
2
Linear Equation Solving

2.1. Introduction

This chapter discusses perturbation theory, algorithms, and error analysis for
solving the linear equation Ax = b. The algorithms are all variations on
Gaussian elimination. They are called direct methods, because in the absence
of roundoff error they would give the exact solution of Ax = b after a finite
number of steps. In contrast, Chapter 6 discusses iterative methods, which
compute a sequence x0, x1, x2, . . . of ever better approximate solutions of Ax =
b; one stops iterating (computing the next xi+1) when xi is accurate enough.
Depending on the matrix A and the speed with which xi converges to x = A−1b,
a direct method or an iterative method may be faster or more accurate. We
will discuss the relative merits of direct and iterative methods at length in
Chapter 6. For now, we will just say that direct methods are the methods of
choice when the user has no special knowledge about the source6 of matrix A
or when a solution is required with guaranteed stability and in a guaranteed
amount of time.

The rest of this chapter is organized as follows. Section 2.2 discusses per-
turbation theory for Ax = b; it forms the basis for the practical error bounds
in section 2.4. Section 2.3 derives the Gaussian elimination algorithm for dense
matrices. Section 2.4 analyzes the errors in Gaussian elimination and presents
practical error bounds. Section 2.5 shows how to improve the accuracy of a
solution computed by Gaussian elimination, using a simple and inexpensive
iterative method. To get high speed from Gaussian elimination and other
linear algebra algorithms on contemporary computers, care must be taken to
organize the computation to respect the computer memory organization; this
is discussed in section 2.6. Finally, section 2.7 discusses faster variations of
Gaussian elimination for matrices with special properties commonly arising in
practice, such as symmetry (A = AT) or sparsity (when many entries of A are
zero).

6For example, in Chapter 6 we consider the case when A arises from approximating the
solution to a particular differential equation, Poisson’s equation.

31

32 Applied Numerical Linear Algebra

Sections 2.2.1 and 2.5.1 discuss recent innovations upon which the software
in the LAPACK library depends.

There are a variety of open problems, which we shall mention as we go
along.

2.2. Perturbation Theory

Suppose Ax = b and (A + δA)x̂ = b + δb; our goal is to bound the norm of
δx ≡ x̂−x. We simply subtract these two equalities and solve for δx: one way
to do this is to take

(A+ δA)(x+ δx) = b+ δb
− [Ax = b]

δAx+ (A+ δA)δx = δb

and rearrange to get
δx = A−1(−δAx̂+ δb). (2.1)

Taking norms and using part 1 of Lemma 1.7 as well as the triangle inequality
for vector norms, we get

‖δx‖ ≤ ‖A−1‖(‖δA‖ · ‖x̂‖+ ‖δb‖). (2.2)

(We have assumed that the vector norm and matrix norm are consistent, as
defined in section 1.7. For example, any vector norm and its induced matrix
norm will do.) We can further rearrange this inequality to get

‖δx‖
‖x̂‖ ≤ ‖A

−1‖ · ‖A‖ ·
(
‖δA‖
‖A‖ +

‖δb‖
‖A‖ · ‖x̂‖

)
. (2.3)

The quantity κ(A) = ‖A−1‖ · ‖A‖ is the condition number7 of the matrix
A, because it measures the relative change ‖δx‖‖x̂‖ in the answer as a multiple

of the relative change ‖δA‖‖A‖ in the data. (To be rigorous, we need to show
that inequality (2.2) is an equality for some nonzero choice of δA and δb;
otherwise κ(A) would only be an upper bound on the condition number. See
Question 2.3.) The quantity multiplying κ(A) will be small if δA and δb are
small, yielding a small upper bound on the relative error ‖δx‖‖x̂‖ .

The upper bound depends on δx (via x̂), which makes it seem hard to
interpret, but it is actually quite useful in practice, since we know the computed
solution x̂ and so can straightforwardly evaluate the bound. We can also derive
a theoretically more attractive bound that does not depend on δx as follows:

7More pedantically, it is the condition number with respect to the problem of matrix
inversion. The problem of finding the eigenvalues of A, for example, has a different condition
number.

Linear Equation Solving 33

Lemma 2.1. Let ‖ · ‖ satisfy ‖AB‖ ≤ ‖A‖ · ‖B‖. Then ‖X‖ < 1 implies that
I −X is invertible, (I −X)−1 =

∑∞
i=0 X

i, and ‖(I −X)−1‖ ≤ 1
1−‖X‖ .

Proof. The sum
∑∞

i=0X
i is said to converge if and only if it converges in

each component. We use the fact (from applying Lemma 1.4 to Example 1.6)
that for any norm, there is a constant c such that |xjk| ≤ c · ‖X‖. We then
get |(Xi)jk| ≤ c · ‖X i‖ ≤ c · ‖X‖i, so each component of

∑
Xi is dominated by

a convergent geometric series
∑
c‖X‖i=c
1−‖X‖ and must converge. Therefore Sn =∑n

i=0 X
i converges to some S as n → ∞, and (I − X)Sn = (I − X)(I +

X + X2 + · · · + Xn) = I − Xn+1 → I as n → ∞, since ‖Xi‖ ≤ ‖X‖i → 0.
Therefore (I−X)S = I and S = (I−X)−1. The final bound is ‖(I−X)−1‖ =
‖
∑∞

i=0 X
i‖ ≤

∑∞
i=0 ‖Xi‖ ≤

∑∞
i=0 ‖X‖i = 1

1−‖X‖ . 2

Solving our first equation δAx + (A+ δA)δx = δb for δx yields

δx = (A+ δA)−1(−δAx + δb)
= [A(I +A−1δA)]−1(−δAx + δb)
= (I + A−1δA)−1A−1(−δAx + δb).

Taking norms, dividing both sides by ‖x‖, using part 1 of Lemma 1.7 and the
triangle inequality, and assuming that δA is small enough so that ‖A−1δA‖ ≤
‖A−1‖ · ‖δA‖ < 1, we get the desired bound:

‖δx‖
‖x‖ ≤ ‖(I +A−1δA)−1‖ · ‖A−1‖

(
‖δA‖+

‖δb‖
‖x‖

)
≤ ‖A−1‖

1− ‖A−1‖ · ‖δA‖

(
‖δA‖+

‖δb‖
‖x‖

)
by Lemma 2.1

=
‖A−1‖ · ‖A‖

1− ‖A−1‖ · ‖A‖‖δA‖‖A‖

(
‖δA‖
‖A‖ +

‖δb‖
‖A‖ · ‖x‖

)

≤ κ(A)

1− κ(A)‖δA‖‖A‖

(
‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
(2.4)

since ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖.

This bound expresses the relative error ‖δx‖‖x‖ in the solution as a multiple

of the relative errors ‖δA‖‖A‖ and ‖δb‖
‖b‖ in the input. The multiplier, κ(A)/(1 −

κ(A)‖δA‖‖A‖), is close to the condition number κ(A) if ‖δA‖ is small enough.
The next theorem explains more about the assumption that ‖A−1‖·‖δA‖ =

κ(A) · ‖δA‖‖A‖ < 1: it guarantees that A + δA is nonsingular, which we need for
δx to exist. It also establishes a geometric characterization of the condition
number.

Theorem 2.1. Let A be nonsingular. Then

min
{
‖δA‖2
‖A‖2

: A+ δA singular

}
=

1
‖A−1‖2 · ‖A‖2

=
1

κ(A)
.

34 Applied Numerical Linear Algebra

Therefore, the distance to the nearest singular matrix (ill-posed problem) =
1

condition number .

Proof. It is enough to show min {‖δA‖2 : A+ δA singular} = 1
‖A−1‖2 .

To show this minimum is at least 1
‖A−1‖2 , note that if ‖δA‖2 < 1

‖A−1‖2 ,
then 1 > ‖δA‖2 · ‖A−1‖2 ≥ ‖A−1δA‖2, so Lemma 2.1 implies that I + A−1δA

is invertible, and so A+ δA is invertible.
To show the minimum equals 1

‖A−1‖2 , we construct a δA of norm 1
‖A−1‖2

such that A + δA is singular. Note that since ‖A−1‖2 = maxx=0
‖A−1x‖2
‖x‖2 ,

there exists an x such that ‖x‖2 = 1 and ‖A−1‖2 = ‖A−1x‖2 > 0. Now let
y = A−1x

‖A−1x‖2 = A−1x
‖A−1‖2 so ‖y‖2 = 1. Let δA = −xyT

‖A−1‖2 .
Then

‖δA‖2 = max
z=0

‖xyT z‖2
‖A−1‖2 ‖z‖2

= max
z=0

|yT z|
‖z‖2

‖x‖2
‖A−1‖2

=
1

‖A−1‖2
,

where the maximum is attained when z is any nonzero multiple of y, and A+δA
is singular because

(A+ δA)y = Ay − xyT y

‖A−1‖2
=

x

‖A−1‖2
− x

‖A−1‖2
= 0 . 2

We have now seen that the distance to the nearest ill-posed problem equals
the reciprocal of the condition number for two problems: polynomial evaluation
and linear equation solving. This reciprocal relationship is quite common in
numerical analysis [70].

Here is a slightly different way to do perturbation theory for Ax = b; we
will need it to derive practical error bounds later in section 2.4.4. If x̂ is any
vector, we can bound the difference δx ≡ x̂− x = x̂−A−1b as follows. We let
r = Ax̂ − b be the residual of x̂; the residual r is zero if x̂ = x. This lets us
write δx = A−1r, yielding the bound

‖δx‖ = ‖A−1r‖ ≤ ‖A−1‖ · ‖r‖. (2.5)

This simple bound is attractive to use in practice, since r is easy to compute,
given an approximate solution x̂. Furthermore, there is no apparent need to
estimate δA and δb. In fact our two approaches are very closely related, as
shown by the next theorem.

Theorem 2.2. Let r = Ax̂− b. Then there exists a δA such that ‖δA‖ = ‖r‖
‖x̂‖

and (A + δA)x̂ = b. No δA of smaller norm and satisfying (A + δA)x̂ = b
exists. Thus, δA is the smallest possible backward error (measured in norm).
This is true for any vector norm and its induced norm (or ‖ · ‖2 for vectors
and ‖ · ‖F for matrices).

Linear Equation Solving 35

Proof. (A+ δA)x̂ = b if and only if δA · x̂ = b−Ax̂ = −r, so ‖r‖ = ‖δA · x̂‖ ≤
‖δA‖·‖x̂‖, implying ‖δA‖ ≥ ‖r‖‖x̂‖ . We complete the proof only for the two-norm

and its induced matrix norm. Choose δA = −r·x̂T
‖x̂‖22

. We can easily verify that

δA · x̂ = −r and ‖δA‖2 = ‖r‖2
‖x̂‖2 . 2

Thus, the smallest ‖δA‖ that could yield an x̂ satisfying (A+δA)x̂ = b and
r = Ax̂− b is given by Theorem 2.2. Applying error bound (2.2) (with δb = 0)
yields

‖δx‖ ≤ ‖A−1‖
(
‖r‖
‖x̂‖ · ‖x̂‖

)
= ‖A−1‖ · ‖r‖,

the same bound as (2.5).
All our bounds depend on the ability to estimate the condition number

‖A‖ · ‖A−1‖. We return to this problem in section 2.4.3. Condition number
estimates are computed by LAPACK routines such as sgesvx.

2.2.1. Relative Perturbation Theory

In the last section we showed how to bound the norm of the error δx = x̂− x
in the approximate solution x̂ of Ax = b. Our bound on ‖δx‖ was proportional
to the condition number κ(A) = ‖A‖ · ‖A−1‖ times the norms ‖δA‖ and ‖δb‖,
where x̂ satisfies (A+ δA)x̂ = b+ δb.

In many cases this bound is quite satisfactory, but not always. Our goal in
this section is to show when it is too pessimistic and to derive an alternative
perturbation theory that provides tighter bounds. We will use this perturba-
tion theory later in section 2.5.1 to justify the error bounds computed by the
LAPACK subroutines like sgesvx.

This section may be skipped on a first reading.
Here is an example where the error bound of the last section is much too

pessimistic.

Example 2.1. Let A = diag(γ, 1) (a diagonal matrix with entries a11 = γ
and a22 = 1) and b = [γ, 1]T , where γ > 1. Then x = A−1b = [1, 1]T . Any
reasonable direct method will solve Ax = b very accurately (using two divisions
bi/aii) to get x̂, yet the condition number κ(A) = γ may be arbitrarily large.
Therefore our error bound (2.3) may be arbitrarily large.

The reason that the condition number κ(A) leads us to overestimate the
error is that bound (2.2), from which it comes, assumes that δA is bounded
in norm, but is otherwise arbitrary; this is needed to prove that bound (2.2)
is attainable in Question 2.3. In contrast, the δA corresponding to the actual
rounding errors is not arbitrary but has a special structure not captured by
its norm alone. We can determine the smallest δA corresponding to x̂ for
our problem as follows: A simple rounding error analysis shows that x̂i =
(bi/aii)/(1 + δi), where |δi| ≤ ε. Thus (aii + δiaii)x̂i = bi. We may rewrite this

36 Applied Numerical Linear Algebra

as (A+ δA)x̂ = b, where δA = diag(δ1a11, δ2a22). Then ‖δA‖ can be as large
maxi |εaii| = εγ. Applying error bound (2.3) with δb = 0 yields

‖δx‖∞
‖x̂‖∞

≤ γ

(
εγ

γ

)
= εγ .

In contrast, the actual error satisfies

‖δx‖∞ = ‖x̂− x‖∞

=
∥∥∥∥[(b1/a11)/(1 + δ1)− (b1/a11)

(b2/a22)/(1 + δ2)− (b2/a22)

]∥∥∥∥
∞

=
∥∥∥∥[−δ1/(1 + δ1)
−δ2/(1 + δ2)

]∥∥∥∥
∞

≤ ε

1− ε
or

‖δx‖∞
‖x̂‖∞

≤ ε/(1− ε)2,

which is about γ times smaller. ¦

For this example, we can describe the structure of the actual δA as follows:
|δaij | ≤ ε|aij |, where ε is a tiny number. We write this more succinctly as

|δA| ≤ ε|A| (2.6)

(see section 1.1 for notation). We also say that δA is a small componentwise
relative perturbation in A. Since δA can often be made to satisfy bound (2.6) in
practice, along with |δb| ≤ ε|b| (see section 2.5.1), we will derive perturbation
theory using these bounds on δA and δb.

We begin with equation (2.1):

δx = A−1(−δAx̂+ δb).

Now take absolute values, and repeatedly use the triangle inequality to get

|δx| = |A−1(−δAx̂+ δb)|
≤ |A−1|(|δA| · |x̂|+ |δb|)
≤ |A−1|(ε|A| · |x̂|+ ε|b|)
= ε(|A−1|(|A| · |x̂|+ |b|)).

Now using any vector norm (like the infinity-, one-, or Frobenius norms), where
‖ |z| ‖ = ‖z‖, we get the bound

‖δx‖ ≤ ε‖|A−1|(|A| · |x̂|+ |b|)‖. (2.7)

Linear Equation Solving 37

Assuming for the moment that δb = 0, we can weaken this bound to

‖δx‖ ≤ ε‖|A−1| · |A|‖ · ‖x̂‖
or

‖δx‖
‖x‖ ≤ ε‖ |A

−1| · |A| ‖. (2.8)

This leads us to define κCR(A) ≡ ‖ |A−1| · |A| ‖ as the componentwise relative
condition number of A, or just relative condition number for short. It is some-
times also called the Bauer condition number [26] or Skeel condition number
[223, 224, 225]. For a proof that bounds (2.7) and (2.8) are attainable, see
Question 2.4.

Recall that Theorem 2.1 related the condition number κ(A) to the distance
from A to the nearest singular matrix. For a similar interpretation of κCR(A),
see [71, 206].

Example 2.2. Consider our earlier example with A = diag(γ, 1) and b =
[γ, 1]T . It is easy to confirm that κCR(A) = 1, since |A−1| · |A| = I. Indeed,
κCR(A) = 1 for any diagonal matrix A, capturing our intuition that a diagonal
system of equations should be solvable quite accurately. ¦

More generally, suppose D is any nonsingular diagonal matrix and B is an
arbitrary nonsingular matrix. Then

κCR(DB) = ‖ |(DB)−1| · |(DB)| ‖
= ‖ |B−1D−1| · |DB| ‖
= ‖ |B−1| · |B| ‖
= κCR(B).

This means that if DB is badly scaled, i.e., B is well-conditioned but DB
is badly conditioned (because D has widely varying diagonal entries), then
we should hope to get an accurate solution of (DB)x = b despite DB’s ill-
conditioning. This is discussed further in sections 2.4.4, 2.5.1, and 2.5.2.

Finally, as in the last section we provide an error bound using only the
residual r = Ax̂− b:

‖δx‖ = ‖A−1r‖ ≤ ‖ |A−1| · |r| ‖, (2.9)

where we have used the triangle inequality. In section 2.4.4 we will see that
this bound can sometimes be much smaller than the similar bound (2.5), in
particular when A is badly scaled. There is also an analogue to Theorem 2.2
[191].

Theorem 2.3. The smallest ε > 0 such that there exist |δA| ≤ ε|A| and |δb| ≤
ε|b| satisfying (A+δA)x̂ = b+δb is called the componentwise relative backward
error. It may be expressed in terms of the residual r = Ax̂− b as follows:

ε = max
i

|ri|
(|A| · |x̂|+ |b|)i

.

38 Applied Numerical Linear Algebra

For a proof, see Question 2.5.
LAPACK routines like sgesvx compute the componentwise backward rel-

ative error ε (the LAPACK variable name for ε is BERR).

2.3. Gaussian Elimination

The basic algorithm for solving Ax = b is Gaussian elimination. To state it,
we first need to define a permutation matrix.

Definition 2.1. A permutation matrix P is an identity matrix with permuted
rows.

