α̂1 ≥ · · · ≥ α̂n. If αi
is simple, then |αi − α̂i| ≤ ‖E‖2 +O(‖E‖22).

This result is weak because it assumes αi has multiplicity one, and it is
useful only for sufficiently small ‖E‖2. The next theorem eliminates both
weaknesses.

Theorem 5.1. Weyl. Let A and E be n-by-n symmetric matrices. Let α1 ≥
· · · ≥ αn be the eigenvalues of A and α̂1 ≥ · · · ≥ α̂n be the eigenvalues of
Â = A+ E. Then |αi − α̂i| ≤ ‖E‖2.

Corollary 5.1. Let G and F be arbitrary matrices (of the same size) where
σ1 ≥ · · · ≥ σn are the singular values of G and σ′1 ≥ · · · ≥ σ′n are the singular
values of G+ F . Then |σi − σ′i| ≤ ‖F‖2.

We can use Weyl’s theorem to get error bounds for the eigenvalues com-
puted by any backward stable algorithm, such as QR iteration: Such an algo-
rithm computes eigenvalues α̂i that are the exact eigenvalues of Â = A + E
where ‖E‖2 = O(ε)‖A‖2. Therefore, their errors can be bounded by |αi−α̂i| ≤
‖E‖2 = O(ε)‖A‖2 = O(ε) maxj |αj |. This is a very satisfactory error bound, es-
pecially for large eigenvalues (those αi near ‖A‖2 in magnitude), since they will
be computed with most of their digits correct. Small eigenvalues (|αi| ¿ ‖A‖2)
may have fewer correct digits (but see section 5.2.1).

We will prove Weyl’s theorem using another useful classical result: the
Courant–Fischer minimax theorem. To state this theorem we need to intro-
duce the Rayleigh quotient, which will also play an important role in several
algorithms, such as Algorithm 5.1.

Definition 5.1. The Rayleigh quotient of a symmetric matrix A and nonzero
vector u is ρ(u,A) ≡ (uTAu)/(uTu).

Here are some simple but important properties of ρ(u,A). First, ρ(γu,A) =
ρ(u,A) for any nonzero scalar γ. Second, if Aqi = αiqi, then ρ(qi, A) = αi.
More generally, suppose QTAQ = Λ = diag(αi) is the eigendecomposition of
A, with Q = [q1, . . . , qn]. Expand u in the basis of eigenvectors qi as follows:
u = Q(QTu) ≡ Qξ =

∑
i qiξi. Then we can write

ρ(u,A) =
ξTQTAQξ

ξTQTQξ
=
ξTΛξ
ξT ξ

=
∑

i αiξ
2
i∑

i ξ
2
i

.

In other words, ρ(u,A) is a weighted average of the eigenvalues of A. Its largest
value, maxu=0 ρ(u,A), occurs for u = q1 (ξ = e1) and equals ρ(q1, A) = α1.



The Symmetric Eigenproblem and SVD 199

Its smallest value, minu=0 ρ(u,A), occurs for u = qn (ξ = en) and equals
ρ(qn, A) = αn. Together, these facts imply

max
u=0
|ρ(u,A)| = max(|α1|, |αn|) = ‖A‖2. (5.2)

Theorem 5.2. Courant–Fischer minimax theorem. Let α1 ≥ · · · ≥ αn be
eigenvalues of the symmetric matrix A and q1, . . . , qn be the corresponding unit
eigenvectors.

max
Rj

min
0=r∈Rj

ρ(r, A) = αj = min
Sn−j+1

max
0=s∈Sn−j+1

ρ(s,A).

The maximum in the first expression for αj is over all j dimensional sub-
spaces Rj of Rn, and the subsequent minimum is over all nonzero vectors r in
the subspace. The maximum is attained for Rj = span(q1, q2, . . . , qj), and a
minimizing r is r = qj .

The minimum in the second expression for αj is over all (n − j + 1)-
dimensional subspaces Sn−j+1 of Rn, and the subsequent maximum is over all
nonzero vectors s in the subspace. The minimum is attained for Sn−j+1 =
span(qj , qj+1, . . . , qn), and a maximizing s is s = qj .

Example 5.2. Let j = 1, so αj is the largest eigenvalue. Given R1, ρ(r, A)
is the same for all nonzero r ∈ R1, since all such r are scalar multiples of one
another. Thus the first expression for α1 simplifies to α1 = maxr=0 ρ(r,A).
Similarly, since n − j + 1 = n, the only subspace Sn−j+1 is Rn, the whole
space. Then the second expression for α1 also simplies to α1 = maxs=0 ρ(s,A).

One can similarly show that the theorem simplifies to the following expres-
sion for the smallest eigenvalue: αn = minr=0 ρ(r, A). ¦

Proof of the Courant–Fischer minimax theorem. Choose any subspaces Rj

and Sn−j+1 of the indicated dimensions. Since the sum of their dimensions
j + (n − j + 1) = n + 1 exceeds n, there must be a nonzero vector xRS ∈
Rj ∩ Sn−j+1. Thus

min
0=r∈Rj

ρ(r,A) ≤ ρ(xRS, A) ≤ max
0=s∈Sn−j+1

ρ(s,A).

Now choose R̂j to maximize the expression on the left, and choose Ŝn−j+1 to
minimize the expression on the right. Then

max
Rj

min
0=r∈Rj

ρ(r,A) = min
0=r∈R̂j

ρ(r,A) (5.3)

≤ ρ(xR̂Ŝ, A)
≤ max

0=s∈Ŝn−j+1
ρ(s,A)

= min
Sn−j+1

max
0=s∈Sn−j+1

ρ(s,A).
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To see that all these inequalities are actually equalities, we exhibit partic-
ular Rj and Sn−j+1 that make the lower bound equal the upper bound. First
choose Rj = span(q1, . . . , qj), so that

max
Rj

min
0=r∈Rj

ρ(r,A) ≥ min
0=r∈Rj

ρ(r, A)

= min
0=r=

∑
i≤j ξiqi

ρ(r,A)

= min
some ξi=0

∑
i≤j ξ

2
i αi∑

i≤j ξ
2
i

= αj .

Next choose S̄n−j+1 = span(qj , . . . , qn) so that

min
Sn−j+1

max
0=s∈Sn−j+1

ρ(s,A) ≤ max
0=s∈S̄n−j+1

ρ(s,A)

= max
0=s=

∑
i≥j ξiqi

ρ(s, A)

= max
some ξi=0

∑
i≥j ξ

2
i αi∑

i≥j ξ
2
i

= αj .

Thus, the lower and upper bounds are sandwiched between αj below and
αj above, so they must all equal αj as desired. 2

Example 5.3. Figure 5.1 illustrates this theorem graphically for 3-by-3 ma-
trices. Since ρ(u/‖u‖2, A) = ρ(u,A), we can think of ρ(u,A) as a function on
the unit sphere ‖u‖2 = 1. Figure 5.1 shows a contour plot of this function on
the unit sphere for A = diag(1, .25, 0). For this simple matrix qi = ei, the ith
column of the identity matrix. The figure is symmetric about the origin since
ρ(u,A) = ρ(−u,A). The small red circles near ±q1 surround the global maxi-
mum ρ(±q1, A) = 1, and the small green circles near ±q3 surround the global
minimum ρ(±q3, A) = 0. The two great circles are contours for ρ(u,A) = .25,
the second eigenvalue. Within the two narrow (green) “apple slices” defined
by the great circles, ρ(u,A) < .25, and within the wide (red) apple slices,
ρ(u,A) > .25.

Let us interpret the minimax theorem in terms of this figure. Choosing
a space R2 is equivalent to choosing a great circle C; every point on C lies
within R2, and R2 consists of all scalar multiplicatons of the vectors in C.
Thus min0=r∈R2 ρ(r,A) = minr∈C ρ(r,A). There are four cases to consider to
compute minr∈C ρ(r, A):

1. C does not go through the intersection points ±q2 of the two great circles
in Figure 5.1. Then C clearly must intersect both a narrow green apple
slice (as well as a wide red apple slice), so minr∈C ρ(r,A) < .25.

2. C does go through the two intersection points ±q2 and otherwise lies in
the narrow green apple slices. Then minr∈C ρ(r, A) < .25.
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Fig. 5.1. Contour plot of the Rayleigh quotient on the unit sphere.

3. C does go through the two intersection points ±q2 and otherwise lies
in the wide red apple slices. Then minr∈C ρ(r, A) = .25, attained for
r = ±q2.

4. C coincides with one of the two great circles. Then ρ(r,A) = .25 for all
r ∈ C.

The minimax theorem says that α2 = .25 is the maximum of minr∈C ρ(r,A)
over all choices of great circle C. This maximum is attained in cases 3 and
4 above. In particular, for C bisecting the wide red apple slices (case 3),
R2 = span(q1, q2).

Software to draw contour plots like those in Figure 5.1 for an
arbitrary 3-by-3 symmetric matrix may be found at
HOMEPAGE/Matlab/RayleighContour.m. ¦

Finally, we can present the proof of Weyl’s theorem.

α̂i = min
Sn−j+1

max
0=u∈Sn−j+1

uT (A+ E)u
uTu

by the minimax theorem

= min
Sn−j+1

max
0=u∈Sn−j+1

(
uTAu

uTu
+
uTEu

uTu

)
≤ min

Sn−j+1
max

0=u∈Sn−j+1

(
uTAu

uTu
+ ‖E‖2

)
by equation (5.2)

= αi + ‖E‖2 by the minimax theorem again.

Reversing the roles of A and A + E, we also get αi ≤ α̂i + ‖E‖2. Together,
these two inequalities complete the proof of Weyl’s theorem. 2

A theorem closely related to the Courant–Fischer minimax theorem, one
that we will need later to justify the Bisection algorithm in section 5.3.4, is
Sylvester’s theorem of inertia.
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Definition 5.2. The inertia of a symmetric matrix A is the triple of integers
Inertia(A) ≡ (ν, ζ, π), where ν is the number of negative eigenvalues of A, ζ is
the number of zero eigenvalues of A, and π is the number of positive eigenvalues
of A.

If X is orthogonal, then XTAX and A are similar and so have the same
eigenvalues. When X is only nonsingular, we say XTAX and A are congruent.
In this case XTAX will generally not have the same eigenvalues as A, but the
next theorem tells us that the two sets of eigenvalues will at least have the
same signs.

Theorem 5.3. (Sylvester’s Inertia Theorem.) Let A be symmetric and
X be nonsingular. Then A and XTAX have the same inertia.

Proof. Let n be the dimension of A. Now suppose that A has ν negative
eigenvalues but that XTAX has ν ′ < ν negative eigenvalues; we will find a
contradiction to prove that this cannot happen. Let N be the corresponding
ν dimensional negative eigenspace of A; i.e., N is spanned by the eigenvectors
of the ν negative eigenvalues of A. This means that for any nonzero x ∈ N,
xTAx < 0. Let P be the (n − ν′)-dimensional nonnegative eigenspace of
XTAX ; this means that for any nonzero x ∈ P, xTXTAXx ≥ 0. Since X
is nonsingular, the space XP is also n − ν′ dimensional. Since dim(N) +
dim(XP) = ν + n − ν′ > n, the spaces N and XP must contain a nonzero
vector x in their intersection. But then 0 > xTAx since x ∈ N and 0 ≤ xTAx
since x ∈ XP, which is a contradiction. Therefore, ν = ν ′; i.e., A and XTAX
have the same number of negative eigenvalues. An analogous argument shows
they have the same number of positive eigenvalues. Thus, they must also have
the same number of zero eigenvalues. 2

Now we consider how eigenvectors can change under perturbations of A+E
of A. To state our bound we need to define the gap in the spectrum.

Definition 5.3. Let A have eigenvalues α1 ≥ · · · ≥ αn. Then the gap between
an eigenvalue αi and the rest of the spectrum is defined to be gap(i, A) =
minj=i |αj−αi|. We will also write gap(i) if A is understood from the context.

The basic result is that the sensitivity of an eigenvector depends on the gap
of its corresponding eigenvalue: a small gap implies a sensitive eigenvector.

Example 5.4. Let A = [ 1 + g
1 ] and A+E = [ 1 + g ε

ε 1 ], where 0 < ε < g.

Thus gap(i, A) = g ≈ gap(i, A + E) for i = 1, 2. The eigenvectors of A are
just q1 = e1 and q2 = e2. A small computation reveals that the eigenvectors
of A+ E are

q̂1 = β ·

 1 +

√
1 +

(
2ε
g

)2

2ε
g

 ≈ [ 1
ε
g

]
,
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q̂2 = β ·

 −2ε
g

1 +

√
1 +

(
2ε
g

)2

 ≈ [ − ε
g

1

]
,

where β ≈ 1/2 is a normalization factor. We see that the angle between the
perturbed vectors q̂i and unperturbed vectors qi equals ε/g to first order in ε.
So the angle is proportional to the reciprocal of the gap g. ¦

The general case is essentially the same as the 2-by-2 case just analyzed.

Theorem 5.4. Let A = QΛQT = Qdiag(αi)QT be an eigendecomposition of
A. Let A + E = Â = Q̂Λ̂Q̂T be the perturbed eigendecomposition. Write
Q = [q1, . . . , qn] and Q̂ = [q̂1, . . . , q̂n], where qi and q̂i are the unperturbed and
perturbed unit eigenvectors, respectively. Let θ denote the acute angle between
qi and q̂i. Then

1
2

sin 2θ ≤ ‖E‖2
gap(i, A)

, provided that gap(i, A) > 0.

Similarly

1
2

sin 2θ ≤ ‖E‖2
gap(i, A+ E)

, provided that gap(i, A+ E) > 0.

Note that when θ ¿ 1, then 1/2 sin 2θ ≈ sin θ ≈ θ.

The attraction of stating the bound in terms of gap(i, A + E), as well as
gap(i, A), is that frequently we know only the eigenvalues of A+E, since they
are typically the output of the eigenvalue algorithm that we have used. In
this case it is straightforward to evaluate gap(i, A+ E), whereas we can only
estimate gap(i, A).

When the first upper bound exceeds 1/2, i.e., ‖E‖2 ≥ gap(i, A)/2, the
bound reduces to sin 2θ ≤ 1, which provides no information about θ. Here
is why we cannot bound θ in this situation: If E is this large, then A + E’s
eigenvalue α̂i could be sufficiently far from αi for A + E to have a multiple
eigenvalue at αi. For example, consider A = diag(2, 0) and A + E = I. But
such an A+ E does not have a unique eigenvector qi; indeed, A + E = I has
any vector as an eigenvector. Thus, it makes no sense to try to bound θ. The
same considerations apply when the second upper bound exceeds 1/2.

Proof. It suffices to prove the first upper bound, because the second one
follows by considering A+E as the unperturbed matrix and A = (A+E)−E
as the perturbed matrix.

Let qi + d be an eigenvector of A + E. To make d unique, we impose the
restriction that it be orthogonal to qi (written d ⊥ qi) as shown below. Note
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that this means that qi+d is not a unit vector, so q̂i = (qi+d)/‖qi+d‖2. Then
tan θ = ‖d‖2 and sec θ = ‖qi + d‖2.

q

d

θ

i

q +di

Now write the ith column of (A+ E)Q̂ = Q̂Λ̂ as

(A+ E)(qi + d) = α̂i(qi + d), (5.4)

where we have also multiplied each side by ‖qi + d‖2. Define η = α̂i − αi.
Subtract Aqi = αiqi from both sides of (5.4) and rearrange to get

(A− αiI)d = (ηI −E)(qi + d). (5.5)

Since qTi (A − αiI) = 0, both sides of (5.5) are orthogonal to qi. This lets us
write z ≡ (ηI−E)(qi+d) =

∑
j=i ζjqj and d ≡

∑
j=i δiqj . Since (A−αiI)qj =

(αj − αi)qj , we can write

(A− αiI)d =
∑
j=i

(αj − αi)δjqj =
∑
j=i

ζjqj = (ηI − E)(qi + d)

or

d =
∑
j=i

δjqj =
∑
j=i

ζj
αj − αi

qj .

Thus

tan θ = ‖d‖2

= ‖
∑
j=i

ζj
αj − αi

qj‖2

=

∑
j=i

(
ζj

αj − αi

)2
1/2

since the qj are orthonormal

≤ 1
gap(i, A)

∑
j=i

ζ2
j

1/2

since gap(i, A) is the
smallest denominator

=
‖z‖2

gap(i, A)
.
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If we were to use Weyl’s theorem and the triangle inequality to bound ‖z‖2 ≤
(‖E‖2 + |η|) · ‖qi + d‖2 ≤ 2‖E‖2 sec θ, then we could conclude that sin θ ≤
2‖E‖2/gap(i, A).

But we can do a little better than this by bounding ‖z‖2 = ‖(ηI −E)(qi +
d)‖2 more carefully: Multiply (5.4) by qTi on both sides, cancel terms, and
rearrange to get η = qTi E(qi + d). Thus

z = (qi + d)η − E(qi + d) = (qi + d)qTi E(qi + d)− E(qi + d)
= ((qi + d)qTi − I)E(qi + d),

and so ‖z‖2 ≤ ‖(qi+d)qTi −I‖·‖E‖2 ·‖qi+d‖. We claim that ‖(qi+d)qTi −I‖2 =
‖qi + d‖2 (see Question 5.7). Thus ‖z‖2 ≤ ‖qi + d‖22 · ‖E‖2, so

tan θ ≤ ‖z‖2
gap(i, A)

≤ ‖qi + d‖22‖E‖2
gap(i, A)

=
sec2 θ · ‖E‖2

gap(i, A)

or
‖E‖2

gap(i, A)
≥ tan θ

sec2 θ
= sin θ cos θ =

1
2

sin 2θ

as desired. 2

An analogous theorem can be proven for singular vectors (see Question 5.8).
The Rayleigh quotient has other nice properties. The next theorem tells us

that the Rayleigh quotient is a “best approximation” to an eigenvalue in a nat-
ural sense. This is the basis of the Rayleigh quotient iteration in section 5.3.2
and the iterative algorithms in Chapter 7. It may also be used to evaluate the
accuracy of an approximate eigenpair obtained in any way at all, not just by
the algorithms discussed here.

Theorem 5.5. Let A be symmetric, x be a unit vector, and β be a scalar.
Then A has an eigenpair Aqi = αiqi satisfying |αi − β| ≤ ‖Ax− βx‖2. Given
x, the choice β = ρ(x,A) minimizes ‖Ax− βx‖2.

