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1 Itô Integral: Definition and Basic Properties

1.1 Elementary integrands

Let Wt =W (t ) be a (one-dimensional) Wiener process, and fix an admissible filtration F.
An adapted process Vt is called elementary if it has the form

Vt =
KX

j=0
ª j 1(t j ,t j+1](t ) (1)

where 0 = t0 < t1 < ·· · < tK <1, and for each index j the random variable ª j is measur-
able relative to Ft j .

Definition 1. For a simple process {Vt }t∏0 satisfying equation (1), define the Itô integral
as follows:

It (V ) =
Zt

0
Vs dWs :=

K°1X

j=0
ª j (W (t j+1 ^ t )°W (t j ^ t )) (2)

(Note: The alternative notation It (V ) is commonly used in the literature, and I will use it
interchangeably with the integral notation.)

If the Brownian path t 7! W (t ) were of bounded variation, then the definition (2)
would coincide with the usual definition of a Lebesgue Stieltjes integral. But since the
paths of W are not of bounded variation, the extension of the integral (2) to a larger (and
more interesting) class of integrands must be done differently than in the usual Lebesgue
theory.

Properties of the Itô Integral:
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(A) Linearity: It (aV +bU ) = aIt (V )+bIt (U ).
(B) Measurability: It (V ) is adapted to F.
(C) Continuity: t 7! It (V ) is continuous.

These are all immediate from the definition.

Proposition 1. Assume that Vt and Ut are elementary processes satisfying EV 2
t +EU 2

t <1
for every t ∏ 0 (equivalently, the random variables ª j in the definition (1) all have finite
second moments). Then

E It (V ) = E It (U ) = 0, (3)

E It (U )It (V ) =
Zt

0
EVsUs d s, and hence (4)

E It (V )2 =
Zt

0
EV 2

s d s. (5)

Proof. Because the Itô integral is linear, it suffices to prove the formulas (3) and (4) in the
special case where the integrands are elementary processes with only one jump:

Ut = ª1(r,s](t ) and

Vt = ≥1(r,s](t )

where ª and ≥ are both Fr°measurable random variables with finite second moments.
(Exercise: Explain why we can assume that the interval (r, s] is the same for both pro-
cesses.) Now for any t , since ª,≥ are Fr°measurable and L2,

E It (U ) = E(ª(Wt^s °Wt^r ))

= EE(ª(Wt^s °Wt^r ) |Fr )

= EªE((Wt^s °Wt^r ) |Fr )

= 0,

and similarly,

E It (U )2 = E(ª2(Wt^s °Wt^r )2)

= EE(ª2(Wt^s °Wt^r )2 |Fr )

= Eª2E((Wt^s °Wt^r )2 |Fr )

=
Zt

0
EU 2

s d s.

(Note: We don’t know a priori that E It (U )2 < 1, but nevertheless we can still use the
“filtering” rule for conditional expectation, because all of the random variables involved
are nonnegative.) The covariance formula (4) now follows by polarization (that is, using
the variance formula for It (U +V ) and It (U °V ), then subtracting.)
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The equality (5) is of crucial importance – it asserts that the mapping that takes the
process V to its Itô integral at any time t is an L2°isometry relative to the L2°norm for
the product measure Lebesgue£P . This will be the key to extending the integral to a
wider class of integrands. The simple calculations that lead to (3) and (5) also yield the
following useful information about the process It (V ):

Proposition 2. Assume that Vt is elementary with representation (1), and assume that
each of the random variables ª j has finite second moment. Then It (V ) is an L2°martingale
relative to F. Furthermore, if

[I (V )]t :=
Zt

0
V 2

s d s; (6)

then It (V )2 ° [I (V )]t is a martingale.

Note: The process [I (V )]t is called the quadratic variation of the martingale It (V ). The
square bracket notation is standard in the literature.

Proof. First recall that a linear combination of martingales is a martingale, so to prove
that It (V ) is a martingale it suffices to consider elementary functions Vt with just one
step:

Vt = ª1(s,r ](t )

with ª measurable relative to Fs . For such a process V the integral It (V ) is zero for
all t ∑ s, and It (V ) = Ir (V ) for all t ∏ r , so to show that It (V ) is a martingale it is only
necessary to check that

E(It (V ) |Fu) = Iu(V ) for s ∑ u < t ∑ r.

() E(ª(Wt °Wr ) |Fu) = ª(Wu °Wr ).

But this follows routinely from basic properties of conditional expectation, since ª is
measurable relative to Fr and Wt is a martingale with respect to F.

It is only slightly more difficult to check that It (V )2°[I (V )]t is a martingale (you have
to decompose a sum of squares). Let Vt be elementary, and assume that the random
variables ª j in the representation (1) are in L2. We must show that for every s, t ∏ 0,

E(It+s(V )2 |Ft )°E([I (V )]t+s |Ft ) = It (V )2 ° [I (V )]t .

It suffices to prove this for values of s such that s ∑ t j ° t j°1 (where the t j are the discon-
tinuity points in the representation (1)), by the tower property of conditional expecta-
tions. Thus, we may assume without loss of generality that Vr is constant on the interval
r 2 [t , t + s], that is, Vr = ª where ª 2 L2 and ª is measurable with respect to Ft . Under
this assumption,

It+s(V )° It (V ) = ª(Wt+s °Ws).
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Now It (V ) is measurable relative to Ft , and hence, since the process Ir (V ) is a martingale
(by the first part of the proof),

E(It+s(V )2 |Ft ) = It (V )2 +E((It+s(V )° It (V ))2 |Ft )+2It (V )E((It+s(V )° It (V )) |Ft )

= It (V )2 +E((It+s(V )° It (V ))2 |Ft )

= It (V )2 +ª2E((Wt+s(V )°Wt (V ))2 |Ft )

= It (V )2 +ª2s

= It (V )2 +E([I (V )]t+s |Ft )° [I (V )]t .

1.2 Extension to the class VT

Fix T ∑1. Define the class VT to be the set of all adapted processes {Vt }t∑T , such that
there exists a sequence {V (n)

t }t∑T of elementary processes for which

lim
n!1

ZT

0
E |V (n)

t °Vt |2 d t = 0 (7)

Proposition 3. The space VT is a (real) Hilbert space when endowed with the inner product

hU ,V i=
ZT

0
EUt Vt d t . (8)

The elementary processes are dense in this Hilbert space. Furthermore, every process
{Vt }t2[0,T ]

R
VT is progressively measurable, that is, for every 0 ∑ s ∑ T , when Vt (!) =

V (t ,!) is viewed as a function of two variables (t ,!) 2 [0, s]£≠, it is jointly measurable
with respect to the product æ°algebra B[0,s] £Fs .

Remark 1. The last assertion – that every process in VT is progressively measurable – is
only worth mentioning because it guarantees that integrals with respect to the product
measure d t £dP are well-defined. This justifies changing the order of integration as
follows: Zs

0
EV 2

t d t = E
Zs

0
V 2

t d t := E [V ]s . (9)

Note: The inner integral [V ]s is called the observed quadratic variation of V up to time s.

Proof of Proposition 3. That VT is a Hilbert space follows by a routine modification of the
usual proof that an L2 space is a Hilbert space. The elementary functions are dense by
construction, because every element of VT is by definition a limit of elementary processes,
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by (7). Finally, progressive measurability follows because (i) every elementary process is
progressively measurable (exercise: why?); and (ii) limits of jointly measurable functions
are jointly measurable (check your real analysis text).

Proposition 4. If {Vt }t∑T is a uniformly bounded, adapted process with continuous sam-
ple paths then {Vt }t∑T is an element of the Hilbert space VT . More generally, let {Vt }t∑T be
an adapted process such that

lim
±!0

sup
s,t∑T : |t°s|∑±

E |Vt °Vs |2 = 0. (10)

Then {Vt }t∑T is an element of the Hilbert space VT .

Note 1. It follows, for instance, that the Wiener process {Wt }t∑T is an element of VT .

Proof. I will only prove the first assertion; the second is similar. Define V (n)
t to be the

elementary process obtained from Vt by setting V (n)
t equal to VkT /2n on the interval

t 2 [kT /2n , (k +1)T /2n). Because Vt has continuous paths,

lim
n!1

V (n)
t =Vt

for every t ∑ T . Since the process Vt is uniformly bounded, there is a constant C <1
such that |Vt |∑C for every t ∑ T , and so by the dominated convergence theorem

lim
n!1

E |V (n)
t °Vt |2 = 0

for every t ∑ T . Another application of the dominated convergence theorem (this time
for the Lebesgue integral) now implies that

lim
n!1

ZT

0
E |V (n)

t °Vt |2 d t = 0.

Theorem 1. (Itô Isometry) The Itô integral It (V ) defined by (2) extends to all integrands
V 2 VT in such a way that for each t ∑ T the mapping V 7! It (V ) is a linear isometry from
the space Vt to the L2°space of square-integrable random variables. In particular, if Vn is
any sequence of bounded elementary functions such that kVn °V k! 0, then for all t ∑ T ,

It (V ) =
Zt

0
V dW := L2 ° lim

n!1

Zt

0
Vn dW (11)

exists and is independent of the approximating sequence Vn.
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Proof. If Vn ! V in the norm (9) then the sequence Vn is Cauchy with respect to this
norm. Consequently, by Proposition 1, the sequence of random variables It (Vn) is
Cauchy in L2(P ), and so it has an L2°limit. Linearity and uniqueness of the limit both
follow by routine L2°arguments.

This extended Itô integral inherits all of the properties of the Itô integral for elemen-
tary functions. Following is a list of these properties. Assume that V 2 VT and t ∑ T .

Properties of the Itô Integral:

(A) Linearity: It (aV +bU ) = aIt (V )+bIt (U ).
(B) Measurability: It (V ) is progressively measurable.
(C) Continuity: t 7! It (V ) is continuous (for some version).
(D) Mean: E It (V ) = 0.
(E) Variance: E It (V )2 = kV k2

Vt
.

(F) Martingale Property: {It (V )}t∑T is an L2°martingale.
(G) Quadratic Martingale Property: {It (V )2 ° [I (V )]t }t∑T is an L1°martingale, where

[I (V )]t :=
Zt

0
V 2

s d s (12)

All of these, with the exception of (C), follow routinely from (11) and the correspond-
ing properties of the integral for elementary functions by easy arguments using DCT
and the like (but you should fill in the details for (F) and (G)). Property (C) follows from
Proposition 6 in the lecture notes on continuous martingales, because for elementary Vn

the process It (Vn) has continuous paths.

