
LECTURE 8: THE CAMERON–MARTIN FORMULA AND BARRIER
OPTIONS

1. Introduction

Thus far in our study of continuous-time markets, we have considered only very simple derivative
securities, the European contingent claims (contingent claims whose payoffs are functions only of
the terminal share price of the underlying asset). In this lecture, we shall study several exotic
options – the knockins/knockouts and barrier options – whose payoffs depend on the entire history
of the share price up to termination. These options are “activated” (or, in some cases, “deacti-
vated”) when the share price of the underlying asset reaches a certain threshold value. If, as in
the simple Black-Scholes model, the share price process behaves as a geometric Brownian motion
under the risk-neutral measure, then the time at which the option is activated is the first-passage
time of the driving Brownian motion to a linear boundary. Thus, it should be no surprise that the
exponential martingales of Lecture 5 play a central role in the pricing and hedging of barrier and
knockin/knockout options. The use of these martingales is greatly facilitated by the Cameron–
Martin theorem, a precursor to the Girsanov theorem, which will be discussed in a subsequent
lecture.

2. The Cameron-Martin Theorem

2.1. Exponential Martingales. Let {Wt = W (t)}t≥0 be a standard Brownian motion, defined on
a probability space (Ω,F , P ), and {Ft}t≥0 the associated Brownian filtration. For any real number
θ, define a stochastic process {Zθ(t)}t≥0 as follows:

(1) Zθ(t) = exp{θW (t)− θ2t/2}.

Proposition 1. For each θ ∈ R the process {Zθ(t)}t≥0 is a positive martingale relative to the
Brownian filtration.

Proof. The proof was sketched in Lecture 5. Here is a reprise:
What must be shown is that for any s, t ≥ 0, E(Zθ(t + s) | Fs) = Zθ(s). For this, we shall use an

elementary fact about the normal distribution: If X is normally distributed with mean zero and
variance σ2, then for any θ ∈ R,

(2) E exp{θX} = exp{θ2/2}.

(The alert reader will immediately recognize that this calculation may be done by “completing the
square”.) Now to establish the martingale property of the process Zθ(t), proceed as follows, using
elementary properties of conditional expectation and the fact that the random variable W (t + s)−
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W (s) is independent of the σ−algebra Fs:

E(Zθ(t + s) | Fs) = E(exp{θW (t + s)− θ2(t + s)/2} |Fs)

= E(exp{θW (s)− θ2s/2} exp{θ(W (t + s)−W (s))− θ2t/2} |Fs)

= exp{θW (s)− θ2s/2}E(exp{θ(W (t + s)−W (s))− θ2t/2} |Fs)

= Zθ(s)E(exp{θ(W (t + s)−W (s))− θ2t/2} |Fs)

= Zθ(s)E exp{θ(W (t + s)−W (s))− θ2t/2}
= Zθ(s).

�

2.2. Likelihood Ratios. Let (Ω,F , P ) be any probability space on which is defined a positive
random variable Z with expectation EZ = 1. The random variable Z may be used to define a new
probability measure Q on (Ω,F) as follows: For any event F ∈ F , set

(3) Q(F ) = EP (Z1F ).

To prove that Q is actually a probability measure, we must show that (i) Q(F ) > 0 for any event
F ; (ii) Q(Ω) = 1; and (iii) Q is countably additive. The first of these properties follows from the
hypothesis that Z > 0, in view of equation (3), and the second follows by the simple calculation
Q(Ω) = EP (Z · 1) = EP Z = 1. To see that Q is countably additive, observe that if F1, F2, . . . is a
sequence of pairwise disjoint events whose union is ∪Fn = F , then 1F =

∑
n 1Fn , and so, by the

monotone convergence theorem,

Q(F ) = EP (Z1F ) = EP (Z
∞∑

n=1

1Fn) =
∞∑

n=1

EP (Z1Fn)) =
∞∑

n=1

Q(Fn).

Proposition 2. The expectation operators EP and EQ are related as follows: for any nonnegative
random variable Y ,

EQY = EP (Y Z) and(4)

EP Y = EQ(Y/Z).(5)

Proof. (Sketch) The first identity (4) is true for indicator random variables Y = 1F by definition
of the probability measure Q. Consequently, it is also true for all simple random variables Y
(linear combinations of indicators), by linearity of expectation operators. Finally it is true for all
nonnegative random variables Y by approximation: any nonnegative r.v. Y is the monotone limit
of simple r.v.s, and so the monotone convergence theorem guarantees that the identity (4) persists.