The most important properties of a permutation matrix are given by the
following lemma.

Lemma 2.2. Let P , P1, and P2 be n-by-n permutation matrices and X be an
n-by-n matrix. Then

1. PX is the same as X with its rows permuted. XP is the same as X with
its columns permuted.

2. P−1 = P T .

3. det(P) = ±1.

4. P1 · P2 is also a permutation matrix.

For a proof, see Question 2.6.
Now we can state our overall algorithm for solving Ax = b.

Algorithm 2.1. Solving Ax = b using Gaussian elimination:

1. Factorize A into A = PLU , where

P = permutation matrix,
L = unit lower triangular matrix (i.e., with ones on the diagonal),
U = nonsingular upper triangular matrix.

2. Solve PLUx = b for LUx by permuting the entries of b: LUx = P−1b =
P T b.

3. Solve LUx = P−1b for Ux by forward substitution: Ux = L−1(P−1b).

4. Solve Ux = L−1(P−1b) for x by back substitution: x = U−1(L−1P−1b).

We will derive the algorithm for factorizing A = PLU in several ways. We
begin by showing why the permutation matrix P is necessary.

Linear Equation Solving 39

Definition 2.2. The leading j-by-j principal submatrix of A is A(1 : j, 1 : j).

Theorem 2.4. The following two statements are equivalent:

1. There exists a unique unit lower triangular L and nonsingular upper
triangular U such that A = LU .

2. All leading principal submatrices of A are nonsingular.

Proof. We first show (1) implies (2). A = LU may also be written[
A11 A12
A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12
0 U22

]
=

[
L11U11 L11U12
L21U11 L21U12 + L22U22

]
,

where A11 is a j-by-j leading principal submatrix, as are L11 and U11. There-
fore detA11 = det(L11U11) = detL11 detU11 = 1 ·

∏j
k=1(U11)kk = 0, since L is

unit triangular and U is triangular.
We prove that (2) implies (1) by induction on n. It is easy for 1-by-1

matrices: a = 1 · a. To prove it for n-by-n matrices Ã, we need to find unique
(n− 1)-by-(n− 1) triangular matrices L and U , unique (n− 1)-by-1 vectors l
and u, and a unique nonzero scalar η such that

Ã =
[
A b
cT δ

]
=
[
L 0
lT 1

] [
U u
0 η

]
=
[
LU Lu
lTU lTu+ η

]
.

By induction, unique L and U exist such that A = LU . Now let u = L−1b,
lT = cTU−1, and η = δ − lTu, all of which are unique. The diagonal entries of
U are nonzero by induction, and η = 0 since 0 = det(Ã) = det(U) · η. 2

Thus LU factorization without pivoting can fail on (well-conditioned) non-
singular matrices such as the permutation matrix

P =

 0 1 0
0 0 1
1 0 0

 ;

the 1-by-1 and 2-by-2 leading principal minors of P are singular. So we need
to introduce permutations into Gaussian elimination.

Theorem 2.5. If A is nonsingular, then there exist permutations P1 and P2,
a unit lower triangular matrix L, and a nonsingular upper triangular matrix
U such that P1AP2 = LU . Only one of P1 and P2 is necessary.

Note: P1A reorders the rows of A, AP2 reorders the columns, and P1AP2
reorders both.

40 Applied Numerical Linear Algebra

Proof. As with many matrix factorizations, it suffices to understand block
2-by-2 matrices. More formally, we use induction on the dimension n. It is
easy for 1-by-1 matrices: P1 = P2 = L = 1 and U = A. Assume that it is
true for dimension n − 1. If A is nonsingular, then it has a nonzero entry;
choose permutations P ′1 and P ′2 so that the (1, 1) entry of P ′1AP

′
2 is nonzero.

(We need only one of P ′1 and P ′2 since nonsingularity implies that each row and
each column of A has a nonzero entry.)

Now we write the desired factorization and solve for the unknown compo-
nents:

P ′1AP
′
2 =

[
a11 A12
A21 A22

]
=
[

1 0
L21 I

]
·
[
u11 U12

0 Ã22

]
=

[
u11 U12

L21u11 L21U12 + Ã22

]
, (2.10)

where A22 and Ã22 are (n− 1)-by-(n− 1).
Solving for the components of this 2-by-2 block factorization we get u11 =

a11 = 0, U12 = A12, and L21u11 = A21. Since u11 = a11 = 0, we can solve for
L21 = A21

a11
. Finally, L21U12 + Ã22 = A22 implies Ã22 = A22 − L21U12.

We want to apply induction to Ã22, but to do so we need to check that
det Ã22 = 0: Since detP ′1AP

′
2 = ± detA = 0 and also

detP ′1AP
′
2 = det

[
1 0
L21 I

]
· det

[
u11 U12

0 Ã22

]
= 1 · (u11 · det Ã22),

then det Ã22 must be nonzero.
Therefore, by induction there exist permutations P̃1 and P̃2 so that P̃1Ã22P̃2

= L̃Ũ , with L̃ unit lower triangular and Ũ upper triangular and nonsingular.
Substituting this in the above 2-by-2 block factorization yields

P ′1AP
′
2 =

[
1 0
L21 I

] [
u11 U12

0 P̃ T1 L̃Ũ P̃
T
2

]
=

[
1 0
L21 I

] [
1 0
0 P T1 L̃

] [
u11 U12

0 Ũ P̃ T2

]
=

[
1 0
L21 P̃ T1 L̃

] [
u11 U12P̃2

0 Ũ

] [
1 0
0 P̃ T2

]
=

[
1 0
0 P̃ T1

][
1 0

P̃1L21 L̃

] [
u11 U12P̃2

0 Ũ

] [
1 0
0 P̃ T2

]
so we get the desired factorization of A:

P1AP2 =
([

1 0
0 P̃1

]
P ′1

)
A

(
P ′2

[
1 0
0 P̃2

])
=

[
1 0

P̃1L21 L̃

] [
u11 U12P̃2

0 Ũ

]
. 2

Linear Equation Solving 41

The next two corollaries state simple ways to choose P1 and P2 to guarantee
that Gaussian elimination will succeed on a nonsingular matrix.

Corollary 2.1. We can choose P ′2 = I and P ′1 so that a11 is the largest entry
in absolute value in its column, which implies L21 = A21

a11
has entries bounded by

1 in absolute value. More generally, at step i of Gaussian elimination, where
we are computing the ith column of L, we reorder the rows so that the largest
entry in the column is on the diagonal. This is called “Gaussian elimination
with partial pivoting,” or GEPP for short. GEPP guarantees that all entries
of L are bounded by one in absolute value.

GEPP is the most common way to implement Gaussian elimination in
practice. We discuss its numerical stability in the next section. Another more
expensive way to choose P1 and P2 is given by the next corollary. It is almost
never used in practice, although there are rare examples where GEPP fails but
the next method succeeds in computing an accurate answer (see Question 2.14).
We discuss briefly it in the next section as well.

Corollary 2.2. We can choose P ′1 and P ′2 so that a11 is the largest entry
in absolute value in the whole matrix. More generally, at step i of Gaussian
elimination, where we are computing the ith column of L, we reorder the rows
and columns so that the largest entry in the matrix is on the diagonal. This is
called “Gaussian elimination with complete pivoting,” or GECP for short.

The following algorithm embodies Theorem 2.5, performing permutations,
computing the first column of L and the first row of U , and updating A22 to get
Ã22 = A22−L21U12. We write the algorithm first in conventional programming
language notation and then using Matlab notation.

Algorithm 2.2. LU factorization with pivoting

for i = 1 to n− 1
apply permutations so aii = 0 (permute L and U too)

/* for example, for GEPP, swap rows j and i of A and of L
where |aji| is the largest entry in |A(i : n, i)|;
for GECP, swap rows j and i of A and of L,
and columns k and i of A and of U ,
where |ajk| is the largest entry in |A(i : n, i : n)| */

/* compute column i of L (L21 in (2.10)) */
for j = i+ 1 to n

lji = aji/aii
end for
/* compute row i of U (U12 in (2.10)) */
for j = i to n

uij = aij

42 Applied Numerical Linear Algebra

end for
/* update A22 (to get Ã22 = A22 − L21U12 in (2.10)) */
for j = i+ 1 to n

for k = i+ 1 to n
ajk = ajk − lji ∗ uik

end for
end for

end for

Note that once column i of A is used to compute column i of L, it is never
used again. Similarly, row i of A is never used again after computing row i of
U . This lets us overwrite L and U on top of A as they are computed, so we
need no extra space to store them; L occupies the (strict) lower triangle of A
(the ones on the diagonal of L are not stored explicitly), and U occupies the
upper triangle of A. This simplifies the algorithm to

Algorithm 2.3. LU factorization with pivoting, overwriting L and U on A:

for i = 1 to n− 1
apply permutations (see Algorithm 2.2 for details)
for j = i+ 1 to n

aji = aji/aii
end for
for j = i+ 1 to n

for k = i+ 1 to n
ajk = ajk − aji ∗ aik

end for
end for

end for

Using Matlab notation this further reduces to the following algorithm.

Algorithm 2.4. LU factorization with pivoting, overwriting L and U on A:

for i = 1 to n− 1
apply permutations (see Algorithm 2.2 for details)
A(i+ 1 : n, i) = A(i+ 1 : n, i)/A(i, i)
A(i+ 1 : n, i+ 1 : n) =

A(i+ 1 : n, i+ 1 : n)−A(i+ 1 : n, i) ∗ A(i, i+ 1 : n)
end for

In the last line of the algorithm, A(i+1 : n, i)∗A(i, i+1 : n) is the product
of an (n− i)-by-1 matrix (L21) by a 1-by-(n− i) matrix (U12), which yields an
(n− i)-by-(n− i) matrix.

Linear Equation Solving 43

We now rederive this algorithm from scratch starting from perhaps the most
familiar description of Gaussian elimination: “Take each row and subtract
multiples of it from later rows to zero out the entries below the diagonal.”
Translating this directly into an algorithm yields

for i = 1 to n− 1 /* for each row i */
for j = i+ 1 to n /* subtract a multiple of

row i from row j ... */
for k = i to n /* ... in columns i through n ... */

ajk = ajk − aji
aii
aik /* ... to zero out column i

below the diagonal */
end for

end for
end for

We will now make some improvements to this algorithm, modifying it until
it becomes identical to Algorithm 2.3 (except for pivoting, which we omit).
First, we recognize that we need not compute the zero entries below the diag-
onal, because we know they are zero. This shortens the k loop to yield

for i = 1 to n− 1
for j = i+ 1 to n

for k = i+ 1 to n
ajk = ajk − aji

aii
aik

end for
end for

end for

The next performance improvement is to compute aji
aii

outside the inner
loop, since it is constant within the inner loop.

for i = 1 to n− 1
for j = i+ 1 to n

lji = aji
aii

end for
for j = i+ 1 to n

for k = i+ 1 to n
ajk = ajk − ljiaik

end for
end for

end for

Finally, we store the multipliers lij in the subdiagonal entries aij that we
originally zeroed out; they are not needed for anything else. This yields Algo-
rithm 2.3 (except for pivoting).

44 Applied Numerical Linear Algebra

The operation count of LU is done by replacing loops by summations over
the same range, and inner loops by their operation counts:

n−1∑
i=1

 n∑
j=i+1

1 +
n∑

j=i+1

n∑
k=i+1

2

=

n−1∑
i=1

((n− i) + 2(n− i)2) =
2
3
n3 +O(n2).

The forward and back substitutions with L and U to complete the solution
of Ax = b cost O(n2), so overall solving Ax = b with Gaussian elimination
costs 2

3n
3 +O(n2) operations. Here we have used the fact that

∑m
i=1 i

k =
mk+1/(k + 1) +O(mk). This formula is enough to get the high order term in
the operation count.

There is more to implementing Gaussian elimination than writing the
nested loops of Algorithm 2.2. Indeed, depending on the computer, program-
ming language, and matrix size, merely interchanging the last two loops on j
and k can change the execution time by orders of magnitude. We discuss this
at length in section 2.6.

2.4. Error Analysis

Recall our two-step paradigm for obtaining error bounds for the solution of
Ax = b:

1. Analyze roundoff errors to show that the result of solving Ax = b is the
exact solution x̂ of the perturbed linear system (A+δA)x̂ = b+δb, where
δA and δb are small. This is an example of backward error analysis, and
δA and δb are called the backward errors.

2. Apply the perturbation theory of section 2.2 to bound the error, for
example by using bound (2.3) or (2.5).

We have two goals in this section. The first is to show how to implement
Gaussian elimination in order to keep the backward errors δA and δb small.
In particular, we would like to keep ‖δA‖‖A‖ and ‖δb‖‖b‖ as small as O(ε). This is as
small as we can expect to make them, since merely rounding the largest entries
of A (or b) to fit into the floating point format can make ‖δA‖

‖A‖≥ε (or ‖δb‖
‖b‖≥ε). It

turns out that unless we are careful about pivoting, δA and δb need not be
small. We discuss this in the next section.

The second goal is to derive practical error bounds which are simultaneously
cheap to compute and “tight,” i.e., close to the true errors. It turns out that
the best bounds for ‖δA‖ that we can formally prove are generally much larger
than the errors encountered in practice. Therefore, our practical error bounds
(in section 2.4.4) will rely on the computed residual r = Ax̂−b and bound (2.5),

Linear Equation Solving 45

instead of bound (2.3). We also need to be able to estimate κ(A) inexpensively;
this is discussed in section 2.4.3.

Unfortunately, we do not have error bounds that always satisfy our twin
goals of cheapness and tightness, i.e., that simultaneously

1. cost a negligible amount compared to solving Ax = b in the first place
(for example, that cost O(n2) flops versus Gaussian elimination’s O(n3)
flops), and

2. provide an error bound that is always at least as large as the true error
and never more than a constant factor larger (100 times larger, say).

The practical bounds in section 2.4.4 will cost O(n2) but will on very rare
occasions provide error bounds that are much too small or much too large.
The probability of getting a bad error bound is so small that these bounds are
widely used in practice. The only truly guaranteed bounds use either interval
arithmetic, very high precision arithmetic, or both and are several times more
expensive than just solving Ax = b (see section 1.5).

It has in fact been conjectured that no bound satisfying our twin goals of
cheapness and tightness exist, but this remains an open problem.

2.4.1. The Need for Pivoting

Let us apply LU factorization without pivoting to A = [.0001 1
1 1] in three

decimal-digit floating point arithmetic and see why we get the wrong answer.
Note that κ(A) = ‖A‖∞ · ‖A−1‖∞ ≈ 4, so A is well conditioned and thus we
should expect to be able to solve Ax = b accurately.

L =
[

1 0
fl(1/10−4) 1

]
, fl(1/10−4) rounds to 104,

U =
[

10−4 1
fl(1− 104 · 1)

]
, fl(1− 104 · 1) rounds to − 104,

so LU =
[

1 0
104 1

] [
10−4 1

−104

]
=
[

10−4 1
1 0

]
but A =

[
10−4 1

1 1

]
.

Note that the original a22 has been entirely “lost” from the computation by
subtracting 104 from it. We would have gotten the same LU factors whether
a22 had been 1, 0, −2, or any number such that fl(a22 − 104) = −104. Since
the algorithm proceeds to work only with L and U , it will get the same answer
for all these different a22, which correspond to completely different A and
so completely different x = A−1b; there is no way to guarantee an accurate
answer. This is called numerical instability, since L and U are not the exact

46 Applied Numerical Linear Algebra

factors of a matrix close to A. (Another way to say this is that ‖A − LU‖ is
about as large as ‖A‖, rather than ε‖A‖.)

Let us see what happens when we go on to solve Ax = [1, 2]T for x using
this LU factorization. The correct answer is x ≈ [1, 1]T . Instead we get the
following. Solving Ly = [1, 2]T yields y1 = fl(1/1) = 1 and y2 = fl(2−104 ·1) =
−104; note that the value 2 has been “lost” by subtracting 104 from it. Solving
Ux̂ = y yields x̂2 = fl((−104)/(−104)) = 1 and x̂1 = fl((1 − 1)/10−4) = 0, a
completely erroneous solution.

Another warning of the loss of accuracy comes from comparing the con-
dition number of A to the condition numbers of L and U . Recall that we
transform the problem of solving Ax = b into solving two other systems with
L and U , so we do not want the condition numbers of L or U to be much larger
than that of A. But here, the condition number of A is about 4, whereas the
condition numbers of L and U are about 108.

In the next section we will show that doing GEPP nearly always eliminates
the instability just illustrated. In the above example, GEPP would have re-
versed the order of the two equations before proceeding. The reader is invited
to confirm that in this case we would get

L =
[

1 0
fl(.0001/1) 1

]
=
[

1 0
.0001 1

]
and

U =
[

1 1
0 fl(1− .0001 · 1)

]
=
[

1 1
0 1

]
so that LU approximates A quite accurately. Both L and U are quite well-
conditioned, as is A. The computed solution vector is also quite accurate.

2.4.2. Formal Error Analysis of Gaussian Elimination

Here is the intuition behind our error analysis of LU decomposition. If in-
termediate quantities arising in the product L · U are very large compared to
‖A‖, the information in entries of A will get “lost” when these large values
are subtracted from them. This is what happened to a22 in the example in
section 2.4.1. If the intermediate quantities in the product L · U were instead
comparable to those of A, we would expect a tiny backward error A−LU in the
factorization. Therefore, we want to bound the largest intermediate quantities
in the product L · U . We will do this by bounding the entries of the matrix
|L| · |U | (see section 1.1 for notation).

Our analysis is analogous to the one we used for polynomial evaluation
in section 1.6. There we considered p =

∑
i aix

i and showed that if |p| were
comparable to the sum of absolute values

∑
i |aixi|, then p would be computed

accurately.
After presenting a general analysis of Gaussian elimination, we will use

it to show that GEPP (or, more expensively, GECP) will keep the entries of
|L| · |U | comparable to ‖A‖ in almost all practical circumstances.

