
CONDITIONAL EXPECTATION AND MARTINGALES

1. DISCRETE-TIME MARTINGALES

1.1. Definition of a Martingale. Let {Fn}n≥0 be an increasing sequence of σ−algebras in a
probability space (Ω,F ,P ). Such a sequence will be called a filtration. Let X0, X1, . . . be an
adapted sequence of integrable real-valued random variables, that is, a sequence with the prop-
erty that for each n the random variable Xn is measurable relative to Fn and such that E |Xn | <
∞. The sequence X0, X1, . . . is said to be a martingale relative to the filtration {Fn}n≥0 if it is
adapted and if for every n,

(1) E(Xn+1 |Fn) = Xn .

Similarly, it is said to be a supermartingale (respectively, submartingale) if for every n,

(2) E(Xn+1 |Fn) ≤ (≥)Xn .

Observe that any martingale is automatically both a submartingale and a supermartingale.

1.2. Martingales and Martingale Difference Sequences. The most basic examples of martin-
gales are sums of independent, mean zero random variables. Let Y0,Y1, . . . be such a sequence;
then the sequence of partial sums

(3) Xn =
n∑

j=1
Y j

is a martingale relative to the natural filtration generated by the variables Yn . This is easily
verified, using the linearity and stability properties and the independence law for conditional
expectation:

E(Xn+1 |Fn) = E(Xn +Yn+1 |Fn)

= E(Xn |Fn)+E(Yn+1 |Fn)

= Xn +EYn+1

= Xn .

The importance of martingales in modern probability theory stems at least in part from the
fact that many of the essential properties of sums of independent, identically distributed ran-
dom variables are inherited (with minor modification) by martingales: As you will learn, there
are versions of the SLLN, the Central Limit Theorem, the Wald indentities, and the Chebyshev,
Markov, and Kolmogorov inequalities for martingales. To get some appreciation of why this
might be so, consider the decomposition of a martingale {Xn} as a partial sum process:

(4) Xn = X0 +
n∑

j=1
ξ j where ξ j = X j −X j−1.
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Proposition 1. The martingale difference sequence {ξn} has the following properties: (a) the
random variable ξn is a function of Fn ; and (b) for every n ≥ 0,

(5) E(ξn+1 |Fn) = 0.

Proof. This is a trivial consequence of the definition of a martingale. �

Corollary 1. Let {Xn} be a martingale relative to {Yn}, with martingale difference sequence {ξn}.
Then for every n ≥ 0,

(6) E Xn = E X0.

Moreover, if E X 2
n <∞ for some n ≥ 1 then for j ≤ n the random variables ξ j are square-integrable

and uncorrelated, and so

(7) E X 2
n = E X 2

0 +
n∑

j=1
Eξ2

j .

Proof. The first property follows easaily from Proposition 1 and the Expectation Law for con-
ditional expectation, as these together imply that Eξn = 0 for each n. Summing and using the
linearity of ordinary expectation, one obtains (6).

The second property is only slightly more difficult. For ease of exposition let’s assume that
X0 = 0. (The general case can then be deduced by re-indexing the random variables.) First,
observe that for each k ≤ n the random variable Xk is square-integrable, by the Jensen inequal-
ity for conditional expectation, since Xk = E(Xn |Fk ). Hence, each of the terms ξ j has finite
variance, because it is the difference of two random variables with finite second moments, and
so all of the products ξiξ j have finite first moments, by the Cauchy-Schwartz inequality. Next,
if j ≤ k ≤ n then ξ j is measurable relative to F j ; hence, by Properties (1), (4), (6), and (7) of
conditional expectation, if j ≤ k ≤ n then

Eξ jξk+1 = EE(ξ jξk+1 |Y1,Y2, . . . ,Yk )

= Eξ j Eξk+1 |Y1,Y2, . . . ,Yk )

= E(ξ j ·0) = 0.
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The variance of Xn may now be calculated in exactly the same manner as for sums of indepen-
dent random variables with mean zero:

E X 2
n = E

n∑
j=1

ξ j )2

= E
n∑

j=1

n∑
k=1

ξ jξk

=
n∑

j=1

n∑
k=1

Eξ jξk

=
n∑

j=1
Eξ2

j +2
∑ ∑

j<k
Eξ jξk

=
n∑

j=1
Eξ2

j +0.

�

1.3. Some Examples of Martingales.

1.3.1. Paul Lévy’s Martingales. Let X be any integrable random variable. Then the sequence Xn

defined by Xn = E(X |Fn) is a martingale, by the Tower Property of conditional expectation.

1.3.2. Random Walk Martingales. Let Y0,Y1, . . . be a sequence of independent, identically dis-
tributed random variables such that EYn = 0. Then the sequence Xn =∑n

j=1 Y j is a martingale,
as we have seen.

1.3.3. Second Moment Martingales. Once again let Y0,Y1, . . . be a sequence of independent,
identically distributed random variables such that EYn = 0 and EY 2

n = σ2 < ∞. Then the se-
quence

(8)

(
n∑

j=1
Y j

)2

−σ2n

is a martingale (again relative to the sequence 0,Y1,Y2, . . . ). This is also easy to check.

1.3.4. Likelihood Ratio Martingales: Bernoulli Case. Let X0, X1, . . . be a sequence of indepen-
dent, identically distributed Bernoulli-p random variables, and let Sn = ∑n

j=1 X j . Note that Sn

has the binomial-(n, p) distribution. Define

(9) Zn =
(

q

p

)2Sn−n

.

Then Z0, Z1, . . . is a martingale relative to the usual sequence. Once again, this is easy to check.
The martingale {Zn}n≥0 is quite useful in certain random walk problems, as we have already
seen.

3



1.3.5. Likelihood Ratio Martingales in General. Let X0, X1, . . . be independent, identically dis-
tributed random variables whose moment generating function ϕ(θ) = EeθXi is finite for some
value θ 6= 0. Define

(10) Zn = Zn(θ) =
n∏

j=1

eθX j

ϕ(θ)
= eθSn

ϕ(θ)n
.

Then Zn is a martingale. (It is called a likelihood ratio martingale because the random variable
Zn is the likelihood ratio dPθ/dP0 based on the sample X1, X2, . . . , Xn for probability measures
Pθ and P0 in a certain exponential family.)

1.3.6. Galton-Watson Martingales. Let Z0 = 1, Z1, Z2, . . . be a Galton-Watson process whose off-
spring distribution has mean µ> 0. Denote by ϕ(s) = E sZ1 the probability generating function
of the offspring distribution, and by ζ the smallest nonnegative root of the equation ϕ(ζ) = ζ.

Proposition 2. Each of the following is a nonnegative martingale:

Mn := Zn/µn ; and

Wn := ζZn .

Proof. Homework. �

1.3.7. Polya Urn. In the traditional Polya urn model, an urn is seeded with R0 = r ≥ 1 red balls
and B0 = b ≥ 1 black balls. At each step n = 1,2, . . . , a ball is drawn at random from the urn and
then returned along with a new ball of the same color. Let Rn and Bn be the numbers of red
and black balls after n steps, and let Θn = Rn/(Rn+Bn ) be the fraction of red balls. Then Θn is a
martingale relatve to the natural filtration.

1.3.8. Harmonic Functions and Markov Chains. Yes, surely enough, martingales also arise in
connection with Markov chains; in fact, one of Doob’s motivations in inventing them was to
connect the world of potential theory for Markov processes with the classical theory of sums
of independent random variables.1 Let Y0,Y0,Y1, . . . be a Markov chain on a denumerable state
space Y with transition probability matrix P. A real-valued function h : Y → R is called har-
monic for the transition probability matrix P if

(11) Ph = h,

equivalently, if for every x ∈Y ,

(12) h(x) = ∑
y∈Y

p(x, y)h(y) = E xh(Y1).

