
PHASE TRANSITION IN THE ISING MODEL

1. The Ising Model

The Ising model is a crude but extremely important mathematical model of a ferromag-
netic metal introduced by Ising about 70 years ago. Its importance stems from the fact
that it is the one of the simplest mathematical models to exhibit a phase transition: at high
temperature, there is a unique equilibrium state for the system, but at temperatures below a
certain critical temperature, there are several distinct equilibrium states. This corresponds
to the physical phenomenon of spontaneous magnetization: If unmagnetized iron is cooled
to a very low temperature, it will magnetize; and if a magnet is heated to a sufficiently high
temperature, it will demagnetize. The latter may be verified easily by experiment, using
only a floppy disk and a household stove.

1.1. Gibbs States. Let X be a finite set andH : X → R a function, called the Hamiltonian
of the system. In physical applications H(x) represents the energy of the system when it
is in state x. The Gibbs state µ = µβ for β = 1/(kT ), where k = Boltzman’s constant and
T = temperature, is the probability measure on X defined by

µβ(x) = e−βH(x)/Z(β), where(1.1)

Z(β) =
∑
x∈X

e−βH(x).(1.2)

The normalizing constant Z(β) is called the partition function. The family {µβ}β>0 is a one-
paramter exponential family of probability measures on X , with −β playing the role of the
natural parameter, H(x) the sufficient statistic, and logZ(β) the role of the ψ−function.
Observe that, since the sum in (1.2) is finite, the partition function is well-defined and
(real-)analytic in the domain β > 0.

1.2. The Ising Hamiltonian. In condensed-matter physics, field theory, and various other
parts of statistical physics, the state space X is often of the form

(1.3) X = AV

where V is a set of sites (which we will also call vertices) and A is a finite set. Elements
of V usually represent spatial locations, and elements of A may represent atomic elements
(in models of alloys), presence (+1) or absence (0) of particles (in models of gases), spins
(in models of magnetism and in quantum field theory), and so on. In the Ising model,
A is the two-element set A = {±1}, and V is the set of vertices of a graph G; the most
interesting case, from the standpoint of the physicist, is that where V is a subset of the
d-dimensional integer lattice Zd. The Ising Hamiltonian is defined as follows: for any
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2 PHASE TRANSITION IN THE ISING MODEL

configuration x ∈ X := {−1,+1}V

(1.4) H(x) = J
∑

i,j∈V :
i∼j

xixj

Here i ∼ j means that vertices i, j are nearest neighbors, that is, there is an edge of the
graph G connecting i and j; each edge counts only once in the sum. The constant J is
called the coupling constant : if J < 0 the model is called ferromagnetic, and if J > 0
it is anti-ferromagnetic. Unless otherwise specified, it is henceforth assumed that J < 0.
Observe that in this case, the system “prefers” configurations in which neighboring spins
are aligned, as these have lower energy. The degree to which this is true depends, of course,
on the inverse temperature β — for larger values of β the preference for low-energy states
is stronger.

1.3. The Thermodynamic Limit. The sort of magnet that you might carry around in
your pocket would have on the order of 1025 iron atoms. The exact number isn’t important
— what is important is that the number is big (even to a computer scientist). Thus, it
makes sense to study the behavior of the Ising model when the vertex set V is large, and
in fact to inquire about the limiting behavior as V becomes infinite. There are two ways to
go about this: (1) Look at the limiting behavior of the Gibbs states µβ for finite V as V
becomes larger; or (2) Try to extend the definition of Gibbs state to configuration spaces
on infinite graphs. Program (2) is the theory of DLR states (for Dobrushin, Lanford, and
Ruelle); it requires more mathematical machinery than I wish to invest in now, and so I
shall only discuss program (1).