To see that the identity (5) is valid for all nonnegative random variables Y , note that it is true
for any random variable Y of the form Y = Y ′Z, where Y ′ is a nonnegative random variable, by
the first identity (4). But every nonnegative random variable Y is of this form, since Z > 0! �

When two probability measures Pand Q satisfy relations (4) and (5) for some positive random
variable Z, the measures are said to be mutually absolutely continuous (abbreviated a.c.), and the
random variable Z is called the likelihood ratio (or Radon-Nikodym derivative) of the probability
measure Q with respect to the probability measure P . The notation

(6)
dQ

dP
:= Z



is often used, because if one interprets the expectations in the identities (4) and (5) as integrals
then these identities are revealed as nothing more than change-of-variable formulas:

EQY =
∫

Y dQ =
∫

Y

(
dQ

dP

)
dP = EP (ZY ).

Caution: The likelihood ratio of a probability measure Q relative to another probability measure
P depends on the σ−algebra F on which the probability measures are defined. In particular, the
likelihood ratio must be measurable with respect to this σ−algebra. In certain situations there may
be more than one σ−algebra of interest. The following proposition spells out the relation between
likelihood ratios on different σ−algebras:

Proposition 3. Let P,Q be mutually a.c. probability measures on (Ω,F), with likelihood ratio
Z = (dQ/dP )F . Suppose that G is a σ−algebra of events contained in F . Then the likelihood ratio
of Q relative to P on the σ−algebra G is

(7)
(

dQ

dP

)
G

= EP (Z | G).

Proof. It must be shown that, for every event G ∈ G,

(8) Q(G) = EP (1GEP (Z | G)) .

By hypothesis, G ⊂ F ; consequently, G ∈ F , and so Y = 1G is F−measurable (and, of course, also
G−measurable). Furthermore, also by hypothesis, Z is the likelihood ratio of Q relative to P on
the σ−algebra F . Therefore, by equation (4), with Y = 1G,

Q(G) = EQ1G = EP (Z1G).

The last expectation may be evaluated using the Tower Rule for conditional expectation: since 1G

is G−measurable, it factors out of the conditional expectation on G, yielding

Q(G) = EP (Z1G)

= EP (EP (Z1G | G))

= EP (1GEP (Z, | G)) ,

as desired. �

Proposition 3 shows that, if {Ft} is a filtration of a probability space Ω, and if P,Q are mutu-
ally absolutely continuous probability measures on FT for some T ≤ ∞, then P,Q are mutually
absolutely continuous on every Ft such that t ≤ T , and that the Radon-Nikodym derivatives(

dQ

dP

)
Ft

constitute a martingale (relative to P ) for 0 ≤ t ≤ T .

2.3. Digression: Likelihood Ratios and Simulation by Importance Sampling. The iden-
tities (4) and (5) may be interpreted as formal laws relating the calculation of expectations under
the two probability measures P and Q. As such, they serve as a computational aid: to compute an
expectation EP Y , one may look for a convenient auxiliary probability measure Q and then compute
the expectation EQ(Y Z) under Q. Later, we shall give some examples to show how this technique
may be used in options pricing.

One may also use the identity (4) as a tool for approximate computations or simulations. The
idea is as follows. In the naive approach to simulation, if one has access to a stream of i.i.d.



random variables Y1, Y2, . . . , each with the same distribution as does the random variable Y under
the probability measure P , one could approximate the expectation EP Y by the sample averages

Ȳn = n−1
n∑

j=1

Yj .

By the Law of Large Numbers, these sample averages must converge to EP Y as n →∞; however,
the convergence might be slow. Now suppose instead that one has access to a stream of i.i.d. pairs
of random variables (Y1, Z1), (Y2, Z2), . . . , each with the same joint distribution as the pair (Y, Z)
under the measure Q. Then one could approximate the expectation EP Y by the sample averages

n−1
n∑

j=1

YjZj .

Once again, the Law of Large Numbers implies that these averages converge to the desired quantity
EP Y = EQ(Y Z). If Q is suitably chosen, the convergence may sometimes be considerably faster
than for the naive simulation estimates. This technique of simulation is called importance sampling,
because it reweights Y−values so as to make some more “important” than others.