Linear Equation Solving 47

Unfortunately, the best bounds on ‖δA‖ that we can prove in general are
still much larger than the errors encountered in practice. Therefore, the error
bounds that we use in practice will be based on the computed residual r and
bound (2.5) (or bound (2.9)) instead of the rigorous but pessimistic bound in
this section.

Now suppose that matrix A has already been pivoted, so the notation is
simpler. We simplify Algorithm 2.2 to two equations, one for ajk with j ≤ k
and one for j > k. Let us first trace what Algorithm 2.2 does to ajk when
j ≤ k: this element is repeatedly updated by subtracting ljiuik for i = 1 to
j − 1 and is finally assigned to ujk so that

ujk = ajk −
j−1∑
i=1

ljiuik.

When j > k, ajk again has ljiuik subtracted for i = 1 to k − 1, and then the
resulting sum is divided by ukk and assigned to ljk:

ljk =
ajk −

∑k−1
i=1 ljiuik
ukk

.

To do the roundoff error analysis of these two formulas, we use the result
from Question 1.10 that a dot product computed in floating point arithmetic
satisfies

fl

(
d∑
i=1

xiyi

)
=

d∑
i=1

xiyi(1 + δi) with |δi| ≤ dε.

We apply this to the formula for ujk, yielding8

ujk =

(
ajk −

j−1∑
i=1

ljiuik(1 + δi)

)
(1 + δ′)

with |δi| ≤ (j − 1)ε and |δ′| ≤ ε. Solving for ajk we get

ajk = 1
1+δ′ujk · ljj +

∑j−1
i=1 ljiuik(1 + δi) since ljj = 1

=
∑j

i=1 ljiuik +
∑j

i=1 ljiuikδi
with |δi| ≤ (j − 1)ε and 1 + δj ≡ 1

1+δ′

≡
∑j

i=1 ljiuik + Ejk,

where we can bound Ejk by

|Ejk| =
∣∣∣∣∣
j∑
i=1

lji · uik · δi

∣∣∣∣∣ ≤
j∑
i=1

|lji| · |uik| · nε = nε(|L| · |U |)jk.

8Strictly speaking, the next formula assumes we compute the sum first and then subtract
from ajk. But the final bound does not depend on the order of summation.

48 Applied Numerical Linear Algebra

Doing the same analysis for the formula for ljk yields

ljk = (1 + δ′′)

(
(1 + δ′)(ajk −

∑k−1
i=1 ljiuik(1 + δi))
ukk

)

with |δi| ≤ (k − 1)ε, |δ′| ≤ ε, and |δ′′| ≤ ε. We solve for ajk to get

ajk =
1

(1 + δ′)(1 + δ′′)
ukkljk +

k−1∑
i=1

ljiuik(1 + δi)

=
k∑
i=1

ljiuik +
k∑
i=1

ljiuikδi with 1 + δk ≡
1

(1 + δ′)(1 + δ′′)

≡
k∑
i=1

ljiuik + Ejk

with |δi| ≤ nε, and so |Ejk| ≤ nε(|L| · |U |)jk as before.
Altogether, we can summarize this error analysis with the simple formula

A = LU + E where |E| ≤ nε|L| · |U |. Taking norms we get ‖E‖ ≤ nε‖ |L| ‖ ·
‖ |U | ‖. If the norm does not depend on the signs of the matrix entries (true for
the Frobenius, infinity-, and one-norms but not the two-norm), we can simplify
this to ‖E‖ ≤ nε‖L‖ · ‖U‖.

Now we consider solving the rest of the problem: LUx = b via Ly = b
and Ux = y. The result of Question 1.11 shows that solving Ly = b by
forward substitution yields a computed solution ŷ satisfying (L+δL)ŷ = b with
|δL| ≤ nε|L|. Similarly when solving Ux = ŷ we get x̂ satisfying (U+δU)x̂ = ŷ
with |δU | ≤ nε|U |.

Combining these yields

b = (L+ δL)ŷ
= (L+ δL)(U + δU)x̂
= (LU + LδU + δLU + δLδU)x̂
= (A− E + LδU + δLU + δLδU)x̂
≡ (A+ δA)x̂ where δA = −E + LδU + δLU + δLδU.

Now we combine our bounds on E, δL, and δU and use the triangle inequality
to bound δA:

|δA| = | −E + LδU + δLU + δLδU |
≤ |E|+ |LδU |+ |δLU |+ |δLδU |
≤ |E|+ |L| · |δU |+ |δL| · |U |+ |δL| · |δU |
≤ nε|L| · |U |+ nε|L| · |U |+ nε|L| · |U |+ n2ε2|L| · |U |
≈ 3nε|L| · |U |.

Linear Equation Solving 49

Taking norms and assuming ‖ |X| ‖ = ‖X‖ (true as before for the Frobe-
nius, infinity-, and one-norms but not the two-norm) we get ‖δA‖ ≤ 3nε‖L‖ ·
‖U‖.

Thus, to see when Gaussian elimination is backward stable, we must ask
when 3nε‖L‖ · ‖U‖ = O(ε)‖A‖; then the ‖δA‖

‖A‖ in the perturbation theory
bounds will be O(ε) as we desire (note that δb = 0).

The main empirical observation, justified by decades of experience, is that
GEPP almost always keeps ‖L‖·‖U‖ ≈ ‖A‖. GEPP guarantees that each entry
of L is bounded by 1 in absolute value, so we need consider only ‖U‖. We define
the pivot growth factor for GEPP9 as gPP = ‖U‖max/‖A‖max, where ‖A‖max =
maxij |aij |, so stability is equivalent to gPP being small or growing slowly as a
function of n. In practice, gPP is almost always n or less. The average behavior
seems to be n2/3 or perhaps even just n1/2 [240]. (See Figure 2.1.) This makes
GEPP the algorithm of choice for many problems. Unfortunately, there are
rare examples in which gPP can be as large as 2n−1.

Proposition 2.1. GEPP guarantees that gPP ≤ 2n−1. This bound is attain-
able.

Proof. The first step of GEPP updates ãjk = ajk − lji · uik, where |lji| ≤ 1
and |uik| = |aik| ≤ maxrs |ars|, so |ãjk| ≤ 2 ·maxrs |ars|. So each of the n − 1
major steps of GEPP can double the size of the remaining matrix entries, and
we get 2n−1 as the overall bound. See the example in Question 2.14 to see that
this is attainable. 2

Putting all these bounds together, we get

‖δA‖∞ ≤ 3gPPn
3ε‖A‖∞, (2.11)

since ‖L‖∞ ≤ n and ‖U‖∞ ≤ ngPP‖A‖∞. The factor 3gPPn
3 in the bound

causes it to almost always greatly overestimate the true ‖δA‖, even if gPP = 1.
For example, if ε = 10−7 and n = 150, a very modest sized matrix, then
3n3ε > 1, meaning that all precision is potentially lost. Example 2.3 graphs
3gPPn

3ε along with the true backward error to show how it can be pessimistic;
‖δA‖ is usually O(ε)‖A‖, so we can say that GEPP is backward stable in
practice, even though we can construct examples where it fails. Section 2.4.4
presents practical error bounds for the computed solution of Ax = b that are
much smaller than what we get from using ‖δA‖∞ ≤ 3gPPn

3ε‖A‖∞.
It can be shown that GECP is even more stable than GEPP, with its pivot

growth gCP satisfying the worst-case bound [260, p. 213]

gCP =
maxij |uij |
maxij |aij |

≤
√
n · 2 · 31/2 · 41/3 · · ·n1/(n−1) ≈ n1/2 + loge n/4.

9This definition is slightly different from the usual one in the literature but essentially
equivalent [119, p. 115].

50 Applied Numerical Linear Algebra

This upper bound is also much too large in practice. The average behavior of
gCP is n1/2. It was an old open conjecture that gCP ≤ n, but this was recently
disproved [97, 120]. It remains an open problem to find a good upper bound
for gCP (which is still widely suspected to be O(n).)

The extra O(n3) comparisons that GECP uses to find the pivots (O(n2)
comparisons per step, versus O(n) for GEPP) makes GECP significantly slower
than GEPP, especially on high-performance machines that perform floating
point operations about as fast as comparisons. Therefore, using GECP is
seldom warranted (but see sections 2.4.4, 2.5.1, and 5.4.3).

Example 2.3. Figures 2.1 and 2.2 illustrate these backward error bounds. For
both figures, five random matrices A of each dimension were generated, with
independent normally distributed entries, of mean 0 and standard deviation
1. (Testing such random matrices can sometimes be misleading about the
behavior on some real problems, but it is still informative.) For each matrix,
a similarly random vector b was generated. Both GEPP and GECP were used
to solve Ax = b. Figure 2.1 plots the pivot growth factors gPP and gCP. In both
cases they grow slowly with dimension, as expected. Figure 2.2 shows our two
upper bounds for the backward error, 3n3εgPP (or 3n3εgCP) and 3nε‖|L|·|U |‖∞

‖A‖∞ .
It also shows the true backward error, computed as described in Theorem 2.2.
Machine epsilon is indicated by a solid horizontal line at ε = 2−53 ≈ 1.1 ·10−16.
Both bounds are indeed bounds on the true backward error but are too large
by several order of magnitude. For the Matlab program that produced these
plots, see HOMEPAGE/Matlab/pivot.m. ¦

2.4.3. Estimating Condition Numbers

To compute a practical error bound based on a bound like (2.5), we need
to estimate ‖A−1‖. This is also enough to estimate the condition number
κ(A) = ‖A−1‖·‖A‖, since ‖A‖ is easy to compute. One approach is to compute
A−1 explicitly and compute its norm. However, this would cost 2n3, more than
the original 2

3n
3 for Gaussian elimination. (Note that this implies that it is not

cheaper to solve Ax = b by computing A−1 and then multiplying it by b. This
is true even if one has many different b vectors. See Question 2.2.) It is a fact
that most users will not bother to compute error bounds if they are expensive.

So instead of computing A−1 we will devise a much cheaper algorithm to
estimate ‖A−1‖. Such an algorithm is called a condition estimator and should
have the following properties:

1. Given the L and U factors of A, it should cost O(n2), which for large
enough n is negligible compared to the 2

3n
3 cost of GEPP.

2. It should provide an estimate which is almost always within a factor of 10
of ‖A−1‖. This is all one needs for an error bound which tells you about

Linear Equation Solving 51

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
Pivot Growth Factors, Partial = o, Complete = +

Matrix Dimension

Fig. 2.1. Pivot growth on random matrices, ◦ = gPP, + = gCP.

0 10 20 30 40 50 60 70 80 90 100

10
−16

10
−14

10
−12

10
−10

10
−8

Backward error in Gaussian Elimination with Partial Pivoting

Matrix dimension

macheps = 2^(−53) = 1.1e−16

0 10 20 30 40 50 60 70 80 90 100

10
−16

10
−14

10
−12

10
−10

10
−8

Backward error in Gaussian Elimination with Complete Pivoting

Matrix dimension

macheps = 2^(−53) = 1.1e−16

Fig. 2.2. Backward error in Gaussian elimination on random matrices, × = 3n3εg,
+ = 3n‖|L| · |U |‖∞/‖A‖∞, ◦ = ‖Ax − b‖∞/(‖A‖∞‖x‖∞).

52 Applied Numerical Linear Algebra

how many decimal digits of accuracy that you have. (A factor-of-10 error
is one decimal digit.10)

There are a variety of such estimators available (see [144] for a survey).
We choose to present one that is widely applicable to problems besides solving
Ax = b, at the cost of being slightly slower than algorithms specialized for
Ax = b (but it is still reasonably fast). Our estimator, like most others, is
guaranteed to produce only a lower bound on ‖A−1‖, not an upper bound.
Empirically, it is almost always within a factor of 10, and usually 2 to 3, of
‖A−1‖. For the matrices in Figures 2.1 and 2.2, where the condition numbers
varied from 10 to 105, the estimator equaled the condition number to several
decimal places 83% of the time and was .43 times too small at worst. This is
more than accurate enough to estimate the number of correct decimal digits
in the final answer.

The algorithm estimates the one-norm ‖B‖1 of a matrix B, provided that
we can compute Bx and BT y for arbitrary x and y. We will apply the algorithm
to B = A−1, so we need to compute A−1x and A−T y, i.e., solve linear systems.
This costs just O(n2) given the LU factorization of A. The algorithm was
developed in [136, 144, 146], with the latest version in [145]. Recall that ‖B‖1
is defined by

‖B‖1 = max
x=0

‖Bx‖1
‖x‖1

= max
j

n∑
i=1

|bij |.

It is easy to show that the maximum over x = 0 is attained at x = ej0 =
[0, . . . , 0, 1, 0, . . . , 0]T (the single nonzero entry is component j0, where maxj

∑
i |bij |

occurs at j = j0).
Searching over all ej , j = 1, . . . , n means computing all columns of B =

A−1; this is too expensive. Instead, since ‖B‖1 = max‖x‖1≤1 ‖Bx‖1, we can
use hill climbing or gradient ascent on f(x) ≡ ‖Bx‖1 inside the set ‖x‖1 ≤ 1.
‖x‖1 ≤ 1 is clearly a convex set of vectors, and f (x) is a convex function, since
0 ≤ α ≤ 1 implies f(αx+ (1− α)y) = ‖αBx+ (1− α)By‖1 ≤ α‖Bx‖1 + (1−
α)‖By‖1 = αf(x) + (1− α)f (y).

Doing gradient ascent to maximize f(x) means moving x in the direction
of the gradient 5f (x) (if it exists) as long as f(x) increases. The convexity
of f(x) means f (y) ≥ f(x) +5f(x) · (y − x) (if 5f(x) exists). To compute
5f we assume all

∑
j bijxj = 0 in f (x) =

∑
i |
∑

j bijxj | (this is almost always
true). Let ζi = sign(

∑
j bijxj), so ζi = ±1 and f(x) =

∑
i

∑
j ζibijxj . Then

∂f
∂xk

=
∑

i ζibik and 5f = ζTB = (BT ζ)T .
In summary, to compute 5f (x) takes three steps: w = Bx, ζ = sign(w),

and 5f = ζTB.

10As stated earlier, no one has ever found an estimator that approximates ‖A−1‖ with some
guaranteed accuracy and is simultaneously significantly cheaper than explicitly computing
A−1. It has been been conjectured that no such estimator exists, but this has not been
proven.

Linear Equation Solving 53

Algorithm 2.5. Hager’s condition estimator returns a lower bound ‖w‖1 on
‖B‖1:

choose any x such that ‖x‖1 = 1 /* e.g. xi = 1
n */

repeat
w = Bx, ζ = sign(w), z = BT ζ /* zT = 5f */
if ‖z‖∞ ≤ zTx then

return ‖w‖1
else

x = ej where |zj | = ‖z‖∞
endif

end repeat

Theorem 2.6. 1. When ‖w‖1 is returned, ‖w‖1 = ‖Bx‖1 is a local maxi-
mum of ‖Bx‖1.

2. Otherwise, ‖Bej‖ (at end of loop) > ‖Bx‖ (at start), so the algorithm
has made progress in maximizing f(x).

Proof.

1. In this case, ‖z‖∞ ≤ zTx. Near x, f (x) = ‖Bx‖1 =
∑

i

∑
j ζibijxj is

linear in x so f (y) = f (x) +5f (x) · (y − x) = f (x) + zT (y − x), where
zT = 5f (x). To show x is a local maximum we want zT (y−x) ≤ 0 when
‖y‖1 = 1. We compute

zT (y − x) = zT y − zTx =
∑
i

zi · yi − zTx ≤
∑
i

|zi| · |yi| − zTx

≤ ‖z‖∞ · ‖y‖1 − zTx = ‖z‖∞ − zTx ≤ 0 as desired.

2. In this case ‖z‖∞ > zTx. Choose x̃ = ej · sign(zj), where j is chosen so
that |zj | = ‖z‖∞. Then

f(x̃) ≥ f (x) +5f · (x̃− x) = f(x) + zT (x̃− x)
= f (x) + zT x̃− zTx = f(x) + |zj | − zTx > f(x),

where the last inequality is true by construction. 2

Higham [145, 146] tested a slightly improved version of this algorithm
by trying many random matrices of sizes 10, 25, 50 and condition numbers
κ = 10, 103, 106, 109; in the worst case the computed κ underestimated the
true κ by a factor .44. The algorithm is available in LAPACK as subroutine
slacon. LAPACK routines like sgesvx call slacon internally and return the
estimated condition number. (They actually return the reciprocal of the esti-
mated condition number, to avoid overflow on exactly singular matrices.) A
different condition estimator is available in Matlab as rcond. The Matlab rou-
tine cond computes the exact condition number ‖A−1‖2‖A‖2, using algorithms
discussed in section 5.4; it is much more expensive than rcond.

54 Applied Numerical Linear Algebra

Estimating the Relative Condition Number

We can also use the algorithm from the last section to estimate the relative
condition number κCR(A) = ‖ |A−1| · |A| ‖∞ from bound (2.8) or to evaluate
the bound ‖ |A−1| · |r| ‖∞ from (2.9). We can reduce both to the same problem,
that of estimating ‖ |A−1| · g ‖∞, where g is a vector of nonnegative entries. To
see why, let e be the vector of all ones. From part 5 of Lemma 1.7, we see that
‖X‖∞ = ‖Xe‖∞ if the matrix X has nonnegative entries. Then

‖ |A−1| · |A| ‖∞ = ‖ |A−1| · |A|e ‖∞ = ‖ |A−1| · g ‖∞, where g = |A|e.