Let G = (V, E) be a countably infinite locally finite graph (such as the integer lattices
Zd; locally finite means that for each vertex i there are only finitely many edges incident
to i). Let X = {±1}V be the space of configurations on the vertex set V , and For any
vertex i ∈ V , let Xi : X → {±1} be the ith coordinate evaluation map Xi(x) = xi. The
Borel σ−algebra B on the space X is the smallest σ−algebra that makes all of the random
variables Xi measurable; equivalently, B is the σ−algebra generated by the open sets of the
product topology on X . For each finite subset Λ ⊂ V define

(1.5) HΛ(x) = J
∑

i∈Λ,j∈V
i∼j

xixj ;

here the sum is over all edges of the graph G with at least one endpoint in Λ. For each
z ∈ X and each finite subset Λ ⊂ V define the Gibbs state µz

Λ = µz
Λ,β on Λ with external

boundary condition z to be the discrete Borel probability measure on X determined by the
rule

µz
Λ(x) = exp{−βHΛ(x)}/ZΛ,z(β) if xΛc = zΛc(1.6)

= 0 otherwise

where ZΛ,z(β) is the appropriate normalizing constant. Observe that µz
Λ is concentrated on

a finite set of configurations, namely, those that agree with z outside of Λ. Also, if z, w ∈ X
are two configurations that agree outside Λ thenµz

Λ = µw
Λ .
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The two most interesting boundary conditions (at least for now) are z+ ≡ 1 and z− ≡ −1:
we shall denote by µ+

Λ and µ−Λ the Gibbs states with these external boundary conditions. It
is important to note that these two Gibbs states are mirror images, in the following sense:
if ρ : X → X is the mapping that flips every spin, that is, ρ(x) = −x, then for every finite
Λ ⊂ V ,

(1.7) µ−Λ = µ+
Λ ◦ ρ.

1.4. Phase Transition in Dimension 2. The observable physical phenomenon of spon-
taneous magnetization (and demagnetization) has a mathematical analogue in the Ising
model in dimensions two and higher, a fact discovered by R. Peierls in the 1930s, some
years after Ising introduced his model.1 Let G = (Z2, E) be the standard two-dimensional
lattice (the edges e ∈ E connect points of Z2 that differ by (1, 0) or (0, 1)), and let Λn be
the square of side 2n + 1 centered at the origin o. Denote by µ+

n and µ−n the Gibbs states
with external boundary conditions z+ and z− on the square Λn.

Theorem 1. There exists βc satisfying 0 < βc < ∞ such that the following is true: For
each vertex i ∈ Z2

lim
n→∞

µ+
n {Xi = +1} > 1/2 if β > βc(1.8)

lim
n→∞

µ+
n {Xi = +1} = 1/2 if β ≤ βc.(1.9)

The fact that βc < ∞ is, in essence, Peierls discovery. I do not know who first proved
that βc > 0, but I consider this just as important.

Theorem 2. For each β, as n → ∞, the measures µ+
n converge in distribution to a prob-

ability measure µ+, and the measures µ−n converge in distribution to a probability measure
µ−. These limiting measures are translation invariant, and µ− is stochastically dominated
by µ+.

It follows that the limits in Theorem 1 equal µ+{Xi = +1}. Since µ+ is translation-
invariant, it also follows that µ+{Xi = +1} = µ+{Xo = +1} for all vertices i. By the
symmetry relation (1.7), µ−{Xo = −1} = µ−{Xo = +1}.

Corollary 3.

µ+ 6= µ− if β > βc;(1.10)

µ+ = µ− if β ≤ βc.(1.11)

Proof. The measure µ+ stochastically dominates the measure µ− for any value of β. By the
extension of Strassen’s monotone coupling theorem to infinite configuration spaces (HW set
2), there exist, on some probability space, random configurations Y +, Y − with distributions
µ+, µ−, respectively, such that Y − ≤ Y + almost surely. But by Theorem 2 and relation
(1.9), if β ≤ βc then for every vertex i,

P{Y +
i = +1} = 1/2 = P{Y −i = +1},

1Ising’s Ph. D. thesis supervisor Lenz had suggested to Ising that a phase transition might exist in the
Ising model; Ising was able to prove that there is no phase transition in one dimension, but proved nothing
about the behavior in higher dimensions.
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and so it must be that Y +
i = Y −i almost surely. �

In section 4 below, we shall prove that the limiting relation (1.8) holds for sufficiently
large β (the low-temperature limit), by Peierls’ original and elegant argument. In section 5
we shall prove that (1.9) holds for sufficiently small β by relating the construction of random
fields with the distributions µ±Λ to site percolation.

