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1. RENEWAL PROCESSES

A renewal process is the increasing sequence of random nonnegative numbers S0,S1,S2, . . .
gotten by adding i.i.d. positive random variables X0, X1, . . . , that is,

(1) Sn = S0 +
n∑

i=1
Xi

When S0 = 0 the renewal process is an ordinary renewal process; when S0 is a nonnegative
random variable the renewal process is a delayed renewal process. In either case, the individual
terms Sn of this sequence are called renewals, or sometimes occurrences. With each renewal
process is associated a renewal counting process N (t ) that tracks the total number of renewals
(not including the initial occurrence) to date: the random variable N (t ) is defined by

N (t ) = max{n : Sn ≤ t } = τ(t )−1 where(2)

τ(a) = min{n ≥ 1 : Sn > a}.(3)

Two cases arise in applications, the arithmetic case, in which the inter-occurrence times Xi

are integer-valued, and the non-arithmetic case, in which the distribution of Xi is not supported
by any arithmetic progression hZ. The arithmetic case is of particular importance in the the-
ory of discrete-time Markov chains, because the sequence of times at which the Markov chain
returns to a particular state x is an arithmetic renewal process, as we will show. Since the theo-
ries in the arithmetic and non-arithmetic cases follow mostly parallel tracks, we shall limit our
discussion to the arithmetic case.

2. THE FELLER-ERDÖS-POLLARD RENEWAL THEOREM

Assume that {Sn}n≥0 is an ordinary, arithmetic renewal process with inter-occurrence times
Xi = Si −Si−1 and inter-occurrence time distribution f (k) = fk = P {Xi = k}. Define the renewal
measure

(4) u(k) = uk = P {Sn = k for some n ≥ 0} =
∞∑

n=0
P {Sn = k}.

Proposition 1. The renewal measure u satisfies the renewal equation

(5) um = δ0,m +
m∑

k=1
fk um−k

where δ0,m is the Kronecker delta function (1 if m = 0 and 0 otherwise).

Proof. Exercise. (Condition on the first step X1 of the random walk.) �
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The cornerstone of renewal theory is the Feller-Erdös-Pollard theorem, which describes the
asymptotic behavior of hitting probabilities in a renewal process.

Theorem 1. (Feller-Erdös-Pollard) Let u be the renewal measure of an ordinary, arithmetic re-
newal process whose inter-occurrence time distribution fk = P {Xi = k} has finite mean 0 <µ<∞
and is not supported by any proper additive subgroup of the integers (i.e., there is no m ≥ 2 such
that P {Xi ∈ mZ} = 1). Then

(6) lim
k→∞

u(k) = 1/µ.

Corollary 1. If {Sn}n≥0 is a delayed renewal process whose inter-occurrence time distribution
fk = P {X1 = k} satisfies the hypotheses of the Feller-Erdös-Pollard theorem, then

(7) lim
k→∞

P {Sn = k for some n ≥ 0} = 1/µ.

Proof. Condition on the initial delay:

P {Sn = k for some n ≥ 0} =
∞∑

m=0
P {S0 = m}P {S′

n = k −m for some n ≥ 0}

where S′
n = Sn −S0 =∑n

i=1 Xi . The Feller-Erdös-Pollard theorem implies that for each m the hit-
ting probability P {S′

n = k−m for some n ≥ 0} converges to 1/µ as k →∞, and so the dominated
convergence theorem (applied to the infinite sum above) implies (7). �

The proof of the Feller-Erdös-Pollard theorem will rely on a generally useful technique known
as coupling. The basic strategy is to construct on the same probability space two versions
{Sn}n≥0 and {S̃n}n≥0 of the random walk with different initial states in such a way that for some
m ≥ 0,

(8) Sn+m = S̃n eventually.

It will then follow that for all sufficiently large k ∈Z either both sequences visit k or neither will;
consequently,

(9) lim
k→∞

P {Sn = k for some n ≥ 0}−P {S̃n = k for some n ≥ 0} = 0.