1.3 Quadratic Variation and
RT

0 W dW

There are tools for calculating stochastic integrals that usually make it unnecessary to
use the definition of the Itô integral directly. The most useful of these, the Itô formula,
will be discussed in the following sections. It is instructive, however, to do one explicit
calculation using only the definition. This calculation will show (i) that the Fundamental
Theorem of Calculus does not hold for Itô integrals; and (ii) the central importance of
the Quadratic Variation formula in the Itô calculus. The Quadratic Variation formula, in
its simplest guise, is this:

Proposition 5. For any T > 0,

P ° lim
n!1

2n°1X

k=0
(¢n

k W )2 = T, (13)
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where

¢n
k W :=W

µ
kT +T

2n

∂
°W

µ
kT

2n

∂
.

Proof. For each fixed n, the increments¢n
k are independent, identically distributed Gaus-

sian random variables with mean zero and variance 2°nT . Hence, the result follows from
the WLLN for ¬2°random variables.

Exercise 1. Prove that the convergence holds almost surely. HINT: Borel-Cantelli and
exponential estimates.

Exercise 2. Let f :R!R be a continuous function with compact support. Show that

lim
n!1

2n°1X

k=0
f (W (kT /2n))(¢n

k W )2 =
ZT

0
f (W (s))d s.

Exercise 3. Let W1(t ) and W2(t ) be independent Wiener processes. Prove that

P ° lim
n!1

2n°1X

k=0
(¢n

k W1)(¢n
k W2) = 0.

HINT: (W1(t )+W2(t ))/
p

2 is a standard Wiener process.

The Wiener process Wt is itself in the class VT , for every T <1, because

=
ZT

0
EW 2

s d s =
ZT

0
s d s = T 2

2
<1.

Thus, the integral
RT

0 W dW is well-defined and is an element of L2. To evaluate it, we
will use the most obvious approximation of Ws by elementary functions. For simplicity,
set T = 1. Let µ(n)

s be the elementary function whose jumps are at the dyadic rationals
1/2n ,2/2n ,3/2n , . . . , and whose value in the interval [k/2n , (k +1)/2n) is W (k/2n): that is,

µ(n)
s =

2nX

k=0
W (k/2n)1[k/2n ,(k+1)/2n )(s).

Lemma 1. limn!1
R1

0 E(Ws °µ(n)
s )2 d s = 0.

Proof. Since the simple process µ(n)
s takes the value W (k/2n) for all s 2 [k/2n , (k +1)/2n],

Z1

0
E(µs °µ(n)

s )2 d s =
2n°1X

k=0

Z(k+1)/2n

k/2n
E(Ws °Wk/2n )2 d s

=
2n°1X

k=0

Z(k+1)/2n

k/2n
(s ° (k/2n))d s

∑
2n°1X

k=0
2°2n = 2n/22n °! 0
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The Itô Isometry Theorem 1 now implies that the stochastic integral
R
µs dWs is the

limit of the stochastic integrals
R
µ(n)

s dWs . Since µ(n)
s is elementary, its stochastic integral

is defined to be Z
µ(n)

s dWs =
2n°1X

k=0
Wk/2n (W(k+1)/2n °Wk/2n ).

To evaluate this sum, we use the technique of “summation by parts” (the discrete ana-
logue of integration by parts). Here, the technique takes the form of observing that the
sum can be modified slightly to give a sum that “telescopes”:

W 2
1 =

2n°1X

k=0
(W 2

(k+1)/2n °W 2
k/2n )

=
2n°1X

k=0
(W(k+1)/2n °Wk/2n )(W(k+1)/2n +Wk/2n )

=
2n°1X

k=0
(W(k+1)/2n °Wk/2n )(Wk/2n +Wk/2n )

+
2n°1X

k=0
(W(k+1)/2n °Wk/2n )(W(k+1)/2n °Wk/2n )

= 2
2n°1X

k=0
Wk/2n (W(k+1)/2n °Wk/2n )

+
2n°1X

k=0
(W(k+1)/2n °Wk/2n )2

The first sum on the right side is 2
R
µ(n)

s dWs , and so converges to 2
R1

0 Ws dWs as n !
1. The second sum is the same sum that occurs in the Quadratic Variation Formula
(Proposition 5), and so converges, as n ! 1, to 1. Therefore,

R1
0 W dW = (W 2

1 ° 1)/2.
More generally,

ZT

0
Ws dWs =

1
2

(W 2
T °T ). (14)

Note that if the Itô integral obeyed the Fundamental Theorem of Calculus, then the value
of the integral would be

Zt

0
Ws dWs =

Zt

0
W (s)W 0(s)d s =

W 2
s

2

ØØØ
t

0
=

W 2
t

2

Thus, formula (14) shows that the Itô calculus is fundamentally different than ordinary
calculus.
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1.4 Stopping Rule for Itô Integrals

Proposition 6. Let Vt 2 VT and let ø ∑ T be a stopping time relative to the filtration F.
Then Zø

0
Vs dWs =

ZT

0
Vs1[0,ø](s)dWs . (15)

In other words, if the Itô integral It (V ) is evaluated at the random time t = ø, the result is
a.s. the same as the Itô integral IT (V 1[0,ø]) of the truncated process Vs1[0,ø](s).

Proof. First consider the special case where both Vs and ø are elementary (in particular,
ø takes values in a finite set). Then the truncated process Vs1[0,ø](s) is elementary (Exer-
cise ?? above), and so both sides of (15) can be evaluated using formula (2). It is routine
to check that they give the same value (do it!).

Next, consider the case where V is elementary and ø ∑ T is an arbitrary stopping
time. Then there is a sequence øm ∑ T of elementary stopping times such that øm # ø. By
path-continuity of It (V ) (property (C) above),

lim
n!1

Iøn (V ) = Iø(V ).

On the other hand, by the dominated convergence theorem, the sequence V 1[0,øn ] con-
verges to V 1[0,ø] in VT°norm, so by the Itô isometry,

L2 ° lim
n!1

IT (V 1[0,øn ]) = IT (V 1[0,ø]).

Therefore, the equality (15) holds, since it holds for each øm .

Finally, consider the general case V 2 VT . By Proposition ??, there is a sequence Vn of
bounded elementary functions such that Vn !V in the VT°norm. Consequently, by the
dominated convergence theorem, Vn1[0,ø] !V 1[0,ø] in VT°norm, and so

IT (Vn1[0,ø]) °! IT (V 1[0,ø])

in L2, by the Itô isometry. But on the other hand, Doob’s Maximal Inequality (see Propo-
sition ??), together with the Itô isometry, implies that

max
t∑T

|It (Vn)° It (V )|°! 0

in probability. The equality (15) follows.

Corollary 1. (Localization Principle) Let ø∑ T be a stopping time. Suppose that V ,U 2 VT

are two processes that agree up to time ø, that is, Vt 1[0,ø](t ) =Ut 1[0,ø](t ). Then
Zø

0
U dW =

Zø

0
V dW. (16)

Proof. Immediate from Proposition 6.
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1.5 Extension to the Class WT

Fix T ∑ 1. Define W = WT to be the class of all progressively measurable processes
Vt =V (t ) such that

P

ΩZT

0
V 2

s d s <1
æ
= 1 (17)

Proposition 7. Let V 2WT , and for each n ∏ 1 define øn = T ^ inf{t :
Rt

0 V 2
s d s ∏ n}. Then

for each n the process V (t )1[0,øn ](t ) is an element of VT , and

lim
n!1

Zt

0
Vs1[0,øn ](s)dWs :=

Zt

0
Vs dWs := It (V ) (18)

exists almost surely and varies continuously with t ∑ T . The process {It (V )}t∑T is called
the Itô integral process associated to the integrand V .

Proof. First observe that limn!1øn = T almost surely; in fact, with probability one, for all
but finitely many n it will be the case that øn = T . Let Gn = {øn = T }. By the Localization
Principle (Corollary 1and the Stopping Rule, for all n,m,

Zt^øn

0
Vs1[0,øn+m ](s)dWs =

Zt

0
Vs1[0,øn ](s)dWs .

Consequently, on the event Gn ,
Zt

0
Vs1[0,øn+m ](s)dWs =

Zt

0
Vs1[0,øn ](s)dWs

for all m = 1,2, . . . . Therefore, the integrals stabilize on the event Gn , for all t ∑ T . Since
the events Gn converge up to an event of probability one, it follows that the integrals
stabilize a.s. Continuity in t follows because each of the approximating integrals is con-
tinuous.

Caution: The Itô integral defined by (18) does not share all of the properties of the Itô
integral for integrands of class VT . In particular, the integrals may not have finite first
moments; hence they are no longer necessarily martingales; and there is no Itô isometry.

2 The Itô Formula

2.1 Itô formula for Wiener functionals

The cornerstone of stochastic calculus is the Itô Formula, the stochastic analogue of the
Fundamental Theorem of (ordinary) calculus. The simplest form is this:
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Theorem 2. (Univariate Itô Formula) Let u(t , x) be twice continuously differentiable in x
and once continuously differentiable in t . If Wt is a standard Wiener process, then

u(t ,Wt )°u(0,0) =
Zt

0
us(s,Ws)d s +

Zt

0
ux(s,Ws)dWs +

1
2

Zt

0
uxx(s,Ws)d s. (19)

Proof. See section 2.5 below.

One of the reasons for developing the Itô integral for filtrations larger than the min-
imal filtration is that this allows us to use the Itô calculus for functions and processes
defined on several independent Wiener processes. Recall that a k°dimensional Wiener
process is an Rk°vector-valued process

W(t ) = (W1(t ),W2(t ), . . . ,Wk (t )) (20)

whose components Wi (t ) are mutually independent one-dimensional Wiener processes.
Assume that F is a filtration that is admissible for each component process, that is, such
that each process Wi (t ) is a martingale relative to F. Then a progressively measurable
process Vt relative to F can be integrated against any one of the Wiener processes Wi (t ).
If V(t ) is itself a vector-valued process each of whose components Vi (t ) is in the class WT ,
then define Zt

0
V ·dW =

kX

i=1

Zt

0
Vi (s)dWi (s) (21)

When there is no danger of confusion I will drop the boldface notation.