2. The Markov Property for Gibbs States

For any configuration x ∈ X = {±1}V and any subset Λ ⊂ V , denote by xΛ the restriction
of the configuration x to the set Λ, that is, xΛ = (xi)i∈Λ. Similarly, denote by XΛ the vector
(Xi)i∈Λ of coordinate evaluation mappings for sites in Λ.

Proposition 4. Let Λ and Σ be disjoint, finite subsets of V . For any configuration x ∈ X
the following is true:

(2.1) µx
Λ∪Σ(XΛ = xΛ |XΣ = xΣ) = µx

Λ(XΛ = xΛ).

Thus, µx
Λ is the conditional distribution under µx

Λ∪Σ of XΛ given that XΣ = xΣ. It is
this mutual consistency property that allows the possibility of extending the definition of a
Gibbs state to infinite configuration spaces.

For any subset Λ ⊂ V , define the outer boundary ∂Λ of Λ to be the set of all vertices at
distance one from Λ.

Proposition 5. For any configuration x and any finite subset Λ ⊂ V , the probability
µx

Λ(XΛ = xΛ) depends only on xΛ∪∂Λ.

The proofs of Propositions 4 and 5 are left as exercises. Proposition 5 is quite easy.
Proposition 4 is slightly more subtle: You will find it easiest to begin by showing that it
suffices to consider the case where Σ is a singleton.

Corollary 6. Let Σ ⊂ Λ ⊂ V be finite subsets of V such that ∂Σ ⊂ Λ, and let x, y be
configurations such that xΛ = yΛ. Then

(2.2) µx
Λ(XΣ = xΣ |XΛ−Σ = xΛ−Σ) = µy

Λ(XΣ = xΣ |XΛ−Σ = xΛ−Σ).

Let’s make it a hat trick – this one is also an exercise.

3. Stochastic Monotonicity Results

Proposition 7. For any finite subset Λ ⊂ V and any two configurations z, y ∈ X such that
z ≤ y, the probability measure µz

Λ is stochastically dominated by µy
Λ.

This will be proved by appeal to a theorem of Holley. Let Λ be a finite set and
XΛ = {−1,+1}Λ be the space of spin configurations on Λ. For any site i ∈ Λ, define the
spin operators σ+

i , σ
−
i : XΛ → XΛ by

(σ±i (x))j =

{
xj , if j 6= i

±1, if j = i.
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Theorem 8. Let Λ be a finite set. Let µ and ν be probability distributions on {−1,+}Λ

such that µ(x) > 0 and ν(x) > 0 for each x ∈ X . If for every site i and every pair x, y of
configurations such that x ≤ y it is the case that

(3.1)
µ(σ+

i (x))
µ(σ−i (x))

≤
ν(σ+

i (y))
ν(σ−i (y))

,

then µ is stochastically dominated by ν.

Proof. The strategy is to build a discrete-time Markov chain (Xn, Yn)n≥0 on the space
XΛ × XΛ of configuration pairs in such a way that (a) Xn ≤ Yn for all n; (b) (Xn)n≥0 is
an aperiodic irreducible Markov chain with stationary distribution µ; and (c) (Yn)n≥0 is
an aperiodic irreducible Markov chain with stationary distribution ν. The reader should
convince himself/herself that this will imply µ ≤ ν.

To build the (Xn, Yn) chain, it is enough to specify the transition rules and then check
that (a)–(c) hold. The transition rule goes like this: Assume that the current state is (x, y),
where x ≤ y. Choose I ∈ Λ at random, uniformly on Λ; the configurations x, y will only
be modified at site I, if at all. Given that I = i, update the spins (xi, yi) at site i with
probabilities as follows:

(−−) −→ (++) with probability ε

(−−) −→ (−−) with probability 1− ε

(−+) −→ (++) with probability ε

(−+) −→ (−−) with probability ε
ν(σ−i y)
ν(σ+

i y)

(−+) −→ (−+) with probability 1− ε− ε
ν(σ−i y)
ν(σ+

i y)

(++) −→ (−−) with probability ε
ν(σ−i y)
ν(σ+

i y)

(++) −→ (−+) with probability ε
µ(σ−i x)
µ(σ+

i x)
− ε

ν(σ−i y)
ν(σ+

i y)

(++) −→ (++) with probability 1− ε
µ(σ−i x)
µ(σ+

i x)
,

where ε > 0 is chosen sufficiently small that all of the probabilities are positive and less
than 1. Note that the hypothesis (3.1) guarantees that

µ(σ−i x)
µ(σ+

i x)
−
ν(σ−i y)
ν(σ+

i y)
≥ 0.