Proposition 2. Under the hypotheses of the Feller-Erdös-Pollard theorem,

lim
k→∞

u(k)−u(k −1) = 0 and so

lim
k→∞

u(k)−u(k − j ) = 0 for every j ≥ 1.(10)

Proof. Assume first that the distribution { fk }k≥1 of the inter-occurrence times Xi is not sup-
ported by any coset of a proper subgroup of the integers (i.e., there do not exist integers k
and m ≥ 2 such that P {Xi ∈ k + mZ} = 1). Let {Xi }i≥1 and {X ′

i }i≥1 be two independent se-
quences of identically distributed random variables, all with distribution { fk }k≥1. Since the
inter-occurrence time distribution has finite mean, the differences Yi := Xi − X ′

i have mean
zero. Furthermore, since { fk }k≥1 of the inter-occurrence times Xi is not supported by any coset
of a proper subgroup of the integers, the distribution of the differences Yi is not supported by
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any proper subgroup of the integers, and so by the recurrence theorem for one-dimensional
random walks the sequence

SY
n =

n∑
i=1

Yi

will visit every integer infinitely often, with probability one. Let T be the smallest n such that
SY

n = 1; then T is a stopping time for the sequence {(Xn , X ′
n)}n≥1 (that is, for the minimal filtra-

tion generated by this sequence). Define

Sn =
n∑

i=1
Xi and

S′
n = 1+

n∧T∑
i=1

X ′
i +

n∑
i=1+n∧T

Xi .

By construction, Sn = S′
n for all n ≥ T , Moreover, since T is a stopping time, the process {S′

n −
1}n≥0 has the same joint distribution as does {Sn}n≥0. Therefore, the limit relation (10) follows
by the coupling principle (9).

If the distribution { fk }k≥1 is supported by `+mZ for some m ≥ 2 and 1 ≤ k < m then the dif-
ferences Yi take their values in the subgroup mZ, so the recurrence theorem no longer implies
that the random walk SY

n will visit every integer. However, SY
n will visit every point of mZ, so the

coupling argument above (with the obvious modifications) shows that

lim
k→∞

u(k)−u(k −m) = 0 =⇒
lim

k→∞
u(k)−u(k − j m) = 0 ∀ j ∈N.(11)

Recall that u satisfies the renewal equation u(k) = Eu(k −K1) for all integers k ≥ 1 (compare
equation (5)), so if the distribution { fk }k≥1 is supported by `+mZ for some m ≤ 2 and 1 ≤ ` ≤
m −1 then (11) implies that

lim
k→∞

u(k)−u(k − j m −`) = 0 ∀ j ∈N, which further implies

lim
k→∞

u(k)−u(k − j m −2`) = 0 ∀ j ∈N,

lim
k→∞

u(k)−u(k − j m −3`) = 0 ∀ j ∈N,

etc.

The sequence `,2`,3`, ... must exhaust the integers mod m, because otherwise the distribution
{ fk }k≥1 would be supported by a proper subgroup of Z, contrary to our standing assumptions.
The proposition now follows. �

Proof of the Feller-Erdös-Pollard theorem. Proposition 2 implies that for large k the renewal mea-
sure u(k) differs by only a negligible amount from u(k − j ) for any j . To deduce that u(k) con-
verges to 1/µ we use the renewal equations um = δ0(m)+∑m

k=1 fk um−k . Summing over all m
from 0 to n gives

n∑
k=0

un−k = 1+
n∑

k=0
un−k

k∑
j=1

f j ,
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which can be re-written as

(12)
n∑

k=0
un−k (1−Fk ) = 1

where Fk =∑k
j=1 f j .