With a little more information about the spectrum of A, we can get tighter
bounds. Let r = Ax−ρ(x,A)x. Let αi be the eigenvalue of A closest to ρ(x,A).
Let gap′ ≡ minj=i |αj − ρ(x,A)|; this is a variation on the gap defined earlier.
Let θ be the acute angle between x and qi. Then

sin θ ≤ ‖r‖2
gap′

(5.6)

and

|αi − ρ(x,A)| ≤ ‖r‖
2
2

gap′
. (5.7)

See Theorem 7.1 for a generalization of this result to a set of eigenvalues.
Notice that in equation (5.7) the difference between the Rayleigh quotient

ρ(x,A) and an eigenvalue αi is proportional to the square of the residual norm
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‖r‖2. This high accuracy is the basis of the cubic convergence of the Rayleigh
quotient iteration algorithm of section 5.3.2.
Proof. We prove only the first result and leave the others for questions 5.9
and 5.10 at the end of the chapter.

If β is an eigenvalue of A, the result is immediate. So assume instead that
A− βI is nonsingular. Then x = (A− βI)−1(A− βI)x and

1 = ‖x‖2 ≤ ‖(A− βI)−1‖2 · ‖(A− βI)x‖2.

Writing A’s eigendecomposition as A = QΛQT = Qdiag(α1, . . . , αn)QT , we
get

‖(A− βI)−1‖2 = ‖Q(Λ− βI)−1QT ‖2 = ‖(Λ− βI)−1‖2 = 1/min
i
|αi − β|,

so mini |αi − β| ≤ ‖(A− βI)x‖2 as desired.
To show that β = ρ(x,A) minimizes ‖Ax − βx‖2 we will show that x is

orthogonal to Ax− ρ(x,A)x so that applying the Pythagorean theorem to the
sum of orthogonal vectors

Ax− βx = [Ax− ρ(x,A)x] + [(ρ(x,A)− β)x]

yields

‖Ax− βx‖22 = ‖Ax− ρ(x,A)x‖22 + ‖(ρ(x,A)− β)x‖22
≥ ‖Ax− ρ(x,A)x‖22

with equality only when β = ρ(x,A).
To confirm orthogonality of x and Ax− ρ(x,A)x we need to verify that

xT (Ax− ρ(x,A)x) = xT (Ax− (xTAx)
xTx

x) = xTAx− xTAxx
Tx

xTx
= 0

as desired. 2

Example 5.5. We illustrate Theorem 5.5 using a matrix from Example 5.4.

Let A = [ 1 + g ε
ε 1 ], where 0 < ε < g. Let x = [1, 0]T and β = ρ(x,A) = 1 + g.

Then r = Ax − βx = [0, ε]T and ‖r‖2 = ε. The eigenvalues of A are α± =
1 + g

2 ± (1 + ( 2ε
g )2)1/2, and the eigenvectors are given in Example 5.4 (where

the matrix is called A+ E instead of A).
Theorem 5.5 predicts that ‖Ax−βx‖2 = ‖r‖2 = ε is a bound on the distance

from β = 1 + g to the nearest eigenvalue α+ of A; this is also predicted by
Weyl’s theorem (Theorem ‘5.1). We will see below that this bound is much
looser than bound (5.7).

When ε is much smaller than g, there will be one eigenvalue near 1 + g
with its eigenvector near x and another eigenvalue near 1 with its eigenvector
near [0, 1]T . This means gap′ = |α− − ρ(x,A)| = g

2(1 + (1 + (2ε
g )2)1/2), and
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so bound (5.6) implies that the angle θ between x and the true eigenvector is
bounded by

sin θ ≤ ‖r‖2
gap′

=
2ε/g

1 + (1 + ( 2ε
g )2)1/2

.

Comparing with the explicit eigenvectors in Example 5.4, we see that the upper
bound is actually equal to tan θ, which is nearly the same as sin θ for tiny θ.
So bound (5.6) is quite accurate.

Now consider bound (5.7) on the difference |β − α+|. It turns out that for
this 2-by-2 example both |β − α+| and its bound are exactly equal to

‖r‖22
gap′

= ε · 2ε/g
1 + (1 + (2ε

g )2)1/2
.

Let us evaluate these bounds in the special case where g = 10−2 and
e = 10−5. Then the eigenvalues of A are approximately α+ = 1.01000001 =
1.01 + 10−8 and α− = .99999999 = 1 − 10−8. The first bound is |β − α+| ≤
‖r‖2 = 10−5, which is 103 times larger than the actual error 10−8. In contrast,
bound (5.7) is |β − α+| ≤ ‖r‖22/gap′ = (10−5)2/(1.01 − α−) ≈ 10−8, which is
tight. The actual angle θ between x and the true eigenvector for α+ is about
10−3, as is the bound ‖r‖2/gap′ = 10−5/(1.01− α−) ≈ 10−3. ¦

Finally, we discuss what happens when one has a group of k tightly clus-
tered eigenvalues, and wants to compute their eigenvectors. By “tightly clus-
tered” we mean that the gap between any eigenvalue in the cluster and some
other eigenvalue in the cluster is small but that eigenvalues not in the clus-
ter are well separated. For example, one could have k = 20 eigenvalues in
the interval [.9999,1.0001], but all other eigenvalues might be greater than 2.
Then Theorems 5.4 and 5.5 indicate that we cannot hope to get the individual
eigenvectors accurately. However, it is possible to compute the k-dimensional
invariant subspace spanned by these vectors quite accurately. See [195] for
details.

5.2.1. Relative Perturbation Theory

This section describes tighter bounds on eigenvalues and eigenvectors than in
the last section. These bounds are needed to justify the high-accuracy algo-
rithms for computing singular values and eigenvalues described in sections 5.4.2
and 5.4.3.

To contrast the bounds that we will present here to those in the previous
section, let us consider the 1-by-1 case. Given a scalar α, a perturbed scalar
α̂ = α + e and a bound |e| ≤ ε, we can obviously bound the absolute error in
α̂ by |α̂ − α| ≤ ε. This was the approach taken in the last section. Consider
instead the perturbed scalar α̂ = x2α and a bound |x2 − 1| ≤ ε. This lets us
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bound the relative error in α̂ by

|α̂− α|
|α| = |x2 − 1| ≤ ε.

We generalize this simple idea to matrices as follows. In the last section we
bounded the absolute difference in the eigenvalues αi of A and α̂i of Â = A+E
by |α̂i − αi| ≤ ‖E‖2. Here we will bound the relative difference between the
eigenvalues αi of A and α̂i of Â = XTAX in terms of ε ≡ ‖XTX − I‖2.

Theorem 5.6. “Relative” Weyl. Let A have eigenvalues αi and Â = XTAX
have eigenvalues α̂i. Let ε ≡ ‖XTX − I‖2. Then |α̂i − αi| ≤ |αi|ε. If αi = 0,
then we can also write

|α̂i − αi|
|αi|

≤ ε. (5.8)

Proof. Since the ith eigenvalue of A − αiI is zero, Sylvester’s theorem of
inertia tells us that the same is true of

XT (A− αiI)X = (XTAX − αiI) + αi(I −XTX) ≡ H + F.

Weyl’s theorem says that |λi(H)−0| ≤ ‖F‖2, or |α̂i−αi| ≤ |αi| ·‖XTX−I‖2 =
|αi|ε. 2

Note that when X is orthogonal, ε = ‖XTX − I‖2 = 0, so the theorem
confirms that XTAX and A have the same eigenvalues. If X is “nearly”
orthogonal, i.e., ε is small, the theorem says the eigenvalue are nearly the
same, in the sense of relative error.

Corollary 5.2. Let G be an arbitrary matrix with singular values σi, and let
Ĝ = Y TGX have singular values σ̂i. Let ε ≡ max(‖XTX − I‖2, ‖Y TY − I‖2).
Then |σ̂i − σi| ≤ εσi. If σi = 0, then we can write

|σ̂i − σi|
σi

≤ ε. (5.9)

We can similarly extend Theorem 5.4 to bound the difference between
eigenvectors qi of A and eigenvectors q̂i of Â = XTAX. To do so, we need to
define the relative gap in the spectrum.

Definition 5.4. The relative gap between an eigenvalue αi of A and the rest
of the spectrum is defined to be rel gap(i, A) = minj=i

|αj−αi|
|αi| .

Theorem 5.7. Suppose that A has eigenvalues αi and corresponding unit eigen-
vectors qi. Suppose Â = XTAX has eigenvalues α̂i and corresponding unit
eigenvectors q̂i. Let θ be the acute angle between qi and q̂i. Let ε1 = ‖I −
X−TX−1‖2 and ε2 = ‖X−I‖2. Then provided that ε1 < 1 and rel gap(i, XTAX) >
0,

1
2

sin 2θ ≤ ε1
1− ε1

· 1
rel gap(i,XTAX)

+ ε2.
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Proof. Let η = α̂i − αi, H = A− α̂iI, and F = α̂i(I −X−TX−1). Note that

H + F = A− α̂iX−TX−1 = X−T (XTAX − α̂iI)X−1.

Thus Hqi = −ηqi and (H + F )(Xq̂i) = 0 so that Xq̂i is an eigenvector of
H + F with eigenvalue 0. Let θ1 be the acute angle between qi and Xq̂i. By
Theorem 5.4, we can bound

1
2

sin 2θ1 ≤
‖F‖2

gap(i, H + F )
. (5.10)

We have ‖F‖2 = |α̂i|ε1. Now gap(i, H + F ) is the magnitude of the small-
est nonzero eigenvalue of H + F . Since XT (H + F )X = XTAX − α̂iI has
eigenvalues α̂j − α̂i, Theorem 5.6 tells us that the eigenvalues of H + F lie in
intervals from (1 − ε1)(α̂j − α̂i) to (1 + ε1)(α̂j − α̂i). Thus gap(i, H + F ) ≥
(1− ε1)gap(i, XTAX), and so substituting into (5.10) yields

1
2

sin 2θ1 ≤
ε1|α̂i|

(1− ε1)gap(i, XTAX)
=

ε1
(1− ε1)rel gap(i, XTAX)

. (5.11)

Now let θ2 be the acute angle between Xq̂i and q̂i so that θ ≤ θ1 + θ2.
Using trigonometry we can bound sin θ2 ≤ ‖(X − I)q̂i‖2 ≤ ‖X − I‖2 = ε2, and
so by the triangle inequality (see Question 5.11)

1
2

sin 2θ ≤ 1
2

sin 2θ1 +
1
2

sin 2θ2

≤ 1
2

sin 2θ1 + sin θ2

≤ ε1
(1− ε1)rel gap(i,XTAX)

+ ε2

as desired. 2

An analogous theorem can be proven for singular vectors [99].

Example 5.6. We again consider the mass-spring system of Example 5.1 and
use it to show that bounds on eigenvalues provided by Weyl’s theorem (The-
orem 5.1) can be much worse (looser) than the “relative” version of Weyl’s
theorem (Theorem 5.6). We will also see that the eigenvector bound of Theo-
rem 5.7 can be much better (tighter) than the bound of Theorem 5.4.

Suppose that M = diag(1, 100, 10000) and KD = diag(10000, 100, 1). Fol-
lowing Example 5.1, we define K = BKDB

T and K̂ = M−1/2KM−1/2, where

B =


1 −1

. . . . . .
. . . −1

1





210 Applied Numerical Linear Algebra

and so

K̂ = M−1/2KM−1/2 =

 10100 −10
−10 1.01 −.001

−.001 .0001

 .
To five decimal places, the eigenvalues of K̂ are 10100, 1.0001 and .00099.
Suppose we now perturb the masses (mii) and spring constants (kD,ii) by at
most 1% each. How much can the eigenvalues change? The largest matrix
entry is K̂11, and changing m11 to .99 and kD,11 to 10100 will change K̂11
to about 10305, a change of 205 in norm. Thus, Weyl’s theorem tells us
each eigenvalue could change by as much as ±205, which would change the
smaller two eigenvalues utterly. The eigenvector bound from Theorem 5.4 also
indicates that the corresponding eigenvectors could change completely.

Now let us apply Theorem 5.6 to K̂, or actually Corollary 5.2 to G =
M−1/2BK

1/2
D , where K̂ = GGT as defined in Example 5.1. Changing each

mass by at most 1% is equivalent to perturbing G to XG, where X is diagonal
with diagonal entries between 1/

√
.99 ≈ 1.005 and 1/

√
1.01 ≈ .995. Then

Corollary 5.2 tells us that the singular values of G can change only by factors
within the interval [.995, 1.005], so the eigenvalues of M can change only by
1% too. In other words, the smallest eigenvalue can change only in its second
decimal place, just like the largest eigenvalue. Similarly, changing the spring
constants by at most 1% is equivalent to changing G to GX , and again the
eigenvalues cannot change by more than 1%. If we perturb both M and KD at
the same time, the eigenvalues will move by about 2%. Since the eigenvalues
differ so much in magnitude, their relative gaps are all quite large, and so their
eigenvectors can rotate only by about 3% in angle too.

For a different approach to relative error analysis, more suitable for matrices
arising from differential (“unbounded”) operators, see [159].

5.3. Algorithms for the Symmetric Eigenproblem

We discuss a variety of algorithms for the symmetric eigenproblem. As men-
tioned in the introduction, we will discuss only direct methods, leaving iterative
methods for Chapter 7.

In Chapter 4 on the nonsymmetric eigenproblem, the only algorithm that
we discussed was QR iteration, which could find all the eigenvalues and op-
tionally all the eigenvectors. We have many more algorithms available for the
symmetric eigenproblem, which offer us more flexibility and efficiency. For
example, the Bisection algorithm described below can be used to find only the
eigenvalues in a user-specified interval [a, b] and can do so much faster than it
could find all the eigenvalues.

All the algorithms below, except Rayleigh quotient iteration and Jacobi’s
method, assume that the matrix has first been reduced to tridiagonal form,
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using the variation of Algorithm 4.6 in section 4.4.7. This is an initial cost of
4
3n

3 flops, or 8
3n

3 flops if eigenvectors are also desired.

1. Tridiagonal QR iteration. This algorithm finds all the eigenvalues,
and optionally all the eigenvectors, of a symmetric tridiagonal matrix.
Implemented efficiently, it is currently the fastest practical method to
find all the eigenvalues of a symmetric tridiagonal matrix, taking O(n2)
flops. Since reducing a dense matrix to tridiagonal form costs 4

3n
3 flops,

O(n2) is negligible for large enough n. But for finding all the eigenvectors
as well, QR iteration takes a little over 6n3 flops on average and is only
the fastest algorithm for small matrices, up to about n = 25. This is
the algorithm underlying the Matlab command eig17 and the LAPACK
routines ssyev (for dense matrices) and sstev (for tridiagonal matrices).

2. Rayleigh quotient iteration. This algorithm underlies QR iteration, but
we present it separately in order to more easily analyze its extremely
rapid convergence and because it may be used as an algorithm by itself.
In fact, it generally converges cubically (as does QR iteration), which
means that the number of correct digits asymptotically triples at each
step.

3. Divide-and-conquer. This is currently the fastest method to find all the
eigenvalues and eigenvectors of symmetric tridiagonal matrices larger
than n = 25. (The implementation in LAPACK, sstevd, defaults to
QR iteration for smaller matrices.)

In the worst case, divide-and-conquer requires O(n3) flops, but in practice
the constant is quite small. Over a large set of random test cases, it
appears to take only O(n2.3) flops on average, and as low as O(n2) for
some eigenvalue distributions.

In theory, divide-and-conquer could be implemented to run inO(n·logp n)
flops, where p is a small integer [129]. This super-fast implementation
uses the fast multipole method (FMM) [122], originally invented for the
completely different problem of computing the mutual forces on n elec-
trically charged particles. But the complexity of this super-fast imple-
mentation means that QR iteration is currently the algorithm of choice
for finding all eigenvalues, and divide-and-conquer without the FMM is
the method of choice for finding all eigenvalues and all eigenvectors.

4. Bisection and inverse iteration. Bisection may be used to find just a
subset of the eigenvalues of a symmetric tridiagonal matrix, say, those in
an interval [a, b] or [αi, αi−j ]. It needs only O(nk) flops, where k is the

17Matlab checks to see whether the argument of eig is symmetric or not and uses the
symmetric algorithm when appropriate.



212 Applied Numerical Linear Algebra

number of eigenvalues desired. Thus Bisection can be much faster than
QR iteration when k ¿ n, since QR iteration requires O(n2) flops. In-
verse iteration (Algorithm 4.2) can then be used to find the corresponding
eigenvectors. In the best case, when the eigenvalues are “well separated”
(we explain this more fully later), inverse iteration also costs only O(nk)
flops. This is much less than either QR or divide-and-conquer (with-
out the FMM), even when all eigenvalues and eigenvectors are desired
(k = n). But in the worst case, when many eigenvalues are clustered
close together, inverse iteration takes O(nk2) flops and does not even
guarantee the accuracy of the computed eigenvectors (although in prac-
tice it is almost always accurate). So divide-and-conquer and QR are
currently the algorithms of choice for finding all (or most) eigenvalues
and eigenvectors, especially when eigenvalues may be clustered. Bisec-
tion and inverse iteration are available as options in the LAPACK routine
ssyevx.

There is current research on inverse iteration addressing the problem of
close eigenvalues, which may make it the fastest method to find all the
eigenvectors eigenvectors (besides, theoretically, divide-and-conquer with
the FMM) [103, 201, 199, 174, 171, 173, 267]. However, software imple-
menting this improved version of inverse iteration is not yet available.

5. Jacobi’s method. This method is historically the oldest method for the
eigenproblem, dating to 1846. It is usually much slower than any of
the above methods, taking O(n3) flops with a large constant. But the
method remains interesting, because it is sometimes much more accurate
than the above methods. This is because Jacobi’s method is sometimes
capable of attaining the relative accuracy described in section 5.2.1 and
so can sometimes compute tiny eigenvalues much more accurately than
the previous methods [81]. We discuss the high-accuracy property of
Jacobi’s method in section 5.4.3, where we show how to compute the
SVD.

Subsequent sections describe these algorithms in more detail. Section 5.3.6
presents comparative performance results.

5.3.1. Tridiagonal QR Iteration

Recall that the QR algorithm for the nonsymmetric eigenproblem had two
phases:

1. Given A, use Algorithm 4.6 to find an orthogonal Q so that QAQT = H
is upper Hessenberg.
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2. Apply QR iteration to H (as described in section 4.4.8) to get a sequence
H = H0,H1, H2, . . . of upper Hessenberg matrices converging to real
Schur form.

Our first algorithm for the symmetric eigenproblem is completely analogous
to this:

1. Given A = AT , use the variation of Algorithm 4.6 in section 4.4.7 to find
an orthogonal Q so that QAQT = T is tridiagonal.

2. Apply QR iteration to T to get a sequence T = T0, T1, T2, . . . of tridiag-
onal matrices converging to diagonal form.

We can see that QR iteration keeps all the Ti tridiagonal by noting that
since QAQT is symmetric and upper Hessenberg, it must also be lower Hes-
senberg, i.e., tridiagonal. This keeps each QR iteration very inexpensive. An
operation count reveals the following:

1. Reducing A to symmetric tridiagonal form T costs 4
3n

3 +O(n2) flops, or
8
3n

3 +O(n2) flops if eigenvectors are also desired.