Theorem 3. (Multivariate Itô Formula) Let u(t ,x) be twice continuously differentiable
in each xi and once continuously differentiable in t . If Wt is a standard k°dimensional
Wiener process, then

u(t ,Wt )°u(0,0) =
Zt

0
us(s,Ws)d s +

Zt

0
rxu(s,Ws) · dWs +

1
2

Zt

0
¢xu(s,Ws)d s. (22)

Here rx and ¢x denote the gradient and Laplacian operators in the x°variables, respec-
tively.

Proof. This is essentially the same as the proof in the univariate case.

Example 1. First consider the case of one variable, and let u(t , x) = x2. Then uxx = 2
and ut = 0, and so the Itô formula gives another derivation of formula (14). Actually, the
Itô formula will be proved in general by mimicking the derivation that led to (14), using
a two-term Taylor series approximation for the increments of u(t ,W )t ) over short time
intervals.
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Example 2. (Exponential Martingales.) Fix µ 2 R, and let u(t , x) = exp{µx ° µ2t/2}. It
is readily checked that ut +uxx/2 = 0, so the two ordinary integrals in the Itô formula
cancel, leaving just the stochastic integral. Since ux = µu, the Itô formula gives

Z µ(t ) = 1+
Zt

0
µZ µ(s)dW (s) (23)

where
Z µ(t ) := exp

©
µW (t )°µ2t/2

™
.

Thus, the exponential martingale Zµ(t ) is a solution of the linear stochastic differential
equation d Zt = µZt dWt .

Example 3. A function u :Rk !R is called harmonic in a domain D (an open subset of
Rk ) if it satisfies the Laplace equation ¢u = 0 at all points of D . Let u be a harmonic func-
tion on Rk that is twice continuously differentiable. Then the multivariable Itô formula
implies that if Wt is a k°dimensional Wiener process,

u(Wt ) = u(W0)+
Zt

0
ru(Ws)dWs .

It follows, by localization, that if ø is a stopping time such that ru(Ws) is bounded for
s ∑ ø then u(Wt^ø) is an L2 martingale.

Exercise 4. Check that in dimension d ∏ 3 the Newtonian potential u(x) = |x|°d+2 is
harmonic away from the origin. Check that in dimension d = 2 the logarithmic potential
u(x) = log |x| is harmonic away from the origin.

2.2 Itô processes

An Itô process is a solution of a stochastic differential equation. More precisely, an Itô
process is an F°progressively measurable process Xt that can be represented as

Xt = X0 +
Zt

0
As d s +

Zt

0
Vs · dWs 8 t ∑ T, (24)

or equivalently, in differential form,

d X (t ) = A(s)d s +V (s) · dW (t ). (25)

Here W (t ) is a k°dimensional Wiener process; V (s) is a k°dimensional vector-valued
process with components Vi 2WT ; and At is a progressively measurable process that is
integrable (in t ) relative to Lebesgue measure with probability 1, that is,

ZT

0
|As |d s <1 a.s. (26)
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If X0 = 0 and the integrand As = 0 for all s, then call Xt = It (V ) an Itô integral process. Note
that every Itô process has (a version with) continuous paths. Similarly, a k°dimensional
Itô process is a vector-valued process Xt with representation (24) where U ,V are vector-
valued and W is a k°dimensional Wiener process relative to F. (Note: In this case

R
V dW

must be interpreted as
R

V · dW .) If Xt is an Itô process with representation (24) (either
univariate or multivariate), its quadratic variation is defined to be the process

[X ]t :=
Zt

0
|Vs |2 d s. (27)

If X1(t ) and X2(t ) are Itô processes relative to the same driving d°dimensional Wiener
process, with representations (in differential form)

d Xi (t ) = Ai (s)d s +
dX

j=1
Vi j (t )dW (t ), (28)

then the quadratic covariation of X1 and X2 is defined by

d [Xi , X j ]t :=
dX

l=1
Vi l (t )Vj l (t )d t . (29)

Theorem 4. (Univariate Itô Formula) Let u(t , x) be twice continuously differentiable in x
and once continuously differentiable in t , and let X (t ) be a univariate Itô process. Then

du(t , X (t )) = ut (t , X (t ))d t +ux(t , X (t ))d X (t )+ 1
2

uxx(t , X (t ))d [X ]t . (30)

Note: It should be understood that the differential equation in (30) is shorthand for an
integral equation. Since u and its partial derivatives are assumed to be continuous, the
ordinary and stochastic integrals of the processes on the right side of (30) are well-defined
up to any finite time t . The differential d X (t ) is interpreted as in (25).

Theorem 5. (Multivariate Itô Formula) Let u(t , x) be twice continuously differentiable
in x 2 Rk and once continuously differentiable in t , and let X (t ) be a k°dimensional Itô
process whose components Xi (t ) satisfy the stochastic differential equations (28). Then

du(t , X (t )) = us(s, X (s))d s +rxu(s, Xs)d X (s)+ 1
2

kX

i , j=1
uxi ,x j (s, X (s))d [Xi , X j ](s) (31)

Note: Unlike the Multivariate Itô Formula for functions of Wiener processes (Theorem 3
above), this formula includes mixed partials.

Theorems4 and ?? can be proved by similar reasoning as in sec. 2.5 below. Alterna-
tively, they can be deduced as special cases of the general Itô formula for Itô integrals
relative to continuous local martingales. (See notes on web page.)
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2.3 Example: Ornstein-Uhlenbeck process

Recall that the Ornstein-Uhlenbeck process with mean-reversion parameter Æ> 0 is the
mean zero Gaussian process Xt whose covariance function is E Xs Xt = exp{°Æ|t ° s|}.
This process is the continuous-time analogue of the autoregressive°1 process, and is a
weak limit of suitably scaled AR processes. It occurs frequently as a weak limit of stochas-
tic processes with some sort of mean-reversion, for much the same reason that the clas-
sical harmonic oscillator equation (Hooke’s Law) occurs in mechanical systems with a
restoring force. The natural stochastic analogue of the harmonic oscillator equation is

d Xt =°ÆXt d t +dWt ; (32)

Æ is called the relaxation parameter. To solve equation (32), set Yt = eÆt Xt and use the
Itô formula along with (32) to obtain

dYt = eÆt dWt .

Thus, for any initial value X0 = x the equation (32) has the unique solution

Xt = X0e°Æt +e°Æt
Zt

0
eÆs dWs . (33)

It is easily checked that the Gaussian process defined by this equation has the covariance
function of the Ornstein-Uhlenbeck process with parameterÆ. Since Gaussian processes
are determined by their means and covariances, it follows that the process Xt defined by
(33) is a stationary Ornstein-Uhlenbeck process, provided the initial value X0 is chosen
to be a standard normal variate independent of the driving Brownian motion Wt .

2.4 Example: Brownian bridge

Recall that the standard Brownian bridge is the mean zero Gaussian process {Yt }0∑t∑1

with covariance function EYsYt = s(1° t ) for 0 < s ∑ t < 1. The Brownian bridge is the
continuum limit of scaled simple random walk conditioned to return to 0 at time 2n. But
simple random walk conditioned to return to 0 at time 2n is equivalent to the random
walk gotten by sampling without replacement from a box with n tickets marked +1 and n
marked °1. Now if S[nt ] = k, then there will be an excess of k tickets marked °1 left in the
box, and so the next step is a biased Bernoulli. This suggests that, in the continuum limit,
there will be an instantaneous drift whose direction (in the (t , x) plane) points to (1,0).
Thus, let Wt be a standard Brownian motion, and consider the stochastic differential
equation

dYt =° Yt

1° t
d t +dWt (34)

14



for 0 ∑ t ∑ 1. To solve this, set Ut = f (t )Yt and use (34) together with the Itô formula
to determine which choice of f (t ) will make the d t terms vanish. The answer is f (t ) =
1/(1° t ) (easy exercise), and so

d((1° t )°1Yt ) = (1° t )°1 dWt .

Consequently, the unique solution to equation (34) with initial value Y0 = 0 is given by

Yt = (1° t )
Zt

0
(1° s)°1 dWs . (35)

It is once again easily checked that the stochastic process Yt defined by (35) is a mean
zero Gaussian process whose covariance function matches that of the standard Brownian
bridge. Therefore, the solution of (34) with initial condition Y0 = 0 is a standard Brownian
bridge.

2.5 Proof of the univariate Itô formula

For ease of notation, I will consider only the case where the driving Wiener process is
1°dimensional; the argument in the general case is similar. First, I claim that it suffices
to prove the result for functions u with compact support. This follows by a routine
argument using the Stopping Rule and Localization Principle for Itô integrals: let Dn be
an increasing sequence of open sets in R+£R that exhaust the space, and let øn be the
first time that Xt exits the region Dn . Then by continuity, u(t ^øn , X (t ^øn)) ! u(t , X (t ))
as n !1, and Zø^øn

0
°!

Zt

0

for each of the integrals in (30). Thus, the result (30) will follows from the corresponding
formula with t replaced by t ^øn . For this, the function u can be replaced by a function
ũ with compact support such that ũ = u in Dn , by the Localization Principle. (Note: the
Localization Lemma in the Appendix to the notes on harmonic functions implies that
there is a C1 function √n with compact support that takes values between 0 and 1 and
is identically 1 on Dn . Set û = u√n to obtain a C 2 function with compact support that
agrees with u on Dn .) Finally, if (30) can be proved with u replaced by ũ, then it will hold
with t replaced by t ^øn , using the Stopping Rule again. Thus, we may now assume that
the function u has compact support, and therefore that it and its partial derivatives are
bounded and uniformly continuous.

Second, I claim that it suffices to prove the result for elementary Itô processes, that
is, processes Xt of the form (24) where Vs and As are bounded, elementary processes.
This follows by a routine approximation argument, because any Itô process X (t ) can be
approximated by elementary Itô processes.

15



It remains to prove (30) for elementary Itô processes Xt and functions u of compact
support. Assume that X has the form (24) with

As =
X
≥ j 1[t j ,t j+1](s),

Vs =
X
ª j 1[t j ,t j+1](s)

where ≥ j ,ª j are bounded random variables, both measurable relative to Ft j . Now it is
clear that to prove the Itô formula (30) it suffices to prove it for t 2 (t j , t j+1) for each index
j . But this is essentially the same as proving that for an elementary Itô process X of the
form (24) with As = ≥1[a,b](s) and Vs = ª1[a,b](s), and ≥,ª measurable relative to Fa ,

u(t , Xt )°u(a, Xa) =
Zt

a
us(s, Xs)d s +

Zt

a
ux(s, Xs)d Xs +

1
2

Zt

a
uxx(s, Xs)d [X ]s

for all t 2 (a,b). Fix a < t and set T = t °a. Define

¢n
k X := X (a + (k +1)T /2n)°X (a +kT /2n),

¢n
kU :=U (a + (k +1)T /2n)°U (a +kT /2n), where

U (s) := u(s, X (s)); Us(s) = us(s, X (s)); Ux(s) = ux(s, X (s)); etc.