The Feller-Erdös-Pollard theorem follows easily from equation (12) and Proposition 2. Since∑∞
k=1(1−Fk ) = µ, the sequence {(1−Fk )/µ}k≥1 is a probability distribution on the positive inte-

gers. For any ε> 0 there exists k(ε) <∞ such that this probability distribution puts at least 1−ε
of its mass on the interval [1,k(ε)]. By Proposition 2, for sufficiently large m, say m ≥ m(ε), the
function u(m − j ) will not differ by more than ε from u(m), and in any case u( j ) ≤ 1 for all j .
Consequently, for m ≥ m(ε),

|umµ−1| ≤ ε+εµ.

Since ε> 0 is arbitrary, the theorem follows. �

3. THE RENEWAL EQUATION AND THE KEY RENEWAL THEOREM

3.1. The Renewal Equation. The usefulness of the Feller-Erdös-Pollard theorem derives partly
from its connection with another basic theorem called the Key Renewal Theorem (see below)
which describes the asymptotic behavior of solutions to the Renewal Equation. The Renewal
Equation is a convolution equation relating bounded sequences {z(m)}m≥0 and {b(m)}m≥0 of
real numbers:

Renewal Equation, First Form:

(13) z(m) = b(m)+
m∑

k=1
f (k)z(m −k).

Here f (k) = fk is the interoccurrence time distribution for the renewal process. There is an
equivalent way of writing the Renewal Equation that is more suggestive of how it actually arises
in practice. Set z(m) = b(m) = 0 for m < 0; then the upper limit k = m − 1 in the sum in the
Renewal Equation may be changed to m =∞ without affecting its value. The Renewal Equation
may now be written as follows, with X1 representing the first interoccurrence time:

Renewal Equation, Second Form:

(14) z(m) = b(m)+E z(m −X1).

Renewal equations crop up all over the place. In many circumstances, the sequence z(m) is
some scalar function of time whose behavior is of some interest; the renewal equation is gotten
by conditioning on the value of the first interoccurrence time. In carrying out this conditioning,
it is crucial to realize that the sequence S∗

1 ,S∗
2 , . . . defined by

S∗
n = Sn −X1 =

n∑
j=2

X j

is itself a renewal process, independent of X1, and with the same interoccurrence time distri-
bution f (x).
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Example 1. (Age and Residual Lifetime) Let Am = m−Sτ(m)−1 and Rm = Sτ(m)−m; these random
variables are the age and residual lifetime at time m. Fix r ≥ 1, and set z(m) = P {Am = r }. Then
z satisfies the Renewal Equation (14) with

b(m) = P {X1 > m}(15)

EXERCISE: Derive this, and derive a similar renewal equation for the distribution of the residual
lifetime.

3.2. Solution of the Renewal Equation. Consider the Renewal Equation in its second form
z(m) = b(m)+E z(m − X1) where by convention z(m) = 0 for all negative values of m. Since
the function z(·) appears on the right side as well as on the left, it is possible to resubstitute on
the right. This leads to a sequence of equivalent equations:

z(m) = b(m)+E z(m −X1)

= b(m)+Eb(m −X1)+E z(m −X1 −X2)

= b(m)+Eb(m −X1)+Eb(m −X1 −X2)+E z(m −X1 −X2 −X3)

and so on. After m iterations, there is no further change (because Sm+1 > m and z(l ) = 0 for all
negative integers l ), and the right side no longer involves z. Thus, it is possible to solve for z in
terms of the sequences b and p:

z(m) =
∞∑

n=0
Eb(m −Sn)

=
∞∑

n=0

∞∑
x=0

b(m −x)P {Sn = x}

=
∞∑

x=0

∞∑
n=0

b(m −x)P {Sn = x}

=
∞∑

x=0
b(m −x)u(x).

Note that only finitely many terms in the series are nonzero, so the interchange of summations
is justified. Thus, the solution to the Renewal Equation is the convolution of the sequence b(m)
with the renewal measure:

(16) z(m) =
∞∑

x=0
b(m −x)u(x)

3.3. The Key Renewal Theorem. The formula (16) and the Feller-Erdös-Pollard theorem now
combine to give the asymptotic behavior (as m →∞) of the solution z.