2. One tridiagonal QR iteration with a single shift (“bulge chasing”) costs
6n flops.

3. Finding all eigenvalues of T takes only 2 QR steps per eigenvalue on
average, for a total of 6n2 flops.

4. Finding all eigenvalues and eigenvectors of T costs 6n3 +O(n2) flops.

5. The total cost to find just the eigenvalues of A is 4
3n

3 +O(n2) flops.

6. The total cost to find all the eigenvalues and eigenvectors of A is 82
3n

3 +
O(n2) flops.

We must still describe how the shifts are chosen to implement each QR
iteration. Denote the ith iterate by

Ti =


a1 b1

b1
. . . . . .
. . . . . . bn−1

bn−1 an

 .
The simplest choice of shift would be σi = an; this is the single shift QR
iteration discussed in section 4.4.8. It turns out to be cubically convergent for
almost all matrices, as shown in the next section. Unfortunately, examples
exist where it does not converge [195, p. 76], so to get global convergence a
slightly more complicated shift strategy is needed: We let the shift σi be the

eigenvalue of [ an−1 bn−1

bn−1 an
] that is closest to an. This is called Wilkinson’s

shift.
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Theorem 5.8. Wilkinson. QR iteration with Wilkinson’s shift is globally, and
at least linearly, convergent. It is asymptotically cubically convergent for almost
all matrices.

A proof of this theorem can be found in [195]. In LAPACK this routine
is available as ssyev. The inner loop of the algorithm can be organized more
efficiently when eigenvalues only are desired (ssterf; see also [102, 198]) than
when eigenvectors are also computed (ssteqr).

Example 5.7. Here is an illustration of the convergence of tridiagonal QR
iteration, starting with the following tridiagonal matrix (diagonals only are
shown, in columns):

T0 = tridiag



.24929
1.263 1.263

.96880
−.82812 −.82812

.48539
−3.1883 −3.1883

−.91563


.

The following table shows the last offdiagonal entry of each Ti, the last diagonal
entry of each Ti, and the difference between the last diagonal entry and its
ultimate value (the eigenvalue α ≈ −3.54627). The cubic convergence of the
error to zero in the last column is evident.

i Ti(4, 3) Ti(4, 4) Ti(4, 4) − α
0 −3.1883 −.91563 2.6306
1 −5.7 · 10−2 −3.5457 5.4 · 10−4

2 −2.5 · 10−7 −3.5463 1.2 · 10−14

3 −6.1 · 10−23 −3.5463 0

At this point

T3 = tridiag



1.9871
.77513 .77513

1.7049
−1.7207 −1.7207

.64214
−6.1 · 10−23 −6.1 · 10−23

−3.5463


,

and we set the very tiny (4,3) and (3,4) entries to 0. This is called deflation
and is stable, perturbing T3 by only 6.1 · 10−23 in norm. We now apply QR
iteration again to the leading 3-by-3 submatrix of T3, repeating the process to
get the other eigenvalues.
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5.3.2. Rayleigh Quotient Iteration

Recall from our analysis of QR iteration in section 4.4 that we are implicitly
doing inverse iteration at every step. We explore this more carefully when the
shift we choose to use in the inverse iteration is the Rayleigh quotient.

Algorithm 5.1. Rayleigh quotient iteration: Given x0 with ‖x0‖2 = 1, and
a user-supplied stopping tolerance tol, we iterate

ρ0 = ρ(x0, A) = xT0 Ax0

xT0 x0

i = 0
repeat

yi = (A− ρi−1I)−1xi−1
xi = yi/‖yi‖2
ρi = ρ(xi, A)
i = i+ 1

until convergence (‖Axi − ρixi‖2 < tol)

When the stopping criterion is satisfied, Theorem 5.5 tells us that ρi is
within tol of an eigenvalue of A.

If one uses the shift σi = ann in QR iteration and starts Rayleigh quotient
iteration with x0 = [0, . . . , 0, 1]T , then the connection between QR and inverse
iteration discussed in section 4.4 can be used to show that the sequence of σi
and ρi from the two algorithms are identical (see Question 5.13). In this case
we will prove that convergence is almost always cubic.

Theorem 5.9. Rayleigh quotient iteration is locally cubically convergent; i.e.,
the number of correct digits triples at each step once the error is small enough
and the eigenvalue is simple.

Proof. We claim that it is enough to analyze the case when A is diagonal. To
see why, writeQTAQ = Λ, whereQ is the orthogonal matrix whose columns are
eigenvectors, and Λ = diag(α1, . . . , αn) is the diagonal matrix of eigenvalues.
Now change variables in Rayleigh quotient iteration to x̂i ≡ QTxi and ŷi ≡
QT yi. Then

ρi = ρ(xi, A) =
xTi Axi

xTi xi
=
x̂Ti Q

TAQx̂i

x̂Ti Q
TQx̂i

=
x̂Ti Λx̂i
x̂Ti x̂i

= ρ(x̂i,Λ)

and Qŷi = (A− ρiI)−1Qx̂i, so

ŷi = QT (A− ρiI)−1Qx̂i = (QTAQ− ρiI)−1x̂i = (Λ− ρiI)−1x̂i.

Therefore, running Rayleigh quotient iteration with A and x0 is equivalent
to running Rayleigh quotient iteration with Λ and x̂0. Thus we will assume
without loss of generality that A = Λ is already diagonal, so the eigenvectors
of A are ei, the columns of the identity matrix.
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Suppose without loss of generality that xi is converging to e1, so we can
write xi = e1 + di, where ‖di‖2 ≡ ε¿ 1. To prove cubic convergence, we need
to show that xi+1 = e1 + di+1 with ‖di+1‖2 = O(ε3).

We first note that

1 = xTi xi = (e1 + di)T (e1 + di) = eT1 e1 + 2eT1 di + dTi di = 1 + 2di1 + ε2

so that di1 = −ε2/2. Therefore

ρi = xTi Λxi = (e1 + di)TΛ(e1 + di) = eT1 Λe1 + 2eT1 Λdi + dTi Λdi = α1 − η,

where η ≡ −2eT1 Λdi − dTi Λdi = α1ε
2 − dTi Λdi. We see that

|η| ≤ |α1|ε2 + ‖Λ‖2‖di‖22 ≤ 2‖Λ‖2ε2, (5.12)

so ρi = α1 − η = α1 + O(ε2) is a very good approximation to the eigenvalue
α1.

Now we can write

yi+1 = (Λ− ρiI)−1xi

=
[

xi1
α1 − ρi

,
xi2

α2 − ρi
, . . . ,

xin
αn − ρi

]T
because (Λ− ρiI)−1 = diag

(
1

αj − ρi

)
=

[
1 + di1
α1 − ρi

,
di2

α2 − ρi
, . . . ,

din
αn − ρi

]T
because xi = e1 + di

=
[

1− ε2/2
η

,
di2

α2 − α1 + η
, . . . ,

din
αn − α1 + η

]T
because ρi = α1 − η and di1 = −ε2/2

=
1− ε2/2

η
·
[
1,

di2η

(1 − ε2/2)(α2 − α1 + η)
, . . . ,

dinη

(1− ε2/2)(αn − α1 + η)

]T
≡ 1− ε2/2

η
· (e1 + d̂i+1).

To bound ‖d̂i+1‖2, we note that we can bound each denominator using
|αj − α1 + η| ≥ gap(1,Λ)− |η|, so using (5.12) as well we get

‖d̂i+1‖2 ≤
‖di‖2|η|

(1 − ε2/2)(gap(1,Λ)− |η|) ≤
2‖Λ‖2ε3

(1− ε2/2)(gap(1,Λ)− 2‖Λ‖ε2)

or ‖d̂i+1‖2 = O(ε3). Finally, since xi+1 = e1 + di+1 = (e1 + d̂i+1)/‖e1 + d̂i+1‖2,
we see ‖di+1‖2 = O(ε3) as well. 2
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5.3.3. Divide-and-Conquer

This method is the fastest now available if you want all eigenvalues and eigen-
vectors of a tridiagonal matrix whose dimension is larger than about 25. (The
exact threshold depends on the computer.) It is quite subtle to implement in a
numerically stable way. Indeed, although this method was first introduced in
1981 [58], the “right” implementation was not discovered until 1992 [125, 129]).
This routine is available as LAPACK routines ssyevd for dense matrices and
sstevd for tridiagonal matrices. This routine uses divide-and-conquer for ma-
trices of dimension larger than 25 and automatically switches to QR iteration
for smaller matrices (or if eigenvalues only are desired).

We first discuss the overall structure of the algorithm, and leave numerical
details for later. Let

T =



a1 b1

b1
. . . . . .
. . . am−1 bm−1

bm−1 am bm
bm am+1 bm+1

bm+1
. . .

. . . bn−1
bn−1 an



=



a1 b1

b1
. . . . . .
. . . am−1 bm−1

bm−1 am − bm
am+1 − bm bm+1

bm+1
. . .

. . . bn−1
bn−1 an



+


bm bm
bm bm
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=
[
T1 0
0 T2

]
+ bm ·



0
...
0
1
1
0
...
0


[0, . . . , 0, 1, 1, 0, . . . , 0] ≡

[
T1 0
0 T2

]
+ bmvv

T .

Suppose that we have the eigendecompositions of T1 and T2: Ti = QiΛiQTi .
These will be computed recursively by this same algorithm. We relate the
eigenvalues of T to those of T1 and T2 as follows.

T =
[
T1 0
0 T2

]
+ bmvv

T

=
[
Q1Λ1Q

T
1 0

0 Q2Λ2Q
T
2

]
+ bmvv

T

=
[
Q1 0
0 Q2

] ([
Λ1

Λ2

]
+ bmuu

T

)[
QT1 0
0 QT2

]
,

where

u =
[
QT1 0
0 QT2

]
v =

[
last column of QT1
first column of QT2

]
since v = [0, . . . , 0, 1, 1, 0, . . . , 0]T . Therefore, the eigenvalues of T are the same

as those of the similar matrix D + ρuuT where D = [ Λ1 0
0 Λ2

] is diagonal,

ρ = bm is a scalar, and u is a vector. Henceforth we will assume without loss
of generality that the diagonal d1, . . . , dn of D is sorted: dn ≤ · · · ≤ d1.

To find the eigenvalues of D+ρuuT , assume first that D−λI is nonsingular,
and compute the characteristic polynomial as follows:

det(D + ρuuT − λI) = det((D − λI)(I + ρ(D − λ)−1uuT )). (5.13)

Since D − λI is nonsingular, det(I + ρ(D − λ)−1uuT ) = 0 whenever λ is an
eigenvalue. Note that I + ρ(D− λ)−1uuT is the identity plus a rank-1 matrix;
the determinant of such a matrix is easy to compute:

Lemma 5.1. If x and y are vectors, det(I + xyT ) = 1 + yTx.

The proof is left to Question 5.14.
Therefore

det(I+ρ(D−λ)−1uuT ) = 1+ρuT (D−λ)−1u = 1+ρ
n∑
i=1

u2
i

di − λ
≡ f (λ), (5.14)
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and the eigenvalues of T are the roots of the so-called secular equation f(λ) = 0.
If all di are distinct and all ui = 0 (the generic case), the function f (λ) has
the graph shown in Figure 5.2 (for n = 4 and ρ > 0).

As we can see, the line y = 1 is a horizontal asymptote, and the lines
λ = di are vertical asymptotes. Since f ′(λ) = ρ

∑n
i=1

u2
i

(di−λ)2 > 0, the function
is strictly increasing except at λ = di. Thus the roots of f (λ) are interlaced
by the di, and there is one more root to the right of d1 (d1 = 4 in Figure 5.2).
(If ρ < 0, then f(λ) is decreasing and there is one more root to the left of dn.)
Since f(λ) is monotonic and smooth on the intervals (di, di+1), it is possible
to find a version of Newton’s method that converges fast and monotonically
to each root, given a starting point in (di, di+1). We discuss details later in
this section. All we need to know here is that in practice Newton converges
in a bounded number of steps per eigenvalue. Since evaluating f(λ) and f ′(λ)
costs O(n) flops, finding one eigenvalue costs O(n) flops, and so finding all n
eigenvalues of D + ρuuT costs O(n2) flops.

It is also easy to derive an expression for the eigenvectors of D + uuT .

Lemma 5.2. If α is an eigenvalue of D+ρuuT , then (D−αI)−1u is its eigen-
vector. Since D − αI is diagonal, this costs O(n) flops to compute.

Proof.

(D + ρuuT )[(D − αI)−1u] = (D − αI + αI + ρuuT )(D − αI)−1u

= u+ α(D − αI)−1u+ u[ρuT (D − αI)−1u]
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= u+ α(D − αI)−1u− u
since ρuT (D − αI)−1u+ 1 = f (α) = 1

= α[(D − αI)−1u] as desired. 2

Evaluating this formula for all n eigenvectors costs O(n2) flops. Unfor-
tunately, this simple formula for the eigenvectors is not numerically stable,
because two very close values of αi can result in nonorthogonal computed
eigenvectors ui. Finding a stable alternative took over a decade from the orig-
inal formulation of this algorithm. We discuss details later in this section.

The overall algorithm is recursive.

Algorithm 5.2. Finding eigenvalues and eigenvectors of a symmetric tridi-
agonal matrix using divide-and-conquer:

proc dc eig (T,Q,Λ) ..... from input T compute
outputs Q and Λ where T = QΛQT

if T is 1-by-1
return Q = 1,Λ = T

else

form T =
[
T1 0
0 T2

]
+ bmvv

T

call dc eig (T1, Q1,Λ1)
call dc eig (T2, Q2,Λ2)
form D + ρuuT from Λ1,Λ2, Q1, Q2
find eigenvalues Λ and eigenvectors Q′ of D + ρuuT

form Q =
[
Q1 0
0 Q2

]
·Q′ = eigenvectors of T

return Q and Λ
endif

We analyze the complexity of Algorithm 5.2 as follows. Let t(n) be the
number of flops to run dc eig on an n-by-n matrix. Then

t(n) = 2t(n/2) for the 2 recursive calls to dc eig(Ti, Qi,Λi)
+O(n2) to find the eigenvalues of D + ρuuT

+O(n2) to find the eigenvectors of D + ρuuT

+c · n3 to multiply Q =
[
Q1 0
0 Q2

]
·Q′.

If we treat Q1, Q2, and Q′ as dense matrices and use the standard matrix
multiplication algorithm, the constant in the last line is c = 1. Thus we see
that the major cost in the algorithm is the matrix multiplication in the last
line. Ignoring the O(n2) terms, we get t(n) = 2t(n/2) + cn3. This geometric
sum can be evaluated, yielding t(n) ≈ c 4

3n
3 (see Question 5.15). In practice, c
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is usually much less than 1, because a phenomenon called deflation makes Q′

quite sparse.
After discussing deflation in the next section, we discuss details of solv-

ing the secular equation, and computing the eigenvectors stably. Finally, we
discuss how to accelerate the method by exploiting FMM techniques used in
electrostatic particle simulation [122]. These sections may be skipped on a first
reading.

Deflation

So far in our presentation we have assumed that the di are distinct, and the
ui nonzero. When this is not the case, the secular equation f (λ) = 0 will
have k < n vertical asymptotes, and so k < n roots. But it turns out that
the remaining n − k eigenvalues are available very cheaply: If di = di+1, or
if ui = 0, one can easily show that di is also an eigenvalue of D + ρuuT (see
Question 5.16). This process is called deflation. In practice we use a threshold
and deflate di either if it is close enough to di+1 or if ui is small enough.

In practice, deflation happens quite frequently: In experiments with ran-
dom dense matrices with uniformly distributed eigenvalues, over 15% of the
eigenvalues of the largest D+ ρuuT deflated, and in experiments with random
dense matrices with eigenvalues approaching 0 geometrically, over 85% de-
flated! It is essential to take advantage of this behavior to make the algorithm
fast [58, 208].

The payoff in deflation is not in making the solution of the secular equation
faster; this costs only O(n2) anyway. The payoff is in making the matrix
multiplication in the last step of the algorithm fast. For if ui = 0, then the
corresponding eigenvector is ei, the ith column of the identity matrix (see
Question 5.16). This means that the ith column of Q′ is ei, so no work is
needed to compute the ith column of Q in the two multiplications by Q1 and
Q2. There is a similar simplification when di = di+1. When many eigenvalues
deflate, much of the work in the matrix multiplication can be eliminated. This
is borne out in the numerical experiments presented in section 5.3.6.

Solving the Secular Equation

When some ui is small but too large to deflate, a problem arises when trying to
use Newton’s method to solve the secular equation. Recall that the principle
of Newton’s method for updating an approximate solution λj of f (λ) = 0 is

1. to approximate the function f(λ) near λ = λj with a linear function l(λ),
whose graph is a straight line tangent to the graph of f (λ) at λ = λj ,

2. to let λj+1 be the zero of this linear approximation: l(λj+1) = 0.

The graph in Figure 5.2 offers no apparent difficulties to Newton’s method,
because the function f(λ) appears to be reasonably well approximated by



222 Applied Numerical Linear Algebra

0 2 4 6
−6

−4

−2

0

2

4

6

1.99 1.995 2 2.005 2.01
−6

−4

−2

0

2

4

6
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straight lines near each zero. But now consider the graph in Figure 5.3, which
differs from Figure 5.2 only by changing u2

i from .5 to .001, which is not
nearly small enough to deflate. The graph of f(λ) in the left-hand figure is
visually indistinguishable from its vertical and horizontal asymptotes, so in the
right-hand figure we blow it up around one of the vertical asymptotes, λ = 2.
We see that the graph of f (λ) “turns the corner” very rapidly and is nearly
horizontal for most values of λ. Thus, if we started Newton’s method from
almost any λ0, the linear approximation l(λ) would also be nearly horizontal
with a slightly positive slope, so λ1 would be an enormous negative number, a
useless approximation to the true zero.

Newton’s method can be modified to deal with this situation as follows.
Since f(λ) is not well approximated by a straight line l(x), we approximate it
by another simple function h(x). There is nothing special about straight lines;
any approximation h(λ) that is both easy to compute and has zeros that are
easy to compute can be used in place of l(x) in Newton’s method. Since f (λ)
has poles at di and di+1 and these poles dominate the behavior of f (λ) near
them, it is natural when seeking the root in (di, di+1) to choose h(λ) to have
these poles as well, i.e.,

h(λ) =
c1

di − λ
+

c2
di+1 − λ

+ c3.