Notice that because of the assumptions on As and Vs ,

¢n
k X = ≥2°nT °1 +ª¢n

k W (36)

Now by Taylor’s theorem,

u(t , Xt )°u(a, Xa) =
2n°1X

k=0
¢n

kU (37)

=2°nT °1
2n°1X

k=0
Us(kT /2n)+

2n°1X

k=0
Ux(kT /2n)¢n

k X

+
2n°1X

k=0
Uxx(kT /2n)(¢n

k X )2/2+
2n°1X

k=0
Rn

k

where the remainder term Rn
k satisfies

|Rn
k |∑ "n(2°2n + (¢n

k X )2) (38)

and the constants "n converge to zero as n !1. (Note: This uniform bound on the re-
mainder terms follows from the assumption that u(s, x) is C 1£2 and has compact support,
because this ensures that the partial derivatives us and uxx are uniformly continuous
and bounded.)
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Finally, let’s see how the four sums on the right side of (37) behave as n !1. First,
because the partial derivative us(s, x) is uniformly continuous and bounded, the first
sum is just a Riemann sum approximation to the integral of a continuous function; thus,

lim
n!1

2°nT °1
2n°1X

k=0
Us(kT /2n) =

Zt

a
us(s, Xs)d s.

Next, by (36), the second sum also converges, since it can be split into a Riemann sum
for a Riemann integral and an elementary approximation to an Itô integral:

lim
n!1

2n°1X

k=0
Ux(kT /2n)¢n

k X =
Zt

a
ux(s, Xs)d Xs .

The third sum is handled using Proposition 5 on the quadratic variation of the Wiener
process, and equation (36) to reduce the quadratic variation of X to that of W (Exercise:
Use the fact that uxx is uniformly continuous and bounded to fill in the details):

lim
n!1

2n°1X

k=0
Uxx(kT /2n)(¢n

k X )2/2 = 1
2

Zt

a
uxx(s, Xs)d [X ]s .

Finally, by (38) and Proposition 5,

lim
n!1

2n°1X

k=0
Rn

k = 0.

3 Complex Exponential Martingales and their Uses

Assume in this section that Wt = (W 1
t ,W 2

t , . . . ,W d
t ) is a d°dimensional Brownian motion

started at the origin, and let F = {Ft }t∏0 be an admissible filtration.

3.1 Exponential Martingales

Let Vt be a progressively measurable, d°dimensional process such that for each T <1
the process Vt is in the class WT , that is,

P

ΩZT

0
kVsk2 d s <1

æ
= 1.
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Then the Itô formula (30) implies that the (complex-valued) exponential process

Zt := exp
Ω

i
Zt

0
Vs · dWs +

1
2

Zt

0
kVsk2 d s

æ
, t ∑ T, (39)

satisfies the stochastic differential equation

d Zt = i Zt Vt · dWt . (40)

This alone does not guarantee that the process Zt is a martingale, because without fur-
ther assumptions the integrand Zt Vt might not be in the class V 2

T . Of course, if the
integrand Vt is uniformly bounded for t ∑ T then so is Zt , and so the stochastic differ-
ential equation (40) exhibits Zt as the Itô integral of a process in V 2

T , which implies that
{Zt }t∑T is a martingale. This remains true under weaker hypotheses on Vt :

Proposition 8. Assume that for each T <1,

E exp
Ω

1
2

ZT

0
kVsk2 d s

æ
<1 (41)

Then the process Zt defined by (39) is a martingale, and in particular,

E ZT = 1 for each T <1. (42)

Proof. Set

Xt = X (t ) =
Zt

0
Vs · dWs ,

[X ]t = [X ](t ) =
Zt

0
kVsk2 d s, and

øn = inf{t : [X ]t = n}

Since Z (t ^ øn)V (t ^ øn) is uniformly bounded for each n, the process Z (t ^ øN ) is a
bounded martingale. But

|Z (t ^øn)| = exp{i X (t ^øn)+ [X ](t ^øn)/2} ∑ exp{[X ]t /2},

so the random variables Z (t^øn) are all dominated by the L1 random variable exp{[X ]t /2}
(note that the hypothesis (41) is the same as the assertion that exp{[X ]t /2} has finite first
moment). Therefore the dominated convergence theorem for conditional expectations
implies that the process Z (t ) is a martingale.
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3.2 Radial part of a d°dimensional Brownian motion

Proposition 9. If £t is any progressively measurable process taking values in the unit
sphere of Rd then the Itô process

Xt = X (t ) =
Zt

0
£s · dWs

is a standard one-dimensional Brownian motion.

Proof. Since Xt has continuous paths (recall that all Itô integral processes do), it suffices
to show that Xt has stationary, independent increments and that the marginal distribu-
tion of Xt is Normal-(0, t ). Both of these tasks can be done simultaneously via character-
istic functions (Fourier transforms), by showing that for all choices 0 = t0 < t1 < ·· · < tk

and all Ø1,Ø2, . . . ,Øk 2R,

E exp

(
kX

j=1
iØ j (X (t j )°X (t j°1))+

kX

j=1
Ø2

j (t j ° ti°1)/2

)

= 1.

Define

Vt =Ø j£(t ) if t j°1 < t ∑ t j and

Vt = 0 if t > tk ;

then

E exp

(
kX

j=1
iØ j (X (t j )°X (t j°1))+

kX

j=1
Ø2

j (t j ° ti°1)/2

)

= E exp
Ω

i
Ztk

0
Vs dWs +

1
2

Ztk

0
V 2

s d s

æ
.

The process Vt is clearly bounded in norm (by max |Øi |), so Proposition 8 implies that
the process

Zt := exp
Ω

i
Zt

0
Vs dWs +

1
2

Zt

0
V 2

s d s

æ

is a martingale, and it follows that
E Ztk = 1.
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A Bessel process with dimension parameter d is a solution (or a process whose law
agrees with that of a solution) of the stochastic differential equation

d Xt =
d °1
2Xt

d t +dWt , (43)

where Wt is a standard one-dimensional Brownian motion. The problems of existence
and uniqueness of solutions to the Bessel SDEs (43) will be addressed later. The next
result shows that solutions exist when d is a positive integer.

Proposition 10. Let Wt = (W 1
t ,W 2

t , . . . ,W d
t ) be a d°dimensional Brownian motion started

at a point x 6= 0, and let Rt = |Wt | be the modulus of Wt . Then Rt is a Bessel process of
dimension d started at |x|.

Proof. The process Rt is gotten by applying a smooth (everywhere except at the origin)
real-valued function to d°dimensional Brownian motion. Since d°dimensional Brow-
nian motion started at a point x 6= 0 will never visit the origin, Ito’s formula applies, and
(after a brief adventure in multivariate calculus) shows that for any t > 0

Rt °R0 =
Zt

"
£s ·dWs +

Zt

0
(d °1)/(2Rs)d s

By Proposition 9, the first integral determines a standard, one-dimensional Brownian
motion.

Remark 2. In section 4 we will use the stochastic differential equation (43) to show that
the law of one-dimensional Brownian motion conditioned to stay positive forever coin-
cides with that of the radial part Rt of a 3°dimensional Brownian motion.

3.3 Time Change for Itô Integral Processes

Let Xt = It (V ) be an Itô integral process, where the integrand Vs is a d°dimensional,
progressively measurable process in the class WT . One should interpret the magnitude
|Vt | as representing instantaneous volatility – in particular, the conditional distribution
of the increment X (t +±t )° X (t ) given the value |Vt | = æ is approximately, for ±t ! 0,
the normal distribution with mean zero and variance æ±t . One may view this in one
of two ways: (1) the volatility |Vt | is a damping factor – that is, it multiplies the next
Wiener increment by |Vt |; alternatively, (2) |Vt | is a time regulation factor, either slowing
or speeding the normal rate at which variance is accumulated. The next theorem makes
this latter viewpoint precise:
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Theorem 6. Every Itô integral process is a time-changed Wiener process. More precisely, let
Xt = It (V ) be an Itô integral process with quadratic variation [X ]t =

Rt
0 |Vs |2 d s. Assume

that [X ]t <1 for all t <1, but that [X ]1 = limt!1[X ]t =1 with probability one. For
each s ∏ 0 define

ø(s) = inf{t > 0 : [X ]t = s}. (44)

Then the process
W̃ (s) = X (ø(s)), s ∏ 0 (45)

is a standard Wiener process.

Note: A more general theorem of P. LÉVY asserts that every continuous martingale (not
necessarily adapted to a Wiener filtration) is a time-changed Wiener process.

Proof. To prove Theorem 6 we must show (i) that the time-changed process W̃s has con-
tinuous sample paths, and (ii) that its increments are independent, mean-zero Gaussian
random variables with the correct variances. The proof of (i) is a bit subtle, because
the process ø(s) might have jumps; we will return to it after dealing with (ii). For (ii)
we will follow the same strategy as in Proposition 9: we will show that for all choices of
0 = t0 < t1 < ·· · < tk and all Ø1,Ø2, . . . ,Øk 2R,

E exp

(
kX

j=1
iØ j (W̃ (t j )°W̃ (t j°1))+

kX

j=1
Ø2

j (t j ° ti°1)/2

)

= 1. (46)

Since the process {W̃s}s∏0 is adapted to the filtration (Fø(s))s∏0, to prove (46) it suffices to
show that for all s, t ∏ 0 and any µ 2R,

E
°
exp

©
iµ(W̃t+s °W̃s)+µ2t/2

™
|Fø(s)

¢
= 1. (47)

But by Proposition 8, the process

Zµ(r ) := exp{iµX (r ^ø(s + t ))+µ2(r ^ø(s + t ))/2}

is a martingale (the truncation at ø(s+t ) guarantees that the integrand in (41) is bounded),
and so (47) follows from the Optional Sampling Formula for martingales.