Here E x denotes the expectation corresponding to the probability measure P x under which
P x{Y0 = x} = 1. Notice the similarity between equation (12) and the equation for the stationary
distribution – one is just the transpose of the other.

Proposition 3. If h is harmonic for the transition probability matrix P then for every starting
state x ∈Y the sequence h(Yn) is a martingale under the probability measure P x .

1See his 800-page book Classical Potential Theory and its Probabilistic Counterpart for more on this.
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Proof. This is once again nothing more than a routine calculation. The key is the Markov prop-
erty, which allows us to rewrite any conditional expectation on Y0,Fn as a conditional expecta-
tion on Yn . Thus,

E(h(Yn+1) |Y0,Fn) = E(h(Yn+1) |Yn)

= ∑
y∈Y

h(y)p(Yn , y)

= h(Yn).

�

1.3.9. Submartingales from Martingales. Let {Xn}n≥0 be a martingale relative to the sequence
Y0,Y1, . . . . Let ϕ : R→ R be a convex function such that Eϕ(Xn) <∞ for each n ≥ 0. Then the
sequence {Zn}n≥0 defined by

(13) Zn =ϕ(Xn)

is a submartingale. This is a consequence of the Jensen inequality and the martingale property
of {Xn}n≥0:

E(Zn+1|Y0,Y1, . . . ,Yn) = E(ϕ(Xn+1)|Y0,Y1, . . . ,Yn)

≥ϕ(E(Xn+1|Y0,Y1, . . . ,Yn)

=ϕ(Xn) = Zn

Useful special cases: (a) ϕ(x) = x2, and (b) ϕ(x) = exp{θx}.

2. MARTINGALE AND SUBMARTINGALE TRANSFORMS

According to the Merriam-Webster Collegiate Dictionary, a martingale is

any of several systems of betting in which a player increases the stake usually by
doubling each time a bet is lost.

The use of the term in the theory of probability derives from the connection with fair games or
fair bets; and the importance of the theoretical construct in the world of finance also derives
from the connection with fair bets. Seen in this light, the notion of a martingale transform,
which we are about to introduce, becomes most natural. Informally, a martingale transform is
nothing more than a system of placing bets on a fair game.

2.1. Martingale Transforms. A formal definition of a martingale transform requires two aux-
iliary notions: martingale differences and predictable sequences. Let X0, X1, . . . be a martingale
relative to another sequence Y0,Y1, . . . (or to a filtration {Fn}n≥0). For n = 1,2, . . . , define

(14) ξn = Xn −Xn−1;

to be the martingale difference sequence associated with the martingale Xn .
A predictable sequence Z1, Z2, . . . relative to the filtration Fn is a sequence of random vari-

ables such that for each n = 1,2, . . . the random variable Zn is measurable relative to Fn−1. In
gambling (and financial) contexts, Zn might represent the size (say, in dollars) of a bet paced on
the nth play of a game, while ξn represents the (random) payoff of the nth play per dollar bet.
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The requirement that the sequence Zn be predictable in such contexts is merely an assertion
that the gambler not be clairvoyant.

Definition 1. Let X0, X1, . . . be a martingale relative to Fn and let ξn = Xn −Xn−1 be the associ-
ated martingale difference sequence. Let {Zn}n≥1 be a predictable sequence. Then the martin-
gale transform {(Z ·X )n}n≥0 is defined by

(15) (Z ·X )n = X0 +
n∑

k=1
Zkξk .

Example: The St. Petersburg Game. In this game, a referee tosses a fair coin repeatedly, with
results ξ1,ξ2, . . . , where ξn = +1 if the nth toss is a Head and ξn = −1 if the nth toss is a Tail.
Before each toss, a gambler is allowed to place a wager of size Wn (in roubles) on the outcome
of the next toss. The size of the wager Wn may depend on the observed tosses ξ1,ξ2, . . . ,ξn−1, but
not on ξn (or on any of the future tosses); thus, the sequence {Wn}n≥1 is predictable relative to
{ξn}n≥1. If the nth toss is a Head, the gambler nets +Wn , but if the nth toss is a Tail, the gambler
loses Wn . Thus, the net winnings Sn after n tosses is the martingale transform

Sn = (W ·X )n =
n∑

k=1
Wkξk ,

where Xn = ξ1 +ξ2 +·· ·+ξn . �

The most important fact about martingale transforms is that they are martingales in their own
right, as the next proposition asserts:

Proposition 4. Assume that the predictable sequence {Zn}n≥0 consists of bounded random vari-
ables. Then the martingale transform {(Z ·X )n}n≥0 is itself a martingale relative to {Yn}n≥0.

Proof. This is a simple exercise in the use of the linearity and stability properties of conditional
expectation:

E((Z ·X )n+1 |Fn) = (Z ·X )n +E(Zn+1ξn+1 |Fn)

= (Z ·X )n +Zn+1E(ξn+1 |Fn)

= (Z ·X )n ,

the last equation because {ξn}n≥1 is a martingale difference sequence relative to {Yn}n≥0. �

2.2. Submartingale Transforms. Submartingales and supermartingales may also be transformed,
using equation (15), but the resulting sequences will not necessarily be sub- or super-martingales
unless the predictable sequence {Zn}n≥0 consists of nonnegative random variables.

Definition 2. Let X0, X1, . . . be a sub- (respectively, super-) martingale relative to Fn and let
ξn = Xn − Xn−1 be the associated sub- (super-) martingale difference sequence. Let Z0, Z1, . . .
be a predictable sequence consisting of bounded nonnegative random variables. Then the sub-
martingale transform (respectively, supermartingale transform) {(Z ·X )n}n≥0 is defined by

(16) (Z ·X )n = Z0X0 +
n∑

k=1
Zkξk .
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Proposition 5. If the terms Zn of the predictable sequence are nonnegative and bounded, and if
{Xn}n≥0 is a submartingale, then the submartingale transform (Z · X )n is also a submartingale.
Moreover, if, for each n ≥ 0,

(17) 0 ≤ Zn ≤ 1,

then

(18) E(Z ·X )n ≤ E Xn .

Proof. To show that (Z ·X )n is a submartingale, it suffices to verify that the differences Zkξk con-
stitute a submartingale difference sequence. Since Zk is a predictable sequence, the differences
Zkξk are adapted to {Yk }k≥0, and

E(Zkξk |Fk−1) = Zk E(ξk |Fk−1).

Since ξk is a submartingale difference sequence, E(ξk |Fk−1) ≥ 0; and therefore, since 0 ≤ Zk ≤
1,

0 ≤ E(Zkξk |Fk−1) ≤ E(ξk |Fk−1).

Consequently, Zkξk is a submartingale difference sequence. Moreover, by taking expectations
in the last inequalities, we have

E(Zkξk ) ≤ Eξk ,

which implies (18). �

There is a similar result for supermartingales:

Proposition 6. If {Xn}n≥0 is a supermartingale, and if the terms Zn of the predictable sequence
are nonnegative and bounded, then {(Z · X )n}n≥0 is a supermartingale; and if inequality (17)
holds for each n ≥ 0 then

(19) E(Z ·X )n ≥ E Xn .