Here is how we estimate ‖ |A−1| · g ‖∞. Let G = diag(g1, . . . , gn); then
g = Ge. Thus

‖ |A−1| · g ‖∞ = ‖ |A−1| ·Ge ‖∞ = ‖ |A−1| ·G ‖∞ = ‖ |A−1G| ‖∞
= ‖A−1G‖∞. (2.12)

The last equality is true because ‖Y ‖∞ = ‖ |Y | ‖∞ for any matrix Y . Thus, it
suffices to estimate the infinity norm of the matrix A−1G. We can do this by
applying Hager’s algorithm, Algorithm 2.5, to the matrix (A−1G)T = GA−T ,
to estimate ‖(A−1G)T ‖1 = ‖A−1G‖∞ (see part 6 of Lemma 1.7). This requires
us to multiply by the matrix GA−T and its transpose A−1G. Multiplying by
G is easy since it is diagonal, and we multiply by A−1 and A−T using the LU
factorization of A, as we did in the last section.

2.4.4. Practical Error Bounds

We present two practical error bounds for our approximate solution x̂ of Ax =
b. For the first bound we use inequality (2.5) to get

error =
‖x̂− x‖∞
‖x̂‖∞

≤ ‖A−1‖∞ ·
‖r‖∞
‖x̂‖∞

, (2.13)

where r = Ax̂ − b is the residual. We estimate ‖A−1‖∞ by applying Algo-
rithm 2.5 to B = A−T , estimating ‖B‖1 = ‖A−T ‖1 = ‖A−1‖∞ (see parts 5
and 6 of Lemma 1.7).

Our second error bound comes from the tighter inequality (2.9):

error =
‖x̂− x‖∞
‖x̂‖∞

≤ ‖ |A
−1| · |r| ‖∞
‖x̂‖∞

. (2.14)

We estimate ‖ |A−1| · |r| ‖∞ using the algorithm based on equation (2.12).
Error bound (2.14) (modified as described below in the subsection “What can
go wrong”) is computed by LAPACK routines like sgesvx. The LAPACK
variable name for the error bound is FERR, for Forward ERRor.

Linear Equation Solving 55

10
−16

10
−14

10
−12

10
−10

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

True Error vs. Error Bound, o = GEPP, + = GECP

True Error

E
rr

or
 B

ou
nd

Fig. 2.3. Error bound (2.13) plotted versus true error, ◦ = GEPP, + = GECP.

Example 2.4. We have computed the first error bound (2.13) and the true
error for the same set of examples as in Figures 2.1 and 2.2, plotting the result
in Figure 2.3. For each problem Ax = b solved with GEPP we plot a ◦ at
the point (true error, error bound), and for each problem Ax = b solved with
GECP we plot a + at the point (true error, error bound). If the error bound
were equal to the true error, the ◦ or + would lie on the solid diagonal line.
Since the error bound always exceeds the true error, the ◦s and +s lie above this
diagonal. When the error bound is less than 10 times larger than the true error,
the ◦ or + appears between the solid diagonal line and the first superdiagonal
dashed line. When the error bound is between 10 and 100 times larger than
the true error, the ◦ or + appears between the first two superdiagonal dashed
lines. Most error bounds are in this range, with a few error bounds as large
as 1000 times the true error. Thus, our computed error bound underestimates
the number of correct decimal digits in the answer by one or two and in rare
cases by as much as three. The Matlab code for producing these graphs is the
same as before, HOMEPAGE/Matlab/pivot.m. ¦

Example 2.5. We present an example chosen to illustrate the difference be-
tween the two error bounds (2.13) and (2.14). This example will also show

56 Applied Numerical Linear Algebra

that GECP can sometimes be more accurate than GEPP. We choose a set of
badly scaled examples constructed as follows. Each test matrix is of the form
A = DB, with the dimension running from 5 to 100. B is equal to an iden-
tity matrix plus very small random offdiagonal entries, around 10−7, so it is
very well-conditioned. D is a diagonal matrix with entries scaled geometrically
from 1 up to 1014. (In other words, di+1,i+1/di,i is the same for all i.) The
A matrices have condition numbers κ(A) = ‖A−1‖∞ · ‖A‖∞ nearly equal to
1014, which is very ill-conditioned, although their relative condition numbers
κCR(A) = ‖ |A−1| · |A| ‖∞ = ‖ |B−1| · |B| ‖∞ are all nearly 1. As before, ma-
chine precision is ε = 2−53 ≈ 10−16. The examples were computed using the
same Matlab code HOMEPAGE/Matlab/pivot.m.

The pivot growth factors gPP and gCP were never larger than about 1.33 for
any example, and the backward error from Theorem 2.2 never exceeded 10−15

in any case. Hager’s estimator was very accurate in all cases, returning the
true condition number 1014 to many decimal places.

Figure 2.4 plots the error bounds (2.13) and (2.14) for these examples, along
with the componentwise relative backward error, as given by the formula in
Theorem 2.3. The cluster of plus signs in the upper left corner of the top
left graph shows that while GECP computes the answer with a tiny error
near 10−15, the error bound (2.13) is usually closer to 10−2, which is very
pessimistic. This is because the condition number is 1014, and so unless the
backward error is much smaller than ε ≈ 10−16, which is unlikely, the error
bound will be close to 10−161014 = 10−2. The cluster of circles in the middle
top of the same graph shows that GEPP gets a larger error of about 10−8,
while the error bound (2.13) is again usually near 10−2.

In contrast, the error bound (2.14) is nearly perfectly accurate, as illus-
trated by the pluses and circles on the diagonal in the top right graph of
Figure 2.4. This graph again illustrates that GECP is nearly perfectly accu-
rate, whereas GEPP loses about half the accuracy. This difference in accuracy
is explained by the bottom graph, which shows the componentwise relative
backward error for GEPP and GECP. This graph makes it clear that GECP
has nearly perfect backward error in the componentwise relative sense, so since
the corresponding componentwise relative condition number is 1, the accuracy
is perfect. GEPP on the other hand is not completely stable in this sense,
losing from 5 to 10 decimal digits.

In section 2.5 we show how to iteratively improve the computed solution x̂.
One step of this method will make the solution computed by GEPP as accurate
as the solution from GECP. Since GECP is significantly more expensive than
GEPP in practice, it is very rarely used. ¦

What Can Go Wrong

Unfortunately, as mentioned in the beginning of section 2.4, error bounds (2.13)
and (2.14) are not guaranteed to provide tight bounds in all cases when imple-

Linear Equation Solving 57

10
−15

10
−10

10
−5

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

True Error vs. Error Bound (2.13), o = GEPP, + = GECP

True Error

E
rr

or
 B

ou
nd

(a)

10
−15

10
−10

10
−5

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

True Error vs. Error Bound (2.14), o = GEPP, + = GECP

True Error

E
rr

or
 B

ou
nd

(b)

Fig. 2.4. (a) plots the error bound (2.13) versus the true error. (b) plots the error
bound (2.14) versus the true error.

58 Applied Numerical Linear Algebra

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Componentwise relative backward error, o = GEPP, + = GECP

Matrix dimension

(c)

Fig. 2.4. Continued. (c) plots the componentwise relative backward error from The-
orem 2.3.

mented in practice. In this section we describe the (rare!) ways they can fail,
and the partial remedies used in practice.

First, as described in section 2.4.3, the estimate of ‖A−1‖ from Algo-
rithm 2.5 (or similar algorithms) provides only a lower bound, although the
probability is very low that it is more than 10 times too small.

Second, there is a small but nonnegligible probability that roundoff in the
evaluation of r = Ax̂ − b might make ‖r‖ artificially small, in fact zero, and
so also make our computed error bound too small. To take this possibility
into account, one can add a small quantity to |r| to account for it: From
Question 1.10 we know that the roundoff in evaluating r is bounded by

|(Ax̂− b)− fl(Ax̂− b)| ≤ (n+ 1)ε(|A| · |x̂|+ |b|), (2.15)

so we can replace |r| with |r|+ (n+ 1)ε(|A| · |x̂|+ |b|) in bound (2.14) (this is
done in the LAPACK code sgesvx) or ‖r‖ with ‖r‖+(n+1)ε(‖A‖ · ‖x̂‖+‖b‖)
in bound (2.13). The factor n+1 is usually much too large and can be omitted
if desired.

Third, roundoff in performing Gaussian elimination on very ill-conditioned
matrices can yield such inaccurate L and U that bound (2.14) is much too low.

Example 2.6. We present an example, discovered by W. Kahan, that illus-
trates the difficulties in getting truly guaranteed error bounds. In this example

Linear Equation Solving 59

the matrix A will be exactly singular. Therefore the computed error bound on
‖x−x̂‖
‖x‖ should be one or larger to indicate that no digits in the computed solu-

tion are correct, since the true solution does not exist.
Roundoff error during Gaussian elimination will yield nonsingular but very

ill-conditioned factors L and U . With this example, computing using Matlab
with IEEE double precision arithmetic, the computed residual r turns out to
be exactly zero because of roundoff, so both error bounds (2.13) and (2.14)
return zero. If we repair bound (2.13) by adding 4ε(‖A‖ · ‖x̂‖+ ‖b‖), it will be
larger than 1 as desired.

Unfortunately our second, “tighter” error bound (2.14) is about 10−7, er-
roneously indicating that seven digits of the computed solution are correct.

Here is how the example is constructed. Let χ = 3/229, ζ = 214,

A =

 χ · ζ −ζ ζ
ζ−1 ζ−1 0
ζ−1 −χ · ζ−1 ζ−1

≈

 9.1553 · 10−5 −1.6384 · 104 1.6384 · 104

6.1035 · 10−5 6.1035 · 10−5 0
6.1035 · 10−5 −3.4106 · 10−13 6.1035 · 10−5

 ,
and b = A · [1, 1 + ε, 1]T . A can be computed without any roundoff error,
but b has a bit of roundoff, which means that it is not exactly in the space
spanned by the columns of A, so Ax = b has no solution. Performing Gaussian
elimination, we get

L ≈

 1 0 0
.66666 1 0
.66666 1.0000 1

and

U ≈

 9.1553 · 10−5 −1.6384 · 104 1.6384 · 104

0 1.0923 · 104 −1.0923 · 104

0 0 1.8190 · 10−12

 ,
yielding a computed value of

A−1 ≈

 2.0480 · 103 5.4976 · 1011 −5.4976 · 1011

−2.0480 · 103 −5.4976 · 1011 5.4976 · 1011

−2.0480 · 103 −5.4976 · 1011 5.4976 · 1011

 .
This means the computed value of |A−1| · |A| has all entries approximately
equal to 6.7109 ·107, so κCR(A) is computed to be O(107). In other words, the
error bound indicates that about 16 − 7 = 9 digits of the computed solution
are accurate, whereas none are.

Barring large pivot growth, one can prove that bound (2.13) (with ‖r‖
appropriately increased) cannot be made artificially small by the phenomenon
illustrated here.

Similarly, Kahan has found a family of n-by-n singular matrices, where
changing one tiny entry (about 2−n) to zero lowers κCR(A) to O(n3). ¦

60 Applied Numerical Linear Algebra

2.5. Improving the Accuracy of a Solution

We have just seen that the error in solving Ax = b may be as large as κ(A)ε.
If this error is too large, what can we do? One possibility is to rerun the entire
computation in higher precision, but this may be quite expensive in time and
space. Fortunately, as long as κ(A) is not too large, there are much cheaper
methods available for getting a more accurate solution.

To solve any equation f(x) = 0, we can try to use Newton’s method to
improve an approximate solution xi to get xi+1 = xi− f(xi)

f ′(xi)
. Applying this to

f(x) = Ax− b yields one step of iterative refinement:

r = Axi − b
solve Ad = r for d
xi+1 = xi − d

If we could compute r = Axi − b exactly and solve Ad = r exactly, we
would be done in one step, which is what we expect from Newton applied to
a linear problem. Roundoff error prevents this immediate convergence. The
algorithm is interesting and of use precisely when A is so ill-conditioned that
solving Ad = r (and Ax0 = b) is rather inaccurate.

Theorem 2.7. Suppose that r is computed in double precision and κ(A) · ε <
c ≡ 1

3n3g+1 < 1, where n is the dimension of A and g is the pivot growth factor.
Then repeated iterative refinement converges with

‖xi −A−1b‖∞
‖A−1b‖∞

= O(ε).

Note that the condition number does not appear in the final error bound.
This means that we compute the answer accurately independent of the condi-
tion number, provided that κ(A)ε is sufficiently less than 1. (In practice, c is
too conservative an upper bound, and the algorithm often succeeds even when
κ(A)ε is greater than c.)

Sketch of Proof. In order to keep the proof transparent, we will take only
the most important rounding errors into account. For brevity, we abbreviate
‖ · ‖∞ by ‖ · ‖. Our goal is to show that

‖xi+1 − x‖ ≤
κ(A)ε
c
‖xi − x‖ ≡ ζ‖xi − x‖.

By assumption, ζ < 1, so this inequality implies that the error ‖xi+1 − x‖
decreases monotonically to zero. (In practice it will not decrease all the way
to zero because of rounding error in the assignment xi+1 = xi − d, which we
are ignoring.)

We begin by estimating the error in the computed residual r. We get
r = fl(Axi − b) = Axi − b + f , where by the result of Question 1.10 |f | ≤

Linear Equation Solving 61

nε2(|A| · |xi| + |b|) + ε|Axi − b| ≈ ε|Axi − b|. The ε2 term comes from the
double precision computation of r, and the ε term comes from rounding the
double precision result back to single precision. Since ε2 ¿ ε, we will neglect
the ε2 term in the bound on |f |.

Next we get (A+δA)d = r, where from bound (2.11) we know that ‖δA‖ ≤
γ · ε · ‖A‖, where γ = 3n3g, although this is usually much too large. As
mentioned earlier we simplify matters by assuming xi+1 = xi − d exactly.

Continuing to ignore all ε2 terms, we get

d = (A+ δA)−1r = (I + A−1δA)−1A−1r

= (I + A−1δA)−1A−1(Axi − b+ f)
= (I + A−1δA)−1(xi − x +A−1f)
≈ (I −A−1δA)(xi − x+A−1f)
≈ xi − x−A−1δA(xi − x) +A−1f.

Therefore xi+1 − x = xi − d− x = A−1δA(xi − x)−A−1f and so

‖xi+1 − x‖ ≤ ‖A−1δA(xi − x)‖+ ‖A−1f‖
≤ ‖A−1‖ · ‖δA‖ · ‖xi − x‖+ ‖A−1‖ · ε · ‖Axi − b‖
≤ ‖A−1‖ · ‖δA‖ · ‖xi − x‖+ ‖A−1‖ · ε · ‖A(xi − x)‖
≤ ‖A−1‖ · γε · ‖A‖ · ‖xi − x‖

+‖A−1‖ · ‖A‖ · ε · ‖xi − x‖
= ‖A−1‖ · ‖A‖ · ε · (γ + 1) · ‖xi − x‖,

so if
ζ = ‖A−1‖ · ‖A‖ · ε(γ + 1) = κ(A)ε/c < 1,

then we have convergence. 2

Iterative refinement (or other variations of Newton’s method) can be used
to improve accuracy for many other problems of linear algebra as well.

2.5.1. Single Precision Iterative Refinement

This section may be skipped on a first reading.
Sometimes double precision is not available to run iterative refinement.

For example, if the input data is already in double precision, we would need to
compute the residual r in quadruple precision, which may not be available. On
some machines, like the Intel Pentium, double-extended precision is available,
which provides 11 more bits of fraction than double precision (see section 1.5).
This is not as accurate as quadruple precision (which would need at least
2 · 53 = 106 fraction bits) but still improves the accuracy noticeably.

But if none of these options are available, one could still run iterative
refinement while computing the residual r in single precision (i.e., the same

62 Applied Numerical Linear Algebra

precision as the input data). In this case, the Theorem 2.7 does not hold
any more. On the other hand, the following theorem shows that under certain
technical assumptions, one step of iterative refinement in single precision is still
worth doing because it reduces the componentwise relative backward error as
defined in Theorem 2.3 to O(ε). If the corresponding relative condition number
κCR(A) = ‖ |A−1| · |A| ‖∞ from section 2.2.1 is significantly smaller than the
usual condition number κ(A) = ‖A−1‖∞ · ‖A‖∞, then the answer will also be
more accurate.

Theorem 2.8. Suppose that r is computed in single precision and

‖A−1‖∞ · ‖A‖∞ ·
maxi(|A| · |x|)i
mini(|A| · |x|)i

· ε < 1.

Then one step of iterative refinement yields x1 such that (A+δA)x1 = b+δb
with |δaij | = O(ε)|aij | and |δbi| = O(ε)|bi|. In other words, the componentwise
relative backward error is as small as possible. For example, this means that
if A and b are sparse, then δA and δb have the same sparsity structures as A
and b, respectively.

For a proof, see [147] as well as [14, 223, 224, 225] for more details.
Single precision iterative refinement and the error bound (2.14) are imple-

mented in LAPACK routines like sgesvx.

Example 2.7. We consider the same matrices as in Example 2.5 and per-
form one step of iterative refinement in the same precision as the rest of the
computation (ε ≈ 10−16). For these examples, the usual condition number is
κ(A) ≈ 1014, whereas κCR(A) ≈ 1, so we expect a large accuracy improvement.
Indeed, the componentwise relative error for GEPP is driven below 10−15, and
the corresponding error from (2.14) is driven below 10−15 as well. The Matlab
code for this example is HOMEPAGE/Matlab/pivot.m. ¦

2.5.2. Equilibration

There is one more common technique for improving the error in solving a linear
system: equilibration. This refers to choosing an appropriate diagonal matrix
D and solving DAx = Db instead of Ax = b. D is chosen to try to make the
condition number of DA smaller than that of A. In Example 2.7 for instance,
choosing dii to be the reciprocal of the two-norm of row i of A would make DA
nearly equal to the identity matrix, reducing its condition number from 1014

to 1. It is possible to show that choosing D this way reduces the condition
number of DA to within a factor of

√
n of its smallest possible value for any

diagonal D [242]. In practice we may also choose two diagonal matrices Drow

and Dcol and solve (DrowADcol)x̄ = Drowb, x = Dcolx̄.
The techniques of iterative refinement and equilibration are implemented

in the LAPACK subroutines like sgerfs and sgeequ, respectively. These are
in turn used by driver routines like sgesvx.