It remains to prove that the sample paths of W̃s are, with probability one, continuous.
Clearly, if the mapping s 7! ø(s) is continuous then s 7! W̃s = Xø(s) is also continuous,
because the process Xt = It (V ), being an Itô integral process, has continuous sample
paths. The difficulty is that s 7! ø(s) might not be continuous: in particular, if Vs = 0 a.e.
on some time interval s 2 (a,b) then the process ø(s) will have a jump discontinuity of
size at least b °a at s = [X ]a . Thus, what we must show is that Xt on any time interval
t 2 (a,b) such that [X ]a = [X ]b . This is proved in the following lemma.
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Lemma 2. Let (Vs)s∏0 be a progressively measurable process such that
RT

0 V 2
s d s <1 for

every T < 1. Let Xt = It (V ) be the corresponding Itô integral process, and denote by
[X ]t =

Rt
0 V 2

s d s its quadratic variation. Then with probability one, for any nonempty time
interval (a,b) on which [X ]t is contant, the process Xt is also constant.

Proof. Clearly, it suffices to prove that, for every nonempty interval (a,b) with rational
endpoints a,b, we have Xb = Xa almost surely on the event [X ]b = [X ]a . Furthermore,
by a routine localization argument, it suffices to consider the case where

RT
0 V 2

s <C for
some constant C <1. In this case, the integrand (Vs)s∏0 is in the class VT for every T <1,
so the process X 2

t ° [X ]t is a martingale.

Fix a rational interval (a,b) Ω (0,1) and a small "> 0, and define

ø" = inf{t ∏ a : [X ]t ° [X ]a = "}.

By Doob’s maximal inequality,

±2P { max
a∑t∑b^ø"

|Xt °Xa |∏ ±} ∑ E |Xb^ø" °Xa |2

= E [X ]b^ø" °E [X ]a ∑ ".

Consequently, by the Borel-Cantelli lemma, with probability one only finitely many of
the events

{ max
a∑t∑b^ø8°n

|Xt °Xa |∏ 2°n±}

will occur. But on the event {[X ]b = [X ]a}, for every n = 1,2, . . . it must be the case that
ø8°n ∏ b; therefore, on this event

max
a∑t∑b

|Xt °Xa | = 0 with probability one.

Corollary 2. Let Xt = It (V ) be an Itô integral process with quadratic variation [X ]t , and
let ø(s) be defined by (44). Then for each Æ> 0,

P { max
t∑ø(s)

|Xt |∏Æ} ∑ 2P {Ws ∏Æ}. (48)

Consequently, the random variable maxt∑ø(s) |Xt | has finite moments of all order, and even
a finite moment generating function.

Proof. The maximum of |X (t )| up to time ø(s) coincides with the maximum of the Wiener
process W̃ up to time s, so the result follows from the Reflection Principle.
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3.4 Itô Representation Theorem

Theorem 7. Let Wt be a d°dimensional Wiener process and let FW = (FW
t )0∑t<1 be the

minimal filtration for Wt . Then for any FW
T °measurable random variable Y with mean

zero and finite variance, there exists a (d°dimensional vector-valued) process Vt in the
class VT such that

Y = IT (V ) =
ZT

0
Vs · dWs . (49)

Corollary 3. If {Mt }t∑T is an L2° bounded martingale relative to the minimal filtration
FW of a Wiener process, then Mt = It (V ) a.s. for some process Vt in the class VT , and
consequently Mt has a version with continuous paths.

Proof of the Corollary. Assume that T < 1; then Y := MT satisfies the hypotheses of
Theorem 7, and hence has representation (49). For any integrand Vt of class VT , the Itô
integral process It (V ) is an L2°martingale, and so by (49),

Mt = E(MT |FW
t ) = E(Y |FW

t ) = It (V ) a.s.

Proof of Theorem 7. It is enough to consider random variables Y of the form

Y = f (W (t1),W (t2), . . . ,W (tI )) (50)

because such random variables are dense in L2(≠,FW
T ,P ). If there is a random variable

Y of the form (50) that is not a stochastic integral, then (by orthogonal projection) there
exists such a Y that is uncorrelated with every Y 0 of the form (50) that is a stochastic
integral. I will show that if Y is a mean zero, finite-variance random variable of the form
(50) that is uncorrelated with every random variable Y 0 of the same form that is also
a stochastic integral, then Y = 0 a.s. By (40) above (or alternatively see Example 2 in
section 2), for all µ j 2Rd the random variable

Y 0 = exp

(
JX

j=1
µ j W (t j )

)

is a stochastic integral. Clearly, Y 0 has finite variance. Thus, by hypothesis, for all µ j 2Rd ,

E f (W (t1),W (t2), . . . ,W (tJ ))exp

(
JX

j=1
i hµ j ,W (t j )i

)

= 0. (51)
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This implies that the random variable Y must be 0 with probability one. To see this,
consider the (signed) measure µ on RJd defined by

dµ(x) = f (x)P {(W (t1),W (t2), . . . ,W (tJ )) 2 d x};

then equation (51) implies that the Fourier transform of µ is identically 0, and this in turn
implies that µ= 0.

Exercise 5. Does an L1°bounded martingale {Mt }t∑T necessarily have a version with
continuous paths?

3.5 Hermite Functions and Hermite Martingales

The Hermite functions Hn(x, t ) are polynomials in the variables x and t that satisfy the
backward heat equation Ht +Hxx/2 = 0. As we have seen (e.g., in connection with the
exponential function exp{µx °µ2t/2}), if H(x, t ) satisfies the backward heat equation,
then when the Itô Formula is applied to H(Wt , t ), the ordinary integrals cancel, leaving
only the Itô integral; and thus, H(Wt , t ) is a (local) martingale. Consequently, the Hermite
functions provide a sequence of polynomial martingales. The first few Hermite functions
are

H0(x, t ) = 1, (52)

H1(x, t ) = x,

H2(x, t ) = x2 ° t ,

H3(x, t ) = x3 °3xt ,

H4(x, t ) = x4 °6x2t +3t 2.

The formal definition is by a generating function:

1X

n=0
Hn(x, t )

µn

n!
= exp{µx °µ2t/2} (53)

Exercise 6. Show that the Hermite functions satisfy the two-term recursion relation
Hn+1 = xHn °nt Hn°1. Conclude that every term of H2m is a constant times x2m t n°m for
some 0 ∑ m ∑ n, and that the lead term is the monomial x2n . Conclude also that each
Hn solves the backward heat equation.

Proposition 11. Let Vs be a bounded, progressively measurable process, and let Xt = It (V )
be the Itô integral process with integrand V . Then for each n ∏ 0, the processes Hn(Xt , [X ]t )
is a martingale.
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Proof. Since each Hn(x, t ) satisfies the backward heat equation, the Itô formula implies
that H(Xt^ø, [X ]t^ø) is a martingale for each stopping time ø = ø(m) = first t such that
either |Xt | = m or [X ]t = m. If Vs is bounded, then Corollary 2 guarantees that for each
t the random variables H(Xt^ø(m), [X ]t^ø(m)) are dominated by an integrable random
variable. Therefore, the DCT for conditional expectations implies that Hn(Xt , [X ]t ) is a
martingale.

3.6 Moment Inequalities

Corollary 4. Let Vt be a progressively measurable process in the class WT , and let Xt = It (V )
be the associated Itô integral process. Then for every integer m ∏ 1 and every time T <1,
there exist constants Cm <1 such that

E X 2m
T ∑CmE [X ]m

T . (54)

Note: Burkholder, Davis, and Gundy have proved maximal inequalities that are consid-
erably stronger than this, but the arguments are not elementary.

Proof. First, it suffices to consider the case where the integrand Vs is uniformly bounded.
To see this, define in general the truncated integrands V (m)

s :=V (s)^m; then

lim
m!1

It (V (m)) = It (V ) a.s., and

lim
m!1

" [I (V (m))]t = [I (V )]t .

Hence, if the result holds for each of the truncated integrands V (m), then it will hold for
V , by Fatou’s Lemma and the Monotone Convergence Theorem.

Assume, then, that Vs is uniformly bounded. The proof of (54) in this case is by
induction on m. First note that, because Vt is assumed bounded, so is the quadratic
variation [X ]T at any finite time T , and so [X ]T has finite moments of all orders. Also, if
Vt is bounded then it is an element of VT , and so the Itô isometry implies that

E X 2
T = E [X ]T .

This takes care of the case m = 1. The induction argument uses the Hermite martingales
H2m(Xt , [X ]t ) (Proposition 11). By Exercise 6, the lead term (in x) of the polynomial
H2m(x, t ) is x2m , and the remaining terms are all of the form am,k x2k t m°k for k < m.
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Since H2m(X0, [X ]0) = 0, the martingale identity implies

E X 2m
T =°

m°1X

k=0
am,k E X 2k

T [X ]m°k
T =)

E X 2m
T ∑ A2m

m°1X

k=0
E X 2k

T [X ]m°k
T =)

E X 2m
T ∑ A2m

m°1X

k=0
(E X 2m

T )k/m(E [X ]m
T )1°k/m ,

the last by Holder’s inequality. Note that the constants A2m = max |am,k | are determined
by the coefficients of the Hermite function H2m . Now divide both sides by E X 2m

T to
obtain

1 ∑ A2m

m°1X

k=0

√
E [X ]m

T

E X 2m
T

!1°k/m

.

The inequality (54) follows.

4 Girsanov’s Theorem

4.1 Change of measure

Let (≠, {Ft }t∏0,P ) be a filtered probability space. If ZT is a nonnegative, FT° measurable
random variable with expectation 1 then it is a likelihood ratio, that is, the measure Q on
FT defined by

Q(F ) := EP 1F ZT (55)

is a probability measure, and the likelihood ratio (Radon-Nikodym derivative) of Q rel-
ative to P is ZT . It is of interest to know how the measure Q restricts to the æ°algebra
Ft ΩFT when t < T .

Proposition 12. Let ZT be an FT°measurable, nonnegative random variable such that
E P ZT = 1, and let Q = QT be the probability measure on FT with likelihood ratio ZT

relative to P. Then for any t 2 [0,T ] the restriction Qt of Q to the æ°algebra Ft has
likelihood ratio

Zt := E P (ZT |Ft ). (56)

Proof. The random variable Zt defined by (56) is nonnegative, Ft°measurable, and
integrates to 1, so it is the likelihood ratio of a probability measure on Ft . For any event
A 2Ft ,

Q(A) := E P ZT 1A = E P E P (ZT |Ft )1A
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by definition of conditional expectation, so

Zt = (dQ/dP )Ft .