It is clear that the transition probabilities specified above are such that the (Xn, Yn) chain
will only visit states (x, y) such that x ≤ y. Therefore, to complete the proof, it suffices to
show that the marginal processes Xn and Yn are aperiodic irreducible Markov chains with
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stationary distributions µ and ν, respectively. Consider Xn. Given that Xn = x, Yn = y,
In = i and any specification of the past, the conditional distribution of Xn+1 satisfies

Xn+1 = σ+
i (x) with probability ε if x = σ−i (x),

Xn+1 = σ−i (x) with probability ε
µ(σ−i (x))
µ(σ+

i (x))
if x = σ+

i (x).

Since these conditional probabilities don’t depend on y or the past, it follows that the
process (Xn)n≥0 is Markov and aperiodic irredicible. Moreover, the transition probabilities
p(·, ·) for this Markov chain satisfy the detailed balance equations

µ(σ+
i (x)) p(σ+

i (x), σ−i (x)) = µ(σ+
i (x))

ε

|Λ|
µ(σ−i (x))
µ(σ+

i (x))
)

= µ(σ−i (x))
ε

|Λ|

= µ(σ−i (x)) p(σ−i (x), σ+
i (x)),

where |Λ| denotes the cardinality of Λ. Thus µ is the stationary distribution of the Markov
chain (Xn)n≥0. A similar calculation shows that (Yn)n≥0 is Markov, and has stationary
distribution ν. �

Proof of Proposition 7. Under µx
Λ, the configuration XV−Λ = xV−Λ almost surely. Thus,

it suffices to show that if z ≤ y then the distribution of XΛ under µz
Λ is stochastically

dominated by its distribution under µy
Λ. For this, we use the sufficient condition provided

by Theorem 8. Let z̃, ỹ be configurations that coincide with z, y, respectively, outside Λ,
and such that z̃ ≤ ỹ. Then

µz
Λ(σ+

i (z̃))
µz

Λ(σ−i (z̃))
= exp{−2βJ

∑
j:j∼i

z̃j}

≤ exp{−2βJ
∑
j:j∼i

ỹj}

=
µy

Λ(σ+
i (ỹ))

µy
Λ(σ−i (ỹ))

.

Consequently, by Theorem 8, µz
Λ is stochastically dominated by µy

Λ. �

Corollary 9. For each integer n ≥ 1,

µ+
n ≥ µ+

n+1,(3.2)

µ−n ≤ µ−n+1, and(3.3)

µ−n ≤ µ+
n .(3.4)

Proof. Set Λ = Λn, Λ∗ = Λn+1, and Σ = Λn+1−Λn. By Proposition 4, µ+
n is the conditional

distribution, under µ+
n+1, of XΛ given the event XΣ = z+

Σ (recall that z+ = all pluses). By
Proposition 7, this dominates the conditional distribution of XΛ under any other event
XΣ = xΣ. Therefore, µ+

n stochastically dominates the unconditional distribution of XΛ
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under µ+
n+1 (Exercise: Explain why.) This proves that µ+

n ≥ µ+
n+1. The second inequality

is similar, and the third follows directly from Proposition 7. �

Proof of Theorem 2. Since µ+
n ≥ µ+

n+1, on some probability space there exist X -valued
random variables X(n) with marginal distributions µ+

n such that X(n) ≥ X(n+1) for all n.
(This is a consequence of Strassen’s Monotone Coupling Theorem for measures on X .) Since
the components X(n)

i are ±, it follows that the configurations X(n) converge coordinatewise,
monotonically, to a limitX. The distribution µ ofX must be the weak limit of µ+

n . A similar
argument shows that the measures µ−n converge to a limit µ−, and that µ− = µ+ ◦ ρ. That
µ+ ≥ µ− follows from the fact that µ+

n ≥ µ−n . The transition invariance of the measures
µ+, µ− can alos be proved by a stochastic comparison argument (the details are omitted for
now). �

4. Peierls’ Contour Argument

Peierls’ argument is based on the observation that the Ising Hamiltonian HΛ defined by
(1.5) depends only on the number of +/− nearest neighbor pairs in the configuration:

HΛ(x) = −2JLΛ(x) + CΛ where(4.1)

LΛ(x) =
∑

i∈Λ,j∈V
i∼j

δ(xi,−xj),(4.2)

with δ(·, ·) being the Kronecker delta function. Evaluation of LΛ(x) can be accomplished
by partitioning the vertices of Λ ∪ ∂Λ into (maximal) connected clusters of + spins and −
spins in x, as in Figure ; LΛ(x) is the number of edges in Λ ∪ ∂Λ connecting + clusters
to − clusters. For two-dimensional graphs, LΛ(x) may be evaluated by drawing boundary
contours around the connected clusters, as shown in the following lemma. For the remainder
of this section, assume that G is the standard two-dimensional integer lattice Z2.

Lemma 10. For each vertex i ∈ Λ ∪ ∂Λ, let Ki = Ki(x) be the maximal connected set of
vertices j such that sites i and j have the same spin in configuration x. Then for any two
vertices i, j such that Ki 6= Kj there is a simple closed curve γ = γi,j, called a boundary
contour (possibly empty) separating Ki from Kj. The curve γ is a finite union of horizontal
and vertical segments in the dual lattice. Each such segment bisects an edge connecting a
vertex in Ki to a vertex in Kj.

Proof. The curve γ may be constructed using a “maze-walking” algorithm. Begin by
choosing an edge e connecting Ki to Kj (if there is one), and let the first segment γ1 of γ be
a perpendicular bisector of e. Define (oriented) segments γn, for n = 2, 3, . . . , inductively,
in such a way that if one traverses the segment γn then a vertex of Ki is on the right
and a vertex of Kj is on the left. Eventually the sequence γn will enter a cycle. This
cycle must include all of the segments γn because otherwise the right/left rule would be
violated somewhere. Therefore, the cycle determines a closed curve. This closed curve must
completely separate the regions Ki and Kj , because otherwise one of them could not be
connected. Consult your local topologist for further details. �
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Corollary 11. LΛ(x) =
∑

i,j |γi,j |. �

Assume now that the region Λ is a square. Fix a vertex i ∈ Λ, and let x ∈ X be
a configuration such that xΛc = z+

Λc . If xi = −1, then it must be that the vertex i is
completely surrounded by a contour that separates it from ∂Λ, as the vertices outside Λ
all have + spins. In particular, the boundary of the connected cluster Ki = Ki(x) of −
spins to which vertex i belongs contains a unique contour γ := γi,∞ that separates Ki from
the exterior Λc of the square Λ. (Note that this contour may in general surround other
connected components Kj .) Define Cγ ot be the set of all vertices j that are surrounded
by γ; define configuration x̃ to be the configuration obtained from x by flipping all spins
inside γi,∞

(4.3) (x̃)j =

{
−xj if j ∈ Cγ

+xj if j 6∈ Cγ .

Lemma 12. Let x ∈ X be any configuration such that xi = −1, and let γ = γi,∞ be the
contour that separates Ki from Λc. If x̃ is the configuration defined by (4.3), then

(4.4)
µ+

Λ(x)
µ+

Λ(x̃)
= exp{−2βJ |γ|}.

Proof. For all nearest neighbor pairs j, k, the spin products xjxk and x̃j x̃k are related as
follows:

xjxk = −x̃j x̃k if j, k are on opposite sides of γ;
= +x̃j x̃k otherwise.

Consequently,
HΛ(x̃)−HΛ(x) = 2J |γ|.

�

Lemma 13. The mapping x 7→ (x̃, γ) is one-to-one.

Proof. Given (x̃, γ), one can recover x by negating in the region Cγ surrounded by γ. �

Proposition 14. For each β > 0 and each square Λ containing vertex i,

(4.5) µ+
Λ(Xi = −1) ≤

∞∑
n=4

n3ne−2βJn.