There are several ways to choose the constants c1, c2, and c3 so that h(λ)
approximates f (λ); we present a slightly simplified version of the one used
in the LAPACK routine slaed4 [170, 44]. Assuming for a moment that we
have chosen c1, c2, and c3, we can easily solve h(λ) = 0 for λ by solving the
equivalent quadratic equation

c1(di+1 − λ) + c2(di − λ) + c3(di − λ)(di+1 − λ) = 0.
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Given the approximate zero λj , here is how we compute c1, c2, and c3 so that
for λ near λj

c1
di − λ

+
c2

di+1 − λ
+ c3 = h(λ) ≈ f(λ) = 1 + ρ

n∑
k=1

u2
k

dk − λ
.

Write

f(λ) = 1 +
i∑

k=1

u2
k

dk − λ
+

n∑
k=i+1

u2
k

dk − λ
≡ 1 + ψ1(λ) + ψ2(λ).

For λ ∈ (di, di+1), ψ1(λ) is a sum of negative terms and ψ2(λ) is a sum of pos-
itive terms. Thus both ψ1(λ) and ψ2(λ) can be computed accurately, whereas
adding them together would likely result in cancellation and loss of relative
accuracy in the sum. We now choose c1 and ĉ1 so that

h1(λ) ≡ ĉ1 +
c1

di − λ
satisfies

h1(λj) = ψ1(λj) and h′1(λj) = ψ′1(λj). (5.15)

This means that the graph of h1(λ) (a hyperbola) is tangent to the graph of
ψ1(λ) at λ = λj . The two conditions in equation (5.15) are the usual conditions
in Newton’s method, except instead of using a straight line approximation, we
use a hyperbola. It is easy to verify that c1 = ψ′1(λj)(di − λj)2 and ĉ1 =
ψ1(λj)− ψ′1(λj)(di − λj). (See Question 5.17.)

Similarly, we choose c2 and ĉ2 so that

h2(λ) ≡ ĉ2 +
c2

di+1 − λ
satisfies

h2(λj) = ψ2(λj) and h′2(λj) = ψ′2(λj). (5.16)

Finally, we set

h(λ) = 1 + h1(λ) + h2(λ)

= (1 + ĉ1 + ĉ2) +
c1

di − λ
+

c2
di+1 − λ

≡ c3 +
c1

di − λ
+

c2
di+1 − λ

.

Example 5.8. For example, in the example in Figure 5.3, if we start with
λ0 = 2.5, then

h(λ) =
1.1111 · 10−3

2− λ +
1.1111 · 10−3

3− λ + 1,

and its graph is visually indistinguishable from the graph of f(λ) in the right-
hand figure. Solving h(λ1) = 0, we get λ1 = 2.0011, which is accurate to 4
decimal digits. Continuing, λ2 is accurate to 11 digits, and λ3 is accurate to
all 16 digits. ¦
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The algorithm used in LAPACK routine slaed4 is a slight variation on
the one described here (the one here is called the Middle Way in [170]). The
LAPACK routine averages two to three iterations per eigenvalue to converge
to full machine precision, and never took more than seven steps in extensive
numerical tests.

Computing the Eigenvectors Stably

Once we have solved the secular equation to get the eigenvalues αi of D+ρuuT ,
Lemma 5.2 provides a simple formula for the eigenvectors: (D − αiI)−1u.
Unfortunately, the formula can be unstable [58, 88, 232], in particular when two
eigenvalues αi and αi+1 are very close together. Intuitively, the problem is that
(D − αiI)−1u and (D− αi+1I)−1n are “very close” formulas yet are supposed
to yield orthogonal eigenvectors. More precisely, when αi and αi+1 are very
close, they must also be close to the di between them. Therefore, there is a
great deal of cancellation, either when evaluating di−αi and di−αi+1 or when
evaluating the secular equation during Newton iteration. Either way, di − αi
and di − αi+1 may contain large relative errors, so the computed eigenvectors
(D− αi)−1u and (D− αi+1)−1u are quite inaccurate and far from orthogonal.

Early attempts to address this problem [88, 232] used double precision
arithmetic (when the input data was single precision) to solve the secular
equation to high accuracy so that di − αi and di − αi+1 could be computed to
high accuracy. But when the input data is already in double precision, this
means quadruple precision would be needed, and this is not available in many
machines and languages, or at least not cheaply. As described in section 1.5,
it is possible to simulate quadruple precision using double precision [232, 202].
This can be done portably and relatively efficiently, as long as the underlying
floating point arithmetic rounds sufficiently accurately. In particular, these
simulations require that fl(a ± b) = (a ± b)(1 + δ) with |δ| = O(ε), barring
overflow or underflow (see section 1.5 and Question 1.18). Unfortunately, the
Cray 2, YMP, and C90 do not round accurately enough to use these efficient
algorithms.

Finally, an alternative formula was found that makes simulating high pre-
cision arithmetic unnecessary. It is based on the following theorem of Löwner
[127, 177].

Theorem 5.10. Löwner. Let D = diag(d1, . . . , dn) be diagonal with dn <
· · · < d1. Let αn < · · · < α1 be given, satisfying the interlacing property

dn < αn < · · · < di+1 < αi+1 < di < αi < · · · < d1 < α1.

Then there is a vector û such that the αi are the exact eigenvalues of D̂ ≡



The Symmetric Eigenproblem and SVD 225

D + ûûT . The entries of û are given by

|ûi| =
[ ∏n

j=1(αj − di)∏n
j=1, j=i(dj − di)

]1/2

.

Proof. The characteristic polynomial of D̂ can be written both as det(D̂ −
λI) =

∏n
j=1(αj − λ) and (using equations (5.13) and (5.14)) as

det(D̂ − λI) =

 n∏
j=1

(dj − λ)

 · (1 +
n∑
j=1

û2
j

dj − λ
)

=

 n∏
j=1

(dj − λ)

 · (1 +
n∑

j = 1
j = i

û2
j

dj − λ
)

+


n∏

j = 1
j = i

(dj − λ)

 · û2
i .

Setting λ = di and equating both expressions for det(D̂ − λI) yield

n∏
j=1

(αj − di) = û2
i ·

n∏
j = 1
j = i

(dj − di)

or

û2
i =

∏n
j=1(αj − di)∏n

j=1, j=i(dj − di)
.

Using the interlacing property, we can show that the fraction on the right is
positive, so we can take its square root to get the desired expression for ûi. 2

Here is the stable algorithm for computing the eigenvalues and eigenvectors
(where we assume for simplicity of presentation that ρ = 1).

Algorithm 5.3. Compute the eigenvalues and eigenvectors of D + uuT .

Solve the secular equation 1 +
∑n

i=1
u2
i

di−λ = 0 to get the eigenvalues
αi of D + uuT .

Use Löwner’s theorem to compute û so that the αi are “exact”
eigenvalues of D + ûûT .

Use Lemma 5.2 to compute the eigenvectors of D + ûûT .
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Here is a sketch of why this algorithm is numerically stable. By analyz-
ing the stopping criterion in the secular equation solver,18 one can show that
‖uuT − ûûT ‖2 ≤ O(ε)(‖D‖2 + ‖uuT ‖2); this means that D+uuT and D+ ûûT

are so close together that the eigenvalues and eigenvectors of D + ûûT are
stable approximations of the eigenvalues and eigenvectors of D + uuT . Next
note that the formula for ûi in Löwner’s theorem requires only differences of
floating point numbers dj − di and αj − di, products and quotients of these
differences, and a square root. Provided that the floating point arithmetic is
accurate enough that fl(a ¯ b) = (a ¯ b)(1 + δ) for all ¯ ∈ {+,−,×, /} and
sqrt(a) =

√
a · (1 + δ) with |δ| = O(ε), this formula can be evaluated to high

relative accuracy. In particular, we can easily show that

fl

[ ∏n
j=1(αj − di)∏n

j=1, j=i(dj − di)

]1/2
 = (1 + (4n− 2)δ) ·

[ ∏n
j=1(αj − di)∏n

j=1, j=i(dj − di)

]1/2

with |δ| = O(ε), barring overflow or underflow. Similarly, the formula in
Lemma 5.2 can also be evaluated to high relative accuracy, so we can compute
the eigenvectors of D + ûûT to high relative accuracy. In particular, they are
very accurately orthogonal.

In summary, provided the floating point arithmetic is accurate enough,
Algorithm 5.3 computes very accurate eigenvalues and eigenvectors of a matrix
D+ûûT that differs only slightly from the original matrix D+uuT . This means
that it is numerically stable.

The reader should note that our need for sufficiently accurate floating point
arithmetic is precisely what prevented the simulation of quadruple precision
proposed in [232, 202] from working on some Crays. So we have not yet
succeeded in providing an algorithm that works reliably on these machines.
One more trick is necessary: The only operations that fail to be accurate
enough on some Crays are addition and subtraction, because of the lack of a so-
called guard digit in the floating point hardware. This means that the bottom-
most bit of an operand may be treated as 0 during addition or subtraction, even
if it is 1. If most higher-order bits cancel, this “lost bit” becomes significant.
For example, subtracting 1 from the next smaller floating point number, in
which case all leading bits cancel, results in a number twice too large on the
Cray C90 and in 0 on the Cray 2. But if the bottom bit is already 0, no
harm is done. So the trick is to deliberately set all the bottom bits of the di
to 0 before applying Löwner’s theorem or Lemma 5.2 in Algorithm 5.3. This
modification causes only a small relative change in the di and αi, and so the
algorithm is still stable.19

18In more detail, the secular equation solver must solve for αi− di or di+1−αi (whichever
is smaller), not αi, to attain this accuracy.

19To set the bottom bit of a floating point number β to 0 on a Cray, one can show that it
is necessary only to set β := (β+β)−β. This inexpensive computation does not change β at
all on a machine with accurate binary arithmetic (barring overflow, which is easily avoided).
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This algorithm is described in more detail in [127, 129] and implemented
in LAPACK routine slaed3.

Accelerating Divide-and-Conquer using the FMM

The FMM [122] was originally invented for the completely different problem of
computing the mutual forces on n electrically charged particles or the mutual
gravitational forces on n masses. We only sketch how these problems are
related to finding eigenvalues and eigenvectors, leaving details to [129].

Let d1 through dn be the three-dimensional position vectors of n particles
with charges zi · ui. Let α1 through αn be the position vectors of n other par-
ticles with unit positive charges. Then the inverse-square law tells us that the
force on the particle at αj due to the particles at d1 through dn is proportional
to

fj =
n∑
i=1

ziui(di − αj)
‖di − αj‖32

.

If we are modeling electrostatics in two dimensions instead of three, the force
law changes to the inverse-first-power law20

fj =
n∑
i=1

ziui(di − αj)
‖di − αj‖22

.

Since di and αj are vectors in R2, we can also consider them to be complex
variables. In this case

fj =
n∑
i=1

ziui

d̄i − ᾱj
,

where d̄i and ᾱj are the complex conjugates of di and αj , respectively. If di
and αj happen to be real numbers, this simplifies further to

fj =
n∑
i=1

ziui
di − αj

.

Now consider performing a matrix-vector multiplication fT = zTQ′, where
Q′ is the eigenvector matrix of D+uuT . From Lemma 5.2, Q′ij = uisj/(di−αj),

But on a Cray it sets the bottom bit to 0. The reader familiar with Cray arithmetic is
invited to prove this. The only remaining difficulty is preventing an optimizing compiler
from removing this line of code entirely, which some overzealous optimizers might do; this is
accomplished (for the current generation of compilers) by computing (β+ β) with a function
call to a function stored in a separate file from the main routine. We hope that by the time
compilers become clever enough to optimize even this situation, Cray arithmetic will have
died out.

20Technically, this means the potential function satisfies Poisson’s equation in two space
coordinates rather than three.
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where sj is a scale factor chosen so that column j is a unit vector. Then the
jth entry of fT = zTQ′ is

fj =
n∑
i=1

ziQ
′
ij = sj

n∑
i=1

ziui
di − αj

,

which is the same sum as for the electrostatic force, except for the scale fac-
tor sj . Thus, the most expensive part of the divide-and-conquer algorithm,
the matrix multiplication in the last line of Algorithm 5.2, is equivalent to
evaluating electrostatic forces.

Evaluating this sum for j = 1, . . . , n appears to require O(n2) flops. The
FMM and others like it [122, 23] can be used to approximately (but very
accurately) evaluate this sum in O(n · log n) time (or even O(n)) time instead.
(See the lectures on “Fast Hierarchical Methods for the N-body Problem” at
PARALLEL HOMEPAGE for details.)

But this idea alone is not enough to reduce the cost of divide-and-conquer
to O(n · logp n). After all, the output eigenvector matrix Q has n2 entries,
which appears to mean that the complexity should be at least n2. So we
must represent Q using fewer than n2 independent numbers. This is possible,
because an n-by-n tridiagonal matrix has only 2n − 1 “degrees of freedom”
(the diagonal and superdiagonal entries), of which n can be represented by the
eigenvalues, leaving n−1 for the orthogonal matrix Q. In other words, not every
orthogonal matrix can be the eigenvector matrix of a symmetric tridiagonal T ;
only an (n − 1)-dimensional subset of the entire (n(n− 1)/2)-dimensional set
of orthogonal matrices can be such eigenvector matrices.

We will represent Q using the divide-and-conquer tree computed by Algo-

rithm 5.2. Rather than accumulating Q = [ Q1 0
0 Q2

] ·Q′, we will store all the

Q′ matrices, one at each node in the tree. And we will not store Q′ explicitly
but rather just store D, ρ, u, and the eigenvalues αi of D + ρuuT . We can do
this since this is all we need to use the FMM to multiply by Q′. This reduces
the storage needed for Q from n2 to O(n · log n). Thus, the output of the
algorithm is a “factored” form of Q consising of all the Q′ factors at the nodes
of the tree. This is an adequate representation of Q, because we can use the
FMM to multiply any vector by Q in O(n · logp n) time.

5.3.4. Bisection and Inverse Iteration

The bisection algorithm exploits Sylvester’s inertia theorem (Theorem 5.3)
to find only those k eigenvalues that one wants, at cost O(nk). Recall that
Inertia(A) = (ν, ζ, π), where ν, ζ, and π are the number of negative, zero,
and positive eigenvalues of A, respectively. Suppose that X is nonsingular;
Sylvester’s inertia theorem asserts that Inertia(A) = Inertia(XTAX).

Now suppose that one uses Gaussian elimination to factorize A − zI =
LDLT , where L is nonsingular and D diagonal. Then Inertia(A − zI) =
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Inertia(D). Since D is diagonal, its inertia is trivial to compute. (In what
follows, we use notation such as “# dii < 0” to mean “the number of values of
dii that are less than zero.”)

Inertia(A− zI) = (# dii < 0, # dii = 0, # dii > 0)
= (# negative eigenvalues of A− zI,

# zero eigenvalues of A− zI,
# positive eigenvalues of A− zI)

= (# eigenvalues of A < z,
# eigenvalues of A = z,
# eigenvalues of A > z).

Suppose z1 < z2 and we compute Inertia (A − z1I) and Inertia (A− z2I).
Then the number of eigenvalues in the interval [z1, z2) equals (# eigenvalues
of A < z2) – (# eigenvalues of A < z1).

To make this observation into an algorithm, define

Negcount(A, z) = # eigenvalues of A < z.

Algorithm 5.4. Bisection: Find all eigenvalues of A inside [a, b) to a given
error tolerance tol:

na = Negcount(A, a)
nb = Negcount(A, b)
if na = nb, quit ... because there are no eigenvalues in [a, b)
put [a, na, b, nb] onto Worklist

/* Worklist contains a list of intervals [a, b) containing
eigenvalues n− na + 1 through n− nb, which the algorithm
will repeatedly bisect until they are narrower than tol. */

while Worklist is not empty do
remove [low, nlow, up, nup] from Worklist
if (up−low < tol) then

print “there are nup − nlow eigenvalues in [low,up)”
else

mid = (low + up)/2
nmid = Negcount (A, mid)
if nmid > nlow then ... there are eigenvalues in [low,mid)

put [low, nlow,mid, nmid] onto Worklist
end if
if nup > nmid then ... there are eigenvalues in [mid,up)

put [mid, nmid,up, nup] onto Worklist
end if

end if
end while

If α1 ≥ · · · ≥ αn are eigenvalues, the same idea can be used to compute αj
for j = j0, j0 + 1, . . . , j1. This is because we know αn−nup+1 through αn−nlow

lie in the interval [low,up).
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If A were dense, we could implement Negcount(A, z) by doing symmetric
Gaussian elimination with pivoting as described in section 2.7.2. But this
would cost O(n3) flops per evaluation and so not be cost effective. On the other
hand, Negcount(A, z) is quite simple to compute for tridiagonal A, provided
that we do not pivot:

A− zI ≡


a1 − z b1

b1 a2 − z
. . .

. . . . . . bn−1
bn−1 an

 = LDLT

≡


1

l1
. . .
. . . . . .

ln−1 1

 ·

d1

. . .
. . .

dn

 ·


1 l1
. . . . . .

. . . ln−1
1

 ,
so a1 − z = d1, d1l1 = b1 and thereafter l2i−1di−1 + di = ai − z, dili = bi.
Substituting li = bi/di into l2i−1di−1 + di = ai − z yields the simple recurrence

di = (ai − z)−
b2i−1

di−1
. (5.17)

Notice that we are not pivoting, so you might think that this is dangerously
unstable, especially when di−1 is small. In fact, since it is tridiagonal, it can
be shown to be very stable [72, 73, 154].

Lemma 5.3. The di computed in floating point arithmetic, using equation (5.17),
have the same signs (and so compute the same Inertia) as the d̂i computed ex-
actly from Â, where Â is very close to A:

(Â)ii ≡ âi = ai and (Â)i,i+1 ≡ b̂i = bi(1 + εi), where |εi| ≤ 2.5ε+O(ε2).

Proof. Let d̃i denote the quantities computed using equation (5.17) including
rounding errors:

d̃i =
[
(ai − z)(1 + ε−,1,i)−

b2i−1(1 + ε∗,i)

d̃i−1
· (1 + ε/,i)

]
(1 + ε−,2,i), (5.18)

where all the ε’s are bounded by machine roundoff ε in magnitude, and their
subscripts indicate which floating point operation they come from (for example,
ε−,2,i is from the second subtraction when computing d̃i). Define the new
variables

d̂i =
d̃i

(1 + ε−,1,i)(1 + ε−,2,i)
(5.19)

b̂i−1 = bi−1

[
(1 + ε∗,i)(1 + ε/,i)

(1 + ε−,1,i)(1 + ε−,1,i−1)(1 + ε−,2,i−1)

]1/2

≡ bi−1(1 + εi).
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Note that d̂i and d̃i have the same signs, and |εi| ≤ 2.5ε+O(ε2). Substituting
(5.19) into (5.18) yields

d̂i = ai − z −
b̂2i−1

d̂i−1
,

completing the proof. 2

A complete analysis must take the possibility of overflow or underflow into
account. Indeed, using the exception handling facilities of IEEE arithmetic,
one can safely compute even when some di−1 is exactly zero! For in this case
di = −∞, di+1 = ai+1 − z, and the computation continues unexceptionally
[72, 80].