4.2 Example: Brownian motion with drift

Assume now that Wt is a standard one-dimensional Brownian motion, with admissible
filtration {Ft }t∏0 and let µ 2R be a fixed constant. Recall that the exponential process

Z µ
t := exp{µWt °µ2t/2} (57)

is a nonnegative martingale with initial value 1. Thus, for each T <1 the random vari-
able ZT is the likelihood ratio of a probability measure Q =Qµ

T on FT , defined by (55).

Theorem 8. Under Q =Qµ
T , the process {Wt }t∑T is a Brownian motion with drift µ, equiv-

alently, the process {W̃t =Wt °µt }t∑T is a standard Brownian motion.

Proof. Under P the process Wt °µt has continuous paths, almost surely. Since Q is ab-
solutely continuous with respect to P , it follows that under Q the process Wt °µt has
continuous paths. Thus, to show that this process is a Brownian motion it is enough to
show that it has the right finite-dimensional distributions. This can be done by calculat-
ing the joint moment generating functions of the increments: fix 0 = t0 < t1 < ·· · < tJ = T ,
and set

¢t j = t j ° t j°1,

¢Wj =W (t j )°W (t j°1),

¢W̃j = W̃ (t j )°W̃ (t j°1);

then

EQ exp

(
JX

i=1
Æ j¢W̃j

)

= exp

(

°µ
JX

j=1
Æ j¢t j

)

EP exp

(
JX

i=1
(Æ j +µ)¢Wj °µ2T /2

)

= exp

(

°µ2T /2°µ
JX

j=1
Æ j¢t j

)

EP exp

(
JX

i=1
(Æ j +µ)¢Wj

)

= exp

(

°µ2T /2°µ
JX

j=1
Æ j¢t j

)

exp

(
JX

i=1
(Æ j +µ)2¢t j /2

)

= exp

(
JX

i=1
Æ2

j¢t j /2

)
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By Proposition 12, the family of measures {Qµ
T }T∏0 is consistent in the sense that the

restriction of QT+S to the æ°algebra FT is just QT . It is a routine exercise in measure
theory to show that these measures extend to a probability measure Qµ = Qµ

1 on the
smallest æ°algebra F1 that contains [t∏0Ft . It is important to note that, although
each QT is absolutely continuous relative to PT , the extension Q1 is singular relative to
P1: this is because the strong law of large numbers for sums of i.i.d. standard normals
implies that

Wn/n ! 0 almost surely P but

Wn/n ! µ almost surely Q.

4.3 The Girsanov formula

The Girsanov theorem is a far-reaching extension of Theorem 8 that describes the change
of measure needed to transform Brownian motion to Brownian motion plus a progres-
sively measurable drift. Let (≠,F },P ) be a probability space that supports a d°dimensional
Brownian motion Wt , and let {Ft }t∏0 be an admissible filtration. Let {Vt }t∏0 be a progres-
sively measurable process relative to the filtration, and assume that for each T <1,

P

ΩZT

0
|Vs |2 d s <1

æ
= 1.

Then the Itô integral It (V ) is well-defined for every t ∏ 0, and by a routine application of
the Itô formula, the process

Zt = exp
ΩZt

0
Vs · dWs °

Zt

0
V 2

s d s/2
æ
= exp{It (V )° [It (V )]/2} (58)

satisfies the stochastic differential equation

d Zt = Zt Vt ·dWt () Zt °Z0 =
Zt

0
ZsVs ·dWs . (59)

Proposition 13. If the process {Vt }t∏0 is bounded then {Zt }t∏0 is a martingale, and conse-
quently, for each T <1, E ZT = 1.

Remark 3. The hypothesis that Vt be bounded can be weakened substantially: a theorem
of Novikov asserts that Zt is a martingale if for every T <1,

E exp
Ω

1
2

ZT

0
|Vs |2 d s

æ
<1. (60)
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Proof of Proposition 13. Since the stochastic differential equation (59) has no d t term, it
suffices to show that for each T <1 the process Zt Vt is in the integrability class V 2

T , and
since the process Vt is bounded, it suffices to show that for each T <1,

ZT

0
E Z 2

t d t <1. (61)

Clearly,

Z 2
t ∑ exp

Ω
2
Zt

0
Vs ·dWs

æ
.

By the time-change theorem for Itô integral processes, the process 2It (V ) in the last ex-
ponential is a time-changed Brownian motion, in particular, the process W̃s = Iø(s)(V ) is
a Brownian motion in s, where ø(s) is defined by (44). Because the process Vt is bounded,
there exists C <1 such that the accumulated quadratic variation [It (V )] is bounded by
C t , for all t . Consequently,

Zt

0
Vs ·dWs ∑ max

s∑C t
W̃s := M̃C t ,

and so by Brownian scaling,

E Z 2
t ∑ E exp{2

p
C t M̃1}.

By the reflection principle, this last expectation can be bounded as follows:

E exp{2
p

C t M̃1} = 2
Z1

0
e2

p
C t y 2e°y2/2 d y/

p
2º

∑ 2
Z1

°1
e2

p
C t y 2e°y2/2 d y/

p
2º

= 2exp{2C t }.

It is now apparent that (61) holds.

Proposition 13 asserts that if the process Vt is bounded then for each T < 1 the
random variable Z (T ) is a likelihood ratio, that is, a nonnegative random variable that
integrates to 1. We have already noted that boundedness of Vt is not necessary for E ZT =
1, which is all that is needed to ensure that

Q(F ) = EP (Z (T )1F ) (62)

defines a new probability measure on (≠,FT ). Girsanov’s theorem describes the distri-
bution of the stochastic process {W (t )}t∏0 under this new probability measure. Define

W̃ (t ) =W (t )°
Zt

0
Vs d s (63)
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Theorem 9. (Girsanov) Assume that under P the process {Wt }t∏0 is a d°dimensional
Brownian motion with admissible filtration F= {Ft }t∏0, and that the exponential process
{Zt }t∑T defined by (58) is a martingale relative to F under P. Define Q on FT by equa-
tion (62). Then under the probability measure Q, the stochastic process

©
W̃ (t )

™
0∑t∑T is a

standard Wiener process.

Proof. To show that the process W̃t , under Q, is a standard Wiener process, it suffices to
show that it has independent, normally distributed increments with the correct variances.
For this, it suffices to show either that the joint moment generating function or the joint
characteristic function (under Q) of the increments

W̃ (t1),W̃ (t2)°W̃ (t1), · · · ,W̃ (tn)°W̃ (tn°1)

where 0 < t1 < t2 < ·· · < tn , is the same as that of n independent, normally distributed
random variables with expectations 0 and variances t1, t2 ° t1, . . . , that is, either

EQ exp

(
nX

k=1
Æk (W̃ (tk )°W̃ (tk°1))

)

=
nY

k=1
exp

©
Æ2

k (tk ° tk°1)
™

or (64)

EQ exp

(
nX

k=1
iµk (W̃ (tk )°W̃ (tk°1))

)

=
nY

k=1
exp

©
°µ2

k (tk ° tk°1)
™

. (65)

Special Case: Assume that the integrand process Vs is bounded. In this case it is easiest
to use moment generating functions. Consider for simplicity the case n = 1: To evaluate
the expectation EQ on the left side of (64), we rewrite it as an expectation under P , using
the basic likelihood ratio identity relating the two expectation operators:

EQ exp
©
ÆW̃ (t )

™
= EQ exp

Ω
ÆW (t )°Æ

Zt

0
Vs d s

æ

= EP exp
Ω
ÆW (t )°Æ

Zt

0
Vs d s

æ
exp

ΩZt

0
Vs dWs °

Zt

0
V 2

s d s/2
æ

= EP exp
ΩZt

0
(Æ+Vs)dWs °

Zt

0
(2ÆVs +V 2

s )d s/2
æ

= eÆ
2t/2EP exp

ΩZt

0
(Æ+Vs)dWs °

Zt

0
(Æ+Vs)2 d s/2

æ

= eÆ
2t ,

as desired. In the last step we used the fact that the exponential integrates to one. This
follows from Novikov’s theorem, because the hypothesis that the integrand Vs is bounded
guarantees that Novikov’s condition (60) is satisfied by (Æ+Vs). A similar calculation
shows that (64) holds for n > 1.
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General Case: Unfortunately, the final step in the calculation above cannot be justified in
general. However, a similar argument can be made using characteristic functions rather
than moment generating functions. Once again, consider for simplicity the case n = 1:

EQ exp
©
iµW̃ (t )

™
= EQ exp

Ω
iµW (t )° iµ

Zt

0
Vs d s

æ

= EP exp
Ω

iµW (t )° iµ
Zt

0
Vs d s

æ
exp

ΩZt

0
Vs dWs °

Zt

0
V 2

s d s/2
æ

= EP exp
ΩZt

0
(iµ+Vs)dWs °

Zt

0
(2iµVs +V 2

s )d s/2
æ

= EP exp
ΩZt

0
(iµ+Vs)dWs °

Zt

0
(iµ+Vs)2 d s/2

æ
e°µ2t/2

= e°µ2t/2,

which is the characteristic function of the normal distribution N (0, t ). To justify the final
equality, we must show that

EP exp{Xt ° [X ]t /2} = 1

where

Xt =
Zt

0
(iµ+Vs)dWs and [X ]t =

Zt

0
(iµ+Vs)2 d s

Itô’s formula implies that

d exp{Xt ° [X ]t /2} = exp{Xt ° [X ]t /2}(iµ+Vt )dWt ,

and so the martingale property will hold up to any stopping time ø that keeps the inte-
grand on the right side bounded. Define stopping times

ø(n) = inf{s : |X |s = n or [X ]s = n or |Vs | = n};

then for each n = 1,2, . . . ,

EP exp{Xt^ø(n) ° [X ]t^ø(n)/2} = 1

As n ! 1, the integrand converges pointwise to exp{Xt ° [X ]t /2}, so to conclude the
proof it suffices to verify uniform integrability. For this, observe that for any s ∑ t ,

|exp{Xs ° [X ]s/2}|∑ eµs Zs ∑ eµt Zs

By hypothesis, the process {Zs}s∑t is a positive martingale, and consequently the ran-
dom variables Zt^ø(n) are uniformly integrable. This implies that the random variables
|exp{Xt^ø(n) ° [X ]t^ø(n)/2}| are also uniformly integrable.
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4.4 Example: Ornstein-Uhlenbeck revisited

Recall that the solution Xt to the linear stochastic differential equation (32) with initial
condition X0 = x is an Ornstein-Uhlenbeck process with mean-reversion parameter Æ.
Because the stochastic differential equation (32) is of the same form as equation (63),
Girsanov’s theorem implies that a change of measure will convert a standard Brownian
motion to an Ornstein-Uhlenbeck process with initial point 0. The details are as follows:
Let Wt be a standard Brownian motion defined on a probability space (≠,F ,P ), and let
F= {Ft }t∏0 be the associated Brownian filtration. Define

Nt =°Æ
Zt

0
Ws dWs , (66)

Zt = exp{Nt ° [N ]t /2}, (67)

and let Q =QT be the probability measure on FT with likelihood ratio ZT relative to P .
Observe that the quadratic variation [N ]t is just the integral

Rt
0 W 2

s d s. Theorem 9 asserts
that, under the measure Q, the process

W̃t :=Wt +
Zt

0
ÆWs d s,

for 0 ∑ t ∑ T , is a standard Brownian motion. But this implies that the process W itself
must solve the stochastic differential equation

dWt =°ÆWt d t +dW̃t

under Q. It follows that {Wt }0∑t∑T is, under Q, an Ornstein-Uhlenbeck process with
mean-reversion parameter Æ and initial point x. Similarly, the shifted process x +Wt is,
under Q, an Ornstein-Uhlenbeck process with initial point x.