2.4. The Cameron-Martin Theorem. Once again, let {Wt = W (t)}t≥0 be a standard Brownian
motion, defined on a probability space (Ω,F , P ), and let {Ft}t≥0 the associated Brownian filtration.
For each real number θ and each T > 0, the random variable Zθ(T ) defined by equation (1) is a
positive random variable with expectation one. Hence, it is a likelihood ratio. Denote by Pθ and Eθ

the probability measure and expectation operator determined by the likelihood ratio Zθ(T ) on the
probability space (Ω,FT ): that is, for every event F ∈ FT and every FT−measurable, nonnegative
random variable Y ,

Pθ(F ) = E0(Zθ(T )1F ), EθY = E0(Zθ(T )Y ), and(9)

P0(F ) = Eθ(Zθ(T )−11F ), E0Y = Eθ(Zθ(T )−1Y ).(10)

The important theorem of Cameron & Martin describes the distribution of the random process
{Wt}t≥0 under the tilted measure Pθ:

Theorem 1. (Cameron–Martin) Under the probability measure Pθ, the process {W (t)}0≤t≤T has
the same law (joint distribution) as a Brownian motion with drift θ. Equivalently, the stochastic
process {W (t)}0≤t≤T has the same law under Pθ as the process {W (t) + θt}0≤t≤T has under the
probability measure P = P0.

Proof. To make this at least plausible, let’s consider the distribution of the single random variable
WT = U under the probability measure Pθ. To simplify the calculation, assume that T = 1. For



any real number y,

Pθ{U ≤ y} = EZθ(1)1{U ≤ y}
= E exp{θU − θ2/2}1{U ≤ y}

=
∫ y

−∞
exp{θu− θ2/2} exp{−u2/2} du/

√
2π

=
∫ y

−∞
exp{−(u− θ)2/2} du/

√
2π

=
∫ y+θ

−∞
exp{−v2/2} dv/

√
2π

= P0{U − θ ≤ y}

Thus, under the probability measure Pθ, the random variable U = W1 has the same distribution
as does the random variable W1 + θ under the probability measure P0.

To prove the theorem, we must show that, for any 0 = t0 < t1 < · · · < tn = T , the joint
distribution of the random variables W (t0),W (t1), . . . ,W (tn) under Pθ is the same as the joint
distribution of W (t0) + θt0,W (t1) + θt1, . . . ,W (tn) + θtn under P0. Equivalently, we must show
that the joint distribution of the increments (∆W )1, (∆W )2, . . . , (∆W )n under Pθ is the same as
that of (∆W + θ∆t)1, (∆W + θ∆t)2, . . . , (∆W + θ∆t)n under P0. Here (∆W )k = W (tk)−W (tk−1)
and (∆t)k = tk − tk−1. Consider the joint moment generating function:

Eθ exp{
n∑

k=1

λk(∆W )k} = E0Zθ(T ) exp{
n∑

k=1

λk(∆W )k}

= E0 exp{θW (tn)− θ2tn/2} exp{
n∑

k=1

λk(∆W )k}

= E0 exp{
n∑

k=1

(λk + θ)(∆W )k} exp{−θ2tn/2}

= exp{−θ2tn/2}
n∏

k=1

E0 exp{(λk + θ)(∆W )k}

= exp{−θ2tn/2}
n∏

k=1

exp{(λk + θ)2(∆t)k/2}

=
n∏

k=1

exp{λ2
k(∆t)k/2 + θλk(∆t)k}

= E0 exp{
n∑

k=1

λk(∆W + θ∆t)k}.

This proves the result, because if the joint moment generating functions of two distributions are
the same, then their joint distributions are the same. �

2.5. Cameron–Martin Theorem: Some Ramifications. The Cameron–Martin theorem re-
lates Brownian motion with drift to standard Brownian motion, that is, Brownian motion with no



drift. Thus, implicitly, it also relates Brownian motions with different drifts. In particular, the
expectation operators Eθ and Eα are related as follows:

Corollary 1.

(11)
(

dPθ

dPα

)
FT

=
Zθ(T )
Zα(T )

= exp{(θ − α)WT − (θ2 − α2)T/2}.

Proof. This identity simply means that for any event F ∈ FT and any nonnegative FT−measurable
random variable Y ,

(12) Pθ(F ) = Eα

(
Zθ(T )
Zα(T )

)
1F and EθY = Eα

(
Zθ(T )
Zα(T )

)
Y.

These equations are obtained from the identities (9) and (10) by routine substitutions. �

The Cameron–Martin formula (11) gives an explicit formula for the likelihood ratio dPθ/dPα on
the σ−algebra FT . It is not difficult to deduce a similar formula for the σ−algebra Fτ of a bounded
stopping time. Recall that if τ is a stopping time, then the σ−algebra Fτ consists of all events that
are “observable” by time τ .1

Corollary 2. If τ is a bounded stopping time, then

(13)
(

dPθ

dPα

)
Fτ

=
Zθ(τ)
Zα(τ)

= exp{(θ − α)Wτ − (θ2 − α2)τ/2}.

Proof. It suffices to consider the case where α = 0, as the general case may then be deduced by
the same calculations as in the proof of Corollary 1. To prove the identity (13), it suffices to show
that for any nonnegative Fτ−measurable random variable Y ,

(14) EθY = E0(Zθ(τ)Y ).

Since τ is bounded, there is some nonrandom T < ∞ such that τ ≤ T . For any such T , if Y is
Fτ−measurable, then it is also FT−measurable (because Fτ ⊂ FT ). Consequently, by Corollary 1
(in particular, by equation (12)),

EθY = E0(Zθ(T )Y ).

To deduce (14), we exploit the fact that the process Zθ(t) is a martingale, togerther with elementary
properties of conditional expectation:

EθY = E0(Zθ(T )Y )

= E0E0(Zθ(T )Y | Fτ )

= E0(Y E0(Zθ(T ) | Fτ ))

= E0(Y Zθ(τ)).

�

1More precisely, A ∈ Fτ if and only if, for every nonrandom t ≥ 0, the event A ∩ {τ ≤ t} ∈ Ft.



3. Example: A Brownian First-Passage Problem

As a first application of the Cameron–Martin theorem, we shall calculate the probability that
a standard Brownian motion Wt ever reaches a stragiht line with nonzero slope. Although this
problem may easily be solved using only the Optional Stopping Formula, in conjunction with an
exponential martingale, the use of the Cameron–Martin theorem is instructive, as it will serve as a
model for the solution of more complicated problems later.

Let Wt be a standard Brownian motion under the probability measure P = P0, and let ν be the
time of first passage to the straight line with slope b > 0 and intercept a > 0, that is,

ν := min{t ≥ 0 : Wt = a + bt}(15)
:= ∞ if there is no such t.

The problem is to evaluate P0{ν < ∞}. Observe that the problem may be recast as a first-passage
problem for a Brownian motion with drift −b, because ν is the first time that Wt − bt = a, and
{Wt− bt}t≥0 is a Brownian motion with drift −b. In particular, the probability we wish to evaluate
is

(16) P0{ν < ∞} = P−b{τ(a) < ∞} = lim
n→∞

P−b{τ(a) < n},

where τ(a) := min{t ≥ 0 : Wt = a}.
To calculate the probability (16), we use Corollary 2 above, with Q = P−b and Q∗ = Pb. The

likelihood ratio (Radon-Nikodym derivative) of Pb relative to P−b on the σ−algebra Fτ(a)∧n is(
dP−b

dPb

)
Fτ(a)∧n

= exp{−2bWτ(a)∧n},

which takes the value exp{−2ba on the event τ(a) < n. Consequently, by the Cameron–Martin
formula (13),

P−b{τ(a) < n} = Eb exp{−2ba}1{τ(a) < n}(17)

= exp{−2ba}Pb{τ(a) < n}
−→ exp{−2ba},

as n →∞, because under the measure Pb, the process Wt is a Brownian motion with positive drift
+b and so must eventually reach the level a, by the Law of Large Numbers. Thus,

(18) P0{ν < ∞} = exp{−2ba}.

4. Barrier Options

To further illustrate the usefulness of the Cameron–Martin theorem, we shall evaluate the ar-
bitrage prices for a simple class of barrier options. A similar method works for the pricing of
various knockout and knockin options (see the Exercises below for an example). The Barrier
option that we shall consider here is a contingent claim whose payoff at expiration T is

η = 1{ max
0≤t≤T

ST ≥ A},

where A is the activation parameter. Thus, the option pays off $1 if and only if the share price of
Stock rises to at least A sometime during the time interval [0, T ]. We shall assume that the price



processes of the assets Stock and Cash Bond are (under the risk–neutral measure P = P0)

St = S0 exp{(r − σ2/2)t + σWt}(19)

Bt = B0 exp{rt}(20)

with σ = 1 (for simplicity) and r > 0. We may then write the arbitrage price at t = 0 of the
Barrier as the discounted expected value of its value η at expiration:

V0 = e−rT P0{ max
0≤t≤T

St ≥ A}(21)

= e−rT P0{ max
0≤t≤T

(Wt + rt− t/2) ≥ α}

where α = log A. Our objective is to evaluate the probability in equation (21). The difficulty is
that the event involves the entire path of the Brownian motion up to time T , and in a somewhat
complicated way. Notice, though, that if the event were changed by replacing W (t) + rt− t/2 with
W (t), then the probability in (21) could be calculated exactly, by the reflection principle. This
calculation was carried out in Lecture 5.

Our strategy for dealing with the probability in equation (21) will be to use the Cameron–
Martin formula to “tilt” the sloped line back to a horizontal line, then use the reflection principle to
evaluate the resulting expectation. This two-stage use of Cameron–Martin and reflection works also
in various other option-pricing problems involving barriers, although the details of the calculations
will generally be different. The first order of business is to settle on a suitable drift parameter θ;
the “right” choice here is

θ = −r + 1/2,

because for this θ, the process W (t) is, under Pθ, a Brownian motion with drift −r + 1/2. Thus, if
we set

W̃ (t) = Wt + rt− t/2,

then under Pθ, the process W̃ (t) will be (up to time T ) a standard (driftless) Brownian motion.
Thus,

P0{ min
0≤t≤T

(Wt + rt− t/2) ≥ α} = Eθ exp{−θW (T ) + θ2T/2}1{ min
0≤t≤T

(Wt + rt− t/2) ≥ α}

= Eθ exp{−θW̃ (T ) + θ2T/2− θrT + θT/2}1{ min
0≤t≤T

W̃ (t) ≥ α}

= e(θ2−2θr+θ)T/2Eθe
−θW̃ (T )1{ min

0≤t≤T
W̃ (t) ≥ α}

= e(θ2−2θr+θ)T/2E0e
−θW (T )1{ min

0≤t≤T
W (t) ≥ α}.

The final expectation in this chain of equalities involves only a standard Brownian motion, and the
event on which the integration takes place involves only the first passage to a horizontal line. We
learned how to handle such events in our discussion of the Reflection Principle in Lecture 5. The
basic idea is that, conditional on the event that the path visits the level α at some time prior to
T , the distribution of the endpoint WT is symmetrically distributed about α. Consequently,

(22) E0e
−θW (T )1{ min

0≤t≤T
W (t) ≥ α} = e−θα

∫ ∞

0
(eθx + e−θx)e−(x+α)2/2T dx/

√
2πT .

This integral may be evaluated explicitly in terms of the standard normal cdf Φ(·), by “completing
the square”.



5. Exercises

1. Complete the derivation of the arbitrage price of the Barrier option in Section 4 above:

(a) Use the reflection principle and the Strong Markov property to justify the identity (22).
(b) Evaluate the integral in equation (22).

2. A Perpetual Option. Assume that the share prices of Stock and Bond are given by
equations (19) and (20), respectively. Consider an option with no date of expiration that pays the
owner exp{−βτ} (dollars) at the first time τ that the share price of Stock reaches α (if ever).
Here β and α are positive real numbers, and S0 < α. Calculate the arbitrage price at time 0 of this
option.

3. Knockin Options. Assume that the prices of Cash Bond and Stock are governed by the
differential equations

dBt = rBt dt(23)

dSt = rSt dt + σSt dWt.(24)

for constants r, σ > 0. Consider a knockin put option with strike K and knockin value H > K.
The payoff from this option at termination t = T is

(K − ST )+ if max
0≤t≤T

St≥ H

0 if max
0≤t≤T

St< H

Find the arbitrage price at t = 0. Hint: Write the price as a discounted expectation, using indicator
variables to get rid of the subscript + on (K − ST ). Break this expectation into two expectations,
and then evaluate each by using the Cameron–Martin theorem and the reflection principle.