Theorem 2. (Key Renewal Theorem) Let z(m) be the solution to the Renewal Equation (14). If the
sequence b(m) is absolutely summable, then

(17) lim
m→∞z(m) =µ−1

∞∑
k=0

b(k).
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Proof. The formula (16) may be rewritten as

(18) z(m) =
∞∑

k=0
b(k)u(m −k)

For each fixed k, the sequence u(m −k) →µ−1 as m →∞, by the Feller-Erdös-Pollard theorem.
Thus, as m →∞, the kth term of the series (18) converges to b(k)/µ. Moreover, because u(m −
k) ≤ 1, the kth term is bounded in absolute value by |b(k)|. By hypothesis, this sequence is
summable, so the Dominated Convergence Theorem implies that the series converges as m →
∞ to the right side of (17).

Example 2. Residual Lifetime. For each fixed r ≥ 1, the sequence z(m) = P {R(m) = r } satisfies
the renewal equation

(19) z(m) = P {X1 = m + r }+
m∑

k=1
z(m −k)P {X1 = k} = fm+r +

m∑
k=1

z(m −k) fk .

This reduces to (14) with b(m) = f (m+r ). The sequence b(m) is summable, because µ= E X1 <
∞ (why?). Therefore, the Key Renewal Theorem implies that for each r = 1,2,3, . . . ,

(20) lim
m→∞P {R(m) = r } =µ−1

∞∑
k=0

f (k + r ) =µ−1P {X1 ≥ r }.

This could also be deduced from the convergence theorem for Markov chains, using the fact that
the sequence Rm is an irreducible, positive recurrent Markov chain with stationary distribution
(??).

Example 3. Total Lifetime. Recall (Example 3 above) that the sequence z(m) = P {L(m) = r }
satisfies the Renewal Equation (14) with b(m) defined by (??). Only finitely many terms of the
sequence b(m) are nonzero, and so the summability hypothesis of the Key Renewal Theorem is
satisfied. Since

∑
k≥0 b(m) = r f (r ), it follows from (17) that

Corollary 2.

(21) lim
m→∞P {L(m) = r } = r f (r )/µ.

Example 4. Fibonacci numbers. Discrete convolution equations arise in many parts of proba-
bility and applied mathematics, but often with a “kernel” that isn’t a proper probability distri-
bution. It is important to realize that such equations can be converted to (standard) renewal
equations by the device known as exponential tilting. Here is a simple example.

Consider the Fibonacci sequence 1,1,2,3,5,8,. . . . This is the sequence an defined by the recur-
sion

(22) an+2 = an+1 +an

and the initial conditions a0 = a1 = 1. To convert the recursion to a renewal equation, multiply
an by a geometric sequence:

zn = θ−n an

for some value θ > 0. Also, set zn = 0 for n ≤−1. Then (22) is equivalent to the equation

(23) zn = zn−1θ
1 + zn−2θ

2 +δ0,n
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where δi , j is the Kronecker delta function. (The delta function makes up for the fact that the
original Fibonacci recursion (22) does not by itself specify a0 and a1.) Equation (23) is a renewal
equation for any value of θ > 0 such that θ1 +θ2 = 1, because then we can set f1 = θ1, f2 = θ2,
and fm = 0 for m ≥ 3. Is there such a value of θ? Yes: it’s the golden ratio

θ = −1+p
5

2
.

(The other root is negative, so we can’t use it to produce a renewal equation from (22).) The Key
Renewal Theorem implies that

lim
n→∞zn = lim

n→∞θ
−n an = 1/(θ+2θ2).

Thus, the Fibonacci sequence grows at an exponential rate, and the rate is the inverse of the
golden ratio.
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