It is worth noting that the likelihood ratio Zt may be written in an alternative form
that contains no Itô integrals. To do this, use the Itô formula on the quadratic function
u(x) = x2 to obtain W 2

t = 2It (W )+ t ; this shows that the Itô integral in the definition (66)
of Nt may be replaced by W 2

t /2° t/2. Hence, the likelihood ratio Zt may be written as

Zt = exp{°ÆW 2
t /2+Æt/2°Æ2

Zt

0
W 2

s d s/2}. (68)

A physicist would interpret the quantity in the exponential as the energy of the path W in
a quadratic potential well. According to the fundamental postulate of statistical physics
(see FEYNMAN, Lectures on Statistical Physics), the probability of finding a system in a
given configuration æ is proportional to the exponential e°H(æ)/kT , where H(æ) is the
energy (Hamiltonian) of the system in configuration æ. Thus, a physicist might view the
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Ornstein-Uhlenbeck process as describing fluctuations in a quadratic potential. (In fact,
the Ornstein-Uhlenbeck process was originally invented to describe the instantaneous
velocity of a particle undergoing rapid collisions with molecules in a gas. See the book
by Edward Nelson on Brownian motion for a discussion of the physics of the Brownian
motion process.)

The formula (68) also suggests an interpretation of the change of measure in the
language of acceptance/rejection sampling: Run a standard Brownian motion for time
T to obtain a path x(t ); then “accept” this path with probability proportional to

exp{°Æx2
T /2°Æ2

ZT

0
x2

s d s/2}.

The random paths produced by this acceptance/rejection scheme will be distributed as
Ornstein-Uhlenbeck paths with initial point 0. This suggests (and it can be proved, but
this is beyond the scope of these notes) that the Ornstein-Uhlenbeck measure on C [0,T ]
is the weak limit of a sequence of discrete measures µn that weight random walk paths
according to their potential energies.

Problem 1. Show how the Brownian bridge can be obtained from Brownian motion by
change of measure, and find an expression for the likelihood ratio that contains no Itô
integrals.

4.5 Example: Brownian motion conditioned to stay positive

For each x 2R, let P x be a probability measure on (≠,F ) such that under P x the process
Wt is a one-dimensional Brownian motion with initial point W0 = x. (Thus, under P x the
process Wt °x is a standard Brownian motion.) For a < b define

T = Ta,b = min{t ∏ 0 : Wt 62 (a,b)}.

Proposition 14. Fix 0 < x < b, and let T = T0,b. Let Qx be the probability measure ob-
tained from P x by conditioning on the event {WT = b} that W reaches b before 0, that is,

Qx(F ) := P x(F \ {WT = b})/P x{WT = b}. (69)

Then under Qx the process {Wt }t∑T has the same distribution as does the solution of the
stochastic differential equation

d Xt = X °1
t d t +dWt , X0 = x (70)

under P x. In other words, conditioning on the event WT = b has the same effect as adding
the location-dependent drift 1/Xt .
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Proof. Qx is a measure on the æ°algebra FT that is absolutely continuous with respect
to P x . The likelihood ratio dQx/dP x on FT is

ZT := 1{WT = b}
P x{WT = b}

= b

x
1{WT = b}.

For any (nonrandom) time t ∏ 0, the likelihood ratio Zt^T = dQx/dP x on FT^t is gotten
by computing the conditional expectation of ZT under P x (Proposition 12). Since ZT is
a function only of the endpoint WT , its conditional expectation on FT^t is the same as
the conditional expectation on æ(WT^t ), by the (strong) Markov property of Brownian
motion. Moreover, this conditonal expectation is just WT^t /b (gambler’s ruin!). Thus,

ZT^t =WT^t /x.

This doesn’t at first sight appear to be of the exponential form required by the Girsanov
theorem, but actually it is: by the Itô formula,

ZT^t = exp{log(WT^t /x)} = exp
ΩZT^t

0
W °1

s dWs °
ZT^t

0
W °2

s d s/2
æ

.

Consequently, the Girsanov theorem (Theorem 9) implies that under Qx the process
Wt^T °

RT^t
0 W °1

s d s is a Brownian motion. This is equivalent to the assertion that under
Qx the process WT^t behaves as a solution to the stochastic differential equation (70).

Observe that the stochastic differential equation (70) does not involve the stopping
place b. Thus, Brownian motion conditioned to hit b before 0 can be constructed by
running a Brownian motion conditioned to hit b +a before 0, and stopping it at the first
hitting time of b. Alternatively, one can construct a Brownian motion conditioned to hit
b before 0 by solving1 the stochastic differential equation (70) for t ∏ 0 and stopping it at
the first hit of b. Now observe that if Wt is a Brownian motion started at any fixed s, the
events {WT0,b = b} are decreasing in b, and their intersection over all b > 0 is the event that
Wt > 0 for all t and Wt visits all b > x. (This is, of course, an event of probability zero.)
For this reason, probabilists refer to the process Xt solving the stochastic differential
equation (70) as Brownian motion conditioned to stay positive.

CAUTION: Because the event that Wt > 0 for all t > 0 has probability zero, we cannot
define “Brownian motion conditioned to stay positive” using conditional probabilities
directly in the same way (see equation (69)) that we defined “Brownian motion condi-
tioned to hit b before 0”. Moreover, whereas Brownian motion conditioned to hit b before
0 has a distribution that is absolutely continuous relative to that of Brownian motion,
Brownian motion conditioned to stay positive for all t > 0 has a distribution (on C [0,1))
that is necessarily singular relative to the law of Brownian motion.

1We haven’t yet established that the SDE (70) has a soulution for all t ∏ 0. This will be done later.
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5 Local Time and the Tanaka Formula

5.1 Occupation Measure of Brownian Motion

Let Wt be a standard one-dimensional Brownian motion and let F := {Ft }t∏0 the asso-
ciated Brownian filtration. A sample path of {Ws}0∑s∑t induces, in a natural way, an
occupation measure °t on (the Borel field of) R:

°t (A) :=
Zt

0
1A(Ws)d s. (71)

Theorem 10. With probability one, for each t <1 the occupation measure °t is absolutely
continuous with respect to Lebesgue measure, and its Radon-Nikodym derivative L(t ; x) is
jointly continuous in t and x.

The occupation density L(t ; x) is known as the local time of the Brownian motion at
x. It was first studied by Paul Lévy, who showed — among other things — that it could be
defined by the formula

L(t ; x) = lim
"!0

1
2"

Zt

0
1[x°",x+"](Ws)d s. (72)

Joint continuity of L(t ; x) in t , x was first proved by Trotter. The modern argument that
follows is based on an integral representation discovered by Tanaka.

5.2 Tanaka’s Formula

Theorem 11. The process L(t ; x) defined by

2L(t ; x) = |Wt °x|° |x|°
Zt

0
sgn(Ws °x)dWs (73)

is almost surely nondecreasing, jointly continuous in t , x, and constant on every open time
interval during which Wt 6= x.

For the proof that L(t ; x) is continuous (more precisely, that it has a continuous ver-
sion) we will need two auxiliary results. The first is the Burkholder-Davis-Gundy in-
equality (Corollary 4 above). The second, the Kolmogorov-Chentsov criterion for path-
continuity of a stochastic process, we have seen earlier:
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Proposition 15. (Kolmogorov-Chentsov) Let Y (t ) be a stochastic process indexed by a
d°dimensional parameter t . Then Y (t ) has a version with continuous paths if there exist
constants p,±> 0 and C <1 such that for all s, t ,

E |Y (t )°Y (s)|p ∑C |t ° s|d+±. (74)

Proof of Theorem 11: Continuity. Since the process |Wt°x|°|x| is jointly continuous, the
Tanaka formula (73) implies that it is enough to show that

Y (t ; x) :=
Zt

0
sgn(Ws °x)dWs

is jointly continuous in t and x. For this, we appeal to the Kolmogorov-Chentsov theorem:
This asserts that to prove continuity of Y (t ; x) in t , x it suffices to show that for some p ∏ 1
and C ,±> 0,

E |Y (t ; x)°Y (t ; x 0)|p ∑C |x °x 0|2+± and (75)

E |Y (t ; x)°Y (t 0; x)|p ∑C |t ° t 0|2+±. (76)

I will prove only (75), with p = 6 and ±= 1; the other inequality, with the same values of
p,±, is similar. Begin by observing that for x < x 0,

Y (t ; x)°Y (t ; x 0) =
Zt

0
{sgn(Ws °x)° sgn(Ws °x 0)}dWs

= 2
Zt

0
1(x,x 0)(Ws)dWs

This is a martingale in t whose quadratic variation is flat when Ws is not in the interval
(x, x 0) and grows linearly in time when Ws 2 (x, x 0). By Corollary 4,

E |Y (t ;x)°Y (t ; x 0)|2m

∑Cm22mE

µZt

0
1(x,x 0)(Ws)d s

∂m

∑Cm23m |x °x 0|mm!
Zt

t1=0

Zt°t1

t2=0
· · ·

Zt°tm°1

tm=0

1
p

t1t2 · · · tm
d t1d t2 · · ·d tm

∑C 0|x °x 0|m .