3. OPTIONAL STOPPING

3.1. Doob’s optional sampling theorem. The cornerstone of martingale theory is Doob’s Op-
tional Sampling Theorem. This states, roughly, that “stopping” a martingale at a random time τ
does not alter the martingale property, provided the decision about when to stop is based solely
on information available up to τ. Such random times are called stopping times.2

Definition 3. A stopping time relative to a filtration {Fn}n≥0 is a nonnegative integer-valued
random variable τ such that for each n the event {τ= n} ∈Fn .

Theorem 1. Let {Xn}n∈Z+ be a martingale (respectively submartingale or supermartingale) rela-
tive to a filtration {Fn}n≥0, and let τ be a stopping time. Then the stopped sequence {Xτ∧n}n≥0 is
a martingale (respectively submartingale or supermartingale). Consequently, for any n ∈N,

E Xτ∧n = E X0 (martingales)

E Xτ∧n ≤ E X0 (supermartingales)

E Xτ∧n ≤ E Xn (submartingales)

2In some of the older literature, they are called Markov times or optional times.
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Proof. The easiest proof is based on the fact that martingale transforms are martingales. The
crucial fact is that the sequence {Xτ∧n}n≥0 may be represented as a transform of the sequence
{Xn}n≥0:

(20) Xτ∧n = (Z ·X )n

where

(21) Zn =
{

1 if τ≥ n, and

0 if τ< n.

The equation (20) is easy to verify:

(Z ·X )n = X0 +
n∑

j=1
Z j (X j −X j−1)

= X0 +
τ∧n∑
j=1

(X j −X j−1)

= Xτ∧n ,

since the last sum telescopes. That the sequence Zn is predictable follows from the hypothesis
that τ is a stopping time: in particular, for any integer n ≥ 1, the event Zn = 1 coincides with
the event τ≥ n, which is Fn−1−measurable, since this is the complement of the event τ≤ n−1.
It now follows immediately from Proposition 4 that if the original sequence Xn is a martingale
then so is the sequence Xτ∧n . Similar arguments apply if the sequence Xn is a submartingale or
a supermartingale. (Exercise: Fill in the details.) Finally, if Xn is a martingale then the fact that
Xτ∧n is also a martingale implies the identity

E Xτ∧n = E X0,

since for any martingale expectation is a conserved quantity. The corresponding inequalities for
submartingales and supermartingales follow from inequalities (16) and (19), respectively. �

3.2. The Wald Identities. Important special cases of Doob’s Optional Sampling Theorem are
the Wald Identities. These were formulated and proved by Wald in his development of sequen-
tial statistical testing in the late 1940s; they pre-date Doob’s development of martingale theory
by several years, and perhaps partially influenced it. Wald’s identities involve partial sums of
independent random variables; to simplify things we shall consider only the case where the
summands are also identically distributed. Thus, assume now (and for the remainder of this
section) that {ξ}n≥1 are i.i.d. real random variables, and let Fn be the natural filtration. Let τ be
a stopping time with respect to the filtration Fn , and set

Sn =
n∑

k=1
ξk .

Theorem 2. (Wald’s First Identity) If E |ξi | <∞ and Eτ<∞ then E |Sτ| <∞ and

(22) ESτ = Eτ ·Eξ1.
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Proof. Assume first that the random variables ξi are nonnegative and that Eξ1 > 0. For each
n <∞ the stopping time τ∧n is bounded, so Doob’s identity implies that ESτ∧n = E(τ∧n)Eξ1.
But since τ∧n ↑ τ and Sτ∧n ↑ Sτ, the monotone convergence theorem applies on both sides of
the identity, and so

ESτ = EτEξ1.

Since Eτ<∞ by hypothesis, it follows that ESτ <∞. This proves the result in the case of non-
negative summands.

Next, consider the general case. By hypothesis, E |ξ1| <∞, and so by what we have just shown
in the case of nonnegative summands,

E
τ∑

k=1
|ξk | <∞.

Now the random variables |Sτ∧n | are all dominated by
∑τ

k=1 |ξk |, and clearly Sτ∧n → Sτ, so the
dominated convergence theorem implies that

ESτ = lim
n→∞ESτ∧n = lim

n→∞E(τ∧n)Eξ1.

But the monotone convergence theorem implies that E(τ∧n) ↑ Eτ, so the theorem follows. �

Exercise 1. It is also possible to deduce Theorem 2 directly from the strong law of large num-
bers, without using the Doob theorem. Here is an outline. (a) Show that for any stopping time
τ, the sequence {ξ′k := ξk+τ}k≥1 consists of independent, identically distributed copies of ξ1, and
show that this sequence is independent of the stopping field Fτ. (b) Show that there is a stop-
ping time τ′ for the natural filtration of the sequence {ξ′k }k≥1 such that the joint distribution of

τ′ and
∑τ′

k=1ξ
′
k is identical to that of τ and Sτ. (c) By induction, construct independent copies

(τi ,Si
τi ) of (τ,Sτ). (d) Use that strong law of large numbers on both coordinates to deduce that

ESτ = Eτ ·Eξ1.

Theorem 3. (Wald’s Second Identity) If Eξi = 0 and σ2 = Eξ2
i <∞ then

(23) ES2
τ =σ2Eτ.

Proof. Under the hypotheses of the theorem the sequence S2
n −nσ2 is a martingale relative to

the natural filtration. Hence, by Doob’s Optional Sampling Formula,

ES2
τ∧n = E(τ∧n)σ2.

The right side converges to Eτσ2, by the monotone converges theorem, and by Fatou’s lemma,
ES2

τ ≤ liminfES2
τ∧n = Eτσ2. Consequently, Sτ ∈ L2. It follows, by another application of the

dominated convergence theorem, that

lim
n→∞ES2

τ1{τ>n} = 0.

Thus, to complete the proof it suffices to show that

lim
n→∞ES2

n1{τ>n} = 0.

For this, use the decomposition Sτ = Sn +(Sτ−Sn) on the event τ> n, and (exercise!) prove that

E((Sτ−Sn)1{τ>n} |Fn) = 0.
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HINT: Since τ is possibly unbounded, this is not trivial; you will need the fact that Sτ ∈ L2. �

Theorem 4. (Wald’s Third Identity) Assume that E exp{θξ1} = exp{−ψ(θ)} < ∞. Then for every
bounded stopping time,

(24) E exp{θSτ−τψ(θ)} = 1.

Proof. Since τ is finite, this follows directly from Doob’s theorem, as the sequence {exp{θSn −
nψ(θ)}}n≥0 is a martingale. �

In applications one would usually want to use the identity (24) for unbounded stopping times
τ. Unfortunately, it is not easy to find useful sufficient conditions for the validity of (24), and so
in most problems one must start with the identity for the truncated stopping times τ∧n and
attempt to deduce the desired identity from the dominated convergence theorem or some other
considerations. Example 3 below provides a simple example, and also shows that the identity
(24) may fail for some unbounded stopping times.

3.3. Examples.

Example 1. Let {Sn}n≥0 be simple random walk on the integers Z starting at S0 = 0. Thus, the
increments ξn = Sn −Sn−1 are independent, identically distributed Rademacher random vari-
ables, that is ξn = ±1 with probability 1

2 . Let T = T[a,b] be the first time that Sn exits the open
interval (a,b), where a < 0 < b are integers. It is easily established that the distribution of T has
finite exponential moments, by S. Stein’s trick (see below), and so ET <∞. Hence, by Wald I,

EST = ET ·0 = 0.

But ST can take only two possible values, a or B , so it follows that

0 = a(1−P {ST = b})+bP {ST = b},

and therefore

P {ST = b} = −a

b −a
.