Linear Equation Solving 63

2.6. Blocking Algorithms for Higher Performance

At the end of section 2.3, we said that changing the order of the three nested
loops in the implementation of Gaussian elimination in Algorithm 2.2 could
change the execution speed by orders of magnitude, depending on the computer
and the problem being solved. In this section we will explore why this is the
case and describe some carefully written linear algebra software which takes
these matters into account. These implementations use so-called block algo-
rithms, because they operate on square or rectangular subblocks of matrices in
their innermost loops rather than on entire rows or columns. These codes are
available in public-domain software libraries such as LAPACK (in Fortran, at
NETLIB/lapack)11 and ScaLAPACK (at NETLIB/scalapack). LAPACK (and
its versions in other languages) are suitable for PCs, workstations, vector com-
puters, and shared-memory parallel computers. These include the SUN SPAR-
Ccenter 2000 [236], SGI Power Challenge [221], DEC AlphaServer 8400 [101],
and Cray C90/J90 [251, 252]. ScaLAPACK is suitable for distributed-memory
parallel computers, such as the IBM SP-2 [254], Intel Paragon [255], Cray T3
series [253], and networks of workstations [9]. These libraries are available on
NETLIB, including a comprehensive manual [10].

A more comprehensive discussion of algorithms for high performance (es-
pecially parallel) machines may be found on the World Wide Web at PARAL-
LEL HOMEPAGE.

LAPACK was originally motivated by the poor performance of its prede-
cessors LINPACK and EISPACK (also available on NETLIB) on some high-
performance machines. For example, consider the table below, which presents
the speed in Mflops of LINPACK’s Cholesky routine spofa on a Cray YMP, a
supercomputer of the late 1980s. Cholesky is a variant of Gaussian elimination
suitable for symmetric positive definite matrices. It is discussed in depth in
section 2.7; here it suffices to know that it is very similar to Algorithm 2.2. The
table also includes the speed of several other linear algebra operations. The
Cray YMP is a parallel computer with up to 8 processors that can be used
simultaneously, so we include one column of data for 1 processor and another
column where all 8 processors are used.

11A C translation of LAPACK, called CLAPACK (at NETLIB/clapack), is also available.
LAPACK++ (at NETLIB/c++/lapack++)) and LAPACK90 (at NETLIB/lapack90)) are
C++ and Fortran 90 interfaces to LAPACK, respectively.

64 Applied Numerical Linear Algebra

1 Proc. 8 Procs.
Maximum speed 330 2640
Matrix-matrix multiply (n = 500) 312 2425
Matrix-vector multiply (n = 500) 311 2285
Solve TX = B (n = 500) 309 2398
Solve Tx = b (n = 500) 272 584
LINPACK (Cholesky, n = 500) 72 72
LAPACK (Cholesky, n = 500) 290 1414
LAPACK (Cholesky, n = 1000) 301 2115

The top line, the maximum speed of the machine, is an upper bound on
the numbers that follow. The basic linear algebra operations on the next four
lines have been measured using subroutines especially designed for high speed
on the Cray YMP. They all get reasonably close to the maximum possible
speed, except for solving Tx = b, a single triangular system of linear equations,
which does not use 8 processors effectively. Solving TX = B refers to solving
triangular systems with many right-hand sides (B is a square matrix). These
numbers are for large matrices and vectors (n = 500).

The Cholesky routine from LINPACK in the sixth line of the table executes
significantly more slowly than these other operations, even though it is working
on as large a matrix as the previous operations and doing mathematically sim-
ilar operations. This poor performance leads us to try to reorganize Cholesky
and other linear algebra routines to go as fast as their simpler counterparts
like matrix-matrix multiplication. The speeds of these reorganized codes from
LAPACK are given in the last two lines of the table. It is apparent that the
LAPACK routines come much closer to the maximum speed of the machine.
We emphasize that the LAPACK and LINPACK Cholesky routines perform
the same floating operations, but in a different order.

To understand how these speedups were attained, we must understand how
the time is spent by the computer while executing. This in turn requires us to
understand how computer memories operate. It turns out that all computer
memories, from the cheapest personal computer to the biggest supercomputer,
are built as hierarchies, with a series of different kinds of memories ranging from
very fast, expensive, and therefore small memory at the top of the hierarchy
down to slow, cheap, and very large memory at the bottom.

RegistersFast, small, expensive

Cache

Memory

Disk

TapeSlow, large, cheap

Linear Equation Solving 65

For example, registers form the fastest memory, then cache, main memory,
disks, and finally tape as the slowest, largest, and cheapest. Useful arithmetic
and logical operations can be done only on data at the top of the hierarchy, in
the registers. Data at one level of the memory hierarchy can move to adjacent
levels—for example, moving between main memory and disk. The speed at
which data moves is high near the top of the hierarchy (between registers and
cache) and slow near the bottom (between and disk and main memory). In
particular, the speed at which arithmetic is done is much faster than the speed
at which data is transferred between lower levels in the memory hierarchy, by
factors of 10s or even 10000s, depending on the level. This means that an ill-
designed algorithm may spend most of its time moving data from the bottom
of the memory hierarchy to the registers in order to perform useful work rather
than actually doing the work.

Here is an example of a simple algorithm which unfortunately cannot avoid
spending most of its time moving data rather than doing useful arithmetic.
Suppose that we want to add two large n-by-n matrices, large enough so that
they fit only in a large, slow level of the memory hierarchy. To add them, they
must be be transferred a piece at a time up to the registers to do the additions,
and the sums are transferred back down. Thus, there are exactly 3 memory
transfers between fast and slow memory (reading 2 summands into fast memory
and writing 1 sum back to slow memory) for every addition performed. If the
time to do a floating point operation is tarith seconds and the time to move a
word of data between memory levels is tmem seconds, where tmem À tarith, then
the execution time of this algorithm is n2(tarith + 3tmem), which is much larger
than than the time n2tarith required for the arithmetic alone. This means that
matrix addition is doomed to run at the speed of the slowest level of memory
in which the matrices reside, rather than the much higher speed of addition.
In contrast, we will see later that other operations, such as matrix-matrix
multiplication, can be made to run at the speed of the fastest level of the
memory, even if the data are originally stored in the slowest.

LINPACK’s Cholesky routine runs so slowly because it was not designed
to minimize memory movement on machines such as the Cray YMP.12 In con-
trast, matrix-matrix multiplication and the three other basic linear algebra
algorithms measured in the table were specialized to minimize data movement
on a Cray YMP.

2.6.1. Basic Linear Algebra Subroutines (BLAS)

Since it is not cost-effective to write a special version of every routine like
Cholesky for every new computer, we need a more systematic approach. Since
operations like matrix-matrix multiplication are so common, computer manu-
facturers have standardized them as the Basic Linear Algebra Subroutines, or

12It was designed to reduce another kind of memory movement, page faults between main
memory and disk.

66 Applied Numerical Linear Algebra

BLAS [167, 87, 85], and optimized them for their machines. In other words,
a library of subroutines for matrix-matrix multiplication, matrix-vector multi-
plication, and other similar operations is available with a standard Fortran or
C interface on high performance machines (and many others), but underneath
they have been optimized for each machine. Our goal is to take advantage of
these optimized BLAS by reorganizing algorithms like Cholesky so that they
call the BLAS to perform most of their work.

In this section we will discuss the BLAS in general. In section 2.6.2, we
will describe how to optimize matrix multiplication in particular. Finally, in
section 2.6.3, we show how to reorganize Gaussian elimination so that most of
its work is performed using matrix multiplication.

Let us examine the BLAS more carefully. Table 2.1 counts the number of
memory references and floating points operations performed by three related
BLAS. For example, the number of memory references needed to implement
the saxpy operation in line 1 of the table is 3n + 1, because we need to read
n values of xi, n values of yi, and 1 value of α from slow memory to registers,
and then write n values of yi back to slow memory. The last column gives the
ratio q of flops to memory references (its highest-order term in n only).

The significance of q is that it tells us roughly how many flops that we can
perform per memory reference or how much useful work we can do compared to
the time moving data. This tells us how fast the algorithm can potentially run.
For example, suppose that an algorithm performs f floating points operations,
each of which takes tarith seconds, and m memory references, each of which
takes tmem seconds. Then the total running time is as large as

f · tarith +m · tmem = f · tarith ·
(

1 +
m

f

tmem

tarith

)
= f · tarith ·

(
1 +

1
q

tmem

tarith

)
,

assuming that the arithmetic and memory references are not performed in
parallel. Therefore, the larger the value of q, the closer the running time is to
the best possible running time f · tarith, which is how long the algorithm would
take if all data were in registers. This means that algorithms with the larger
q values are better building blocks for other algorithms.

Table 2.1 reflects a hierarchy of operations: Operations such as saxpy

perform O(n1) flops on vectors and offer the worst q values; these are called
Level 1 BLAS, or BLAS1 [167], and include inner products, multiplying a
scalar times a vector and other simple operations. Operations such as matrix-
vector multiplication perform O(n2) flops on matrices and vectors and offer
slightly better q values; these are called Level 2 BLAS, or BLAS2 [87, 86],
and include solving triangular systems of equations and rank-1 updates of
matrices (A + xyT , x and y column vectors). Operations such as matrix-
matrix multiplication perform O(n3) flops on pairs of matrices, and offer the
best q values; these are called Level 3 BLAS, or BLAS3 [85, 84], and include
solving triangular systems of equations with many right-hand sides.

The directory NETLIB/blas includes documentation and (unoptimized)

Linear Equation Solving 67

Operation Definition f m q = f/m

saxpy y = α · x+ y or 2n 3n+ 1 2/3
(BLAS1) yi = αxi + yi

i = 1, . . . , n
Matrix-vector mult y = A · x+ y or 2n2 n2 + 3n 2

(BLAS2) yi =
∑n

j=1 aijxj + yi
i = 1, . . . , n

Matrix-matrix mult C = A · B + C or 2n3 4n2 n/2
(BLAS3) cij =

∑n
k=1 aikbjk + cij

i, j = 1, . . . , n

Table 2.1. Counting floating point operations and memory references for the BLAS. f
is the number of floating point operations, and m is the number of memory references.

implementations of all the BLAS. For a quick summary of all the BLAS, see
NETLIB/blas/blasqr.ps. This summary also appears in [10, App. C] (or
NETLIB/lapack/lug/lapack lug.html).

Since the Level 3 BLAS have the highest q values, we endeavor to reorganize
our algorithms in terms of operations such as matrix-matrix multiplication
rather than saxpy or matrix-vector multiplication. (LINPACK’s Cholesky is
constructed in terms of calls to saxpy.) We emphasize that such reorganized
algorithms will only be faster when using BLAS that have been optimized.

2.6.2. How to Optimize Matrix Multiplication

Let us examine in detail how to implement matrix multiplication C = A ·B+C
to minimize the number of memory moves and so optimize its performance.
We will see that the performance is sensitive to the implementation details. To
simplify our discussion, we will use the following machine model. We assume
that matrices are stored columnwise, as in Fortran. (It is easy to modify the
examples below if matrices are stored rowwise as in C.) We assume that there
are two levels of memory hierarchy, fast and slow, where the slow memory
is large enough to contain the three n × n matrices A, B, and C, but the
fast memory contains only M words where 2n < M ¿ n2; this means that
the fast memory is large enough to hold two matrix columns or rows but
not a whole matrix. We further assume that the data movement is under
programmer control. (In practice, data movement may be done automatically
by hardware, such as the cache controller. Nonetheless, the basic optimization
scheme remains the same.)

The simplest matrix-multiplication algorithm that one might try consists of
three nested loops, which we have annotated to indicate the data movements.

Algorithm 2.6. Unblocked matrix multiplication (annotated to indicate mem-
ory activity):

68 Applied Numerical Linear Algebra

for i = 1 to n
{ Read row i of A into fast memory }
for j = 1 to n
{ Read Cij into fast memory }
{ Read column j of B into fast memory }
for k = 1 to n

Cij = Cij +Aik · Bkj
end for
{ Write Cij back to slow memory }

end for
end for

The innermost loop is doing a dot product of row i of A and column j of B to
compute Cij , as shown in the following figure:

��
��
��
�� ����������������

�
�
�
� *=

C(i,j) C(i,j) A(i,:) B(:,j)+

One can also describe the two innermost loops (on j and k) as doing a
vector-matrix multiplication of the ith row of A times the matrix B to get the
ith row of C. This is a hint that we will not perform any better than these
BLAS1 and BLAS2 operations, since they are within the innermost loops.

Here is the detailed count of memory references: n3 for reading B n times
(once for each value of i); n2 for reading A one row at a time and keeping it in
fast memory until it is no longer needed; and 2n2 for reading one entry of C
at a time, keeping it in fast memory until it is completely computed, and then
moving it back to slow memory. This comes to n3 + 3n2 memory moves, or
q = 2n3/(n2 +3n2) ≈ 2, which is no better than the Level 2 BLAS and far from
the maximum possible n/2 (see Table 2.1). If M ¿ n, so that we cannot keep
a full row of A in fast memory, q further decreases to 1, since the algorithm
reduces to a sequence of inner products, which are Level 1 BLAS. For every
permutation of the three loops on i, j, and k, one gets another algorithm with
q about the same.

Our preferred algorithm uses blocking, where C is broken into an N ×
N block matrix with n/N × n/N blocks C ij , and A and B are similarly

Linear Equation Solving 69

partitioned, as shown below for N = 4. The algorithm becomes

Cij Cij
= + *

Cij Cij= + Σ
N

k=1
*

Aik

B kj

Aik B kj

Algorithm 2.7. Blocked matrix multiplication (annotated to indicate mem-
ory activity):

for i = 1 to N
for j = 1 to N
{ Read Cij into fast memory }

for k = 1 to N
{ Read Aik into fast memory }
{ Read Bkj into fast memory }
Cij = Cij + Aik · Bkj

end for
{ Write Cij back to slow memory }
end for

end for

Our memory reference count is as follows: 2n2 for reading and writing
each block of C once, Nn2 for reading A N times (reading each n/N -by-n/N
submatrix Aik N3 times), and Nn2 for reading B N times (reading each n/N -
by-n/N submatrix Bkj N3 times), for a total of (2N + 2)n2 ≈ 2Nn2 memory
references. So we want to choose N as small as possible to minimize the num-
ber of memory references. But N is subject to the constraint M ≥ 3(n/N)2,
which means that one block each from A, B, and C must fit in fast memory
simultaneously. This yields N ≈ n

√
3/M , and so q ≈ (2n3)/(2Nn2) ≈

√
M/3,

which is much better than the previous algorithm. In particular q grows in-
dependently of n as M grows, which means that we expect the algorithm to
be fast for any matrix size n and to go faster if the fast memory size M is
increased. These are both attractive properties.

In fact, it can be shown that Algorithm 2.7 is asymptotically optimal [149].
In other words, no reorganization of matrix-matrix multiplication (that per-
forms the same 2n3 arithmetic operations) can have a q larger than O(

√
M).

On the other hand, this brief analysis ignores a number of practical issues:

1. A real code will have to deal with nonsquare matrices, for which the
optimal block sizes may not be square.

70 Applied Numerical Linear Algebra

0 100 200 300 400 500 600
0

50

100

150

200

250

300
RS2: Level 1, 2 and 3 BLAS

Order of vectors/matrices

S
pe

ed
 in

 M
eg

af
lo

ps

Fig. 2.5. BLAS speed on the IBM RS 6000/590.

2. The cache and register structure of a machine will strongly affect the
best shapes of submatrices.

3. There may be special hardware instructions that perform both a multiply
and an addition in one cycle. It may also be possible to execute several
multiply-add operations simultaneously if they do not interfere.

For a detailed discussion of these issues for one high performance workstation,
the IBM RS6000/590, see [1], PARALLEL HOMEPAGE, or http://www.austin.ibm.com/tech/e
Figure 2.6.2 shows the speeds of the three basic BLAS for this machine. The
horizontal axis is matrix size, and the vertical axis is speed in Mflops. The peak
machine speed is 266 Mflops. The top curve (peaking near 250 Mflops) is square
matrix-matrix multiplication. The middle curve (peaking near 100 Mflops) is
square matrix-vector multiplication, and the bottom curve (peaking near 75
Mflops) is saxpy. Note that the speed increases for larger matrices. This is a
common phenomenon and means that we will try to develop algorithms whose
internal matrix-multiplications use as large matrices as reasonable.

Both the above matrix-matrix multiplication algorithms perform 2n3 arith-
metic operations. It turns out that there are other implementations of matrix-
matrix multiplication that use far fewer operations. Strassen’s method [3] was
the first of these algorithms to be discovered and is the simplest to explain.
This algorithm multiplies matrices recursively by dividing them into 2×2 block

Linear Equation Solving 71

matrices and multiplying the subblocks using seven matrix multiplications (re-
cursively) and 18 matrix additions of half the size; this leads to an asymptotic
complexity of nlog2 7 ≈ n2.81 instead of n3.