The cost of a single call to Negcount on a tridiagonal matrix is 4n flops.
Therefore the overall cost to find k eigenvalues is O(kn). This is implemented
in LAPACK routine sstebz.

Note that Bisection converges linearly, with one more bit of accuracy for
each bisection of an interval. There are many ways to accelerate convergence,
using algorithms like Newton’s method and its relatives, to find zeros of the
characteristic polynomial (which may be computed by multiplying all the di’s
together) [171, 172, 173, 174, 176, 267].

To compute eigenvectors once we have computed (selected) eigenvalues, we
can use inverse iteration (Algorithm 4.2); this is available in LAPACK routine
sstein. Since we can use accurate eigenvalues as shifts, convergence usually
takes one or two iterations. In this case the cost is O(n) flops per eigenvector,
since one step of inverse iteration requires us only to solve a tridiagonal system
of equations (see section 2.7.3). When several computed eigenvalues α̂i, . . . , α̂j
are close together, their corresponding computed eigenvectors q̂i, . . . , q̂j may
not be orthogonal. In this case the algorithm reorthogonalizes the computed
eigenvectors, computing the QR decomposition [q̂i, . . . , q̂j ] = QR and replacing
each q̂k with the kth column of Q; this guarantees that the q̂k are orthonormal.
This QR decomposition is usually computed using the MGS orthogonalization
process (Algorithm 3.1); i.e., each computed eigenvector has any components
in the directions of previously computed eigenvectors explicitly subtracted out.
When the cluster size k = j − i+ 1 is small, the cost O(k2n) of this reorthog-
onalization is small, so in principle all the eigenvalues and all the eigenvectors
could be computed by Bisection followed by inverse iteration in just O(n2) flops
total. This is much faster than the O(n3) cost of QR iteration or divide-and-
conquer (in the worst case). The obstacle to obtaining this speedup reliably
is that if the cluster size k = j − i + 1 is large, i.e., a sizable fraction of n,
then the total cost rises to O(n3) again. Worse, there is no guarantee that the
computed eigenvectors are accurate or orthogonal. (The trouble is that after
reorthogonalizing a set of nearly dependent q̂k, cancellation may mean some
computed eigenvectors consist of little more than roundoff errors.)

There has been recent progress on this problem, however [103, 199, 201],
and it now appears possible that inverse iteration may be “repaired” to provide
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accurate, orthogonal eigenvectors without spending more than O(n) flops per
eigenvector to reorthogonalize. This would make Bisection and “repaired”
inverse iteration the algorithm of choice in all cases, no matter how many
eigenvalues and eigenvectors are desired. We look forward to describing this
algorithm in a future edition.

Note that Bisection and inverse iteration are “embarrassingly parallel,”
since each eigenvalue and later eigenvector may be found independently of
the others. (This presumes that inverse iteration has been repaired so that
reorthogonalization with many other eigenvectors is no longer necessary.) This
makes these algorithms very attractive for parallel computers [75].

5.3.5. Jacobi’s Method

Jacobi’s method does not start by reducing A to tridiagonal from as do the
previous methods but instead works on the original dense matrix. Jacobi’s
method is usually much slower than the previous methods and remains of
interest only because it can sometimes compute tiny eigenvalues and their
eigenvectors with much higher accuracy than the previous methods and can be
easily parallelized. Here we describe only the basic implementation of Jacobi’s
method, and defer the discussion of high accuracy to section 5.4.3.

Given a symmetric matrix A = A0, Jacobi’s method produces a sequence
A1, A2, . . . of orthogonally similar matrices, which eventually converge to a
diagonal matrix with the eigenvalues on the diagonal. Ai+1 is obtained from
Ai by the formula Ai+1 = JTi AiJi, where Ji is an orthogonal matrix called a
Jacobi rotation. Thus

Am = JTm−1Am−1Jm−1

= JTm−1J
T
m−2Am−2Jm−2Jm−1 = · · ·

= JTm−1 · · ·JT0 A0J0 · · ·Jm−1

≡ JTAJ.

If we choose each Ji appropriately, Am approaches a diagonal matrix Λ for
large m. Thus we can write Λ ≈ JTAJ or JΛJT ≈ A. Therefore, the columns
of J are approximate eigenvectors.

We will make JTAJ nearly diagonal by iteratively choosing Ji to make one
pair of offdiagonal entries of Ai+1 = JTi AiJi zero at a time. We will do this by
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choosing Ji to be a Givens rotation,

Ji = R(j, k, θ) ≡

j k

j

k



1
1

. . .
cos θ − sin θ

. . .
sin θ cos θ

. . .
1

1


,

where θ is chosen to zero out the j, k and k, j entries of Ai+1. To determine θ
(or actually cos θ and sin θ), write[
a

(i+1)
jj a

(i+1)
jk

a
(i+1)
kj a

(i+1)
kk

]
=

[
cos θ − sin θ
sin θ cos θ

]T [ a
(i)
jj a

(i)
jk

a
(i)
kj a

(i)
kk

] [
cos θ − sin θ
sin θ cos θ

]
=

[
λ1 0
0 λ2

]
,

where λ1 and λ2 are the eigenvalues of[
a

(i)
jj a

(i)
jk

a
(i)
kj a

(i)
kk

]
.

It is easy to compute cos θ and sin θ: Multiplying out the last expression, using
symmetry, abbreviating c ≡ cos θ and s ≡ sin θ, and dropping the superscript
(i) for simplicity yield[
λ1 0
0 λ2

]
=
[
ajjc

2 + akks
2 + 2scajk sc(akk − ajj) + ajk(c2 − s2)

sc(akk − ajj) + ajk(c2 − s2) ajjs
2 + akkc

2 − 2scajk

]
.

Setting the offdiagonals to 0 and solving for θ we get 0 = sc(akk − ajj) +
ajk(c2 − s2), or

ajj − akk
2ajk

=
c2 − s2

2sc
=

cos 2θ
sin 2θ

= cot 2θ ≡ τ.

We now let t = s
c = tan θ and note that t2 + 2τt − 1 = 0 to get (via the

quadratic formula) t = sign(τ)
|τ |+
√

1+τ2 , c = 1√
1+t2

and s = t · c. We summarize this
derivation in the following algorithm.

Algorithm 5.5. Compute and apply a Jacobi rotation to A in coordinates
j, k:
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proc Jacobi-Rotation (A, j, k)
if |ajk| is not too small

τ = (ajj − akk)/(2 · ajk)
t = sign(τ)/(|τ |+

√
1 + τ2)

c = 1/
√

1 + t2

s = c · t
A = RT (j, k, θ) ·A ·R(j, k, θ) ... where c = cos θ and s = sin θ
if eigenvectors are desired

J = J · R(j, k, θ)
end if

end if

The cost of applying R(j, k, θ) to A (or J) is only O(n) flops, because only
rows and columns j and k of A (and columns j and k of J) are modified. The
overall Jacobi algorithm is then as follows.

Algorithm 5.6. Jacobi’s method to find the eigenvalues of a symmetric ma-
trix:

repeat
choose a j, k pair
call Jacobi-Rotation(A, j, k)

until A is sufficiently diagonal

We still need to decide how to pick j, k pairs. There are several possibilities.
To measure progress to convergence and describe these possibilities, we define

off(A) ≡
√ ∑

1≤j<k≤n
a2
jk.

Thus off(A) is the root-sum-of-squares of the (upper) offdiagonal entries of
A, so A is diagonal if and only if off(A) = 0. Our goal is to make off(A) ap-
proach 0 quickly. The next lemma tells us that off(A) decreases monotonically
with every Jacobi rotation.

Lemma 5.4. Let A′ be the matrix after calling Jacobi-Rotation(A, j, k) for any
j = k. Then off2(A′) = off2(A)− a2

jk.

Proof. Note that A′ = A except in rows and columns j and k. Write

off2(A) =

 ∑
1 ≤ j′ < k′ ≤ n
j′ = j or k′ = k

a2
j′k′

+ a2
jk ≡ S2 + a2

jk
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and similarly off2(A′) = S′2 + a′2jk = S′2, since a′jk = 0 after calling Jacobi-
Rotation(A, j, k). Since ‖X‖F = ‖QX‖F and ‖X‖F = ‖XQ‖F for any X and
any orthogonal Q, we can show S2 = S′2. Thus off2(A′) = off2(A) − a2

jk as
desired. 2

The next algorithm was the original version of the algorithm (from Jacobi
in 1846), and it has an attractive analysis although it is too slow to use.

Algorithm 5.7. Classical Jacobi’s algorithm:

while off(A) > tol (where tol is the stopping criterion set by user)
choose j and k so ajk is the largest offdiagonal entry in magnitude
call Jacobi-Rotation (A, j, k)

end while

Theorem 5.11. After one Jacobi rotation in the classical Jacobi’s algorithm,

we have off(A′) ≤
√

1− 1
N off(A) where N = n(n−1)

2 = the number of su-
perdiagonal entries of A. After k Jacobi-Rotations off(·) is no more than(
1− 1

N

)k/2 off(A).

Proof. By Lemma 5.4, after one step, off2(A′) = off2(A)−a2
jk, where ajk is the

largest offdiagonal entry. Thus off2(A) ≤ n(n−1)
2 a2

jk, or a2
jk ≥ 1

n(n−1)/2off2(A),
so off2(A)− a2

jk ≤
(
1− 1

N

)
off2(A) as desired. 2

So the classical Jacobi’s algorithm converges at least linearly with the error

(measured by off(A)) decreasing by a factor of at least
√

1− 1
N at a time. In

fact, it eventually converges quadratically.

Theorem 5.12. Jacobi’s method is locally quadratically convergent after N
steps (i.e., enough steps to choose each ajk once). This means that for i large
enough

off(Ai+N ) = O(off2(Ai)).

In practice, we do not use the classical Jacobi’s algorithm because searching
for the largest entry is too slow: We would need to search n2−n

2 entries for every
Jacobi rotation, which costs only O(n) flops to perform, and so for large n the
search time would dominate. Instead, we use the following simple method to
choose j and k.

Algorithm 5.8. Cyclic-by-row-Jacobi: Sweep through the offdiagonals of A
rowwise.

repeat
for j = 1 to n− 1

for k = j + 1 to n
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call Jacobi-Rotation(A, j, k)
end for

end for
until A is sufficiently diagonal

A no longer changes when Jacobi-Rotation(A, j, k) chooses only c = 1 and
s = 0 for an entire pass through the inner loop. The cyclic Jacobi’s algo-
rithm is also asymptotically quadratically convergent like the classical Jacobi’s
algorithm [260, p. 270].

The cost of one Jacobi “sweep” (where each j, k pair is selected once) is
approximately half the cost of reduction to tridiagonal form and the compu-
tation of eigenvalues and eigenvectors using QR iteration, and more than the
cost using divide-and-conquer. Since Jacobi’s method often takes 5–10 sweeps
to converge, it is much slower than the competition.

5.3.6. Performance Comparison

In this section we analyze the performance of the three fastest algorithms
for the symmetric eigenproblem: QR iteration, Bisection with inverse itera-
tion, and divide-and-conquer. More details may be found in [10, chap. 3] or
NETLIB/lapack/lug/lapack lug.html.

We begin by discussing the fastest algorithm and later compare the others.
We used the LAPACK routine ssyevd. The algorithm to find only eigenval-
ues is reduction to tridiagonal form followed by QR iteration, for an operation
count of 4

3n
3 +O(n2) flops. The algorithm to find eigenvalues and eigenvectors

is tridiagonal reduction followed by divide-and-conquer. We timed ssyevd on
an IBM RS6000/590, a workstation with a peak speed of 266 Mflops, although
optimized matrix-multiplication runs at only 233 Mflops for 100-by-100 matri-
ces and 256 Mflops for 1000-by-1000 matrices. The actual performance is given
in the table below. The “Mflop rate” is the actual speed of the code in Mflops,
and “Time / Time(Matmul)” is the time to solve the eigenproblem divided by
the time to multiply two square matrices of the same size. We see that for large
enough matrices, matrix-multiplication and finding only the eigenvalues of a
symmetric matrix are about equally expensive. (In contrast, the nonsymmet-
ric eigenproblem is least 16 times more costly [10].) Finding the eigenvectors
as well is a little under three times as expensive as matrix-multiplication.

Dimension Eigenvalues only Eigenvalues
and eigenvectors

Mflop rate Time / Mflop rate Time /
Time(Matmul) Time(Matmul)

100 72 3.1 72 9.3
1000 160 1.1 174 2.8

Now we compare the relative performance of QR iteration, Bisection with
inverse iteration, and divide-and-conquer. In Figures 5.4 and 5.5 these are la-
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beled QR, BZ (for the LAPACK routine sstebz, which implements Bisection),
and DC, respectively. The horizontal axis in these plots is matrix dimension,
and the vertical axis is time divided by the time for DC. Therefore, the DC
curve is a horizontal line at 1, and the other curves measure how many times
slower BZ and QR are than DC. Figure 5.4 shows only the time for the tridi-
agonal eigenproblem, whereas Figure 5.5 shows the entire time, starting from
a dense matrix.

In the top graph in Figure 5.5 the matrices tested were random symmetric
matrices; in Figure 5.4, the tridiagonal matrices were obtained by reducing
these dense matrices to tridiagonal form. Such random matrices have well-
separated eigenvalues on average, so inverse iteration requires little or no ex-
pensive reorthogonalization. Therefore BZ was comparable in performance
to DC, although QR was significantly slower, up to 15 times slower in the
tridiagonal phase on large matrices.

In the bottom two graphs, the dense symmetric matrices had eigenvalues
1, .5, .25, . . . , .5n−1. In other words, there were many eigenvalues clustered
near zero, so inverse iteration had a lot of reorthogonalization to do. Thus
the tridiagonal part of BZ was over 70 times slower than DC. QR was up to
54 times slower than DC, too, because DC actually speeds up when there is a
large cluster of eigenvalues; this is because of deflation.

The distinction in speeds among QR, BZ, and DC is less noticeable in
Figure 5.5 than in Figure 5.4, because Figure 5.5 includes the common O(n3)
overhead of reduction to tridiagonal form and transforming the eigenvalues of
the tridiagonal matrix to eigenvalues of the original dense matrix; this common
overhead is labeled TRD. Since DC is so close to TRD in Figure 5.5, this means
that any further acceleration of DC will make little difference in the overall
speed of the dense algorithm.

5.4. Algorithms for the Singular Value Decomposition

In Theorem 3.3, we showed that the SVD of the general matrix G is closely
related to the eigendecompositions of the symmetric matrices GTG, GGT and

[ 0 GT

G 0 ]. Using these facts, the algorithms in the previous section can be

transformed into algorithms for the SVD. The transformations are not straight-
forward, however, because the added structure of the SVD can often be ex-
ploited to make the algorithms more efficient or more accurate [118, 79, 66].

All the algorithms for the eigendecomposition of a symmetric matrix A,
except Jacobi’s method, have the following structure:

1. Reduce A to tridiagonal form T with an orthogonal matrix Q1: A =
Q1TQ

T
1 .

2. Find the eigendecomposition of T : T = Q2ΛQT2 , where Λ is the diagonal
matrix of eigenvalues and Q2 is the orthogonal matrix whose columns
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are eigenvectors.

3. Combine these decompositions to get A = (Q1Q2)Λ(Q1Q2)T . The columns
of Q = Q1Q2 are the eigenvectors of A.

All the algorithms for the SVD of a general matrix G, except Jacobi’s method,
have an analogous structure:

1. Reduce G to bidiagonal form B with orthogonal matrices U1 and V1:
G = U1BV

T
1 . This means B is nonzero only on the main diagonal and

first superdiagonal.

2. Find the SVD of B: B = U2ΣV T
2 , where Σ is the diagonal matrix of

singular values, and U2 and V2 are orthogonal matrices whose columns
are the left and right singular vectors, respectively.

3. Combine these decompositions to get G = (U1U2)Σ(V1V2)T . The columns
of U = U1U2 and V = V1V2 are the left and right singular vectors of G,
respectively.

Reduction to bidiagonal form is accomplished by the algorithm in section 4.4.7.
Recall from the discussion there that it costs 8

3n
3 +O(n2) flops to compute B;

this is all that is needed if only the singular values Σ are to be computed. It
costs another 4n3 + O(n2) flops to compute U1 and V1, which are needed to
compute the singular vectors as well.

The following simple lemma shows how to convert the problem of finding
the SVD of the bidiagonal matrix B into the eigendecomposition of a symmetric
tridiagonal matrix T .

Lemma 5.5. Let B be an n-by-n bidiagonal matrix, with diagonal a1, . . . , an
and superdiagonal b1, . . . , bn−1. There are three ways to convert the problem of
finding the SVD of B to finding the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix.

1. Let A = [ 0 BT

B 0 ]. Let P be the permutation matrix P = [e1, en+1, e2,

en+2, . . . , en, e2n], where ei is the ith column of the 2n-by-2n identity
matrix. Then Tps ≡ P TAP is symmetric tridiagonal. The subscript
“ps” stands for perfect shuffle, because multiplying P times a vector x
“shuffles” the entries of x like a deck of cards. One can show that Tps
has all zeros on its main diagonal, and its superdiagonal and subdiagonal
is a1, b1, a2, b2, . . . , bn−1, an. If Tpsxi = αixi is an eigenpair for Tps, with
xi a unit vector, then αi = ±σi, where σi is a singular value of B, and

Pxi = 1√
2
[ vi
±ui ], where ui and vi are left and right singular vectors of

B, respectively.
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2. Let TBBT ≡ BBT . Then TBBT is symmetric tridiagonal with diagonal
a2

1 + b21, a
2
2 + b22, . . . , a

2
n−1 + b2

n−1, a
2
n, and superdiagonal and subdiagonal

a2b1, a3b2, . . . , anbn−1. The singular values of B are the square roots
of the eigenvalues of TBBT , and the left singular vectors of B are the
eigenvectors of TBBT . TBBT contains no information about the right
singular vectors of B.

3. Let TBTB ≡ BTB. Then TBTB is symmetric tridiagonal with diago-
nal a2

1, a
2
2 + b21, a

2
3 + b22, . . . , a

2
n + b2n−1, and superdigonal and subdiagonal

a1b1, a2b2, . . . , an1bn−1. The singular values of B are the square roots of
the eigenvalues of TBTB, and the right singular vectors of B are the eigen-
vectors of TBTB. TBTB contains no information about the left singular
vectors of B.