Furthermore, Wald II applies, and since we now have the distribution of the exit point ST we
can explicitly calculate ES2

T =−ab. THis gives

ET = ES2
T =−ab.

NOTE. Stein’s trick is as follows. If there is any successive run of at least b − a consecutive
increments of +1 then the random walk must exit the interval (a,b) if it hasn’t already done
so. Now in any consecutive b − a steps, the chance that every step is to the right (i.e., +1) is
2−(b−a) > 0. Thus, if time is broken into successive blocks of length (b − a) then the number
of blocks until the first block of b − a consecutive +1 step has a geometric distribution, and
therefore exponentially decaying tail. It follows that T must have an exponentially decaying
tail.
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Example 2. Fix 1 > p > 1/2, and let {Sn}n≥0 be the random walk with independent, identically
distributed increments ξn = Sn −Sn−1 such that P {ξn = +1} = p = 1−P {ξn = −1}. Define τ to
be the first time that Sn = −1, or +∞ if there is no such n. Write q = 1−p. Then the sequence
(q/p)Sn is a martingale, as is easily checked, and so Doob’s Optional Sampling Formula implies
that for every n ≥ 1,

E

(
q

p

)Sτ∧n

= 1.

Since p > q , the sequence (q/p)Sτ∧n is bounded above by p/q . Moreover, by the strong law of
large numbers, Sn → ∞ as n → ∞, so on the event that τ = ∞, the martingale (q/p)Sτ∧n will
converge to 0, Therefore, by the dominated convergence theorem,

E

(
q

p

)Sτ
1{τ<∞} = 1.

But Sτ =−1 on the event that τ<∞, so it follows that

P {τ<∞} = q

p
.

Example 3. Once again let {Sn}n≥0 be simple random walk on Z started at S0 = 0, and define τ
be the first time that Sn = 1, or ∞ if there is no such n. By Example 1, the probability that the
random walk reaches +1 before −n is n/(n +1), for each integer n ≥ 1, so P {τ<∞} ≥ n/(n +1).
Since n is arbitrary, it follows that P {τ<∞} = 1.

Now let’s derive the generating function of the random variable τ. For this we use the third
Wald identity. For each θ, the moment generating function of the increments ξn is

Eeθξ1 = eθ+e−θ

2
= coshθ.

Therefore, by Wald,

E
eθSτ∧n

coshθτ∧n
= 1.

As n →∞, the integrand converges to eθSτ/coshθτ. To justify passing the limit under the ex-
pectation we shall use dominated convergence. Since Sτ∧n ≤ 1, if θ > 0 then exp{θSτ∧n} ≤ eθ.
Moreover, coshθ > 1, so

1/coshθτ∧n ≤ 1.

Hence, the dominated convergence theorem implies that for θ > 0,

E
eθSτ

coshθτ
= 1 =⇒

E(coshθ)−τ = e−θ.

To obtain the generating function of τ, make the change of variable z = 1/coshθ, which implies
that e−θ = x must satisfy the quadratic equation

x +x−1 = 2z−1 ⇒ e−θ = 1−
p

1− z2

z
.
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This shows that for 0 < z < 1,

E zτ = 1−
p

1− z2

z
.

4. MAXIMAL INEQUALITIES

The Optional Sampling Theorem has immediate implications concerning the pathwise be-
havior of martingales, submartingales, and supermartingales. The most elementary of these
concern the maxima of the sample paths, and so are called maximal inequalities.

Proposition 7. Let {Xn}n≥0 be a sub- or super-martingale relative to {Yn}n≥0, and for each n ≥ 0
define

Mn = max
0≤m≤n

Xm , and(25)

M∞ = sup
0≤m<∞

Xm = lim
n→∞Mn(26)

Then for any scalar α> 0 and any n ≥ 1,

P {Mn ≥α} ≤ E(Xn ∨0)/α if {Xn}n≥0 is a submartingale, and(27)

P {M∞ ≥α} ≤ E X0/α if {Xn}n≥0 is a nonnegative supermartingale.(28)

Proof. Assume first that {Xn}n≥0 is a submartingale. Without loss of generality, we may assume
that each Xn ≥ 0, because if not we may replace the original submartingale Xn by the larger
submartingale Xn ∨0. Define τ to be the smallest n ≥ 0 such that Xn ≥ α, or +∞ is there is no
such n. Then for any nonrandom n ≥ 0, the truncation τ∧n is a stopping time and so, by the
Optional Sampling Theorem,

E Xτ∧n ≤ E Xn .

But because the random variables Xm are nonnegative, and because Xτ∧n ≥α on the event that
τ≤ n,

E Xτ∧n ≥ E Xτ∧n1{τ≤ n}

≥ Eα1{τ≤ n}

=αP {τ≤ n}.

This proves the inequality (27).
The proof of inequality (28) is similar, but needs an additional limiting argument. First, for

any finite n ≥ 0, an argument parallel to that of the preceding paragraph shows that

P {Mn ≥α} ≤ E X0/α.

Now the random variables Mn are nondecreasing in n, and converge up to M∞, so for any ε> 0,
the event that M∞ ≥ α is contained in the event that Mn ≥ α− ε for some n. But by the last
displayed inequality and the monotone convergence theorem, the probability of this is no larger
than E X0/(α−ε). Since ε> 0 may be taken arbitrarily small, inequality (28) follows. �

Example: The St. Petersburg Game, Revisited. In Dostoevsky’s novel The Gambler, the hero
(?) is faced with the task of winning a certain amount of money at the roulette table, starting
with a fixed stake strictly less than the amount he wishes to take home from the casino. What
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strategy for allocating his stake will maximize his chance of reaching his objective? Here we
will consider an analogous problem for the somewhat simpler St. Petersburg game described
earlier. Suppose that the gambler starts with 100 roubles, and that he wishes to maximize his
chance of leaving with 200 roubles. There is a very simple strategy that gives him a .5 probability
of reaching his objective: stake all 100 roubles on the first coin toss, and quit the game after one
play. Is there a strategy that will give the gambler more than a .5 probability of reaching the
objective?

The answer is NO, and we may prove this by appealing to the Maximal Inequality (28) for
supermartingales. Let {Wn}n≥0 be any predictable sequence (recall that, for a non-clairvoyant
bettor, the sequence of wagers must be predictable). Then the gambler’s fortune after n plays
equals

Fn = 100+
n∑

k=1
Wkξk ,

where ξn is the martingale difference sequence of±1 valued random variables recording whether
the coin tosses are Heads or Tails. By Proposition 4, the sequence Fn is a martingale. Since each
Fn ≥ 0, the Maximal Inequality for nonnegative supermartingales applies, and we conclude that

P {sup
n≥0

Fn ≥ 200} ≤ E X0/200 = 1/2.

Exercise: What is an optimal strategy for maximizing the chance of coming away with at least
300 roubles?

Proposition 8. Let {Xn}n≥0 be a nonnegative supermartingale relative to a filtration {Fn}n≥0.
Then for any α> 0„

(29) P {sup
n≥0

Xn ≥α} ≤ E X0

α
.

Proof. Exercise. Hint: Begin by showing that for any stopping time τ the sequence {Xτ∧n}n≥0 is
a supermartingale. �

5. CONVERGENCE OF L2−BOUNDED MARTINGALES

To illustrate the usefulness of the Maximal Inequality, we shall prove a special case of the Mar-
tingale Convergence Theorem, which will be proved in full generality using different methods
in section 7 below.