Algorithm 2.8. Strassen’s matrix multiplication algorithm

C = Strassen(A,B,n)
/* Return C = A ∗B, where A and B are n-by-n;

Assume n is a power of 2 */
if n = 1

return C = A ∗B /* scalar multiplication */
else

Partition A =
[
A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]
where the subblocks Aij and Bij are n/2-by-n/2

P1 = Strassen(A12 −A22, B21 +B22, n/2)
P2 = Strassen(A11 +A22, B11 +B22, n/2)
P3 = Strassen(A11 −A21, B11 +B12, n/2)
P4 = Strassen(A11 +A12, B22, n/2)
P5 = Strassen(A11, B12 −B22, n/2)
P6 = Strassen(A22, B21 −B11, n/2)
P7 = Strassen(A21 +A22, B11, n/2)
C11 = P1 + P2 − P4 + P6
C12 = P4 + P5
C21 = P6 + P7
C22 = P2 − P3 + P5 − P7

return C =
[
C11 C12
C21 C22

]
end if

It is tedious but straightforward to confirm by induction that this algorithm
multiplies matrices correctly (see Question 2.21). To show that its complexity
is O(nlog2 7), we let T (n) be the number of additions, subtractions, and multi-
plies performed by the algorithm. Since the algorithm performs seven recursive
calls on matrices of size n/2, and 18 additions of n/2-by-n/2 matrices, we can
write down the recurrence T (n) = 7T (n/2) + 18(n/2)2. Changing variables
from n to m = log2 n, we get a new recurrence T̄ (m) = 7T̄ (m−1)+18(2m−1)2,
where T̄ (m) = T (2m). We can confirm that this linear recurrence for T̄ has a
solution T̄ (m) = O(7m) = O(nlog2 7).

The value of Strassen’s algorithm is not just this asymptotic complexity
but its reduction of the problem to smaller subproblems which eventually fit
in fast memory; once the subproblems fit in fast memory, standard matrix
multiplication may be used. This approach has led to speedups on relatively
large matrices on some machines [22]. A drawback is the need for significant
workspace and somewhat lower numerical stability, although it is adequate for

72 Applied Numerical Linear Algebra

many purposes [76]. There are a number of other even faster matrix multipli-
cation algorithms; the current record is about O(n2.376), due to Winograd and
Coppersmith [261]. But these algorithms only perform fewer operations than
Strassen for impractically large values of n. For a survey see [193].

2.6.3. Reorganizing Gaussian Elimination to use Level 3 BLAS

We will reorganize Gaussian elimination to use, first, the Level 2 BLAS and,
then, the Level 3 BLAS. For simplicity, we assume that no pivoting is necessary.

Indeed, Algorithm 2.4 is already a Level 2 BLAS algorithm, because most
of the work is done in the second line, A(i + 1 : n, i + 1 : n) = A(i + 1 :
n, i + 1 : n) − A(i + 1 : n, i) ∗ A(i, i + 1 : n), which is a rank-1 update of
the submatrix A(i + 1 : n, i + 1 : n). The other arithmetic in the algorithm,
A(i + 1 : n, i) = A(i + 1 : n, i)/A(i, i), is actually done by multiplying the
vector A(i+ 1 : n, i) by the scalar 1/A(i, i), since multiplication is much faster
than division; this is also a Level 1 BLAS operation. We need to modify
Algorithm 2.4 slightly because we will use it within the Level 3 version:

Algorithm 2.9. Level 2 BLAS implementation of LU factorization without
pivoting for an m-by-n matrix A, where m ≥ n: Overwrite A by the m-by-n
matrix L and m-by-m matrix U . We have numbered the important lines for
later reference.

for i = 1 to min(m − 1, n)
(1) A(i+ 1 : m, i) = A(i+ 1 : m, i)/A(i, i)

if i < n
(2) A(i+ 1 : m, i+ 1 : n) = A(i+ 1 : m, i+ 1 : n)−

A(i+ 1 : m, i) · A(i, i+ 1 : n)
end for

The left side of Figure 2.6 illustrates Algorithm 2.9 applied to a square
matrix. At step i of the algorithm, columns 1 to i− 1 of L and rows 1 to i− 1
of U are already done, column i of L and row i of U are to be computed, and
the trailing submatrix of A is to be updated by a rank-1 update. On the left
side of Figure 2.6, the submatrices are labeled by the lines of the algorithm
((1) or (2)) that update them. The rank-1 update in line (2) is to subtract the
product of the shaded column and the shaded row from the submatrix labeled
(2).

The Level 3 BLAS algorithm will reorganize this computation by delaying
the update of submatrix (2) for b steps, where b is a small integer called the
block size, and later applying b rank-1 updates all at once in a single matrix-
matrix multiplication. To see how to do this, suppose that we have already

Linear Equation Solving 73

U (done)

i

i

(2)(1)

Step i of Level 2 BLAS

b

b

(3)(1)

(2)

Implementation of LU
Step i of Level 3 BLAS
Implementation of LU

L
 (

do
ne

)

L
 (

do
ne

)

U (done)

Fig. 2.6. Level 2 and Level 3 BLAS implementations of LU factorization.

computed the first i− 1 columns of L and rows of U , yielding

A =

i− 1 b n− b− i+ 1

i− 1 A11 A12 A13
b A21 A22 A23
n− b− i+ 1 A31 A32 A33

=

 L11 0 0
L21 I 0
L31 0 I

 ·
 U11 U21 U31

0 Ã22 Ã23

0 Ã32 Ã33

 ,
where all the matrices are partitioned the same way. This is shown on the

right side of Figure 2.6. Now apply Algorithm 2.9 to the submatrix [Ã22

Ã23
] to

get [
Ã22

Ã23

]
=
[
L22
L23

]
· U22 =

[
L22U22
L23U22

]
.

This lets us write[
Ã22 Ã23

Ã32 Ã33

]
=

[
L22U22 Ã23

L32U22 Ã33

]
=

[
L22 0
L32 I

]
·
[
U22 L−1

22 Ã23

0 Ã33 − L32 · (L−1
22 Ã23)

]
≡

[
L22 0
L32 I

]
·
[
U22 U23

0 Ã33 − L32 · U23

]

74 Applied Numerical Linear Algebra

≡
[
L22 0
L32 I

]
·
[
U22 U23

0 ˜̃A33

]
.

Altogether, we get an updated factorization with b more columns of L and
rows of U completed: A11 A12 A13

A21 A22 A23
A31 A32 A33

 =

 L11 0 0
L21 L22 0
L31 L23 I

 ·
 U11 U21 U31

0 U22 U23

0 0 ˜̃A33

 .
This defines an algorithm with the following three steps, which are illus-

trated on the right of Figure 2.6:

(1) Use Algorithm 2.9 to factorize [Ã22

Ã23
] = [L22

L23
] · U22.

(2) Form U23 = L−1
22 Ã23. This means solving a triangular linear

system with many right-hand sides (Ã23), a single Level 3 BLAS
operation.
(3) Form ˜̃A33 = Ã33 − L32 · U23, a matrix-matrix multiplication.

More formally, we have the following algorithms.

Algorithm 2.10. Level 3 BLAS implementation of LU factorization without
pivoting for an n-by-n matrix A. Overwrite L and U on A. The lines of
the algorithm are numbered as above and to correspond to the right part of
Figure 2.6.

for i = 1 to n− 1 step b

(1) Use Algorithm 2.9 to factorize A(i : n, i : i+ b− 1) = [L22

L23
]U22

(2) A(i : i+ b− 1, i+ b : n) = L−1
22 · A(i : i+ b− 1, i+ b : n)

/* form U23 */
(3) A(i+ b : n, i+ b : n) = A(i+ b : n, i+ b : n)

−A(i+ b : n, i : i+ b− 1) ·A(i : i+ b− 1, i+ b : n)

/* form ˜̃A33 */
end for

We still need to choose the block size b in order to maximize the speed of
the algorithm. On the one hand, we would like to make b large because we
have seen that speed increases when multiplying larger matrices. On the other
hand, we can verify that the number of floating point operations performed
by the slower Level 2 and Level 1 BLAS in line (1) of the algorithm is about
n2b/2 for small b, which grows as b grows, so we do not want to pick b too
large. The optimal value of b is machine dependent and can be tuned for each
machine. Values of b = 32 or b = 64 are commonly used.

Linear Equation Solving 75

To see detailed implementations of Algorithms 2.9 and 2.10, see subrou-
tines sgetf2 and sgetrf, respectively, in LAPACK (NETLIB/lapack). For
more information on block algorithms, including detailed performance num-
ber on a variety of machines, see also [10] or the course notes at PARAL-
LEL HOMEPAGE.

2.6.4. More About Parallelism and Other Performance Issues

In this section we briefly survey other issues involved in implementing Gaussian
elimination (and other linear algebra routines) as efficiently as possible.

A parallel computer contains p > 1 processors capable of simultaneously
working on the same problem. One may hope to solve any given problem
p times faster on such a machine than on a conventional uniprocessor. But
such “perfect efficiency” is rarely achieved, even if there are always at least
p independent tasks available to do, because of the overhead of coordinating
p processors and the cost of sending data from the processor that may store
it to the processor that needs it. This last problem is another example of
a memory hierarchy: from the point of view of processor i, its own memory
is fast, but getting data from the memory owned by processor j is slower,
sometimes thousands of times slower.

Gaussian elimination offers many opportunities for parallelism, since each
entry of the trailing submatrix may be updated independently and in parallel
at each step. But some care is needed to be as efficient as possible. Two stan-
dard pieces of software are available. The LAPACK routine sgetrf described
in the last section [10] runs on shared-memory parallel machines, provided
that one has available implementations of the BLAS that run in parallel. A
related library called ScaLAPACK, for Scalable LAPACK [52], is designed for
distributed-memory parallel machines, i.e., those that require special operations
to move data between different processors. All software is available on NETLIB
in the LAPACK and ScaLAPACK subdirectories. ScaLAPACK is described in
more detail in the notes at PARALLEL HOMEPAGE. Extensive performance
data for linear equation solvers are available as the LINPACK Benchmark [83],
with an up-to-date version available at NETLIB/benchmark/performance.ps,
or in the Performance Database Server.13 As of August 1996, the fastest that
any linear system had been solved using Gaussian elimination was one with
n = 128600 on an Intel Paragon XP/S MP with p = 6768 processors; the
problem ran at just over 281 Gflops (gigaflops), of a maximum 338 Gflops.

There are some matrices too large to fit in the main memory of any avail-
able machine. These matrices are stored on disk and must be read into main
memory piece by piece in order to perform Gaussian elimination. The orga-
nization of such routines is largely similar to the technique currently used in
ScaLAPACK, and they will soon be included in ScaLAPACK.

13http://performance.netlib.org/performance/html/PDStop.html

76 Applied Numerical Linear Algebra

Finally, one might hope that compilers would become sufficiently clever to
take the simplest implementation of Gaussian elimination using three nested
loops and automatically “optimize” the code to look like the blocked algorithm
discussed in the last subsection. While there is much current research on this
topic (see the bibliography in the recent compiler textbook [262]), there is
still no reliably fast alternative to optimized libraries such as LAPACK and
ScaLAPACK.

2.7. Special Linear Systems

As mentioned in section 1.2, it is important to exploit any special structure
of the matrix to increase speed of solution and decrease storage. In practice,
of course, the cost of the extra programming effort required to exploit this
structure must be taken into account. For example, if our only goal is to
minimize the time to get the desired solution, and it takes an extra week of
programming effort to decrease the solution time from 10 seconds to 1 second,
it is worth doing only if we are going to use the routine more than (1 week *
7 days/week * 24 hours/day * 3600 seconds/hour) / (10 seconds − 1 second)
= 67200 times. Fortunately, there are some special structures that turn up
frequently enough that standard solutions exist, and we should certainly use
them. The ones we consider here are

1. symmetric positive definite matrices,

2. symmetric indefinite matrices,

3. band matrices,

4. general sparse matrices,

5. dense matrices depending on fewer than n2 independent parameters.

We will consider only real matrices; extensions to complex matrices are straight-
forward.

2.7.1. Real Symmetric Positive Definite Matrices

Recall that a real matrix A is s.p.d. if and only if A = AT and xTAx > 0 for
all x = 0. In this section we will show how to solve Ax = b in half the time
and half the space of Gaussian elimination when A is s.p.d.

Proposition 2.2. 1. If X is nonsingular, then A is s.p.d. if and only if
XTAX is s.p.d.

2. If A is s.p.d. and H is any principal submatrix of A (H = A(j : k, j : k)
for some j ≤ k), then H is s.p.d.

Linear Equation Solving 77

3. A is s.p.d. if and only if A = AT and all its eigenvalues are positive.

4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.

5. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT . A = LLT

is called the Cholesky factorization of A, and L is called the Cholesky
factor of A.

Proof.

1. X nonsingular implies Xx = 0 for all x = 0, so xTXTAXx > 0 for all
x = 0. So A s.p.d. implies XTAX is s.p.d. Use X−1 to deduce the other
implication.

2. Suppose first that H = A(1 : m, 1 : m). Then given any m-vector y, the
n-vector x = [yT , 0]T satisfies yTHy = xTAx. So if xTAx > 0 for all
nonzero x, then yTHy > 0 for all nonzero y, and so H is s.p.d. If H does
not lie in the upper left corner of A, let P be a permutation so that H
does lie in the upper left corner of P TAP and apply Part 1.

3. Let X be the real, orthogonal eigenvector matrix of A so that XTAX = Λ
is the diagonal matrix of real eigenvalues λi. Since xTΛx =

∑
i λix

2
i , Λ

is s.p.d if and only if each λi > 0. Now apply Part 1.

4. Let ei be the ith column of the identity matrix. Then eTi Aei = aii > 0
for all i. If |akl| = maxij |aij | but k = l, choose x = ek − sign(akl)el.
Then xTAx = akk + all − 2|akl| ≤ 0, contradicting positive-definiteness.

5. Suppose A = LLT with L nonsingular. Then xTAx = (xTL)(LTx) =
‖LTx‖22 > 0 for all x = 0, so A is s.p.d. If A is s.p.d., we show that L
exists by induction on the dimension n. If we choose each lii > 0, our
construction will determine L uniquely. If n = 1, choose l11 =

√
a11,

which exists since a11 > 0. As with Gaussian elimination, it suffices to
understand the block 2-by-2 case. Write

A =
[
a11 A12
AT12 A22

]
=

[√
a11 0
AT12√
a11

I

] [
1 0
0 Ã22

] [√
a11

A12√
a11

0 I

]

=

[
a11 A12

AT12 Ã22 + AT12A12
a11

]
,

so the (n− 1)-by-(n− 1) matrix Ã22 = A22 − AT12A12
a11

is symmetric.

78 Applied Numerical Linear Algebra

By Part 1 above, [1 0
0 Ã22

] is s.p.d, so by Part 2 Ã22 is s.p.d.

Thus by induction there exists an L̃ such that Ã22 = L̃L̃T and

A =

[√
a11 0
AT12√
a11

I

] [
1 0
0 L̃L̃T

] [√
a11

A12√
a11

0 I

]

=

[√
a11 0
AT12√
a11

L̃

] [√
a11

A12√
a11

0 L̃T

]
≡ LLT . 2

We may rewrite this induction as the following algorithm.

Algorithm 2.11. Cholesky algorithm:

for j = 1 to n
ljj = (ajj −

∑j−1
k=1 l

2
jk)1/2

for i = j + 1 to n

lij = (aij −
∑j−1

k=1 likljk)/ljj
end for

end for

If A is not positive definite, then (in exact arithmetic) this algorithm will
fail by attempting to compute the square root of a negative number or by
dividing by zero; this is the cheapest way to test if a symmetric matrix is
positive definite.

As with Gaussian elimination, L can overwrite the lower half of A. Only
the lower half of A is referred to by the algorithm, so in fact only n(n + 1)/2
storage is needed instead of n2. The number of flops is

n∑
j=1

(2j +
n∑

i=j+1

2j) =
1
3
n3 +O(n2),

or just half the flops of Gaussian elimination. Just as with Gaussian elim-
ination, Cholesky may be reorganized to perform most of its floating point
operations using Level 3 BLAS; see LAPACK routine spotrf.

Pivoting is not necessary for Cholesky to be numerically stable (equiva-
lently, we could also say any pivot order is numerically stable). We show this
as follows. The same analysis as for Gaussian elimination in section 2.4.2 shows
that the computed solution x̂ satisfies (A+ δA)x̂ = b with |δA| ≤ 3nε|L| · |LT |.
But by the Cauchy–Schwartz inequality and Part 4 of Proposition 2.2

(|L| · |LT |)ij =
∑
k

|lik| · |ljk|

≤
√∑

l2ik

√∑
l2jk

=
√
aii ·
√
ajj

≤ max
ij
|aij |, (2.16)

Linear Equation Solving 79

so ‖ |L| · |LT | ‖∞ ≤ n‖A‖∞ and ‖δA‖∞ ≤ 3n2ε‖A‖∞.

2.7.2. Symmetric Indefinite Matrices

The question of whether we can still save half the time and half the space
when solving a symmetric but indefinite (neither positive definite nor negative
definite) linear system naturally arises. It turns out to be possible, but a more
complicated pivoting scheme and factorization is required. If A is nonsingular,
one can show that there exists a permutation P , a unit lower triangular matrix
L, and a block diagonal matrix D with 1-by-1 and 2-by-2 blocks such that
PAP T = LDLT . To see why 2-by-2 blocks are needed in D, consider the

matrix [0 1
1 0]. This factorization can be computed stably, saving about half

the work and space compared to standard Gaussian elimination. The name of
the LAPACK subroutine which does this operation is ssysv. The algorithm
is described in [43].

2.7.3. Band Matrices

A matrix A is called a band matrix with lower bandwidth bL and upper band-
width bU if aij = 0 whenever i > j + bL or i < j − bU :

A =

a11 · · · a1,bU+1 0
... a2,bU+2

abL+1,1
. . .

abL+2,2 an−bU ,n
. . .

...
0 an,n−bL · · · an,n

.

Band matrices arise often in practice (we give an example later) and are
useful to recognize because their L and U factors are also “essentially banded,”
making them cheaper to compute and store. We explain what we mean by
“essentially banded” below. But first, we consider LU factorization without
pivoting and show that L and U are banded in the usual sense, with the same
bandwidths as A.

Proposition 2.3. Let A be banded with lower bandwidth bL and upper band-
width bU . Let A = LU be computed without pivoting. Then L has lower
bandwidth bL and U has upper bandwidth bU . L and U can be computed in
about 2n · bU · bL arithmetic operations when bU and bL are small compared to
n. The space needed is N(bL + bU + 1). The full cost of solving Ax = b is
2nbU · bL + 2nbU + 2nbL.