For a proof, see Question 5.19.
Thus, we could in principle apply any of QR iteration, divide-and-conquer,

or Bisection with inverse iteration to one of the tridiagonal matrices from
Lemma 5.5 and then extract the singular and (perhaps only left or right)
singular vectors from the resulting eigendecomposition. However, this sim-
ple approach would sacrifice both speed and accuracy by ignoring the special
properties of the underlying SVD problem. We give two illustrations of this.

First, it would be inefficient to run symmetric tridiagonal QR iteration or
divide-and-conquer on Tps. This is because these algorithms both compute all
the eigenvalues (and perhaps eigenvectors) of Tps, whereas Lemma 5.5 tells us
we only need the nonnegative eigenvalues (and perhaps eigenvectors). There
are some accuracy difficulties with singular vectors for tiny singular values too.

Second, explicitly forming either TBBT or TBTB is numerically unstable.
In fact one can lose half the accuracy in the small singular values of B. For
example, let η = ε/2, so 1 + η rounds to 1 in floating point arithmetic. Let

B = [ 1 1
0
√
η

], which has singular values near
√

2 and
√
η/2. Then BTB =

[ 1 1
1 1 + η

] rounds to TBTB = [ 1 1
1 1 ], an exactly singular matrix. Thus,

rounding 1 + η to 1 changes the smaller computed singular value from its true
value near

√
η/2 =

√
ε/2 to 0. In contrast, a backward stable algorithm should

change the singular values by no more than O(ε)‖B‖2 = O(ε). In IEEE double
precision floating point arithmetic, ε ≈ 10−16 and

√
ε/2 ≈ 10−8, so the error

introduced by forming BTB is 108 times larger than roundoff, a much larger
change. The same loss of accuracy can occur by explicitly forming TBBT .

Because of the instability caused by computing TBBT or TBTB , good SVD
algorithms work directly on B or possibly Tps.

In summary, we describe the practical algorithms used for computing the
SVD.

1. QR iteration and its variations. Properly implemented [102], this is the
fastest algorithm for finding all the singular values of a bidiagonal matrix.
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Furthermore, it finds all the singular values to high relative accuracy,
as discussed in section 5.2.1, This means that all the digits of all the
singular values are correct, even the tiniest ones. In contrast, symmetric
tridiagonal QR iteration may compute tiny eigenvalues with no relative
accuracy at all. A different variation of QR iteration [79] is used to
compute the singular vectors as well: by using QR iteration with a zero
shift to compute the smallest singular vectors, this variation computes
the singular values nearly as accurately, as well as getting singular vectors
as accurately as described in section 5.2.1. But this is only the fastest
algorithm for small matrices, up to about dimension n = 25. This routine
is available in LAPACK subroutine sbdsqr.

2. Divide-and-conquer. This is currently the fastest method to find all sin-
gular values and singular vectors for matrices larger than n = 25. (The
implementation in LAPACK, sbdsdc, defaults to sbdsqr for small ma-
trices.) However, divide-and-conquer does not guarantee that the tiny
singular values are computed to high relative accuracy. Instead, it guar-
antees only the same error bound as in the symmetric eigenproblem: the
error in singular value σj is at most O(ε)σ1 rather than O(ε)σj . This
sufficiently accurate for most applications.

3. Bisection and inverse iteration. One can apply Bisection and inverse
iteration to Tps of part 1 of Lemma 5.5, to find only the singular values in
a desired interval. This algorithm is guaranteed to find the singular values
to high relative accuracy, although the singular vectors may occasionally
suffer loss of orthogonality as described in section 5.3.4.

4. Jacobi’s method. We may compute the SVD of a dense matrix G by
applying Jacobi’s method of section 5.3.5 implicitly to GGT or GTG,
i.e., without explicitly forming either one and so possibly losing stability.
For some classes of G, i.e., those to which we can profitably apply the
relative perturbation theory of section 5.2.1, we can show that Jacobi’s
method computes the singular values and singular vectors to high relative
accuracy, as described in section 5.2.1.

The following sections describe some of the above algorithms in more de-
tail, notably QR iteration and its variation dqds in section 5.4.1; the proof
of high accuracy of dqds and Bisection in section 5.4.2; and Jacobi’s method
in section 5.4.3. We omit divide-and-conquer because of its overall similarity
to the algorithm discussed in section 5.3.3, and refer the reader to [128] for
details.

5.4.1. QR Iteration and Its Variations for the Bidiagonal SVD

There is a long history of variations on QR iteration for the SVD, designed
to be as efficient and accurate as possible; see [198] for a good survey. The
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algorithm in the LAPACK routine sbdsqr was originally based on [79] and
later updated to use the algorithm in [102] in the case when singular values
only are desired. This latter algorithm, called dqds for historical reasons,21 is
elegant, fast, and accurate, so we will present it.

To derive dqds, we begin with an algorithm that predates QR iteration,
called LR iteration, specialized to symmetric positive definite matrices.

Algorithm 5.9. LR Iteration; Let T0 be any symmetric positive definite ma-
trix. The following algorithm produces a sequence of similar symmetric positive
definite matrices Ti:

i = 0
repeat

Choose a shift τ2
i smaller than the smallest eigenvalue of Ti.

Compute the Cholesky factorization Ti − τ2
i I = BT

i Bi
(Bi is an upper triangular matrix with positive diagonal.)

Ti+1 = BiB
T
i + τ2

i I
i = i+ 1

until convergence

LR iteration is very similar in structure to QR iteration: We compute a
factorization, and multiply the factors in reverse order to get the next iterate
Ti+1. It is easy to see that Ti+1 and Ti are similar: Ti+1 = BiB

T
i + τ2

i I =
B−Ti BT

i BiB
T
i + τ2

i B
−T
i BT

i = B−Ti TiB
T
i .

In fact, when the shift τ2
i = 0, we can show that two steps of LR iteration

produce the same T2 as one step of QR iteration.

Lemma 5.6. Let T2 be the matrix produced by two steps of Algorithm 5.9 using
τ2
i = 0, and let T ′ be the matrix produced by one step of QR iteration (QR = T0,
T ′ = RQ). Then T2 = T ′.

Proof. Since T0 is symmetric, we can factorize T 2
0 in two ways: First, T 2

0 =
T T0 T0 = (QR)TQR = RTR. We assume without loss of generality that Rii > 0.
This is a factorization of T 2

0 into a lower triangular matrix RT times its trans-
pose; since the Cholesky factorization is unique, this must in fact be the
Cholesky factorization. The second factorization is T 2

0 = BT
0 B0B

T
0 B0. Now

by Algorithm 5.9, T1 = B0B
T
0 = BT

1 B1, so we can rewrite T 2
0 = BT

0 B0B
T
0 B0 =

BT
0 (BT

1 B1)B0 = (B1B0)TB1B0. This is also a factorization of T 2
0 into a

lower triangular matrix (B1B0)T times its transpose, so this must again be
the Cholesky factorization. By uniqueness of the Cholesky factorization, we
conclude R = B1B0, thus relating two steps of LR iteration to one step of QR
iteration. We exploit this relationship as follows: T0 = QR implies

T ′ = RQ = RQ(RR−1) = R(QR)R−1 = RT0R
−1 because T0 = QR

21dqds is short for “differential quotient-difference algorithm with shifts” [207].
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= (B1B0)(BT
0 B0)(B1B0)−1 because R = B1B0 and T0 = BT

0 B0

= B1B0B
T
0 B0B

−1
0 B−1

1 = B1(B0B
T
0 )B−1

1

= B1(BT
1 B1)B−1

1 because B0B
T
0 = T1 = BT

1 B1

= B1B
T
1

= T2 as desired. 2

Neither Algorithm 5.9 nor Lemma 5.6 depends on T0 being tridiagonal,
just symmetric positive definite. Using the relationship between LR iteration
and QR iteration in Lemma 5.6, one can show that much of the convergence
analysis of QR iteration goes over to LR iteration; we will not explore this
here.

Our ultimate algorithm, dqds, is mathematically equivalent to LR iteration.
But it is not implemented as described in Algorithm 5.9, because this would
involve explicitly forming Ti+1 = BiB

T
i + τ2

i I, which in section 5.4 we showed
could be numerically unstable. Instead, we will form Bi+1 directly from Bi,
without ever forming the intermediate matrix Ti+1.

To simplify notation, let Bi have diagonal a1, . . . , an and superdiagonal
b1, . . . , bn−1, and Bi+1 have diagonal â1, . . . , ân and superdiagonal b̂1, . . . , b̂n−1.
We use the convention b0 = b̂0 = bn = b̂n = 0. We relate Bi to Bi+1 by

BT
i+1Bi+1 + τ2

i+1I = Ti+1 = BiB
T
i + τ2

i I. (5.20)

Equating the j, j entries of the left and right sides of equation (5.20) for j < n
yields

â2
j + b̂2j−1 + τ2

i+1 = a2
j + b2j + τ2

i or â2
j = a2

j + b2j − b̂2j−1 − δ, (5.21)

where δ = τ2
i+1 − τ2

i . Since τ2
i must be chosen to approach the smallest eigen-

value of T from below (to keep Ti positive definite and the algorithm well
defined), δ ≥ 0. Equating the squares of the j, j+1 entries of the left and right
sides of equation (5.20) yields

â2
j b̂

2
j = a2

j+1b
2
j or b̂2j = a2

j+1b
2
j/â

2
j . (5.22)

Combining equations (5.21) and (5.22) yields the not-yet-final algorithm

for j = 1 to n− 1
â2
j = a2

j + b2j − b̂2j−1 − δ
b̂2j = b2j · (a2

j+1/â
2
j )

end for
â2
n = a2

n − b̂2n−1 − δ

This version of the algorithm has only five floating point operations in the
inner loop, which is quite inexpensive. It maps directly from the squares of the
entries of Bi to the squares of the entries of Bi+1. There is no reason to take
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square roots until the very end of the algorithm. Indeed, square roots, along
with divisions, can take 10 to 30 times longer than additions, subtractions, or
multiplications on modern computers, so we should avoid as many of them as
possible. To emphasize that we are computing squares of entries, we change
variables to qj ≡ a2

j and ej ≡ b2j , yielding the penultimate algorithm qds (again,
the name is for historical reasons that do not concern us [207]).

Algorithm 5.10. One step of the qds algorithm:

for j = 1 to n− 1
q̂j = qj + ej − êj−1 − δ
êj = ej · (qj+1/q̂j)

end for
q̂n = qn − ên−1 − δ

The final algorithm, dqds, will do about the same amount of work as qds
but will be significantly more accurate, as will be shown in section 5.4.2. We
take the subexpression qj − êj−1 − δ from the first line of Algorithm 5.10 and
rewrite it as follows:

dj ≡ qj − êj−1 − δ
= qj −

qjej−1

q̂j−1
− δ from (5.22)

= qj ·
[
q̂j−1 − ej−1

q̂j−1

]
− δ

= qj ·
[
qj−1 − êj−2 − δ

q̂j−1

]
− δ from (5.21)

=
qj
q̂j−1

· dj−1 − δ.

This lets us rewrite the inner loop of Algorithm 5.10 as

q̂j = dj + ej
êj = ej · (qj+1/q̂j)
dj+1 = dj · (qj+1/q̂j)− δ

Finally, we note that dj+1 can overwrite dj and that t = qj+1/q̂j need be
computed only once to get the final dqds algorithm.

Algorithm 5.11. One step of the dqds algorithm:

d = q1 − δ
for j = 1 to n− 1

q̂j = d+ ej
t = (qj+1/q̂j)
êj = ej · t
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d = d · t− δ
end for
q̂n = d

The dqds algorithm has the same number of floating point operations in its
inner loop as qds but trades a subtraction for a multiplication. This modifica-
tion pays off handsomely in guaranteed high relative accuracy, as described in
the next section.

There are two important issues we have not discussed: choosing a shift
δ = τ2

i+1−τ2
i and detecting convergence. These are discussed in detail in [102].

5.4.2. Computing the Bidiagonal SVD to High Relative Accuracy

This section, which depends on section 5.2.1, may be skipped on a first reading.

Our ability to compute the SVD of a bidiagonal matrix B to high relative
accuracy (as defined in section 5.2.1) depends on Theorem 5.13 below, which
says that small relative changes in the entries of B cause only small relative
changes in the singular values.

Lemma 5.7. Let B be a bidiagonal matrix, with diagonal entries a1, . . . , an
and superdiagonal entries b1, . . . , bn−1. Let B̂ be another bidiagonal matrix
with diagonal entries âi = aiχi and superdiagonal entries b̂i = biζi. Then
B̂ = D1BD2, where

D1 = diag
(
χ1,

χ2χ1

ζ1
,
χ3χ2χ1

ζ2ζ1
, . . . ,

χn · · ·χ1

ζn−1 · · · ζ1

)
,

D2 = diag
(

1,
ζ1

χ1
,
ζ2ζ1

χ2χ1
. . . ,

ζn−1 · · · ζ1

χn−1 · · ·χ1

)
.

The proof of this lemma is a simple computation (see Question 5.20). We
can now apply Corollary 5.2 to conclude the following.

Theorem 5.13. Let B and B̂ be defined as in Lemma 5.7. Suppose that there
is a τ ≥ 1 such that τ−1 ≤ χi ≤ τ and τ−1 ≤ ζi ≤ τ . In other words
ε ≡ τ − 1 is a bound on the relative difference between each entry of B and the
corresponding entry of B̂. Let σn ≤ · · · ≤ σ1 be the singular values of B and
σ̂n ≤ · · · ≤ σ̂1 be the singular values of B̂. Then |σ̂i − σi| ≤ σi(τ4n−2 − 1). If
σi = 0 and τ − 1 = ε¿ 1, then we can write

|σ̂i − σi|
σi

≤ τ4n−2 − 1 = (4n− 2)ε+O(ε2).

Thus, the relative change in the singular values |σ̂i − σi|/σi is bounded by
4n−2 times the relative change ε in the matrix entries. With a little more work,
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the factor 4n− 2 can be improved to 2n− 1 (see Question 5.21). The singular
vectors can also be shown to be determined quite accurately, proportional to
the reciprocal of the relative gap, as defined in section 5.2.1.

We will show that both Bisection (Algorithm 5.4 applied to Tps from
Lemma 5.5) and dqds (Algorithm 5.11) can be used to find the singular values
of a bidiagonal matrix to high relative accuracy. First we consider Bisection.
Recall that the eigenvalues of the symmetric tridiagonal matrix Tps are the
singular values of B and their negatives. Lemma 5.3 implies that the inertia of
Tps−λI computed using equation (5.17) is the exact inertia of some B̂, where
the relative difference of corresponding entries of B̂ and B is at most about
2.5ε. Therefore, by Theorem 5.13, the relative difference between the com-
puted singular values (the singular values of B̂) and the true singular values is
at most about (10n− 5)ε.

Now we consider Algorithm 5.11. We will use Theorem 5.13 to prove that
the singular values of B (the input to Algorithm 5.11) and the singular values
of B̂ (the output from Algorithm 5.11) agree to high relative accuracy. This
fact implies that after many steps of dqds, when B̂ is nearly diagonal with its
singular values on the diagonal, these singular values match the singular values
of the original input matrix to high relative accuracy.

The simplest situation to understand is when the shift δ = 0. In this case,
the only operations in dqds are additions of positive numbers, multiplications,
and divisions; no cancellation occurs. Roughly speaking, any sequence of ex-
pressions built of these basic operations is guaranteed to compute each output
to high relative accuracy. Therefore, B̂ is computed to high relative accuracy,
and so by Theorem 5.13, the singular values of B and B̂ agree to high relative
accuracy. The general case, where δ > 0, is trickier [102].

Theorem 5.14. One step of Algorithm 5.11 in floating point arithmetic, ap-
plied to B and yielding B̂, is equivalent to the following sequence of operations:

1. Make a small relative change (by at most 1.5ε) in each entry of B, getting
B̃.

2. Apply one step of Algorithm 5.11 in exact arithmetic to B̃, getting B̌.

3. Make a small relative change (by at most ε) in each entry of B̌, getting
B̂.

Steps 1 and 3 above make only small relative changes in the singular values
of the bidiagonal matrix, so by Theorem 5.13 the singular values of B and B̂
agree to high relative accuracy.

Proof. Let us write the inner loop of Algorithm 5.11 as follows, introducing
subscripts on the d and t variables to let us keep track of them in different
iterations and including subscripted 1 + ε terms for the roundoff errors:
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q̂j = (dj + ej)(1 + εj,+)
tj = (qj+1/q̂j)(1 + εj,/)
êj = ej · tj(1 + εj,∗1)
dj+1 = (dj · tj(1 + εj,∗2)− δ)(1 + εj,−)

Substituting the first line into the second line yields

tj =
qj+1

dj + ej
·

1 + εj,/

1 + εj,+
.

Substituting this expression for tj into the last line of the algorithm and di-
viding through by 1 + εj,− yield

dj+1

1 + εj,−
=
djqj+1

dj + ej
·

(1 + εj,/)(1 + εj,∗2)
1 + εj,+

− δ. (5.23)

This tells us how to define B̃: Let

d̃j+1 =
dj+1

1 + εj,−
,

ẽj =
ej

1 + εj−1,−
, (5.24)

q̃j+1 = qj+1
(1 + εj,/)(1 + εj,∗2)

1 + εj,+
,

so (5.23) becomes

d̃j+1 =
d̃j q̃j+1

d̃j + ẽj
− δ.

Note from (5.24) that B̃ differs from B by a relative change of at most 1.5ε in
each entry (from the three 1 + ε factors in q̃j+1 = b̃2j+1,j+1).

Now we can define q̌j and ěj in B̌ by

q̌j = d̃j + ẽj ,
t̃j = (q̃j+1/q̌j),
ěj = ẽj · t̃j ,
d̃j+1 = d̃j · t̃j − δ.

This is one step of the dqds algorithm applied exactly to B̃, getting B̌. To
finally show that B̌ differs from B̂ by a relative change of at most ε in each
entry, note that

q̌j = d̃j + ẽj

=
dj

1 + εj−1,−
+

ej
1 + εj−1,−

= (dj + ej)(1 + εj,+) · 1
(1 + εj,+)(1 + εj−1,−)

= q̂j ·
[

1
(1 + εj,+)(1 + εj−1,−)

]
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and

ěj = ẽj · t̃j

=
ej

1 + εj−1,−
· q̃j+1

q̌j

=
ej

1 + εj−1,−
· tj(1 + εj,∗2)(1 + εj−1,−)

= ejtj(1 + εj,∗1)
1 + εj,∗2
1 + εj,∗1

= êj ·
[

1 + εj,∗2
1 + εj,∗1

]
. 2

5.4.3. Jacobi’s Method for the SVD

In section 5.3.5 we discussed Jacobi’s method for finding the eigenvalues and
eigenvectors of a dense symmetric matrix A, and said it was the slowest avail-
able method for this problem. In this section we will show how to apply
Jacobi’s method to find the SVD of a dense matrix G by implicitly applying
Algorithm 5.8 of section 5.3.5 to the symmetric matrix A = GTG. This implies
that the convergence properties of this method are nearly the same as those
of Algorithm 5.8, and in particular Jacobi’s method is also the slowest method
available for the SVD.