Theorem 5. Let {Xn}n≥0 be a martingale relative to a filtration {Fn}n≥0 such that supn≥0 E |Xn |2 <
∞. Then

(30) X∞ = lim
n→∞Xn

exists almost surely. Furthermore, Xn → X∞ in L2, and the martingale is closed, that is, for every
n ≥ 0

(31) Xn = E(X∞ |Fn).
13



Proof. Recall (cf. Corollary 1) that the differences ξn := Xn − Xn−1 are uncorrelated, and conse-
quently orthogonal in L2, and that for each n,

E X 2
n = E X 2

0 +
n∑

k=1
Eξ2

k .

By hypothesis, the sequence E X 2
n is bounded, and so

∑
k≥1 Eξ2

k <∞. Moreover, the orthogonal-
ity of the increments ξ j implies that for any n,m ≥ 1,

E(Xn+m −Xn)2 =
n+m∑

k=n+1
Eξ2

k .

Thus, the sequence {Xn}n≥0 is Cauchy in L2, and so the completeness of L2 implies that there
exists X∞ ∈ L2 such that Xn → X∞ in the L2−norm.

The closure property (31) follows easily from L2−convergence. The martingale property im-
plies that for any two integers n,m ≥ 0,

Xn = E(Xn+m |Fn).

For random variables in L2, conditional expectation given Fn coincides with orthogonal projec-
tion onto the subspace L2(Ω,Fn ,P ). Since this orthogonal projection is a continuous mapping
on L2, the convergence Xn+m → X∞ (as m →∞) implies the closure property (31).

It remains to prove that Xn → X∞ almost surely. For this it suffices to show that for almost
every ω ∈Ω the sequence Xn(ω) is a Cauchy sequence of real numbers. To accomplish this, we
will exploit the fact that for any m the sequence

Xn+m −Xm =
n+m∑

j=n+1
ξ j for n = 0,1,2, . . .

is a martingale (relative to the filtration {Fn+m}n≥0). For each k ≥ 1, let nk be so large that∑
n≥nk

Eξ2
n < 8−k . Then by the Maximal Inequality,

P { sup
n≥nk

|Xn −Xnk | ≥ 2−k } ≤
∑

n≥nk
Eξ2

n

4−k
≤ 2−k .

Consequently, by the Borel-Cantelli Lemma, with probability one only finitely many of these
events will occur. Clearly, on the event that supn≥nk

|Xn − Xnk | < 2−k for all sufficiently large k
the sequence Xn is Cauchy. �

REMARK. This argument does not generalize to martingales that are bounded in L1 (or Lp , for
some p ∈ (1,2)), because for p 6= 2 there is no easy way to use Lp−boundedness to show that
the sequence Xn has an Lp−limit. Later we will show by more indirect arguments that if p > 1
the sequence Xn converges both almost surely and in Lp , but that although every L1−bounded
martingale converges almost surely, not every L1−bounded martingale converges in L1.
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6. UPCROSSINGS INEQUALITIES

The Maximal Inequalities limit the extent to which a submartingale or supermartingale may
deviate from it initial value. In particular, if Xn is a submartingale that is bounded in L1 then the
maximal inequality implies that sup Xn <∞ with probability one. The Upcrossings Inequalities,
which we shall discuss next, limit the extent to which a submartingale or supermartingale may
fluctuate around its initial value.

Fix a sequence Xn of real random variables. For any fixed constants α < β, define the up-
crossings count Nn((α,β]) to be the number of times that the finite sequence X0, X1, X2, . . . , Xn

crosses from the interval (−∞,α] to the interval (β,∞). Equivalently, define stopping times

σ0 := min{n ≥ 0 : Xn ≤α} τ1 := min{n ≥σ0 : Xn >β};(32)

σ1 := min{n ≥ τ1 : Xn ≤α} τ2 := min{n ≥σ1 : Xn >β};

· · ·
σm := min{n ≥ τm : Xn ≤α} τm+1 := min{n ≥σm : Xn >β},

with the convention that the min is +∞ if there is no such n. Then

Nn((α,β]) = max{m : τm ≤ n}.

Proposition 9. Let Xn be a submartingale relative to Yn . Then for any scalars α < β and all
nonnegative integers m,n,

(33) (β−α)E Nn((α,β]) ≤ E(Xn ∨0)+|α|.
Consequently, if supE Xn <∞, then E N∞((α,β]) <∞, and so the sequence {Xn}n≥0 makes only
finitely many upcrossings of any interval (α,β].

Proof. The trick is similar to that used in the proof of the Maximal Inequalities: define an ap-
propriate submartingale transform and then use Proposition 5. We begin by making two sim-
plifications: First, it is enough to consider the special case α= 0, because the general case may
be reduced to this by replacing the original submartingale Xn by the submartingale X ′

n = Xn −α
(Note that this changes the expectation in the inequality by at most |α|.) Second, if α= 0, then
it is enough to consider the special case where Xn is a nonnegative submartingale, because if
Xn is not nonnegative, it may replaced by X ′′

n = Xn ∨0, as this does not change the number of
upcrossings of (0,β] or the value of E(Xn ∨0).

Thus, assume that α= 0 and that Xn ≥ 0. Use the stopping times σm ,τm defined above (with
α= 0) to define a predictable sequence Zn as follows:

Zn = 0 if n ≤σ0;

Zn = 1 ifσm < n ≤ τm ;

Zn = 0 if τm < n ≤σm .

(EXERCISE: Verify that this is a predictable sequence.) This sequence has alternating blocks of
0s and 1s (not necessarily all finite). Over any complete finite block of 1s, the increments ξk

must sum to at least β, because at the beginning of a block (some time σm) the value of X is 0,
and at the end (the next τm), the value is back above β. Furthermore, over any incomplete block
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of 1s (even one which will never terminate!), the sum of the increments ξk will be ≥ 0, because
at the beginning σm of the block the value Xσm = 0 and Xn never goes below 0. Hence,

βNn(0,β] ≤
n∑

i=1
Ziξi = (Z ·X )n .

Therefore, by Proposition 5,

(β−α)E Nn(α,β] ≤ E(Z ·X )τ(Mn )

≤ E(Z ·X )n

≤ E Xn .

�

For nonnegative martingales – or more generally, nonnegative supermartingales – there is
an even better upcrossings inequality, due to Dubins. Whereas the upcrossings inequality (33)
only bounds the expected number of upcrossings, Dubins’ inequality shows that the number of
upcrossings actually has a geometrically decreasing tail.

Proposition 10. (Dubins) Let {Xn}n≥0 be a nonnegative supermartingale relative to some filtra-
tion, and for any 0 ≤ α < β <∞ define N ((α,β]) to be the number of upcrossings of the interval
(α,β] by the sequence Xn . Then

(34) P {N ((α,β]) ≥ k} ≤
(
α

β

)k

.

Proof. This is by induction on k: we will show that for each k ≥ 0,

(35) P (N ((α,β]) ≥ k +1) ≤
(
α

β

)
P (N ((α,β]) ≥ k).

Fix m ≥ 0 and let τ be the first time n ≥ m such that Xn ≥β, or +∞ if there is no such n. Clearly,
τ is a stopping time, so by Doob’s Optional Sampling Theorem, the stopped sequence Xτ∧n is a
nonnegative supermartingale. Consequently, for each n ≥ m,

E(Xτ∧n |Fm) ≤ Xm ;

since Xn ≥ 0 and Xτ∧n ≥ β on the event τ≤ n, it follows that P (τ≤ n |Fm) ≤ Xm/β, and since n
is arbitrary, the monotone convergence theorem implies that

(36) P (τ<∞|Fm) ≤ Xm

β
.