Sketch of Proof. It suffices to look at one step; see Figure 2.7. At step j of
Gaussian elimination, the shaded region is modified by subtracting the product

80 Applied Numerical Linear Algebra

L

bU

b

Fig. 2.7. Band LU factorization without pivoting.

of the first column and first row of the shaded region; note that this does not
enlarge the bandwidth. 2

Proposition 2.4. Let A be banded with lower bandwidth bL and upper band-
width bU . Then after Gaussian elimination with partial pivoting, U is banded
with upper bandwidth at most bL+bU , and L is “essentially banded” with lower
bandwidth bL. This means that L has at most bL + 1 nonzeros in each column
and so can be stored in the same space as a bandmatrix with lower bandwidth
bL.

Sketch of Proof. Again a picture of the region changed by one step of the
algorithm illustrates the proof. As illustrated in Figure 2.8, pivoting can in-
crease the upper bandwidth by at most bL. Later permutations can reorder
the entries of earlier columns so that entries of L may lie below subdiagonal bL
but no new nonzeros can be introduced, so the storage needed for L remains
bL per column. 2

Gaussian elimination and Cholesky for band matrices are available in LA-
PACK routines like ssbsv and sspsv.

Band matrices often arise from discretizing physical problems with nearest
neighbor interactions on a mesh (provided the unknowns are ordered rowwise
or columnwise; see also Example 2.9 and section 6.3).

Example 2.8. Consider the ordinary differential equation (ODE) y′′(x) −
p(x)y′(x) − q(x)y(x) = r(x) on the interval [a, b] with boundary conditions
y(a) = α, y(b) = β. We also assume q(x) ≥ q > 0. This equation may be used
to model the heat flow in a long, thin rod, for example. To solve the differential

Linear Equation Solving 81

U + b Lb

U

bL

b

Fig. 2.8. Band LU factorization with partial pivoting.

equation numerically, we discretize it by seeking its solution only at the evenly
spaced mesh points xi = a+ ih, i = 0, . . . , N + 1, where h = (b− a)/(N + 1) is
the mesh spacing. Define pi = p(xi), ri = r(xi), and qi = q(xi). We need to de-
rive equations to solve for our desired approximations yi ≈ y(xi), where y0 = α
and yN+1 = β. To derive these equations, we approximate the derivative y′(xi)
by the following finite difference approximation:

y′(xi) ≈
yi+1 − yi−1

2h
.

(Note that as h gets smaller, the right-hand side approximates y′(xi) more and
more accurately.) We can similarly approximate the second derivative by

y′′(xi) ≈
yi+1 − 2yi + yi−1

h2 .

(See section 6.3.1 in Chapter 6 for a more detailed derivation.)
Inserting these approximations into the differential equation yields

yi+1 − 2yi + yi−1

h2 − pi
yi+1 − yi−1

2h
− qiyi = ri, 1 ≤ i ≤ N.

Rewriting this as a linear system we get Ay = b, where

y =

y1

...

yN

 , b =
−h2

2

r1

...

rN

+

(1

2 + h
4p1)α
0
...
0

(1
2 −

h
4pN)β

 ,

82 Applied Numerical Linear Algebra

and

A =

a1 −c1
−b2

.

. cN−1
−bN aN

ai = 1 + h2

2 qi

bi = 1
2 [1 + h

2pi]

ci = 1
2 [1− h

2pi]

Note that ai > 0, and also bi > 0 and ci > 0 if h is small enough.
This is a nonsymmetric tridiagonal system to solve for y. We will show

how to change it to a symmetric positive definite tridiagonal system, so that
we may use band Cholesky to solve it.

Choose D = diag(1,
√

c1
b2
,
√

c1c2
b2b3

, . . . ,
√

c1c2···cN−1
b2b3···bN). Then we may change

Ay = b to (DAD−1)(Dy) = Db or Ãỹ = b̃, where

Ã =

a1 −

√
c1b2

−
√
c1b2 a2 −

√
c2b3

−
√
c2b3

. . .
. −

√
cN−1bN

−
√
cN−1bN aN

 .

It is easy to see that Ã is symmetric, and it has the same eigenvalues as
A because A and Ã = DAD−1 are similar. (See section 4.2 in Chapter 4 for
details.) We will use the next theorem to show it is also positive definite.

Theorem 2.9. Gershgorin. Let B be an arbitrary matrix. Then the eigenval-
ues λ of B are located in the union of the n disks

|λ− bkk| ≤
∑
j=k

|bkj |.

Proof. Given λ and x = 0 such that Bx = λx, let 1 = ‖x‖∞ = xk by
scaling x if necessary. Then

∑N
j=1 bkjxj = λxk = λ, so λ− bkk =

∑N
j=1
j=k

bkjxj ,

implying
|λ− bkk| ≤

∑
j=k

|bkjxj | ≤
∑
j=k

|bkj | 2

Now if h is so small that for all i, |h2pi| < 1, then

|bi|+ |ci| =
1
2

(
1 +

h

2
pi

)
+

1
2

(
1− h

2
pi

)
= 1 < 1 +

h2

2
q ≤ 1 +

h2

2
qi = ai.

Therefore all eigenvalues of A lie inside the disks centered at 1 + h2qi/2 ≥
1 + h2q/2 with radius 1; in particular, they must all have positive real parts.
Since Ã is symmetric, its eigenvalues are real and hence positive, so Ã is positive
definite. Its smallest eigenvalue is bounded below by qh2/2. Thus, it can be

Linear Equation Solving 83

solved by Cholesky. The LAPACK subroutine for solving a symmetric positive
definite tridiagonal system is sptsv.

In section 4.3 we will again use Gershgorin’s theorem to compute pertur-
bation bounds for eigenvalues of matrices. ¦

2.7.4. General Sparse Matrices

A sparse matrix is defined to be a matrix with a large number of zero entries.
In practice, this means a matrix with enough zero entries that it is worth using
an algorithm that avoids storing or operating on the zero entries. Chapter 6
is devoted to methods for solving sparse linear systems other than Gaussian
elimination and its variants. There are a large number of sparse methods, and
choosing the best one often requires substantial knowledge about the matrix
[24]. In this section we will only sketch the basic issues in sparse Gaussian
elimination and give pointers to the literature and available software.

To give a very simple example, consider the following matrix, which is
ordered so that GEPP does not permute any rows:

A =

1 .1

1 .1
1 .1

1 .1
.1 .1 .1 .1 1

 = LU

=

1

1
1

1
.1 .1 .1 .1 1

 ·

1 .1
1 .1

1 .1
1 .1

.96

 .
A is called an arrow matrix because of the pattern of its nonzero entries. Note
that none of the zero entries of A were filled in by GEPP so that L and U

together can be stored in the same space as the nonzero entries of A. Also, if
we count the number of essential arithmetic operations, i.e., not multiplication
by zero or adding zero, there are only 12 of them (4 divisions to compute the
last row of L and 8 multiplications and additions to update the (5,5) entry),
instead of 2

3n
3 ≈ 83. More generally, if A were an n-by-n arrow matrix, it

would take only 3n− 2 locations to store it instead of n2, and 3n− 3 floating
point operations to perform Gaussian elimination instead of 2

3n
3. When n is

large, both the space and operation count become tiny compared to a dense
matrix.

Suppose that instead of A we were given A′, which is A with the order
of its rows and columns reversed. This amounts to reversing the order of the
equations and of the unknowns in the linear system Ax = b. GEPP applied to

84 Applied Numerical Linear Algebra

A′ again permutes no rows, and to two decimal places we get

A′ =

1 .1 .1 .1 .1
.1 1
.1 1
.1 1
.1 1

 = L′U ′

=

1
.1 1
.1 −.01 1
.1 −.01 −.01 1
.1 −.01 −.01 −.01 1

 ·

1 .1 .1 .1 .1
.99 −.01 −.01 −.01

.99 −.01 −.01
.99 −.01

.99

 .
Now we see that L′ and U ′ have filled in completely and require n2 storage.
Indeed, after the first step of the algorithm all the nonzeros of A′ have filled
in, so we must do the same work as dense Gaussian elimination, 2

3n
3.

This illustrates that the order of the rows and columns is extremely im-
portant for saving storage and work. Even if we do not have to worry about
pivoting for numerical stability (such as in Cholesky), choosing the optimal per-
mutations of rows and columns to minimize storage or work is an extremely
hard problem. In fact, it is NP-complete [109], which means that all known
algorithms for finding the optimal permutation run in time which grows expo-
nentially with n, and so are vastly more expensive than even dense Gaussian
elimination for large n. Thus we must settle for using heuristics, of which there
are several successful candidates. We illustrate some of these below.

In addition to the complication of choosing a good row and column per-
mutation, there are other reasons sparse Gaussian elimination or Cholesky are
much more complicated than their dense counterparts. First, we need to design
a data structure that holds only the nonzero entries of A; there are several in
common use [91]. Next, we need a data structure to accommodate new entries
of L and U that fill in during elimination. This means that either the data
structure must grow dynamically during the algorithm or we must cheaply
precompute it without actually performing the elimination. Finally, we must
use the data structure to perform only the minimum number of floating point
operations and at most proportionately many integer and logical operations.
In other words, we cannot afford to do O(n3) integer and logical operations to
discover the few floating point operations that we want to do. A more complete
discussion of these algorithms is beyond the scope of this book [112, 91], but
we will indicate available software.

Example 2.9. We illustrate sparse Cholesky on a more realistic example that
arises from modeling the displacement of a mechanical structure subject to
external forces. Figure 2.9 shows a simple mesh of a two-dimensional slice of
a mechanical structure with two internal cavities. The mathematical problem

Linear Equation Solving 85

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Mechanical Structure with Mesh

Fig. 2.9. Mesh for a mechanical structure.

is to compute the displacements of all the grid points of the mesh (which
are internal to the structure) subject to some forces applied to the boundary
of the structure. The mesh points are numbered from 1 to n = 483; more
realistic problems would have much larger values of n. The equations relating
displacements to forces leads to a system of linear equations Ax = b, with
one row and column for each of the 483 mesh points and with aij = 0 if and
only if mesh point i is connected by a line segment to mesh point j. This
means that A is a symmetric matrix; it also turns out to be positive definite,
so that we can use Cholesky to solve Ax = b. Note that A has only nz = 3971
nonzeros of a possible 4832 = 233289, so A is just 3519/233289 = 1.7% filled.
(See Examples 4.1 and 5.1 for similar mechanical modeling problems, where
the matrix A is derived in detail.)

Figure 2.10 shows the same mesh (above) along with the nonzero pattern
of the matrix A (below), where the 483 nodes are ordered in the “natural”
way, with the logically rectangular substructures numbered rowwise, one sub-
structure after the other. The edges in each such substructure have a common
color, and these colors match the colors of the nonzeros in the matrix. Each
substructure has a label “(i : j)” to indicate that it corresponds to rows and
columns i through j of A. The corresponding submatrix A(i : j, i : j) is a
narrow band matrix. (Example 2.8 and section 6.3 describe other situations
in which a mesh leads to a band matrix.) The edges connecting different sub-
structures are red and correspond to the red entries of A, which are farthest
from the diagonal of A.

86 Applied Numerical Linear Algebra

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(1:49)

(50:91) (92:133) (134:175)

(176:217)

(218:287)

(288:329) (330:370) (371:406) (407:447) (448:483)

Mesh numbered in natural order

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 256

Matrix A, in natural order

Fig. 2.10. The edges in the mesh at the top are colored and numbered to match the
sparse matrix A at the bottom. For example the first 49 nodes of the mesh (the leftmost
green nodes) correspond to rows and columns 1 through 49 of A.

Linear Equation Solving 87

The top pair of plots in Figure 2.11 again shows the sparsity structure of
A in the natural order, along with the sparsity structure of its Cholesky factor
L. Nonzero entries of L corresponding to nonzero entries of A are black; new
nonzeros of L, called fill-in, are red. L has 11533 nonzero entries, over five
times as many as the lower triangle of A. Computing L by Cholesky costs just
296923 flops, just .8% of the 1

3n
3 = 3.76 · 107 flops that dense Cholesky would

have required.
The number of nonzeros in L and the number of flops required to compute

L can be changed significantly by reordering the rows and columns of A. The
middle pair of plots in Figure 2.11 show the results of one such popular re-
ordering, called reverse Cuthill–McKee [112, 91], which is designed to make A
a narrow band matrix. As can be seen, it is quite successful at this, reducing
the fill-in of L 21% (from 11533 to 9073) and reducing the flop count almost
39% (from 296923 to 181525).

Another popular ordering algorithm is called minimum degree ordering
[112, 91] which is designed to create as little fill-in at each step of Cholesky as
possible. The results are shown in the bottom pair of plots in Figure 2.11: the
fill-in of L is reduced a further 7% (from 9073 to 8440) but the flop count is
increased 9% (from 181525 to 198236). ¦

Many sparse matrix examples are available as built-in demos in Matlab,
which also has many sparse matrix operations built into it (type “help sparfun”
in Matlab for a list). To see the examples, type demo in Matlab, then click
on “continue,” then on “Matlab/Visit,” and then on either “Matrices/Select
a demo/Sparse” or “Matrices/Select a demo/Cmd line demos.” For example,
Figure 2.12 shows a Matlab example of a mesh around a wing, where the goal is
to compute the airflow around the wing at the mesh points. The corresponding
partial differential equations of airflow lead to a nonsymmetric linear system
whose sparsity pattern is also shown.

Sparse Matrix Software

Besides Matlab, there is a variety of public domain and commercial sparse
matrix software available in Fortran or C. Since this is still an active research
area (especially with regard to high-performance machines), it is impossible
to recommend a single best algorithm. Table 2.2 [175] gives a list of available
software, categorized in several ways. We restrict ourselves to supported codes
(either public or commercial) or else research codes when no other software is
available for that type of problem or machine. We refer to [175, 92] for more
complete lists and explanations of the algorithms below.

Table 2.2 is organized as follows. The top group of routines, labeled se-
rial algorithms, are designed for single-processor workstations and PCs. The
shared-memory algorithms are for symmetric multiprocessors, such as the SUN
SPARCcenter 2000 [236], SGI Power Challenge [221], DEC AlphaServer 8400 [101],

88 Applied Numerical Linear Algebra

0 100 200 300 400

0

100

200

300

400

nz = 3971

A in natural order

0 100 200 300 400

0

100

200

300

400

nz = 11533, red = fill−in

Cholesky factor, flops=296923

0 100 200 300 400

0

100

200

300

400

nz = 3971

A after Reverse Cuthill−McKee

0 100 200 300 400

0

100

200

300

400

nz = 9073, red = fill−in

Cholesky factor, flops=181525

0 100 200 300 400

0

100

200

300

400

nz = 3971

A after minimum degree

0 100 200 300 400

0

100

200

300

400

nz = 8440, red = fill−in

Cholesky factor, flops=198236

Fig. 2.11. Sparsity and flop counts for A with various orderings.

Linear Equation Solving 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Finite Element Mesh of NASA Airfoil

4253 grid points

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 28831

Sparsity Pattern for NASA Airfoil

Fig. 2.12. Mesh around the NASA airfoil.

90 Applied Numerical Linear Algebra

and Cray C90/J90 [251, 252]. The distributed-memory algorithms are for ma-
chines such as the IBM SP-2 [254], Intel Paragon [255], Cray T3 series [253],
and networks of workstations [9]. As you can see, most software has been
written for serial machines, some for shared-memory machines, and very little
(besides research software) for distributed memory.

The first column gives the matrix type. The possibilities include nonsym-
metric, symmetric pattern (i.e. either aij = aji = 0, or both can be nonzero
and unequal), symmetric (and possibly indefinite), and symmetric positive
definite (s.p.d.). The second column gives the name of the routine or of the
authors.

The third column gives some detail on the algorithm, indeed more than
we have explained in detail in the text: LL (left looking), RL (right look-
ing), frontal, MF (multifrontal), and LDLT refer to different ways to organize
the three nested loops defining Gaussian elimination. Partial, Markowitz, and
threshold refer to different pivoting strategies. 2D-blocking refers to which
parallel processors are responsible for which parts of the matrix. CAPSS as-
sumes that the linear system is defined by a grid and requires the x, y, andz
coordinates of the grid points in order to distribute the matrix among the
processors.

The third column also describes the organization of the innermost loop,
which could be BLAS1, BLAS2, BLAS3, or scalar. SD refers to the algorithm
switching to dense Gaussian elimination after step k when the trailing (n− k-
by-(n− k) submatrix is dense enough.

The fifth column describes the status and availability of the software, in-
cluding whether it is public or commercial and how to get it.

2.7.5. Dense Matrices Depending on Fewer Than O(n2) Parame-
ters

This is a catch-all heading, which includes a large variety of matrices that arise
in practice. We mention just a few cases.

Vandermonde matrices are of the form

V =

1 1 · · · 1
x0 x1 xn
x2

0 x2
1 x2

n
...

...
...

xn−1
0 xn−1

1 xn−1
n

 .