Jacobi’s method is still interesting, however, because for some kinds of
matrices G, it can compute the singular values and singular vectors much
more accurately than the other algorithms we have discussed. For these G,
Jacobi’s method computes the singular values and singular vectors to high
relative accuracy, as described in section 5.2.1.

After describing the implicit Jacobi method for the SVD of G, we will
show that it computes the SVD to high relative accuracy when G can be
written in the form G = DX, where D is diagonal and X is well conditioned.
(This means that G is ill conditioned if and only if D has both large and small
diagonal entries.) More generally, we benefit as long as X is significantly better
conditioned than G. We will illustrate this with a matrix where any algorithm
involving reduction to bidiagonal form necessarily loses all significant digits in
all but the largest singular value, whereas Jacobi computes all singular values
to full machine precision. Then we survey other classes of matrices G for
which Jacobi’s method is also significantly more accurate than methods using
bidiagonalization.

Note that if G is bidiagonal, then we showed in section 5.4.2 that we could
use either Bisection or the dqds algorithm (section 5.4.1) to compute its SVD
to high relative accuracy. The trouble is that reducing a matrix from dense
to bidiagonal form can introduce errors that are large enough to destroy high
relative accuracy, as our example will show. Since Jacobi’s method operates on
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the original matrix without first reducing it to bidiagonal form, it can achieve
high relative accuracy in many more situations.

The implicit Jacobi method is mathematically equivalent to applying Al-
gorithm 5.8 to A = GTG. In other words, at each step we compute a Jacobi
rotation J and implicitly update GTG to JTGTGJ , where J is chosen so that
two offdiagonal entries of GTG are set to zero in JTGTGJ . But instead of
computing GTG or JTGTGJ explicitly, we instead only compute GJ . For this
reason, we call our algorithm one-sided Jacobi rotation.

Algorithm 5.12. Compute and apply a one-sided Jacobi rotation to G in
coordinates j, k:

proc One-Sided-Jacobi-Rotation (G, j, k)
Compute ajj = (GTG)jj, ajk = (GTG)jk, and akk = (GTG)kk
if |ajk| is not too small

τ = (ajj − akk)/(2 · ajk)
t = sign(τ)/(|τ |+

√
1 + τ2)

c = 1/
√

1 + t2

s = c · t
G = G · R(j, k, θ) ... where c = cos θ and s = sin θ
if right singular vectors are desired

J = J · R(j, k, θ)
end if

end if

Note that the jj, jk, and kk entries of A = GTG are computed by proce-
dure One-Sided-Jacobi-Rotation, after which it computes the Jacobi rotation
R(j, k, θ) in the same way as procedure Jacobi-Rotation (Algorithm 5.5).

Algorithm 5.13. One-sided Jacobi: Assume that G is n-by-n. The outputs
are the singular values σi, the left singular vector matrix U , and the right
singular vector matrix V so that G = UΣV T , where Σ = diag(σi).

repeat
for j = 1 to n− 1

for k = j + 1 to n
call One-Sided-Jacobi-Rotation(G, j, k)

end for
end for

until GTG is diagonal enough
Let σi = ‖G(:, i)‖2 (the 2-norm of column i of G)
Let U = [u1, . . . , un], where ui = G(:, i)/σi
let V = J , the accumulated product of Jacobi rotations



The Symmetric Eigenproblem and SVD 251

Question 5.22 asks for a proof that the matrices Σ, U , and V computed by
one-sided Jacobi do indeed form the SVD of G.

The following theorem shows that one-sided Jacobi can compute the SVD to
high relative accuracy, despite roundoff, provided that we can write G = DX ,
where D is diagonal and X is well conditioned.

Theorem 5.15. Let G = DX be an n-by-n matrix, where D is diagonal and
nonsingular, and X is nonsingular. Let Ĝ be the matrix after calling One-
Sided-Jacobi-Rotation(G, j, k) m times in floating point arithmetic. Let σ1 ≥
· · · ≥ σn be the singular values of G, and let σ̂1 ≥ · · · ≥ σ̂n be the singular
values of Ĝ. Then

|σi − σ̂i|
σi

≤ O(mε)κ(X), (5.25)

where κ(X) = ‖X‖ · ‖X−1‖ is the condition number of X. In other words, the
relative error in the singular values is small if the condition number of X is
small.

Proof. We first consider m = 1; i.e., we apply only a single Jacobi rotation
and later generalize to larger m.

Examining One-Sided-Jacobi-Rotation(G, j, k), we see that Ĝ = fl(G · R̃),
where R̃ is a floating point Givens rotation. By construction, R̃ differs from
some exact Givens rotation R by O(ε) in norm. (It is not important or nec-
essarily true that R̃ differs by O(ε) from the “true” Jacobi rotation, the one
that One-Sided-Jacobi-Rotation(G, j, k) would have computed in exact arith-
metic. It is necessary only that that it differs from some rotation by O(ε).
This requires only that c2 + s2 = 1 +O(ε), which is easy to verify.)

Our goal is to show that Ĝ = GR(I + E) for some E that is small in
norm: ‖E‖2 = O(ε)κ(X). If E were zero, then Ĝ and GR would have the
same singular values, since R is exactly orthogonal. When E is less than one
in norm, we can use Corollary 5.2 to bound the relative difference in singular
values by

|σi − σ̂i|
σi

≤ ‖(I + E)(I + E)T − I‖2 = ‖E + ET + EET ‖2 ≤ 3‖E‖2

= O(ε)κ(X) (5.26)

as desired.
Now we construct E. Since R̃ multiplies G on the right, each row of Ĝ

depends only on the corresponding row of G; write this in Matlab notation as
Ĝ(i, :) = fl(G(i, :) · R̃). Let F = Ĝ − GR. Then by Lemma 3.1 and the fact
that G = DX,

‖F (i, :)‖2 = ‖Ĝ(i, :)−G(i, :)R‖2 = O(ε)‖G(i, :)‖2 = O(ε)‖diiX(i, :)‖2
and so ‖d−1

ii F (i, :)‖2 = O(ε)‖X(i, :)‖2, or ‖D−1F‖2 = O(ε)‖X‖2. Therefore,
since R−1 = RT and G−1 = (DX)−1 = X−1D−1,

Ĝ = GR + F = GR(I + RTG−1F ) = GR(I +RTX−1D−1F ) ≡ GR(I + E)
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where

‖E‖2 ≤ ‖RT ‖2‖X−1‖2‖D−1F‖2 = O(ε)‖X‖2‖X−1‖2 = O(ε)κ(X)

as desired.
To extend this result to m > 1 rotations, note that in exact arithmetic

we would have Ĝ = GR = DXR = DX̂, with κ(X̂) = κ(X), so that the
bound (5.26) would apply at each of the m steps, yielding bound (5.25). Be-
cause of roundoff, κ(X̂) could grow by as much as κ(I+E) ≤ (1+O(ε)κ(X)) at
each step, a factor very close to 1, which we absorb into the O(mε)
term. 2

To complete the algorithm, we need to be careful about the stopping cri-
terion, i.e. how to implement the statement “if |ajk| is not too small” in
Algorithm 5.12, One-Sided-Jacobi-Rotation. The appropriate criterion

|ajk| ≥ ε
√
ajjakk

is discussed further in Question 5.24.

Example 5.9. We consider an extreme example G = DX where Jacobi’s
method computes all singular values to full machine precision; any method
relying on bidiagonalization computes only the largest one,

√
3, to full machine

precision; and all the others with no accuracy at all (although it still computes
them with errors ±O(ε) ·

√
3, as expected from a backward stable algorithm).

In this example ε = 2−53 ≈ 10−16 (IEEE double precision) and η = 10−20 (any
value of η < ε will do). We define

G ≡


η 1 1 1
η η 0 0
η 0 η 0
η 0 0 η

 =


1

η
η

η

 ·

η 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 ≡ D ·X.
To at least 16 digits, the singular values of G are

√
3,
√

3 · η, η, and η. To
see how accuracy is lost by reducing G to bidiagonal form, we consider just
the first step of the algorithm section 4.4.7: After step 1, premultiplication by
a Householder transformation to zero out G(2 : 4, 1), G in exact arithmetic
would be 

−2η −.5− η
2 −.5− η

2 −.5− η
2

0 −.5 + 5η
6 −.5− η

6 −.5− η
6

0 −.5− η
6 −.5 + 5η

6 −.5− η
6

0 −.5− η
6 −.5− η

6 −.5 + 5η
6

 ,
but since η is so small, this rounds to

G1 =


−2η −.5 −.5 −.5

0 −.5 −.5 −.5
0 −.5 −.5 −.5
0 −.5 −.5 −.5

 .
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Note that all information about η has been “lost” from the last three columns
of G1. Since the last three columns of G1 are identical, G1 is exactly singular
and indeed of rank 2. Thus the two smallest singular values have been changed
from η to 0, a complete loss of relative accuracy. If we made no further rounding
errors, we would reduce G1 to the bidiagonal form

B =


−2η

√
.75

1.5 0
0 0

0


with singular values

√
3,
√

3η, 0, and 0, the larger two of which are accurate
singular values of G. But as the algorithm proceeds to reduce G1 to bidiagonal
form, roundoff introduces nonzero quantities of O(ε) into the zero entries of B,
making all three small singular values inaccurate. The two smallest nonzero
computed singular values are accidents of roundoff and proportional to ε.

One-sided Jacobi’s method has no difficult with this matrix, converging in
three sweeps to G = UΣV T , where to machine precision

U =


0 − η2

√
2

1 0
1√
3

1√
2

η
3

−1√
6

1√
3
− 1√

2
η
3

−1√
6

1√
3

η√
2

η
3

2√
6

 , V =


1 η√

2
η√
3
−η√

6
−η 1√

2
1√
3
−1√

6
0 −1√

2
1√
3
−1√

6

0 −η3
√

2
1√
3

2√
6

 ,
and Σ = diag(

√
3η, η,

√
3, η). (Jacobi does not automatically sort the singular

values; this can be done as a postprocessing step.) ¦

Here are some other examples where versions of Jacobi’s method can be
shown to guarantee high relative accuracy in the SVD (or symmetric eigen-
decomposition), whereas methods relying on bidiagonalization (or tridiago-
nalization) may lose all significant digits in the smallest singular value (or
eigenvalues). Many other examples appear in [74].

1. If A = LLT is the Cholesky decomposition of a symmetric positive def-
inite matrix, then the SVD of L = UΣV T provides the eigendecompo-
sition of A = UΣ2UT . If L = DX , where X is well-conditioned and D
is diagonal, then Theorem 5.15 tells us that we can use Jacobi’s method
to compute the singular values σi of L to high relative accuracy, with
relative errors bounded by O(ε)κ(X). But we also have to account for
the roundoff errors in computing the Cholesky factor L: using Cholesky’s
backward error bound (2.16) (along with Theorem 5.6) one can bound
the relative error in the singular values introduced by roundoff during
Cholesky by O(ε)κ2(X). So if X is well-conditioned, all the eigenvalues
of A will be computed to high relative accuracy (see Question 5.23 and
[81, 90, 181]).
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Example 5.10. As in Example 5.9, we choose an extreme case where
any algorithm relying on initially reducing A to tridiagonal form is guar-
anteed to lose all relative accuracy in the smallest eigenvalue, whereas
Cholesky followed by one-sided Jacobi’s method on the Cholesky factor
computes all eigenvalues to nearly full machine precision. As in that
example, let η = 10−20 (any η < ε/120 will do), and let

A =

 1
√
η
√
η√

η 1 10η√
η 10η 100η

 =

 1 10−10 10−10

10−10 1 10−19

10−10 10−19 10−20

 .
If we reduce A to tridiagonal form T exactly, then

T =

 1
√

2η√
2η .5 + 60η .5− 50η

.5− 50η .5 + 40η

 ,
but since η is so small, this rounds to

T̂ =

 1
√

2η√
2η .5 .5

.5 .5

 ,
which is not even positive definite, since the bottom right 2-by-2 sub-
matrix is exactly singular. Thus, the smallest eigenvalues of T̂ is non-
positive, and so tridiagonal reduction has lost all relative accuracy in
the smallest eigenvalue. In contrast, one-sided Jacobi’s method has no
trouble computing the correct square roots of eigenvalues of A, namely,
1 +
√
η = 1 + 10−10, 1−√η = 1−10−10, and .99η = .99 ·10−20, to nearly

full machine precision. ¦

2. For extensions of the preceding result to indefinite symmetric eigenprob-
lems, see [226, 248].

3. For extensions to the generalized symmetric eigenproblem A − λB and
the generalized SVD, see [65, 90].

5.5. Differential Equations and Eigenvalue Problems

We seek our motivation for this section from conservation laws in physics. We
consider once again the mass-spring system introduced in Example 4.1 and
reexamined in Example 5.1. We start with the simplest case of one spring and
one mass, without friction:
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x

m

k

We let x denote horizontal displacement from equilibrium. Then Newton’s
law F = ma becomes mẍ(t) + kx(t) = 0. Let E(t) = 1

2mẋ
2(t) + 1

2kx
2(t) =

“kinetic energy” + “potential energy.” Conservation of energy tells us that
d
dtE(t) should be zero. We can confirm this is true by computing d

dtE(t) =
mẋ(t)ẍ(t) + kx(t)ẋ(t) = ẋ(t)(mẍ(t) + kx(t)) = 0 as desired.

More generally we haveMẍ(t)+Kx(t) = 0, whereM is the mass matrix and
K is the stiffness matrix. The energy is defined to be E(t) = 1

2 ẋ
T (t)Mẋ(t) +

1
2x

T (t)Kx(t). That this is the correct definition is confirmed by verifying that
it is conserved:

d

dt
E(t) =

d

dt

(
1
2
ẋT (t)Mẋ(t) +

1
2
xT (t)Kx(t)

)
=

1
2

(ẍT (t)Mẋ(t) + ẋT (t)Mẍ(t) + ẋT (t)Kx(t) + xT (t)Kẋ(t))

= ẋT (t)Mẍ(t) + ẋT (t)Kx(t)
= ẋT (t)(Mẍ(t) +Kx(t)) = 0,

where we have used the symmetry of M and K.
The differential equations Mẍ(t) +Kx(t) = 0 are linear. It is a remarkable

fact that some nonlinear differential equations also conserve quantities such as
“energy.”

5.5.1. The Toda Lattice

For ease of notation, we will write ẋ instead of ẋ(t) when the argument is clear
from context.

The Toda lattice is also a mass-spring system, but the force from the spring
is an exponentially decaying function of its stretch, instead of a linear function:

ẍi = e−(xi−xi−1) − e−(xi+1−xi).

We use the boundary conditions e−(x1−x0) = 0 (i.e., x0 = −∞) and e−(xn+1−xn)

= 0 (i.e., xn+1 = +∞). More simply, these boundary conditions mean there
are no walls at the left or right (see Figure 4.1).

Now we change variables to bk = 1
2e

(xk−xk+1)/2 and ak = −1
2 ẋk. This yields

the differential equations

ḃk =
1
2
e(xk−xk+1)/2 · 1

2
(ẋk − ẋk+1) = bk(ak+1 − ak),

ȧk = −1
2
ẍk = 2(b2k − b2

k−1)
(5.27)
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with b0 ≡ 0 and bn ≡ 0. Now define the two tridiagonal matrices

T =


a1 b1

b1
. . . . . .
. . . . . . bn−1

bn−1 an

 and B =


0 b1

−b1
. . . . . .
. . . . . . bn−1

−bn−1 0

 ,
where B = −BT . Then one can easily confirm that equation (5.27) is the same
as dT

dt = BT − TB. This is called the Toda flow.

Theorem 5.16. T (t) has the same eigenvalues as T (0) for all t. In other
words, the eigenvalues, such as “energy,” are conserved by the differential equa-
tion.

Proof. Define d
dtU = BU , U (0) = I . We claim that U(t) is orthogonal for all

t. To prove this, it suffices to show d
dtU

TU = 0 since UTU(0) = I:

d

dt
UTU = U̇TU + UT U̇ = UTBTU + UTBU = −UTBU + UTBU = 0

since B is skew symmetric.
Now we claim that T (t) = U (t)T (0)UT (t) satisfies the Toda flow dT

dt =
BT − TB, implying each T (t) is orthogonally similar to T (0) and so has the
same eigenvalues:

d

dt
T (t) = U̇(t)T (0)UT (t) + U(t)T (0)U̇T (t)

= B(t)U (t)T (0)UT (t) + U(t)T (0)UT (t)BT (t)
= B(t)T (t)− T (t)B(t)

as desired. 2

Note that the only property of B used was skew symmetry, so if d
dtT =

BT − TB and BT = −B, then T (t) has the same eigenvalues for all t.

Theorem 5.17. As t→ +∞ or t→ −∞, T (t) converges to a diagonal matrix
with the eigenvalues on the diagonal.

Proof. We want to show bi(t) → 0 as t → ±∞. We begin by showing∫∞
−∞

∑n−1
i=1 b

2
i (t)dt <∞. We use induction to show

∫∞
−∞(b2j (t)+b2n−j(t))dt <∞

and then add these inequalities for all j. When j = 0, we get
∫∞
−∞(b20(t) +

b2n(t))dt, which is 0 by assumption.
Now let ϕ(t) = aj(t)− an−j+1(t). ϕ(t) is bounded by 2‖T (t)‖2 = 2‖T (0)‖2

for all t. Then

ϕ̇(t) = ȧj(t)− ȧn−j+1(t)
= 2(b2j (t)− b2j−1(t))− 2(b2n−j+1(t)− b2n−j(t))
= 2(b2j (t) + b2n−j(t))− 2(b2j−1(t)− b2n−j+1(t))
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and so

ϕ(τ)− ϕ(−τ) =
∫ τ

−τ
ϕ̇(t)dt

= 2
∫ τ

−τ
(b2j (t) + b2n−j(t))dt− 2

∫ τ

−τ
(b2j−1(t) + b2n−j+1(t))dt.

The last integral is bounded for all τ by the induction hypothesis, and ϕ(τ)−
ϕ(−τ) is also bounded for all τ , so

∫∞
−∞(b2j (t) + b2n−j(t))dt must be bounded as

desired.
Let p(t) =

∑n−1
i=1 b

2
i (t). We now know that

∫∞
−∞ p(t)dt < ∞, and since

p(t) ≥ 0 we want to conclude that limt→±∞ p(t) = 0. But we need to exclude
the possibility that p(t) has narrow spikes as t→ ±∞, in which case

∫∞
−∞ p(t)dt

could be finite without p(t) approaching 0. We show p(t) has no spikes by
showing its derivative is bounded:

|ṗ(t)| =
∣∣∣∣∣
n−1∑
i=1

2ḃi(t)bi(t)

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=1

2b2i (t)(ai+1(t)− ai(t))
∣∣∣∣∣ ≤ 4(n− 1)‖T‖22. 2

Thus, in principle, one could use an ODE solver on the Toda flow to solve
the eigenvalue problem, but this is no faster than other existing methods. The
interest in the Toda flow lies in its close relationship with with QR algorithm.