Let σ j and τ j be the stopping times defined inductively by (32). Then N ((α,β]) ≥ k if and
only if τk <∞, so to establish (35) it suffices to prove that

P (τk+1 <∞) ≤
(
α

β

)
P (τk <∞).

Obviously, τk+1 <∞ is possible only if σk <∞, so it will be enough to show that

P (τk+1 <∞) ≤
(
α

β

)
P (σk <∞).
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But for every integer m ≥ 0 the event σk = m is in Fm , and on this event it must be the case that
Xm ≤α, so (36) implies that

P (τk+1 <∞|Fm)1{σk=m} ≤α/β1{σk=m}.

Taking expectations on each side and summing on m does the rest. �

7. MARTINGALE CONVERGENCE THEOREMS

7.1. Pointwise convergence.

Martingale Convergence Theorem . Let {Xn} be an L1−bounded submartingale relative to a
sequence {Yn}, that is, a submartingale such that supn E |Xn | <∞. Then with probability one the
limit

(37) lim
n→∞Xn := X∞

exists, is finite, and has finite first moment.

Proof. By the Upcrossings Inequality, for any interval (α,β] with rational endpoints the se-
quence {Xn}n≥0 can make only finitely many upcrossings of (α,β]. Equivalently, the probability
that {Xn} makes infinitely many upcrossings of (α,β] is zero. Since there are only countably
many intervals (α,β] with rational endpoints, and since the union of countably many events of
probability zero is an event of probability zero, it follows that with probability one there is no
rational interval (α,β] such that Xn makes infinitely many upcrossings of (α,β].

Now if xn is a sequence of real numbers that makes only finitely many upcrossings of any
rational interval, then xn must converge to a finite or infinite limit (this is an easy exercise in
elementary real analysis). Thus, it follows that with probability one X∞ := limn→∞ Xn exists
(but may be ±∞). But Fatou’s Lemma implies that

E |X∞| ≤ liminf
n→∞ E |Xn | <∞,

and so the limit X∞ is finite with probability one. �

Corollary 2. Every nonnegative supermartingale converges almost surely.

Proof. If Xn is a nonnegative supermartingale, then −Xn is a nonpositive submartingale. More-
over, because Xn ≥ 0,

0 ≤ E |Xn | = E Xn ≤ E X0,

the latter because Xn is a supermartingale. Therefore −Xn is an L1−bounded submartingale, to
which the Martingale Convergence Theorem applies. �

7.2. L1 convergence and uniform integrability. The Martingale Convergence Theorem asserts,
among other things, that the limit X∞ has finite first moment. However, it is not necessarily the
case that E |Xn −X∞|→ 0. Consider, for example, the martingale Xn that records your fortune at
time n when you play the St. Petersburg game with the “double-or-nothing” strategy on every
play. At the first time you toss a Tail, you will lose your entire fortune and have 0 forever after.
Since this is (almost) certain to happen eventually, Xn → 0 almost surely. But E Xn = 1 6= 0 for
every n!
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Thus, not every L1−bounded martingale converges to its pointwise limit in L1. For which
martingales does L1 convergence occur?

Definition 4. A set of integrable random variables A = {Xλ}λ∈Λ is uniformly integrable if for
every δ> 0 there exists Cδ <∞ such that for all Xλ ∈ A,

(38) E |Xλ|1{|Xλ| ≥Cδ} ≤ δ.

Proposition 11. A set of integrable random variables A = {Xλ}λ∈Λ is uniformly integrable if and
only if for every δ> 0 there exists ε= ε(δ) > 0 such that for any event B satisfying P (B) < ε and all
Xλ ∈ A,

(39) E |Xλ|1B < δ.

Proposition 12. Any bounded subset of Lp , where p > 1, is uniformly integrable.

These are standard results in measure theory. The proofs are not difficult. Proposition 12 is
quite useful, as it provides a simple test for uniformly integrability.

Proposition 13. Let {Xn}n≥1 be a sequence of real random variables such that lim Xn = X exists
almost surely (or in probability). Then Xn → X in L1 if and only if the sequence {Xn}n≥1 is uni-
formly integrable. Furthermore, if the collection {Xn}n≥1 is uniformly integrable, then for every
σ−algebra G ,

(40) lim
n→∞E(Xn |G ) = E(X |G ) and lim

n→∞E(|Xn −X | |G ) = 0

Proof. I’ll prove the useful direction, that uniform integrability implies L1−convergence and
convergence of conditional expectations. The converse is easier, and is left as an exercise. As-
sume that {Xn}n≥1 is uniformly integrable; then {Xn}n≥1 is bounded in L1 (because the inequal-
ity (38) implies that the L1 norms are all bounded by C1 +1). Hence, by Fatou, the limit X ∈ L1.
It follows (exercise: try using Proposition 11) that the collection {|Xn − X |}n≥1 is uniformly in-
tegrable. Let Cδ <∞ be the uniformity constants for this collection (as in inequality (38)). Fix
δ> 0, and set

Yn := |Xn −X |1{|Xn −X | ≤Cδ}.

These random variables are uniformly bounded (by Cδ), and converge to 0 by hypothesis. Con-
sequently, by the dominated convergence theorem, EYn → 0. Therefore,

limsupE |Xn −X | ≤ δ.

Since δ > 0 can be taken arbitrarily small, it follows that the lim sup is actually 0. This proves
that Xn → X in L1, which in turn implies (by the triangle inequality) that E Xn → E X . The as-
sertions regarding conditional expectations can be proved by similar arguments, using the DCT
for conditional expectation. �

Corollary 3. Let Xn be a uniformly integrable submartingale relative to a filtration {Fn}n≥1.
Then the sequence Xn is bounded in L1, and therefore has a pointwise limit X ; moreover, it con-
verges to its almost sure limit X in L1. If Xn is a martingale, then it is closed, in the following
sense:

(41) Xn = E(X |Fn).
18



Corollary 4. Let (Fn)n≥0 be a filtration and set F∞ =σ(∪n≥0Fn) be the smallest σ−algebra con-
taining all of the σ−algebras Fn . If X ∈ L1(Ω,F∞,P ) is an integrable random variable that is
measurable with respect to F∞ then

lim
n→∞E(X |Fn) = X almost surely and in L1.

Proof. The martingale {E(X |Fn)}n≥0 is uniformly integrable, by Doob’s theorem (see note on
conditional expectation). By the martingale convergence theorem,

Y = lim
n→∞E(X |Fn)

exists almost surely, and since the martingale is uniformly integrable, the convergence holds
also in L1, and E(Y |Fn) = E(X |Fn) a.s. for every n, by Corollary 3. It follows that for every event
F ∈Fn ,

EY 1F = E X 1F .

But if this identity holds for every F ∈∪n≥0Fn then it must hold for every F ∈F∞ (why?). It then
follows that X = Y a.s. �

7.3. Reverse Martingales. The notion of a martingale extends to sequences Xn of random vari-
ables indexed by the negative integers n ≤ −1. A reverse or backward filtration is a sequence
{Fn}n≤−1 of σ−algebras indexed by non-positive integers such that Fn ⊂ Fn+1 for each n ≤
−2. A sequence of random variables or vectors {Xn}n≤0 is said to be adapted to the filtration
{Fn}n≤−1 if Xn is measurable relative to Fn for every n, and an adapted sequence Xn is a reverse
martingale if for every n ≤−1,

(42) E(Xn+1 |Fn) = Xn .

Reverse submartingales and supermartingales arise naturally in connection with continuous-
time processes, as we will show later.