Proof of Theorem 11: Conclusion. It remains to show that L(t ; x) is nondecreasing in t ,
and that it is constant on any time interval during which Wt 6= x. Observe that the
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Tanaka formula (73) is, in effect, a variation of the Itô formula for the absolute value
function, since the sgn function is the derivative of the absolute value everywhere except
at 0. This suggests that we try an approach by approximation, using the usual Itô formula
to a smoothed version of the absolute value function. To get a smoothed version of | · |,
convolve with a smooth probability density with support contained in [°","] . Thus, let'
be an even, C1 probability density on R with support contained in (°1,1) (see the proof
of Lemma ?? in the Appendix below), and define

'n(x) : = n'(nx);

√n(x) : =°1+2
Zx

°1
'n(y)d y ; and

Fn(x) : = |x| for |x| > 1

: = 1+
Zx

°1/n
√n(z)d z for |x|∑ 1.

Note that
R1/n
°1/n√n = 0, because of the symmetry of ' about 0. (EXERCISE: Check this.)

Consequently, Fn is C1 on R, and agrees with the absolute value function outside the
interval [°n°1,n°1]. The first derivative of Fn is √n , and hence is bounded in absolute
value by 1; it follows that Fn(y) ! |y | for all y 2 R. The second derivative F 00

n = 2'n .
Therefore, Itô’s formula implies that

Fn(Wt °x)°Fn(°x) =
Zt

0
√n(Ws °x)dWs +

1
2

Zt

0
2'n(Ws °x)d s. (77)

By construction, Fn(y) ! |y | as n !1, so the left side of (77) converges to |Wt°x|°|x|.
Now consider the stochastic integral on the right side of (77): As n !1, the function √n

converges to sgn, and in fact √n coincides with sgn outside of [°n°1,n°1]; moreover, the
difference |sgn°√n | is bounded. Consequently, as n !1,

lim
n!1

Zt

0
√n(Ws °x)dWs =

Zt

0
sgn(Ws °x)dWs ,

because the quadratic variation of the difference converges to 0. (EXERCISE: Check this.)
This proves that two of the three quantities in (77) converge as n !1, and so the third
must also converge:

L(t ; x) = lim
n!1

Zt

0
'n(Ws °x)d s := Ln(t ; x) (78)

Each Ln(t ; x) is nondecreasing in t , because 'n ∏ 0; therefore, L(t ; x) is also nondecreas-
ing in t . Finally, since 'n = 0 except in the interval [°n°1,n°1], each of the processes
Ln+m(t ; x) is constant during time intervals when Wt 62 [°n°1,n°1]. Hence, L(t ; x) is
constant on time intervals during which Ws 6= x.
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Proof of Theorem 10. It suffices to show that for every continuous function f :R!Rwith
compact support, Zt

0
f (Ws)d s =

Z

R
f (x)L(t ; x)d x a.s. (79)

Let ' be, as in the proof of Theorem 11, a C1 probability density on R with support
[°1,1], and let'n(x) = n'(nx); thus,'n is a probability density with support [°1/n,1/n].
By Corollary ??,

'n § f ! f

uniformly as n !1. Therefore,

lim
n!1

Zt

0
'n § f (Ws)d s =

Zt

0
f (Ws)d s.

But
Zt

0
'n § f (Ws)d s =

Zt

0

Z

R
f (x)'n(Ws °x)d xd s

=
Z

R
f (x)

Zt

0
'n(Ws °x)d sd x

=
Z

R
f (x)Ln(t ; x)d x

where Ln(t ; x) is defined in equation (78) in the proof of Theorem 11. Since Ln(t ; x) !
L(t ; x) as n !1, equation 79 follows.

5.3 Skorohod’s Lemma

Tanaka’s formula (73) relates three interesting processes: the local time process L(t ; x),
the reflected Brownian motion |Wt °x|, and the stochastic integral

X (t ; x) :=
Zt

0
sgn(Ws °x)dWs . (80)

Proposition 16. For each x 2R the process {X (t ; x)}t∏0 is a standard Wiener process.

Proof. Since X (t ; x) is given as the stochastic integral of a bounded integrand, the time-
change theorem implies that it is a time-changed Brownian motion. To show that the
time change is trivial it is enough to check that the accumulated quadratic variation up
to time t is t . But the quadratic variation is

[X ]t =
Zt

0
sgn(Ws °x)2 d s ∑ t , and

E [X ]t =
Zt

0
P {Ws 6= x}d s = t .
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Thus, the process |x|+X (t ; x) is a Brownian motion started at |x|. Tanaka’s formula,
after rearrangement of terms, shows that this Brownian motion can be decomposed as
the difference of the nonnegative process |Wt °x| and the nondecreasing process 2L(t ; x):

|x|+X (t ; x) = |Wt °x|°2L(t ; x). (81)

This is called Skorohod’s equation. Skorohod discovered that there is only one such
decomposition of a continuous path, and that the terms of the decomposition have a
peculiar form:

Lemma 3. (Skorohod) Let w(t ) be a continuous, real-valued function of t ∏ 0 such that
w(0) ∏ 0. Then there exists a unique pair of real-valued continuous functions x(t ) and
y(t ) such that

(a) x(t ) = w(t )+ y(t );

(b) x(t ) ∏ 0 and y(0) = 0;

(c) y(t ) is nondecreasing and is constant on any time interval during which x(t ) > 0.

The functions x(t ) and y(t ) are given by

y(t ) = (°min
s∑t

w(s))_0 and x(t ) = w(t )+ y(t ). (82)

Proof. First, let’s verify that the functions x(t ) and y(t ) defined by (82) satisfy properties
(a)–(c). It is easy to see that if w(t ) is continuous then its minimum to time t is also
continuous; hence, both x(t ) and y(t ) are continuous. Up to the first time t = t0 that
w(t ) = 0, the function y(s) will remain at the value 0, and so x(s) = w(s) ∏ 0 for all s ∑ t0.
For t ∏ t0,

y(t ) =°min
s∑t

w(s) and x(t ) = w(t )°min
s∑t

w(s);

hence, x(t ) ∏ 0 for all t ∏ t0. Clearly, y(t ) never decreases; and after time t0 it increases
only when w(t ) is at its minimum, so x(t ) = 0. Thus, (a)–(c) hold for the functions x(t )
and y(t ).

Now suppose that (a)–(c) hold for some other functions x̃(t ) and ỹ(t ). By hypothesis,
y(0) = ỹ(0) = 0, so x(0) = x̃(0) = w(0) ∏ 0. Suppose that at some time t§ ∏ 0,

x̃(t§)°x(t§) = "> 0.
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Then up until the next time s§ > t§ that x̃ = 0, the function ỹ must remain constant, and
so x̃ °w must remain constant. But x °w = y never decreases, so up until time s§ the
difference x̃ ° x cannot increase; at time s§ (if this is finite) the difference x̃ ° x must
be ∑ 0, because x̃(s§) = 0. Since x̃(t )° x(t ) is a continuous function of t that begins at
x̃(0)° x(0) = 0, it follows that the difference x̃(t )° x(t ) can never exceed ". But " > 0 is
arbitrary, so it must be that

x̃(t )°x(t ) ∑ 0 8 t ∏ 0.

The same argument applies when the roles of x̃ and x are reversed. Therefore, x ¥ x̃.

Corollary 5. (Lévy) For x ∏ 0, the law of the vector-valued process (|Wt ° x|,L(t ; x)) coin-
cides with that of (Wt +x °M(t ; x)°, M(t ; x)°), where

M(t ; x)° := min
s∑t

(Ws +x)^0. (83)

5.4 Application: Extensions of Itô’s Formula

Theorem 12. (Extended Itô Formula) Let u :R!R be twice differentiable (but not neces-
sarily C 2). Assume that |u00| is integrable on any compact interval. Let Wt be a standard
Brownian motion. Then

u(Wt ) = u(0)+
Zt

0
u0(Ws)dWs +

1
2

Zt

0
u00(Ws)d s. (84)

Proof. Exercise. Hint: First show that it suffices to consider the case where u has com-
pact support. Next, let'± be a C1 probability density with support [°±,±]. By Lemma ??,
'± §u is C1, and so Theorem 2 implies that the Itô formula (84) is valid when u is re-
placed by u §'±. Now use Theorem 10 to show that as ±! 0,

Zt

0
u §'00

±(Ws)d s °!
Zt

0
u00(Ws)d s.

Tanaka’s theorem shows that there is at least a reasonable substitute for the Itô for-
mula when u(x) = |x|. This function fails to have a second derivative at x = 0, but it
does have the property that its derivative is nondecreasing. This suggest that the Itô
formula might generalize to convex functions u, as these also have nondecreasing (left)
derivatives.

Definition 2. A function u :R!R is convex if for any real numbers x < y and any s 2 (0,1),

u(sx + (1° s)y) ∑ su(x)+ (1° s)u(y). (85)
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Lemma 4. If u is convex, then it has a right derivative D+(x) at all but at most countably
many points x 2R, defined by

D+u(x) := lim
"!0+

u(x +")°u(x)
"

. (86)

The function D+u(x) is nondecreasing and right continuous in x, and the limit (86) exists
everywhere except at those x where D°u(x) has a jump discontinuity.

Proof. Exercise — or check any reasonable real analysis textbook, e.g. ROYDEN, ch. 5.

Since D+u is nondecreasing and right continuous, it is the cumulative distribution
function of a Radon measure2 µ on R, that is,

D+u(x) = D+u(0)+µ((0, x]) for x > 0 (87)

= D+u(0)°µ((x,0]) for x ∑ 0.

Consequently, by the Lebesgue differentiation theorem and an integration by parts (Fu-
bini),

u(x) = u(0)+D+u(0)x +
Z

[0,x]
(x ° y)dµ(y) for x > 0 (88)

= u(0)+D+u(0)x +
Z

[x,0]
(y °x)dµ(y) for x ∑ 0.

Observe that this exhibits u as a mixture of absolute value functions ay (x) := |x°y |. Thus,
given the Tanaka formula, the next result should come as no surprise.

Theorem 13. (Generalized Itô Formula) Let u : R! R be convex, with right derivative
D+u and second derivative measure µ, as above. Let Wt be a standard Brownian motion
and let L(t ; x) be the associated local time process. Then

u(Wt ) = u(0)+
Zt

0
D+u(Ws)dWs +

Z

R
L(t ; x)dµ(x). (89)

Proof. Another exercise. (Smooth; use Itô; take limits; use Tanaka and Trotter.)

2A Radon measure is a Borel measure that attaches finite mass to any compact interval.
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