Note that the matrix-vector multiplication

V T · [a0, . . . , an]T =
[∑

aix
i
0, · · · ,

∑
aix

i
n

]T
is equivalent to polynomial evaluation; therefore, solving V Ta = y is polyno-
mial interpolation. Using Newton interpolation we can solve V Ta = y in 5

2n
2

Linear Equation Solving 91

Matrix Status/
type Name Algorithm source
Serial algorithms
nonsym. SuperLU LL, partial, BLAS-2.5 Pub/UCB
nonsym. UMFPACK [61, 62] MF, Markowitz, BLAS-3 Pub/NETLIB

MA38 (same as UMFPACK) Com/HSL
nonsym. MA48 [94] Anal: RL, Markowitz Com/HSL

Fact: LL, partial, BLAS-1, SD
nonsym. SPARSE [165] RL, Markowitz, scalar Pub/NETLIB
sym-
pattern

}{
MUPS [5]
MA42 [96]

MF, threshold, BLAS-3
Frontal, BLAS-3

Com/HSL
Com/HSL

sym. MA27 [95]/MA47 [93] MF, LDLT , BLAS-1 Com/HSL
s.p.d. Ng & Peyton [189] LL, BLAS-3 Pub/Author
Shared-memory algorithms
nonsym. SuperLU LL, partial, BLAS-2.5 Pub/UCB
nonsym. PARASPAR [268, 269] RL, Markowitz, BLAS-1, SD Res/Author
sym- MUPS [6] MF, threshold, BLAS-3 Res/Author
pattern
nonsym. George & Ng [113] RL, partial, BLAS-1 Res/Author
s.p.d. Gupta et al., [131] LL, BLAS-3 Com/SGI

Pub/Author
s.p.d. SPLASH [153] RL, 2-D block, BLAS-3 Pub/Stanford
Distributed-memory algorithms
sym. van der Stappen [243] RL, Markowitz, scalar Res/Author
sym- Lucas et al. [178] MF, no pivoting, BLAS-1 Res/Author
pattern
s.p.d. Rothberg & Schreiber [205] RL, 2-D block, BLAS-3 Res/Author
s.p.d. Gupta & Kumar [130] MF, 2-D block, BLAS-3 Res/Author
s.p.d. CAPSS [141] MF, full parallel, BLAS-1 Pub/NETLIB

(require coordinates)

Table 2.2. Software to solve sparse linear systems using direct methods.
Abbreviations used in the table:
nonsym. = nonsymmetric.
sym-pattern = symmetric nonzero structure, nonsymmetric values.
sym. = symmetric and may be indefinite.
s.p.d = symmetric and positive definite.
MF, LL, and RL = multifrontal, left-looking, and right-looking.
SD = switches to a dense code on a sufficiently dense trailing submatrix.
Pub = publicly available; authors may help use the code.
Res = published in literature but may not be available from the authors.
Com = commercial.
HSL = Harwell Subroutine Library:

http://www.rl.ac.uk/departments/ccd/numerical/hsl/hsl.html.
UCB = http://www.cs.berkeley.edu/∼xiaoye/superlu.html.
Stanford = http://www-flash.stanford.edu/apps/SPLASH/.

92 Applied Numerical Linear Algebra

instead of 2
3n

3 flops. There is a similar trick to solve V a = y in 5
2n

2 flops too.
See [119, p. 178.].

Cauchy matrices C have entries

cij =
αiβj
ξi − ηj

,

where α = [α1, . . . , αn], β = [β1, . . . , βn], ξ = [ξ1, . . . , ξn], and η = [η1, . . . , ηn]
are given vectors. The best-known example is the notoriously ill-conditioned
Hilbert matrix H, with hij = 1/(i+j−1). These matrices arise in interpolating
data by rational functions: Suppose that we want to find the coefficients xj of
the rational function with fixed poles ηj

f(z) =
n∑
j=1

xj
z − ηj

such that f (ξi) = yi for i = 1 to n. Taken together these n equations f(ξi) = yi
form an n-by-n linear system with a coefficient matrix that is Cauchy. The
inverse of a Cauchy matrix turns out to be a Cauchy matrix, and there is a
closed form expression for C−1, based on its connection with interpolation:

(C−1)ij = β−1
i α−1

j (ξj − ηi)Pj(ηi)Qi(−ξj),

where Pj(·) and Qi(·) are the Lagrange interpolation polynomials

Pj(z) =
∏
k=j

ξk − z
ξk − ξj

and Qi(z) =
∏
k=i

−ηk − z
−ηk + ηi

.

Toeplitz matrices look like

a0 a1 a2 · · · an

a−1
.

...

a−2
. a2

...
. a1

a−n · · · a−2 a−1 a0

;

i.e., they are constant along diagonals. They arise in problems of signal pro-
cessing. There are algorithms for solving such systems that take only O(n2)
operations.

All these methods generalize to many other similar matrices depending on
only O(n) parameters. See [119, p. 183] or [158] for a recent survey.

2.8. References and Other Topics for Chapter 2

Further details about linear equation solving in general may be found in chap-
ters 3 and 4 of [119]. The reciprocal relationship between condition numbers

Linear Equation Solving 93

and distance to the nearest ill-posed problem is further explored in [70]. An
average case analysis of pivot growth is described in [240], and an example of
bad pivot growth with complete pivoting is given in [120]. Condition estima-
tors are described in [136, 144, 146]. Single precision iterative refinement is
analyzed in [14, 223, 224]. A comprehensive discussion of error analysis for
linear equation solvers, which covers most of these topics, can be found in
[147].

For symmetric indefinite factorization, see [43]. Sparse matrix algorithms
are described in [112, 91] as well as the numerous references in Table 2.2.
Implementations of many of the algorithms for dense and band matrices de-
scribed in this chapter are available in LAPACK and CLAPACK [10], which
includes a discussion of block algorithms suitable for high-performance com-
puters. The BLAS are described in [85, 87, 167]. These and other routines are
available electronically in NETLIB. An analysis of blocking strategies for ma-
trix multiplication is given in [149]. Strassen’s matrix multiplication algorithm
is presented in [3], its performance in practice is described in [22], and its nu-
merical stability is described in [76, 147]. A survey of parallel and other block
algorithms is given in [75]. For a recent survey of algorithms for structured
dense matrices depending only on O(n) parameters, see [158].

2.9. Questions for Chapter 2

Question 2.1. (Easy) Using your favorite World Wide Web browser, go to
NETLIB (http://www.netlib.org), and answer the following questions.

1. You need a Fortran subroutine to compute the eigenvalues and eigenvec-
tors of real symmetric matrices in double precision. Find one using the
Attribute/Value database search on the NETLIB repository. Report the
name and URL of the subroutine as well as how you found it.

2. Using the Performance Database Server, find out the current world speed
record for solving 100-by-100 dense linear systems using Gaussian elimi-
nation. What is the speed in Mflops, and which machine attained it? Do
the same for 1000-by-1000 dense linear systems and “big as you want”
dense linear systems. Using the same database, find out how fast your
workstation can solve 100-by-100 dense linear systems. Hint: Look at
the LINPACK benchmark.

Question 2.2. (Easy) Consider solving AX = B for X, where A is n-by-
n, and X and B are n-by-m. There are two obvious algorithms. The first
algorithm factorizes A = PLU using Gaussian elimination and then solves for
each column of X by forward and back substitution. The second algorithm
computes A−1 using Gaussian elimination and then multiplies X = A−1B.
Count the number of flops required by each algorithm, and show that the first
one requires fewer flops.

94 Applied Numerical Linear Algebra

Question 2.3. (Medium) Let ‖ · ‖ be the two-norm. Given a nonsingular
matrix A and a vector b, show that for sufficiently small ‖δA‖, there are nonzero
δA and δb such that inequality (2.2) is an equality. This justifies calling κ(A) =
‖A−1‖ · ‖A‖ the condition number of A. Hint: Use the ideas in the proof of
Theorem 2.1.

Question 2.4. (Hard) Show that bounds (2.7) and (2.8) are attainable.

Question 2.5. (Medium) Prove Theorem 2.3. Given the residual r = Ax̂− b,
use Theorem 2.3 to show that bound (2.9) is no larger than bound (2.7). This
explains why LAPACK computes a bound based on (2.9), as described in
section 2.4.4.

Question 2.6. (Easy) Prove Lemma 2.2.

Question 2.7. (Easy; Z. Bai) If A is a nonsingular symmetric matrix and
has the factorization A = LDMT , where L and M are unit lower triangular
matrices and D is a diagonal matrix, show that L = M .

Question 2.8. (Hard) Consider the following two ways of solving a 2-by-2
linear system of equations:

Ax =
[
a11 a12
a21 a22

]
·
[
x1
x2

]
=
[
b1
b2

]
= b.

Algorithm 1. Gaussian elimination with partial pivoting (GEPP).

Algorithm 2. Cramer’s rule:

det = a11 ∗ a22 − a12 ∗ a21,

x1 = (a22 ∗ b1 − a12 ∗ b2)/det,
x2 = (−a21 ∗ b1 + a11 ∗ b2)/det.

Show by means of a numerical example that Cramer’s rule is not backward
stable. Hint: Choose the matrix nearly singular and [b1 b2]T ≈ [a12 a22]T .
What does backward stability imply about the size of the residual? Your
numerical example can be done by hand on paper (for example, with four-
decimal-digit floating point), on a computer, or a hand calculator.

Question 2.9. (Medium) Let B be an n-by-n upper bidiagonal matrix, i.e.,
nonzero only on the main diagonal and first superdiagonal. Derive an algorithm
for computing κ∞(B) ≡ ‖B‖∞‖B−1‖∞ exactly (ignoring roundoff). In other
words, you should not use an iterative algorithm such as Hager’s estimator.
Your algorithm should be as cheap as possible; it should be possible to do using
no more than 2n− 2 additions, n multiplications, n divisions, 4n− 2 absolute
values, and 2n− 2 comparisons. (Anything close to this is acceptable.)

Linear Equation Solving 95

Question 2.10. (Easy; Z. Bai) Let A be n-by-m with n ≥ m. Show that
‖ATA‖2 = ‖A‖22 and κ2(ATA) = κ2(A)2.

Let M be n-by-n and positive definite and L be its Cholesky factor so that
M = LLT . Show that ‖M‖2 = ‖L‖22 and κ2(M) = κ2(L)2.

Question 2.11. (Easy; Z. Bai) Let A be symmetric and positive definite.
Show that |aij | < (aiiajj)1/2.

Question 2.12. (Easy; Z. Bai) Show that if

Y =
(
I Z
0 I

)
,

where I is an n-by-n identity matrix, then κF (Y) = ‖Y ‖F ‖Y −1‖F = 2n +
‖Z‖2F .

Question 2.13. (Medium; From the 1995 Final Examination) In this ques-
tion we will ask how to solve By = c given a fast way to solve Ax = b, where
A−B is “small” in some sense.

1. Prove the Sherman–Morrison formula: Let A be nonsingular, u and v
be column vectors, and A + uvT be nonsingular. Then (A + uvT)−1 =
A−1 − (A−1uvTA−1)/(1 + vTA−1u).

More generally, prove the Sherman–Morrison–Woodbury formula: Let
U and V be n-by-k rectangular matrices, where k ≤ n and A is n-by-
n. Then T = I + V TA−1U is nonsingular if and only if A + UV T is
nonsingular, in which case (A+ UV T)−1 = A−1 −A−1UT−1V TA−1.

2. If you have a fast algorithm to solve Ax = b, show how to build a fast
solver for By = c, where B = A+ uvT .

3. Suppose that ‖A−B‖ is “small” and you have a fast algorithm for solving
Ax = b. Describe an iterative scheme for solving By = c. How fast do
you expect your algorithm to converge? Hint: Use iterative refinement.

Question 2.14. (Medium; Programming) Use Netlib to obtain a subroutine
to solve Ax = b using Gaussian elimination with partial pivoting. You should
get it from either LAPACK (in Fortran, NETLIB/lapack) or CLAPACK (in
C, NETLIB/clapack); sgesvx is the main routine in both cases. (There is also
a simpler routine sgesv that you might want to look at.) Modify sgesvx (and
possibly other subroutines that it calls) to perform complete pivoting instead
of partial pivoting; call this new routine gecp. It is probably simplest to
modify sgetf2 and use it in place of sgetrf. Test sgesvx and gecp on a
number of randomly generated matrices of various sizes up to 30 or so. By
choosing x and forming b = Ax, you can use examples for which you know the
right answer. Check the accuracy of the computed answer x̂ as follows. First,

96 Applied Numerical Linear Algebra

examine the error bounds FERR (“Forward ERRor”) and BERR (“Backward
ERRor”) returned by the software; in your own words, say what these bounds
mean. Using your knowledge of the exact answer, verify that FERR is correct.
Second, compute the exact condition number by inverting the matrix explicitly,
and compare this to the estimate RCOND returned by the software. (Actually,
RCOND is an estimate of the reciprocal of the condition number.) Third, confirm
that ‖x̂−x‖‖x̂‖ is bounded by a modest multiple of macheps/RCOND. Fourth, you
should verify that the (scaled) backward error R ≡ ‖Ax̂ − b‖/((‖A‖ · ‖x‖ +
‖b‖) ·macheps) is of order unity in each case.

More specifically, your solution should consist of a well-documented pro-
gram listing of gecp, an explanation of which random matrices you generated
(see below), and a table with the following columns (or preferably graphs of
each column of data, plotted against the first column):

• test matrix number (to identify it in your explanation of how it
was generated);

• its dimension;
• from sgesvx:

—the pivot growth factor returned by the code
(this should ideally not be much larger than 1),

—its estimated condition number (1/RCOND),
—the ratio of 1/RCOND to your explicitly computed condition

number (this should ideally be close to 1),
—the error bound FERR,
—the ratio of FERR to the true error

(this should ideally be at least 1 but not much larger
unless you are “lucky” and the true error is zero),

—the ratio of the true error to ε/RCOND
(this should ideally be at most 1 or a little less,
unless you are “lucky” and the true error is zero),

—the scaled backward error R/ε
(this should ideally be O(1) or perhaps O(n)),

—the backward error BERR/ε
(this should ideally be O(1) or perhaps O(n)),

—the run time in seconds,
• the same data for gecp as for sgesvx.

You need to print the data to only one decimal place, since we care only about
approximate magnitudes. Do the error bounds really bound the errors? How
do the speeds of sgesvx and gecp compare?

It is difficult to obtain accurate timings on many systems, since many timers
have low resolution, so you should compute the run time as follows:

t1 = time-so-far
for i = 1 to m

Linear Equation Solving 97

set up problem
solve the problem

endfor
t2 = time-so-far
for i = 1 to m

set up problem
endfor
t3 = time-so-far
t = ((t2 − t1)− (t3 − t2))/m

m should be chosen large enough so that t2− t1 is at least a few seconds. Then
t should be a reliable estimate of the time to solve the problem.

You should test some well-conditioned problems as well as some that are
ill-conditioned. To generate a well-conditioned matrix, let P be a permuta-
tion matrix, and add a small random number to each entry. To generate an
ill-conditioned matrix, let L be a random lower triangular matrix with tiny
diagonal entries and moderate subdiagonal entries. Let U be a similar upper
triangular matrix, and let A = LU . (There is also an LAPACK subroutine
slatms for generating random matrices with a given condition number, which
you may use if you like.)

Also try both solvers on the following class of n-by-n matrices for n = 1
up to 30. (If you run in double precision, you may need to run up to n = 60.)
Shown here is just the case n = 5; the others are similar:

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 .
Explain the accuracy of the results in terms of the error analysis in section 2.4.

Your solution should not contain any tables of matrix entries or solution
components.

In addition to teaching about error bounds, one purpose of this question is
to show you what well-engineered numerical software looks like. In practice,
one will often use or modify existing software instead of writing one’s own from
scratch.

Question 2.15. (Medium; Programming) This problem depends on Ques-
tion 2.14. Write another version of sgesvx called sgesvddouble that com-
putes the residual in double precision during iterative refinement. Modify the
error bound FERR in sgesvx to reflect this improved accuracy. Explain your
modification. (This may require you to explain how sgesvx computes its error
bound in the first place.) On the same set of examples as in the last question,
produce a similar table of data. When is sgesvxdouble more accurate than
sgesvx?

98 Applied Numerical Linear Algebra

Question 2.16. (Hard) Show how to reorganize the Cholesky algorithm (Al-
gorithm 2.11) to do most of its operations using Level 3 BLAS. Mimic Algo-
rithm 2.10.

Question 2.17. (Easy) Suppose that, in Matlab, you have an n-by-n matrix
A and an n-by-1 matrix b. What do A\b, b′/A, and A/b mean in Matlab? How
does A\b differ from inv(A) ∗ b?

Question 2.18. (Medium) Let

A =
[
A11 A12
A21 A22

]
,

where A11 is k-by-k and nonsingular. Then S = A22−A21A
−1
11 A12 is called the

Schur complement of A11 in A, or just Schur complement for short.

1. Show that after k steps of Gaussian elimination without pivoting, A22
has been overwritten by S.

2. Suppose A = AT , A11 is positive definite and A22 is negative definite
(−A22 is positive definite). Show that A is nonsingular, that Gaussian
elimination without pivoting will work in exact arithmetic, but (by means
of a 2-by-2 example) that Gaussian elimination without pivoting may be
numerically unstable.

Question 2.19. (Medium) Matrix A is called strictly column diagonally dom-
inant, or diagonally dominant for short, if

|aii| >
n∑

j=1, j=i

|aji|.

• Show that A is nonsingular. Hint: Use Gershgorin’s theorem.

• Show that Gaussian elimination with partial pivoting does not actually
permute any rows, i.e., that it is identical to Gaussian elimination without
pivoting. Hint: Show that after one step of Gaussian elimination, the
trailing (n− 1)-by-(n− 1) submatrix, the Schur complement of a11 in A,
is still diagonally dominant. (See Question 2.18 for more discussion of
the Schur complement.)

Question 2.20. (Easy; Z. Bai) Given an n-by-n nonsingular matrix A, how
do you efficiently solve the following problems, using Gaussian elimination with
partial pivoting?

(a) Solve the linear system Akx = b, where k is a positive integer.

(b) Compute α = cTA−1b.

Linear Equation Solving 99

(c) Solve the matrix equation AX = B, where B is n-by-m.

You should (1) describe your algorithms, (2) present them in pseudocode (using
a Matlab-like language; you should not write down the algorithm for GEPP),
and (3) give the required flops.

Question 2.21. (Medium) Prove that Strassen’s algorithm (Algorithm 2.8)
correctly multiplies n-by-n matrices, where n is a power of 2.