Reverse Martingale Convergence Theorem . Let {Xn}n≤−1 be a reverse martingale relative to a
reverse filtration (Fn)n≤−1. Then

(43) lim
n→−∞Xn = E(X−1 | ∩n≤−1 Fn)

almost surely and in L1.

Proof. Both the Maximal Inequality and the Upcrossings Inequality apply to any finite stretch
{Xn}−m≤n≤−1 of the martingale. The Upcrossings Inequality (33) implies that for any two ratio-
nal numbers α < β the expected number of upcrossings of (α,β] by {Xn}−m≤n≤−1 is bounded
above by E(X−1 ∨0)+|α|/(β−α). Since this bound does not depend on −m, it follows that the
expected number of upcrossings of (α,β] by {Xn}−∞<n≤−1 is finite. Therefore, since the rationals
are countable, the (reverse) sequence {Xn}−∞<n≤−1 must converge with probability 1.

Denote by X−∞ the almost sure limit of the sequence. By the Maximal Inequality, X−∞ is al-
most surely finite, and it is clearly measurable with respect to F−∞ :=∩n≤−1Fn . Since a reverse
martingale is necessarily uniformly integrable, by Doob’s theorem, the convergence Xn → X−∞
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holds in L1 a well as almost surely. Thus,

X−∞ = E(X−∞ |F−∞)

= lim
m→−∞E(Xm |F−∞)

= lim
m→−∞EE(X−1 |Fm) |F−∞)

= E(X−1 |F−∞).

�

8. EXCHANGEABILITY

8.1. Strong law of large numbers for exchangeable random variables.

Definition 5. A sequence Y1,Y2, . . . of (not necessarily real-valued) random variables is said to
be exchangeable if its joint distribution is invariant under finite permutations of the indices,
that is, if for every N <∞ and every permutation σ of the integers 1,2, . . . , N ,

(Yσ(1),Yσ(2), . . . ,Yσ(N ))
D= (Y1,Y2, . . . ,YN ).

Observe that if the sequence Yn is exchangeable then the random variables Yn are identically
distributed. The converse is not true: if X is any non-constant random variable then the se-
quence X , X , X , . . . is trivially exchangeable, but its entries are not independent. Here is a more
interesting example. Let Θ be a random variable taking values in the unit interval [0,1], and let
{Un}n≥1 be independent, identically distributed Uniform- (0,1) random variables, independent
ofΘ; set

(44) Xn = 1{Un≤Θ}.

Then the sequence {Xn}n≥1 is exchangeable, as is easily checked, but the entries Xn are not
mutually independent unless Θ is constant. The de Finetti Theorem, whose proof will be given
later in this section, asserts that every exchangeable sequence of Bernoulli random variables
arises in this manner.

Definition 6. For any sequence {Yn}n≥1 define the exchangeable filtration as follows: for each
n ≥ 1, let E−n consist of all events B whose indicators 1B are Borel functions χB of the random
variables Y1,Y2, . . . such that for every permutation σ of [n],

(45) χB (Y1,Y2, . . . ) =χB (Yσ(1),Yσ(2), . . . ,Yσ(n),Yn+1, . . . ).

Let E =∩n≥1E−n ; this is called the exchangeable σ−algebra.

Proposition 14. Let Y1,Y2, . . . be an exchangeable sequence of integrable random variables, and
for each n ≥ 1 set

Θn = n−1
n∑

j=1
Y j .

Then the sequence {Θ−n}n≤−1 is a reverse martingale relative to the exchangeable filtration, and
consequently

(46) lim
n→∞

1

n

n∑
j=1

Y j = E(Y1 |E ) almost surely.
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Proof. It is clear that the sequence {Θ−n}n≤−1 is adapted, because for each n the random vari-
able Θn is invariant under permutations of Y1,Y2, . . . ,Yn . Let B ∈ E−n ; then the indicator func-
tion 1B = χB (Y1,Y2, . . . ) satisfies (45) for every permutation of [n]. Fix j ∈ [n] and let σ = σ j be
the permutation that swaps the letters 1 and j and leaves everything else fixed. Then equation
(45) and the exchangeability of the sequence Y1,Y2, . . . imply that

EY1χB (Y1,Y2, . . . ) = EY1χB (Yσ(1),Yσ(2), . . . ,Yσ(n),Yn+1, . . . )

= EYσ(1)χB (Yσ(1),Yσ(2), . . . ,Yσ(n),Yn+1, . . . )

= EY jχB (Yσ(1),Yσ(2), . . . ,Yσ(n),Yn+1, . . . )

= EY jχB (Y1,Y2, . . . ).

(Note: Exchangeability is used in the second equality.) It follows that for every j = 1,2, . . . ,n,

E(Y1 |E−n) = E(Y j |E−n).

Summing over j ≤ n and dividing by n yields

E(Y1 |E−n) = E(Θn |E−n) =Θn .

This prove that the sequence Θ−n is a reverse martingale. The strong law (46) now follows by
the Reverse Martingale Convergence Theorem. �

Essentially the same argument applies to functions of several arguments. This is a useful
observation, because many important statistics (for instance, all U−statistics) have this form.

Proposition 15. Let {Yn}n≥1 be an exchangeable sequence of real random variables, and let h :
Rd →R be any measurable function such that E |h(Y1,Y2, . . . ,Yd )| <∞. Then

(47) lim
n→∞

1

nd

d∑
i1=1

n∑
i2=1

· · ·
n∑

id=1
h(Yi1 ,Yi2 , . . . ,Yid ) = E(h(Y1,Y2, . . . ,Yd ) |E ).

Proof. Exercise. �

Since an i.i.d. sequence is exchangeable, Propositions 14 and 15 are valid when the random
variables Yn are i.i.d. It is therefore of interest to understand the exchangeableσ−algebra in this
special case.

Proposition 16. (Hewitt-Savage 0-1 Law) Let {Yn}n≥1 be independent, identically distributed
random variables, and let E be the exchangeable σ−algebra. Then every event F ∈ E has proba-
bility 0 or 1, and consequently, every E−measurable random variable is constant a.s.

Proof. Let {E−n}n≥1 be the exchangeable filtration, let Fn =σ(Y j ) j≤n be the natural filtration for
the sequence {Y j } j≥1, and let F∞ =σ(Y j ) j≥1. Then

E ⊂ ·· · ⊂ E−n−1 ⊂ E−n ⊂ ·· ·E−1 =F∞.

Since F∞ is the smallestσ−algebra containing ∪n≥1Fn , every event in E can be arbitrarily well-
approximated by events in ∪n≥1Fn . In particular, for any event A ∈ E there exist events An ∈Fn

such that

(48) lim
n→∞E |1A −1An | = 0.

21



This, of course, implies that P (A) = limn→∞ P (An). Now

1An =χAn (Y1,Y2, . . . ,Yn) and

1A =χA(Y1,Y2, . . . )

where χAn : Rn → R and χA : R∞ → R are Borel measurable. Furthermore, since A ∈ E , the
function χA satisfies (45) for every permutation σ of finitely many coordinates. In particular,
(45) holds for the permutation σn that swaps the first n integers with the second n integers:

σn( j ) = j +n for 1 ≤ j ≤ n;

σn( j +n) = j for 1+n ≤ j ≤ 2n.

Consequently, by (48),since the sequence {Y j } j≥1 is exchangeable,

(49) lim
n→∞E |1A −χAn (Yn+1,Yn+2, . . . ,Y2n)| = 0.