Proof. On the event Xi = −1 the connected cluster Ki of − spins containing the vertex i
must be separated from the connected cluster K∞ of + spins containing the vertices on the
boundary ∂Λ. Let Γ be the boundary contour of Ki = Ki(X) that separates Ki from K∞.
By Lemmas 13 and 12, the µ+

Λ−probability that Xi = −1 and Γ = γ satisfies

µ+
Λ(Xi = −1 and Γ = γ) ≤ exp{−2βJ |γ|}.

Consequently,
µ+

Λ(Xi = −1) ≤
∑

γ

exp{−2βJ |γ|},
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where the sum is over all contours in the (dual) integer lattice surrounding i. To estimate
the number of such surrounding contours of length k, observe that any such contour must
intersect the vertical upward ray emanating from vertex i at some point within distance k
of i. Starting from this intersection point, the contour is formed by attaching successive
line segments, one at a time; at each stage, there are at most 3 such segments to choose
from. Hence, the number of surrounding contours of length k is at most k3k. The estimate
(4.5) now follows easily. �

Since the sum on the right side of inequality (4.5) is less than 1/2 for all sufficiently
large values of β Proposition 14, together with Theorem 2, implies that (1.8) holds at low
temperature.

5. The High Temperature Limit

In this section we shall prove the following proposition, which implies that (1.9), and
hence also (1.11), hold at high temperature.

Proposition 15.

(5.1) tanh(−4βJ) < 1/4 =⇒ lim
n→∞

µ+
n {Xi = −1} = 1/2.

The proof, unlike Peierls’ argument, does not really depend on planarity of the underlying
graph, and may be extended not only to the higher-dimensional integer lattices but to
arbitrary vertex-regular graphs (graphs with the property that all vertices have the same
number of incident edges). We shall only discuss the case G = Z2.

5.1. Bernoulli-p Site Percolation. The upper bound of 1/4 in (5.1) for tanh(−4βJ)
emerges from the world of site percolation. In its simplest incarnation, site percolation
has to do wtih the connectivity properties of the random graph obtained from the two-
dimensional integer lattice by tossing a p−coin at every vertex, then erasing the vertex,
and all edges incident to it, if the coin toss results in a T . Percolation is the event that the
resulting subgraph of Z2 has an infinite connected cluster of vertices, equivalently, that Z2

has an infinite connected cluster of H−vertices.

Proposition 16. If p < 1/4 then percolation occurs with probability 0.

Proof. It is enough to show that for any vertex i, the probability that i is part of an infinite
connected cluster of Hs is zero. Denote by K the (maximal) connected cluster of vertices
containing i at which the coin toss is H. Define sets F0, F1, F2, . . . inductively as follows:
Let F0 = {i}, and for each n ≥ 0 define Fn+1 to be the set of all vertices at which the
coin toss is H that are nearest neighbors of vertices in Fn and that have not been listed in
∪n

j=0Fj . I claim that

(5.2) E|Fn+1| ≤ 4pE|Fn|.

To see this, observe that, for each vertex j ∈ Fn there are at most 4 vertices adjacent to
j that can be included in Fn+1. For each of these, the conditional probability that it is
included in Fn+1, given the coin tosses that have resulted in constructing F0, F1, . . . , Fn, is
at most p; consequently, the expected number that are included is no more than 4p.
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The cluster K is the union of the sets F0, F1, . . . , and so its expected cardinality is
bounded by

∑
nE|Fn|. By inequality (5.2), if 4p < 1 then E|K| < ∞, in which case K is

finite with probability 1. �

Fix a site i ∈ V = Z2, and denote by Λn the square of side 2n+ 1 centered at the origin.
Say that i percolates to ∂Λn if the connected cluster of Hs containing site i extends to the
boundary of Λn, equivalently, if there is a path of H−vertices from i ot the boundary of
Λn. Denote this event by A(i, n).

Corollary 17. If p < 1/4 then limn→∞ Pp(A(i, n)) = 0 for each site i. �

5.2. Monotone Coupling of Gibbs States.

Proposition 18. Fix β > 0, and set p = tanh(−4βJ). On some probability space (Ω,F , P ),
there exist X−valued random variables Z(n) ≤ Y (n) with marginal distributions µ−n and µ+

n ,
respectively, such that

(5.3) P (Z(n)
i 6= Y

(n)
i ) ≤ Pp(A(i, n)),

where Pp(A(i, n)) is the probability that site i percolates to ∂Λn in Bernoulli-p site percola-
tion.