Definition 5.5. Let X denote the strictly lower triangle of X, and π0(X) =
X −X T .

Note that π0(X) is skew symmetric and that if X is already skew symmet-
ric, then π0(X) = X . Thus π0 projects onto skew symmetric matrices.

Consider the differential equation

d

dt
T = BT − TB, (5.28)

where B = −π0(F (T )) and F is any smooth function from the real numbers
to the real numbers. Since B = −BT , Theorem 5.16 shows that T (t) has the
same eigenvalues for all t. Choosing F (x) = x corresponds to the Toda flow
that we just studied, since in this case

−π0(F (T )) = −π0(T ) =


0 b1

−b1
. . . . . .
. . . . . . bn−1

−bn−1 0

 = B.

The next theorem relates the QR decomposition to the solution of differential
equation (5.28).
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Theorem 5.18. Let F (T (0)) = F0. Let etF0 = Q(t)R(t) be the QR decompo-
sition. Then T (t) = QT (t)T (0)Q(t) solves equation (5.28).

We delay the proof of the theorem until later. If we choose the function F cor-
rectly, it turns out that the iterates computed by QR iteration (Algorithm 4.4)
are identical to the solutions of the differential equation.

Definition 5.6. Choosing F (x) = log x in equation (5.28) yields a differential
equation called the QR flow.

Corollary 5.3. Let F (x) = log x. Suppose that T (0) is positive definite, so
log T (0) is real. Let T0 ≡ T (0) = QR, T1 = RQ, etc. be the sequence of
matrices produced by the unshifted QR iteration. Then T (i) = Ti. Thus the
QR algorithm gives solutions to the QR flow at integer times t.22

Proof of Corollary. At t = 1, we get et logT0 = T0 = Q(1)R(1), the QR
decomposition of T0, and T (1) = QT (1)T0Q(1) = R(1)Q(1) = T1 as desired.
Since the solution of the ODE is unique, this extends to show T (i) = Ti for
larger i. 2

The following figure illustrates this corollary graphically. The curve repre-
sents the solution of the differential equation. The dots represent the solutions
T (i) at the integer times t = 0, 1, 2, . . ., and indicates that they are equal to
the QR iterates Ti.

�� ����

��

���� ��

�� ����

T(0) = T

T(1) = T T(2) = T

����

6 T(7) = T7

T(3) = T

T(5) = T

0

1 2

3

T(4) = T4

5

T(6) = T

Proof of Theorem 5.18. Differentiate etF0 = QR to get

F0e
tF0 = Q̇R+QṘ

or Q̇ = F0e
tF0R−1 −QṘR−1

or QT Q̇ = QTF0e
tF0R−1 − ṘR−1

= QTF0(QR)R−1 − ṘR−1 because etF0 = QR

= QTF (T (0))Q− ṘR−1 because F0 = F (T (0))
= F (QTT (0)Q)− ṘR−1

= F (T )− ṘR−1.

22Note that since the QR decomposition is not completely unique (Q can be replaced by
QS and R can be replaced by SR, where S is a diagonal matrix with diagonal entries ±1), Ti
and T (i) could actually differ by a similarity Ti = ST (i)S−1. For simplicity we will assume
here, and in Corollary 5.4, that S has been chosen so that Ti = T (i).
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Now I = QTQ implies that 0 = d
dtQ

TQ = Q̇TQ+QT Q̇ = (QT Q̇)T +(QT Q̇).
This means QT Q̇ is skew symmetric, and so π0(QT Q̇) = QT Q̇ = π0(F (T ) −
ṘR−1). Since ṘR−1 is upper triangular, it doesn’t affect π0 and so finally
QT Q̇ = π0(F (T )). Now

d
dtT (t) = d

dtQ
T (t)T (0)Q(t)

= Q̇TT (0)Q+QTT (0)Q̇
= Q̇T (QQT )T (0)Q+ QTT (0)(QQT )Q̇
= Q̇TQT (t) + T (t)QT Q̇
= −QT Q̇T (t) + T (t)QT Q̇
= −π0(F (T (t)))T (t) + T (t)π0(F (T (t)))

as desired. 2

The next corollary explains the phenomenon observed in Question 4.15,
where QR could be made to “run backward” and return to its starting matrix.
See also Question 5.25.

Corollary 5.4. Suppose that we obtain T4 from the positive definite matrix
T0 by the following steps:

1. Do m steps of the unshifted QR algorithm on T0 to get T1.

2. Let T2 = “flipped T1” = JT1J , where J equals the identity matrix with
its columns in reverse order.

3. Do m steps of unshifted QR on T2 to get T3.

4. Let T4 = JT3J .

Then T4 = T0.

Proof. If X = XT , it is easy to verify that π0(JXJ) = −Jπ0(X)J so
TJ (t) ≡ JT (t)J satisfies

d
dtTJ (t) = J d

dtT (t)J
= J [−π0(f(T ))T + Tπ0(F (T ))]J
= −Jπ0(F (T ))J(JTJ) + (JTJ)Jπ0(F (T ))J since J2 = I
= π0(JF (T )J)TJ − TJπ0(JF (T )J)
= π0(F (JTJ))TJ − TJπ0(F (JTJ))
= π0(F (TJ ))TJ − TJπ0(F (TJ )).

This is nearly the same equation as T (t). In fact, it satisfies exactly the same
equation as T (−t):

d

dt
T (−t) = − d

dt
T |−t = − [π0(F (T ))T + Tπ0(F (T ))]−t .

So with the same initial conditions T2, TJ (t) and T (−t) must be equal. Inte-
grating for time m, T (−t) takes T2 = JT1J back to JT0J , the initial state, so
T3 = JT0J and T4 = JT3J = T0 as desired. 2
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5.5.2. The Connection to Partial Differential Equations

This section may be skipped on a first reading.
Let T (t) = − ∂2

∂x2 + q(x, t) and B(t) = −4 ∂3

∂x3 + 3(q(x, t) ∂
∂x + ∂

∂xq(x, t)).
Both T (t) and B(t) are linear operators on functions, i.e., generalizations of
matrices.

Substituting into dT
dt = BT − TB yields

qt = 6qqx − qxxx, (5.29)

provided that we choose the correct boundary conditions for q. (B must be
skew symmetric and T symmetric.) Equation (5.29) is called the Korteweg–
de Vries equation and describes water flow in a shallow channel. One can
rigorously show that (5.29) preserves the eigenvalues of T (t) for all t in the
sense that the ODE

(
− ∂2

∂x2 + q(x, t)
)
h(x) = λh(x)

has some infinite set of eigenvalues λ1, λ2, . . . for all t. In other words, there
is an infinite sequence of energylike quantities conserved by the Korteweg–de
Vries equation. This is important for both theoretical and numerical reasons.

For more details on the Toda flow, see [142, 168, 66, 67, 237] and papers
by Kruskal [164], Flaschka [104], and Moser [185] in [186].

5.6. References and Other Topics for Chapter 5

An excellent general reference for the symmetric eigenproblem is [195]. The
material on relative perturbation theory can be found in [74, 81, 99]; sec-
tion 5.2.1 was based on the latter of these references. Related work is found
in [65, 90, 226, 248] A classical text on perturbation theory for general linear
operators is [159]. For a survey of parallel algorithms for the symmetric eigen-
problem, see [75]. The QR algorithm for finding the SVD of bidiagonal matrices
is discussed in [79, 66, 118], and the dqds algorithm is in [102, 198, 207]. For
an error analysis of the Bisection algorithm, see [72, 73, 154], and for recent
attempts to accelerate Bisection see [103, 201, 199, 174, 171, 173, 267]. Current
work in improving inverse iteration appears in [103, 199, 201]. The divide-and-
conquer eigenroutine was introduced in [58] and further developed in [13, 88,
125, 129, 151, 170, 208, 232]. The possibility of high-accuracy eigenvalues ob-
tained from Jacobi is discussed in [65, 74, 81, 90, 181, 226]. The Toda flow and
related phenomena are discussed in [66, 67, 104, 142, 164, 168, 185, 186, 237].
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5.7. Questions for Chapter 5

Question 5.1. (Easy; Z. Bai) Show that A = B+iC is Hermitian if and only
if

M =
[
B −C
C B

]
is symmetric. Express the eigenvalues and eigenvectors of M in terms of those
of A.

Question 5.2. (Medium) Prove Corollary 5.1, using Weyl’s theorem (Theo-
rem 5.1) and part 4 of Theorem 3.3.

Question 5.3. (Medium) Consider Figure 5.1. Consider the corresponding
contour plot for an arbitrary 3-by-3 matrix A with eigenvalues α3 ≤ α2 ≤ α1.
Let C1 and C2 be the two great circles along which ρ(u,A) = α2. At what
angle do they intersect?

Question 5.4. (Hard) Use the Courant–Fischer minimax theorem (Theorem
5.2) to prove the Cauchy interlace theorem:

• Suppose that A = [ H b
bT u

] is an n-by-n symmetric matrix and H is

(n − 1)-by-(n − 1). Let αn ≤ · · · ≤ α1 be the eigenvalues of A and
θn−1 ≤ · · · ≤ θ1 be the eigenvalues of H. Show that these two sets of
eigenvalues interlace:

αn ≤ θn−1 ≤ · · · ≤ θi ≤ αi ≤ θi−1 ≤ αi−1 ≤ · · · ≤ θ1 ≤ α1.

• Let A = [ H B

BT U
] be n-by-n and H be m-by-m, with eigenvalues θm ≤

· · · ≤ θ1. Show that the eigenvalues of A and H interlace in the sense
that αj+(n−m) ≤ θj ≤ αj (or equivalently αj ≤ θj−(n−m) ≤ αj−(n−m)).

Question 5.5. (Medium) Let A = AT with eigenvalues α1 ≥ · · · ≥ αn. Let
H = HT with eigenvalues θ1 ≥ · · · ≥ θn. Let A + H have eigenvalues λ1 ≥
· · · ≥ λn. Use the Courant–Fischer minimax theorem (Theorem 5.2) to show
that αj + θn ≤ λj ≤ αj + θ1. If H is positive definite, conclude that λj > αj .
In other words, adding a symmetric positive definite matrix H to another
symmetric matrix A can only increase its eigenvalues.

This result will be used in the proof of Theorem 7.1.

Question 5.6. (Medium) Let A = [A1 , A2] be n-by-n, where A1 is n-by-m
and A2 is n-by-(n − m). Let σ1 ≥ · · · ≥ σn be the singular values of A
τ1 ≥ · · · ≥ τm be the singular values of A1. Use the Cauchy interlace theorem
from Question 5.4 and part 4 of Theorem 3.3 to prove that σj ≥ τj ≥ σj+n−m.



262 Applied Numerical Linear Algebra

Question 5.7. (Medium) Let q be a unit vector and d be any vector orthog-
onal to q. Show that ‖(q + d)qT − I‖2 = ‖q + d‖2. (This result is used in the
proof of Theorem 5.4.)

Question 5.8. (Hard) Formulate and prove a theorem for singular vectors
analogous to Theorem 5.4.

Question 5.9. (Hard) Prove bound (5.6) from Theorem 5.5.

Question 5.10. (Harder) Prove bound (5.7) from Theorem 5.5.

Question 5.11. (Easy) Suppose θ = θ1+θ2, where all three angles lie between
0 and π/2. Prove that 1

2 sin 2θ ≤ 1
2 sin 2θ1 + 1

2 sin 2θ2. This result is used in
the proof of Theorem 5.7.

Question 5.12. (Hard) Prove Corollary 5.2. Hint: Use part 4 of Theorem 3.3.

Question 5.13. (Medium) Let A be a symmetric matrix. Consider running
shifted QR iteration (Algorithm 4.5) with a Rayleigh quotient shift (σi = ann)
at every iteration, yielding a sequence σ1, σ2, . . . of shifts. Also run Rayleigh
quotient iteration (Algorithm 5.1), starting with x0 = [0, . . . , 0, 1]T , yielding
a sequence of Rayleigh quotients ρ1, ρ2, . . .. Show that these sequences are
identical: σi = ρi for all i. This justifies the claim in section 5.3.2 that shifted
QR iteration enjoys local cubic convergence.

Question 5.14. (Easy) Prove Lemma 5.1.

Question 5.15. (Easy) Prove that if t(n) = 2t(n/2) + cn3 + O(n2), then
t(n) ≈ c4

3n
3. This justifies the complexity analysis of the divide-and-conquer

algorithm (Algorithm 5.2).

Question 5.16. (Easy) Let A = D + ρuuT , where D = diag(d1, . . . , dn) and
u = [u1, . . . , un]T . Show that if di = di+1 or ui = 0, then di is an eigenvalue
of A. If ui = 0, show that the eigenvector corresponding to di is ei, the
ith column of the identity matrix. Derive a similarly simple expression when
di = di+1. This shows how to handle deflation in the divide-and-conquer
algorithm, Algorithm 5.2.

Question 5.17. (Easy) Let ψ and ψ′ be given scalars. Show how to compute
scalars c and ĉ in the function definition h(λ) = ĉ + c

d−λ so that at λ = ξ,
h(ξ) = ψ, and h′(ξ) = ψ′. This result is needed to derive the secular equation
solver in section 5.3.3.

Question 5.18. (Easy; Z. Bai) Use the SVD to show that if A is an m-
by-n real matrix with m ≥ n, then there exists an m-by-n matrix Q with
orthonormal columns (QTQ = I) and an n-by-n positive semidefinite matrix P
such that A = QP . This decomposition is called the polar decomposition of A,
because it is analogous to the polar form of a complex number z = eiarg(z) · |z|.)
Show that if A is nonsingular, then the polar decomposition is unique.
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Question 5.19. (Easy) Prove Lemma 5.5.

Question 5.20. (Easy) Prove Lemma 5.7.

Question 5.21. (Hard) Prove Theorem 5.13. Also, reduce the exponent 4n−
2 in Theorem 5.13 to 2n− 1. Hint: In Lemma 5.7, multiply D1 and divide D2
by an appropriately chosen constant.

Question 5.22. (Medium) Prove that Algorithm 5.13 computes the SVD of
G, assuming that GTG converges to a diagonal matrix.

Question 5.23. (Harder) Let A be an n-by-n symmetric positive definite
matrix with Cholesky decomposition A = LLT , and let L̂ be the Cholesky fac-
tor computed in floating point arithmetic. In this question we will bound
the relative error in the (squared) singular values of L̂ as approximations
of the eigenvalues of A. Show that A can be written A = DĀD, where
D = diag(a1/2

11 , . . . , a
1/2
nn ) and āii = 1 for all i. Write L = DX . Show that

κ2(X) = κ(Ā). Using bound (2.16) for the backward error δA of Cholesky
A+δA = L̂L̂T , show that one can write L̂T L̂ = Y TLTLY , where ‖Y TY −I‖2 ≤
O(ε)κ(Ā). Use Theorem 5.6 to conclude that the eigenvalues of L̂T L̂ and
of LTL differ relatively by at most O(ε)κ(Ā). Then show that this is also
true of the eigenvalues of L̂L̂T and LLT . This means that the squares of
the singular values of L̂ differ relatively from the eigenvalues of A by at most
O(ε)κ(Ā) = O(ε)κ2(L).

Question 5.24. (Harder) This question justifies the stopping criterion for
one-sided Jacobi’s method for the SVD (Algorithm 5.13). Let A = GTG,
where G and A are n-by-n. Suppose that |ajk| ≤ ε

√
ajjakk for all j = k. Let

σn ≤ · · · ≤ σ1 be the singular values of G, and α2
n ≤ · · · ≤ α2

1 be the sorted
diagonal entries of A. Prove that |σi − αi| ≤ nε|αi| so that the αi equal the
singular values to high relative accuracy. Hint: Use Corollary 5.2.

Question 5.25. (Harder) In Question 4.15, you “noticed” that running QR
for m steps on a symmetric matrix, “flipping” the rows and columns, running
for another m steps, and flipping again got you back to the original matrix.
(Flipping X means replacing X by JXJ , where J is the identity matrix with
its row in reverse order.) In this exercise we will prove this for symmetric
positive definite matrices T using an approach different from Corollary 5.4.

Consider LR iteration (Algorithm 5.9) with a zero shift, applied to the
symmetric positive definite matrix T (which is not necessarily tridiagonal):
Let T = T0 = BT

0 B0 be the Cholesky decomposition, T1 = B0B
T
0 = BT

1 B1,
and more generally Ti = Bi−1B

T
i−1 = BT

i Bi. Let T̂i denote the matrix obtained
from T0 after i steps of unshifted QR iteration; i.e., if T̂i = QiRi is the QR
decomposition, then T̂i+1 = RiQi. In Lemma 5.6 we showed that T̂i = T2i;
i.e., one step of QR is the same as two steps of LR.
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1. Show that Ti = (Bi−1Bi−2 · · ·B0)−TT0(Bi−1Bi−2 · · ·B0)T .

2. Show that Ti = (Bi−1Bi−2 · · ·B0)T0(Bi−1Bi−2 · · ·B0)−1.

3. Show that T i0 = (BiBi−1 · · ·B0)T (BiBi−1 · · ·B0) is the Cholesky decom-
position of T i0.

4. Show that T i0 = (Q0 · · ·Qi−2Qi−1) · (Ri−1Ri−2 · · ·R0) is the QR decom-
position of T i0.

5. Show that T 2i
0 = (R2i−1R2i−2 · · ·R0)T (R2i−1R2i−2 · · ·R0) is the

Cholesky decomposition of T 2i
0 .

6. Show the result after m steps of QR, flipping m steps of QR, and flipping,
is the same as the original matrix. Hint: Use the fact that the Cholesky
factorization is unique.

Question 5.26. (Hard; Z. Bai) Suppose that x is an n-vector. Define the
matrix C by cij = |xi|+ |xj |−|xi−xj |. Show that C(x) is positive semidefinite.

Question 5.27. (Easy; Z. Bai) Let

A =
(

I B
BH I

)
with ‖B‖2 < 1. Show that

‖A‖2‖A−1‖2 =
1 + ‖B‖2
1− ‖B‖2

.

Question 5.28. (Medium; Z. Bai) A square matrix A is said to be skew
Hermitian if A∗ = −A. Prove that

1. the eigenvalues of a skew Hermitian are purely imaginary.

2. I − A is nonsingular.

3. C = (I −A)−1(I +A) is unitary. C is called the Cayley transform of A.