Combining (48)–(49) and using the trivial observation 1A = 1A1A we obtain

lim
n→∞E |1A −χAn (Y1,Y2, . . . ,Yn)χAn (Yn+1,Yn+2, . . . ,Y2n)| = 0.

Since the random variables Y j are independent and identically distributed, it follows (by taking
the absolute values outside of the expectation) that

P (A) = lim
n→∞P (An)2.

Thus, P (A) = P (A)2, and so P (A) = 0 or 1. �

Corollary 5. (Strong Law of Large Numbers) Let {Yn}n≥1 be independent, identically distributed
random variables with finite first moment E |Y1| <∞, and let Sn =∑n

k=1 Yk . Then with probability
one,

lim
n→∞

Sn

n
= EY1

almost surely and in L1.

Proof. By Proposition 14, the sequence Sn/n converges almost surely and in L1 to E(Y1|E ). The
Hewitt-Savage 0–1 Law implies thatE(Y1|E ) = EY1. �

8.2. De Finetti’s Theorem.

Theorem 6. (de Finetti) For any exchangeable sequence {Xn}n≥1 of Bernoulli random variables
there is a unique Borel probability measure µ on the unit interval [0,1] such that for any finite
sequence {e j } j≤m of 0s and 1s,

P {Xk = ek for every k ≤ m} =
∫

[0,1]
Pp {Xk = ek for every k ≤ m}µ(d p) where(50)

Pp {Xk = ek for every k ≤ m} = p
∑m

i=1 ei (1−p)m−∑m
i=1 ei .(51)

This theorem can be re-formulated as a statement describing the (regular) conditional dis-
tribution of the sequence {Xn}n≥1 given the exchangeable σ−algebra E . By Proposition 14, if
{Xn}n≥1 is an exchangeable Bernoulli sequence then

(52) Θ := lim
n→∞

1

n

n∑
j=1

X j
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exists almost surely, and the limitΘ is measurable relative to E .

Theorem 6’. (de Finetti) The conditional distribution of an exchangeable sequence {Xn}n≥1 of
Bernoulli random variables given its exchangeableσ−algebra E is the product Bernoulli measure
PΘ, whereΘ is given by (52). In other words, for any Borel set B ⊂ ,1∞,

(53) P ((X1, X2, . . . ) ∈ B |E ) = PΘ(X1, X2, . . . ) ∈ B) a.s.

Proof. First, observe that the second formulation (Theorem 6’) implies the first, with µ taken
to be the distribution of Θ. (Equation (50) follows from equation (53) by taking B to be the
cylinder set determined by the finite sequence {e j } j≤m .) Second, note that the uniqueness of µ
is an easy consequence of the fact that a probability distribution on [0,1] is uniquely determined
by its moments. The identity (50) implies that for any m ∈ Z+ the mth moment of µ is P {Xk =
1 ∀ k ≤ m}, so any two probability measures µ such that (50) must have the same moments, and
therefore must be equal.

To prove (53), it suffices to consider the case where B is a cylinder event, since these generate
the Borel field on {0,1}∞. Thus, fix a finite sequence {ei }i≤m of 0s and 1s; we must prove that

(54) P ((Xi = ei ∀ i ≤ m |E ) =Θ
∑

ei (1−Θ)m−∑
ei .

To this end, choose n > m and consider the conditional distribution of the random vector
(X1, X2, . . . , Xm) given E−n . We will argue that this conditional distribution is the same as the
result of sampling without replacement from a bin containing Sn balls marked 1 and n − Sn

balls marked 0, where Sn = ∑n
i=1 Xi . The random variable Sn is measurable relative to E−n ; in

fact,
E−n =σ(Sn , Xn+1, Xn+2, . . . ).

Since the random variables Xi are exchangeable, for any event A ∈ E−n , any integer 0 ≤ k ≤ n,
and any permutation σ of the indices in [n],

P ((Xi = ei ∀ i ≤ m)∩ A∩ (Sn = k)) = P ((Xσ(i ) = ei ∀ i ≤ m)∩ A∩ (Sn = k)).

But on the event Sn = k the fraction of permutations σ ∈ Sn (here Sn denotes the set of all n!
permutations of the set [n]]) such that Xσ(i ) = ei for all i ≤ m is(

n −k

m − r

)/(
n

k

)
where r =

m∑
i=1

ei .

Hence, averaging over all permutations of [n] gives

P ((Xi = ei ∀ i ≤ m)∩ A∩ (Sn = k)) = P (A∩ (Sn = k)

(
n −k

m − r

)/(
n

k

)
It follows that

P ((Xi = ei ∀ i ≤ m |E−n) =
(

n −Sn

m − r

)/(
n

Sn

)
.

This is the the distribution of a random sample of size m, drawn without replacement, from a
bin with Sn balls marked 1 and n −Sn balls marked 0. As every statistician knows (or ought to
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know), sampling without replacement is nearly indistinguishable from sampling with replace-
ment when the sample size m is small compared to the number of balls n in the bin. In partic-
ular, since Sn/n →Θ,

lim
n→∞

(
n −Sn

m −∑
ei

)/(
n

Sn

)
=Θ

∑
ei (1−Θ)m−∑

ei .

Therefore, by the reverse martingale theorem,

P ((Xi = ei ∀ i ≤ m |E ) = lim
n→∞P ((Xi = ei ∀ i ≤ m |E−n)

=Θ
∑

ei (1−Θ)m−∑
ei .

This proves (54). �

The proof of de Finetti’s theorem is specific to the case of Bernoulli random variables, as it
relies on the relation between sampling without replacement and sampling with replacement.
Nevertheless, the theorem itself holds more generally.

Theorem 7. (Hewitt-Savage-de Finetti) Let {Xn}n≥1 be an exchangeable sequence of random vari-
ables taking values in a Borel space, and let E be the exchangeableσ−algebra. Then the (regular)
conditional distribution of the sequence {Xn}n≥1 given E is almost surely a product measure, that
is, conditional on E the random variables Xn are i.i.d.

Proof. Recall that a Borel space is a measurable space (X ,G ) such that there is a bijective, bi-
measurable mapping T : X → [0,1]. Hence, without loss of generality, we may assume that the
random variables Xn are real-valued. Recall further that (i) the sequence space RN, with the
usual Borel sets, is a Borel space, and (ii) if a random variable Z takes values in a Borel space
then it has a regular conditional distribution given any σ−algebra. Thus, the sequence {Xn}n≥1

has a regular conditional distribution given E .
To show that the conditional distribution is, with probability one, a product measure it suffies

to show that for any bounded, Borel measurable functions ϕ j :R→R,

(55) E

(
m∏

j=1
ϕ j (X j )

∣∣∣E )
=

m∏
j=1

E(ϕ j (X1) |E ).

This will follow from Proposition 14 and Proposition 15. First, for each i ≤ m, Proposition 14
implies that

lim
n→∞

1

n

n∑
j=1

ϕi (X j ) = E(ϕi (X1) |E ).

Next, Proposition 15 implies

lim
n→∞

1

nm

n∑
i1=1

n∑
i2=1

· · ·
n∑

im=1

m∏
j=1

ϕ j (Xi j ) = E

(
m∏

j=1
ϕ j (X j )

∣∣∣E )
.

Finally, since
n∑

i1=1

n∑
i2=1

· · ·
n∑

im=1

m∏
j=1

ϕ j (Xi j ) =
m∏

j=1

(
m∑

i=1
ϕ j (Xi )

)
,
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it follows that

E

(
m∏

j=1
ϕ j (X j )

∣∣∣E )
=

m∏
j=1

E(ϕi (X1) |E ).

�
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