Observe that this proposition and Corollary 17 imply Proposition 15, because Corol-
lary 17 implies that the probability that site i percolates to ∂Λn converges to zero if
p = tanh(−4βJ) < 1/4. The proof of Proposition 18 will use the following lemma, which
explains the occurrence of the quantity tanh(−4βJ).

Lemma 19. For any two configurations z, y such that z ≤ y, and for any finite regions
Σ ⊂ Λ and any site i ∈ Λ− Σ,

(5.4) µ+
Λ(Xi = +1 |XΣ = yΣ)− µ−Λ(Xi = +1 |XΣ = zΣ) ≤ tanh(−4βJ).

Proof. In view of the Markov property (Proposition 4), it suffices to show that for any two
configurations x, y,

(5.5) |µx
Λ−i(Xi = +1)− µy

Λ−i(Xi = +1)| ≤ tanh(−4βJ).

The two probabilities in (5.5) are easily calculated, as they depend only on the spins xj , yj

at the four nearest neighbors of i. The maximum discrepancy occurs when the x−spins are
all +1 and the y−spins are all −1: it is tanh(−4βJ). �

Proof of Proposition 18. Fix n, and abbreviate Λ = Λn, Z = Z(n), and Y = Y (n). There
are N := (2n+ 1)2 sites in the square Λ: label these 1, 2, . . . , N in order, starting from the
sites at distance 1 from ∂Λ, then proceeding through the sites at distance 2 from ∂Λ, and
so on, but omitting site i until the very end, so that it is listed as site N . We will construct
Z, Y one site at a time, proceeding through the sites 1, 2, . . . , N in order, using independent
uniform-(0, 1) random variables U1, U2, . . . , UN . (The values Zi = −1 and Yi = +1 are
determined by the requirement that the marginal distributions of Z and Y are µ−n and µ+

n ,
respectively.)

To construct Z1, Y1, use the uniform U1 to choose ± spins from the Gibbs distributions
µ−n (X1 ∈ dx) and µ+

n (X1 ∈ dx). By Proposition 7, these distributions are stochastically
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ordered, so the assignment of spins may be done in such a way that Z1 ≤ Y1. Moreover,by
Lemma 19,

|µ−n (X1 = +1)− µ+
n (X1 = +1)| ≤ p,

so the probability that Z1 < Y1 is no larger than p. Hence, the assignment of spins may be
dome in such a way that the event Z1 < Y1 is contained in the event U1 < p.

Now suppose that Zj , Yj , for 1 ≤ j < m, are defined. Conditional on the event Zj = zj ,
Yj = yj , with zj ≤ yj , use the uniform random variable Um to assign the spins ± at Zm

and Ym using the conditional distributions

Zm ∼ µ−n (Xm ∈ dx |Xj = zj ∀ 1 ≤ j < m) and

Ym ∼ µ+
n (Xm ∈ dx |Xj = yj ∀ 1 ≤ j < m).

Since zj ≤ yj , these conditional distributions are again stochastically ordered, by Propo-
sition 7 and Proposition 4; consequently, the assignment of spins may be done in such a
way that Zm ≤ Ym. Moreover, by Lemma 19, the conditional probability that Zm < Ym,
given the assignments Yj = yj and Zj = zj for 1 ≤ j < m, is, once again, no larger than
p; consequently, the assignments may be done in such a way that the event Zm < Ym is
contained in the event Um < p.

It remains to show that the inequality (5.3) holds. By construction, Zj < Yj can only
occur if Uj < p. Moreover, by Corollary 6, if in the course of the construction it develops
that Zj = Yj for all sites j in a contour that surrounds site i, then it must be the case that
Zi = Yi, as the conditional distributions of the spins Zk and Yk will coincide for all sites k
after completion of the contour. Thus, Zi 6= Yi can only occur if there is a connected path
of sites j leading from site i to ∂Λ along which Uj < p. But this is precisely the event that
site i percolates to ∂Λ in Bernoulli-p percolation. �


