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1 d−-Dimensional Brownian Motion

Definition 1. A standard d−dimensional Brownian motion is an Rd−valued continuous-time
stochastic process {Wt}t≥0 (i.e., a family of d−dimensional random vectors Wt indexed by
the set of nonnegative real numbers t) with the following properties.
(A)’ W0 = 0.
(B)’ With probability 1, the function t→Wt is continuous in t.
(C)’ The process {Wt}t≥0 has stationary, independent increments.
(D)’ The increment Wt+s − Ws has the d−dimensional normal distribution with mean

vector 0 and covariance matrix tI .

The d−dimensional normal distribution with mean vector 0 and (positive definite) covari-
ance matrix Σ is the Borel probability measure on Rd with density

ϕΣ(x) = ((2π)d det(Σ))−1/2 exp{−xTΣ−1x/2}; (1)

if Σ = tI then this is just the product of d one-dimensional Gaussian distributions with
mean 0 and variance t. Thus, the existence of d−dimensional Brownian motion follows di-
rectly from the existence of 1−dimensional Brownian motion: if {W (i)}t≥0 are independent
1−dimensional Brownian motions then

Wt =


W

(1)
t

W
(2)
t

· · ·
W

(d)
t


is a d-dimensional Brownian motion. Observe that when the covariance matrix Σ = I is the
identity, the transition density ϕtI(x) = ϕtI(|x|) depends only on |x|, and hence is invariant
under orthogonal transformations of Rd. It follows that if {Wt}t≥0 is a d−dimensional
Brownian motion then for any orthogonal transformation U of Rd the process {UWt}t≥0 is
also a d−dimensional Brownian motion.

Change of Initial Point. An Rd−valued continuous-time stochastic process {Wt}t≥0 is
said to be a d−dimensional Brownian motion started at x if the process {Wt − x}t≥0 is a stan-
dard d−dimensional Brownian motion. Clearly, on any probability space that supports a
standard Brownian motion there is a Brownian motion started at x: just add x to each Wt.
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Given the existence of a standard d−dimensional Brownian motion, it is not difficult to
construct a single measurable space (Ω,F) equipped with measurable Rd−valued random
vectors Wt and a family of probability measures P x on (Ω,F) such that under P x the pro-
cess (Wt)t≥0 is a d−dimensional Brownian motion started at x. In the following sections, I
will use the superscript x on probabilities and expectations to denote the measure P x.

CONSTRUCTION: Let (Ω′,F ′, P ′) be a probability space on which is defined a standard
d−dimensional Brownian motion (W ′t)t≥0. Let (Ω,F) be the measurable space Ω = Ω′×Rd
with σ−algebra F = F ′ × Bd, where Bd the usual Borel field of Rd. Define probability
measures P x = P ′ × δx on (Ω,F), and random vectors Wt : Ω→ Rd by

Wt(ω, x) = W ′t(ω) + x;

these are measurable relative to the product σ−algebra F = F ′ × Bd, and under P x the
process (Wt)t≥0 is a d−dimensional Brownian motion started at x.

2 Dynkin’s Formula

2.1 Dynkin’s formula for Brownian motion

Assume that the measurable space (Ω,F) supports probability measures P x, one for each
x ∈ Rd, such that under P x the process Wt is a Wiener process with initial state W0 = x.
Denote by ∆ the Laplace operator

∆ =

d∑
i=1

∂2

∂x2
i

.

Theorem 1. Let f : Rd → R be a bounded, C2 function whose partial derivatives (up to order 2)
are all bounded. Then for any t ≥ 0 and any x ∈ Rd,

Exf(Wt) = f(x) +
1

2
Ex
∫ t

0
∆f(Ws) ds. (2)

Consequently, the process

Y f
t := f(Wt)−

1

2

∫ t

0
∆f(Ws) ds (3)

is a martingale under P x relative to F, and so for any stopping time T such that ExT <∞,

Exf(WT ) = f(x) +
1

2
Ex
∫ T

0
∆f(Ws) ds. (4)

Proof. The assertion that the process Y f
t is a martingale follows directly from formula (2)

and the independent increments property of Brownian motion (as you should check).
Given this, the conclusion (4) follows from Doob’s optional sampling formula and the
dominated convergence theorem, since ∆f is bounded.



To prove equation (2), we will use the fact that the transition probabilities of Brownian
motion,

pt(x, y) := exp{−‖x− y‖2/2t}/(2πt)d/2, (5)

satisfy the (forward) heat equation

∂pt(x, y)

∂t
=

1

2
∆ypt(x, y) (6)

for all t > 0 and x, y ∈ Rd. Here ∆y denotes the Laplace operator with respect to the y
variables.1 At t = 0 and x = y the partial derivatives blow up; however, for any ε > 0
all of the partial derivatives (both (∂/∂t) and ∆x) are uniformly bounded and uniformly
continuous on the region t ∈ [ε,∞) and x, y ∈ Rd. Hence, by the fundamental theorem of
calculus and Fubini’s theorem, for t > ε > 0,

Ex(f(Wt)− f(Wε)) =

∫ t

s=ε

∫
y∈Rd

∂

∂s
ps(x, y)f(y) ds

=
1

2

∫ t

s=ε

∫
y∈Rd

(∆yps(x, y)) f(y) dy

Assume now that f is not only bounded and C2, but has compact support. Then the
last integral above can be evaluated using integration by parts. (Put a big box around
the support of f and integrate by parts twice in each variable, and use the fact that the
boundary terms will all vanish because the boundary lies outside the support of f .) This
gives

1

2

∫ t

s=ε

∫
y∈Rd

(∆yps(x, y)) f(y) dy =
1

2

∫ t

s=ε

∫
y∈Rd

ps(x, y) (∆yf(y)) dy

=
1

2

∫ t

s=ε
Ex∆f(Ws) ds.

Thus, for each ε > 0,

Ex(f(Wt)− f(Wε)) =
1

2

∫ t

s=ε
Ex∆f(Ws) ds.

Since both f and ∆f are bounded and continuous, the path-continuity of Brownian motion
and the bounded convergence theorem imply that this equality holds also at ε = 0. This
proves the theorem for functions f with compact support.

Exercise 1. (a) Finish the proof. (b) Better yet, show that the formula (2) holds for any
function f such that f and all of its partial derivatives of order≤ 2 have at most polynomial
growth at∞.

1Of course the same equation but with ∆y replaced by ∆x also holds, by symmetry.



Exercise 2. Let u : R+ × Rd be a bounded C2 function whose first and second partial
derivatives are uniformly bounded (or, more generally, have at most polynomial growth
as |x| → ∞) on [0, T ]× Rd, for any 0 ≤ T <∞. Show that for any t ≥ 0 and any x ∈ Rd,

Exu(t,Wt) = u(0, x) + Ex
∫ y

0

(
∂

∂s
+

1

2
∆x

)
u(s,Ws) ds,

and conclude that under P x the process

u(t,Wt)− u(0, x)−
(
∂

∂t
+

1

2
∆x

)
u(t,Wt)

is a martingale.

2.2 Local form of Dynkin’s formula

Definition 2. A domain is a nonempty, open, connected subset of Rd. A domain is said to
be transient if for every x ∈ D, Brownian motion started at x exits D in finite time with
probability one, that is,

P x{τD <∞} = 1 (7)

where

τD : = inf{t > 0 : Wt 6∈ D} (8)
=∞ if there is no such t > 0.

Theorem 2. Let D be a transient domain, and assume that ExτD < ∞ for every x ∈ D. Let
f : D̄ → R be a bounded, continuous function defined on the closure of D. If f is C2 in D with
bounded first and second partial derivatives then for every x ∈ D,

Exf(WτD) = f(x) +
1

2
Ex
∫ τD

0
∆f(Ws) ds. (9)

Proof. If f extends to a bounded, C2 function on all of R2 with bounded partials of order
≤ 2, then (9) follows directly from Dynkin’s formula (4). Unfortunately, not all functions
f : D → R that satisfy the hypotheses of the theorem extend to C∞ functions on Rd. Thus,
we must resort to some indirection: we will modify the function f near the boundary of D
so as to guarantee that it does extend to a bounded, C2 on all of Rd. Fix ε > 0, and let ϕ(x)
be a C∞ probability density on Rd with support contained in the ball

Bε(0) = {x ∈ Rd : |x| < ε};

see Lemma in the Appendix below for a proof that there is such a thing. Let Dε be the set
of all points x ∈ D such that distance(x,Dc) is at least ε and such that |x| ≤ 1/ε. Note that
Dε is compact, and that ∪ε>0Dε = D. Define

gε = ϕ ∗ 1D2ε .



Then gε is C∞ (because any convolution with a C∞ function is C∞), it is identically 1 on
D3ε and identically 0 on Dc

ε, it satisfies 0 ≤ g ≤ 1 everywhere, and its partial derivatives of
all orders are bounded, because Dε is compact. Define

h(x) = f(x)gε(x) for all x ∈ D,
= 0 for all x ∈ Dc.

Then h is C2, bounded, with bounded partials up to order 2, and h = f in D3ε. Thus,
Dynkin’s formula applies to the function h with stopping time τ3ε = τD3ε . Since f = h in
D3ε, it follows that

Exf(Wτ3ε) = f(x) + Ex
∫ τ3ε

0
∆f(Ws) ds.

Now as ε → 0, the stopping times τ3ε converge monotonically to τD, and so the path-
continuity of Brownian motion and the hypothesis that f and its partial derivatives are
bounded imply that (9) holds, by the bounded convergence theorem for integrals.

3 Recurrence and Transience of Brownian Motion

3.1 Brownian motion in R2

Denote points of R2 by z = (x, y), and let |z| =
√
x2 + y2. The function log |z| is well-

defined and harmonic for z ∈ R2 − {(0, 0)}, as is easily checked by calculation of the
relevant derivatives. Furthermore, it is bounded, along with all partials, on any annulus
A(r1; r2) = {z : 0 < r1 < |z| < r2}. Let τ be the exit time for the annulus A(1

2 ; 2), and
let Rt = |Wt|. Then τ < ∞ (why?) and logRτ = ± log 2 according to which of the two
boundary circles contains the exit point Wτ . Consequently, Theorem 2 implies that for any
initial point z on the circle |z| = 1,

0 = log |z| = Ez log |Wτ | = log 2(P z{|Wτ | = 2} − P z{|Wτ | =
1

2
}).

Hence,

P z{|Wτ | = 2} = P z{|Wτ | =
1

2
} =

1

2
.

Brownian scaling now implies that for any initial point z such that |z| = 2k, where k ∈ Z,
Brownian motion started at z will exit the annulus A(2k−1; 2k+1) on either boundary circle
|z| = 2k−1 or |z| = 2k+1 with equal probabilities 1/2.

Define stopping times 0 = T0 < T1 < T2 < · · · by

Tn+1 = min{t > Tn : |Wt|/|WTn | = 2±1}.

Then by the strong Markov property and the preceding calculation, the sequence Yn =
log |WTn | is a simple random walk on the integers Z under P z , for any initial point |z| = 1.
Simple random walk on Z is recurrent, so it follows that under P z the Brownian motion
Wt must visit every circle |z′| = 2k; in particular, it must enter every neighborhood of the



origin (0, 0). On the other hand, Wt cannot visit the point (0, 0) itself, by the following
reasoning. For it to do so would require that the random walk Yn visit every negative inte-
ger, and it cannot do this without first returning to 0 infinitely often. This would force the
Brownian path to zigzag back and forth between the circles |z′| = 1/2 and |z′| = 1 infinitely
often before hitting the origin, and this would entail a violation of path-continuity if the
origin were hit in finite time.

This shows that if Brownian motion starts at a point on the unit circle then with prob-
ability one it will never hit the origin, but it will visit every neighborhood of the origin.
By the Brownian scaling law it follows that the same is true for any initial point W0 = z
except z = (0, 0). Since Brownian motion started at z is just a translate of Brownian motion
started at the origin, this proves the following.

Theorem 3. For any two points z 6= z′,

P z{Wt visits every Bε(z
′)} = 1 but

P z{Wt visits z′} = 0.

Corollary 1. (Liouville’s Theorem.) There is no bounded, non-constant harmonic function h :
R2 → R.

Proof. If there were such a function h, then by Theorem 1 the process h(Wt) would be a
bounded martingale under any P z . Bounded martingales must converge, a.s. But by the
recurrence theorem above, Wt must visit and revisit every neighborhood of every rational
point in R2 at indefinitely large times, and so h(Wt) would have to come arbitrarily close to
every value h(z) of h at indefinitely large times. This cannot happen unless h is constant.

3.2 Brownian motion in dimensions d ≥ 3

Denote points of Rd by x = (x1, x2, . . . , xd) and let |x| =
√∑

i x
2
i . The function

h(x) =
1

|x|d−2

is well-defined and harmonic in Rd − {0} (in d = 3 it is called the Newtonian potential).
Let Wt be a d−dimensional Brownian motion started at some x ∈ A(r1, r2) where A(r; s)
denotes the set of all points y ∈ Rd with r < |y| < s, and let τ be the time of first exit from
A(r1, r2). As in dimension 2, the stopping time τ is finite a.s. under P x for all x ∈ A(r1; r2),
and the value of h(Wτ ) must be either rd−1

1 or rd−1
2 , depending on whether Wτ is on the

inner boundary or the outer boundary of A(r1; r2). Thus, by Theorem 2,

|x|2−d = |r1|2−dP x{|Wτ | = r1}+ r2−d
2 P x{|Wτ | = r2}.

Consequently,

P x{|Wτ | = r1} =
|x|2−d − r2−d

2

r2−d
1 − r2−d

2

.



As in dimension 2, the Brownian scaling law shows that for any r1 < |x| < r2 the exit
probabilities depend only on the ratios |x|/r1 and |x|/r2.

Fix an initial point x with |x| = 1, and as in d = 2 define stopping times 0 = T0 < T1 <
T2 < · · · by

Tn+1 = min{t > Tn : |Wt|/|WTn | = 2±1}.

Then by the strong Markov property, the sequence Yn = log |WTn | is a nearest neighbor
random walk on the integers Z, with transition probabilities

P x{
|WTn+1 |
|WTn

| = 2} = p = (1− 22−d)/(2d−2 − 22−d) and

P x{
|WTn+1 |
|WTn

| = 2−1} = q = (1− p).

For any d ≥ 3 the probability p > 1/2, so the random walk has a positive drift. In particular,
by the strong law of large numbers,

lim
n→∞

|WTn |
n

= p− q > 0,

and so |WTn | → ∞. This proves

Theorem 4. Brownian motion is transient in dimensions d ≥ 3, in particular, limt→∞ |Wt| =∞
with P x−probability one, for any x ∈ Rd.

Exercise 3. (A) For any initial point x such that |x| = 1 and any 0 < r < 1, calculate the
probability that Brownian motion started at x will ever reach the ball of radius r centered
at the origin.

(B) Let Sn be the p − q random walk started at 0 for some p ∈ (0, 1
2). (A p − q random

walk is a nearest neighbor random walk on the integers where at each step the probability
of moving one step to the right is p and the probability of moving one step to the left is
q = 1 − p.) Let M = maxn≥0 Sn. Find the distribution of M . HINT: Look for a useful
martingale.

4 Harmonic Functions

4.1 Representation by Brownian expectations

A function f : D → R defined on a domain D of Rd is said to be harmonic in D if it is C2

and satisfies the Laplace equation
∆f = 0 in D.

Theorem 5. Assume that f : D̄ → R is continuous and bounded on the closure of a domain D
and harmonic in D. Let τ = τD be the first exit time from D, that is, τ = inf{t : Wt 6∈ D} or
τ =∞ if there is no such t. If P x{τ <∞} = 1 for every x ∈ D then

f(x) = Exf(Wτ ) (10)



Note 1. We do not assume here that ExτD <∞, as in Theorem 2, but only that the domain
D is transient, i.e., that P x{τD < ∞} = 1. This is the case, for instance, if D = H is the
upper half-space

H := {(x1, x2, . . . , xd) ∈ Rd : xd > 0}

(this follows from the recurrence of 1D Brownian motion). Observe that the expected exit
time from H is infinite.

Theorem 5 is a probabilistic form of the Poisson integral formula for harmonic functions.
The distribution of Wτ under P x (which we would usually call the exit distribution) is
known in analysis as the harmonic measure or Poisson kernel

ω(x; dy) := P x{Wτ ∈ dy}.

In order that this be a probability distribution (rather than merely a sub-probability distri-
bution), the exit time τ must be finite with P x−probability 1 for all x ∈ D̄. Call a domain
D that has this property a transient domain. Every bounded domain is transient (why?). In
R2 any domain whose complement contains a ball is transient, because two-dimensional
Brownian motion visits every ball w.p.1 (see section 3 below), but this isn’t true in higher
dimensions d ≥ 3.

For domains D with smooth boundaries it can be shown that for each x the harmonic
measure ω(x; dy) is absolutely continuous with respect to surface area measure on the
boundary ∂D; the Radon-Nikodym derivative is known as the Poisson kernel. This kernel
can be calculated explicitly for a number of important domains, including balls and halfs-
paces, and in two dimensions can be gotten for many more domains by conformal mapping.
In any case the integral formula (10) can be rewritten as

f(x) =

∫
∂D

f(y)ω(x; dy). (11)

Exercise 4. Let d = 2, and consider the domain D = H, the upper half-plane. Show that
the Poisson kernel is the Cauchy distribution by following the steps below.

(A) Let Wt = (Xt, Yt). Show that for any θ ∈ R and any t ≥ 0

E(x,y) exp{iθXt − θYt} = eiθx−θy.

(B) Conclude that for any x, θ ∈ R and y > 0, under P (x,y) the process {eiθXt−θYt} is a
martingale.

(C) Using (B), show that for x, θ ∈ R and y > 0,

E(x,y)eiθXτ = eiθx−|θ|y.

NOTE: Somewhere you should explain where the absolute value comes in.

(D) Use Fourier inversion to calculate the density of the random variable Xτ .



Proof of Theorem 5. Let Dn be an increasing sequence of domains, each satisfying the hy-
potheses of Theorem 2, whose union is D. (For instance, let Dn be the intersection of D
with the ball of radius n centered at the origin.) Denote by τn the first exit time of the
domain Dn; then

τn ↑ τD,

and so by path-continuity of Brownian motion, W (τn)→WτD . For each n ≥ 1, Theorem 2
implies that

Exf(Wτn) = f(x) for all x ∈ Dn.

By the bounded convergence theorem, it follows that for every x ∈ Dn the formula (10)
holds. Since the domains Dn exhaust D, the formula must hold for all x ∈ D.

Example 1. Although the hypothesis that f is bounded can be relaxed, it cannot be done
away with altogether. Consider, for example, the upper half-plane D = {(x, y) ∈ R2 : y >
0} and the function

f(y) = y for (x, y) ∈ D̄.

This is obviously harmonic, but clearly the integral formula (10) fails at all points.

5 The Dirichlet Problem

Given a transient domain D and a bounded, continuous function f : ∂D → R on the
boundary, is it always the case that f has a unique continuous extension u : D̄ → R that
is harmonic in D? (Henceforth we will call such a function a harmonic extension of f .)
Are such harmonic extensions unique? These questions are purely analytic. However,
Theorem 5 shows that the existence of harmonic functions in a domain is intimately tied
up with the exit behavior of Brownian motion: in particular, it implies that if there is
a bounded harmonic function with prescribed continuous boundary values then it must
satisfy formula (10), so there can be no other harmonic extension.

5.1 Brownian motion and the mean value property

Theorem 6. Let D be a transient domain and f : ∂D → R a bounded, Borel measurable function
on the boundary. For every x ∈ D define

u(x) = Exf(Wτ ) (12)

where Wt is d−dimensional Brownian motion started at x and τ = τD is the first exit time from
D. Then u is harmonic in D.

Proof. Let ε > 0 be sufficiently small that the ball B2ε(x) is contained in D, and let Tε be
the first time that the Brownian motion exits the ball Bε(x). By path-continuity, Brownian
motion started at xmust exitBε(x) before it exitsD, and at the exit time Tε must be located
on the sphere ∂Bε(x). Hence, by the Strong Markov property,

Exf(Wτ ) = ExEWTεf(Wτ ).



Because standard d−dimensional Brownian motion is rotationally symmetric, the distri-
bution of the exit point W (Tε) under P x must be the uniform distribution on the sphere
∂Bε(x). Thus, the function u(x) must satisfy the mean value property

u(x) =

∫
∂Bε(x)

u(y)σ(dy) (13)

where σ is the uniform distribution on ∂Bε(x) (i.e., normalized surface area measure).
We will prove in Lemma 1 below that any function that satisfies the mean value prop-

erty in D must be C∞. Given this, it is easy to show, using Dynkin’s formula (9), that any
such function must in fact be harmonic. Dynkin’s formula implies that if u is C∞ in an
open domain containing the closed ball B̄ε(x) then

u(x) = Exu(W (Tε))−
1

2
Ex
∫ Tε

0
∆u(Ws) ds

=

∫
∂Bε(x)

u(y)σ(dy)− 1

2
Ex
∫ Tε

0
∆u(Ws) ds

By the mean value property, the last integral in this equality must be zero for all sufficiently
small ε > 0. Since ∆u is continuous (by Lemma 1), it follows that ∆u(x) = 0, as the
following argument shows. If ∆u(x) > 0 (it has to be either positive or negative), there
would exist δ, ε > 0 such that ∆u > δ throughout Bε(x). But this would imply that

Ex
∫ Tε

0
∆u(Ws) ds ≥ δExTε > 0.

Lemma 1. If u : D → R satisfies the mean value property in D then it is C∞.

Proof. Fix ε > 0 small enough that the ball Bε(x) is entirely contained in D, and let ϕ :
Rd → [0,∞) be a radial2 C∞ probability density with support contained in the ball Bε(0).
Corollary 8 guarantees that there is such a probability density. For any x ∈ D whose
distance from ∂D is greater than ε, define

u ∗ ϕ(x) =

∫
u(x− y)ϕ(y) dy. (14)

This convolution is well-defined, becauseϕ has support contained inBδ(0) and u is bounded
(and measurable) in D. Furthermore, since ϕ is a radial function, the convolution (14) is an
average of averages over spheres centered at x. Consequently, since u satisfies the mean
value property in D,

u(x) = u ∗ ϕ(x).

But u ∗ ϕ is C∞, because any convolution with a C∞ density with compact support is C∞

(see Lemma 3 of the Appendix).

2A radial function is a function whose value at y ∈ Rd depends only on |y|.



5.2 Coupling

The term coupling is loosely used to denote constructions in probability theory in which
several (often only two) stochastic processes or other random objects are built in such a
way that comparisons between them can be easily made. Here we will use couplings
that involve Brownian motions started at different initial points, with the aim of using the
coupling to compare hitting probabilities and distributions.

Proposition 1. For any two points x, y ∈ Rd there exist, on some probability space (Ω,F , P ),
stochastic processes {W x

t }t≥0 and {W y
t }t≥0 such that

(a) {W x
t }t≥0 is a d−dimensional Brownian motion with initial point x;

(b) {W y
t }t≥0 is a d−dimensional Brownian motion with initial point y; and

(c) with probability one, W x
t = W y

t for all sufficiently large t.

Proof. Homework.

Corollary 2. For any ε > 0 there exists δ > 0 such that if |x − y| < δ then the coupling in
Proposition 1 can be arranged so that

P{W x
t = W y

t for all t ≥ ε} ≥ 1− ε. (15)

Proof. Brownian scaling.

5.3 The Dirichlet problem in a regular domain

Definition 3. Let D be a domain in Rd and let f : ∂D → R be a bounded, continuous
function on the boundary. A continuous function u : D̄ → R is said to be a solution to the
Dirichlet problem with boundary data f if u = f on ∂D and if u is harmonic in D.

Even for bounded domains D the Dirichlet problem need not have a solution, as the
following example shows.

Example 2. Let D be the open unit ball of R3 with the line segment L = {(x, 0, 0) : 0 ≤ x <
1} removed. Then the boundary ∂D is the union of the unit sphere S2 with the segment
L. A Brownian motion started at a point x ∈ D will never hit the line segment L, because
its two-dimensional projection doesn’t hit points. Consequently, for each x ∈ D the exit
distribution ωx will be the same for D as for the unit ball. This implies that the Dirichlet
problem for D doesn’t always have a solution. In particular, let f : ∂D → [0, 1] be a
continuous function that is identically 0 on the sphere S2 but positive on L. If u : D → R
were a harmonic extension, then the Poisson integral formula (11) would force u(x) = 0 at
every x ∈ D. But this doesn’t extend continuously, since f is positive on L.

This example is somewhat artificial in that part of the boundary is contained in the
interior of D̄. One might be tempted to conjecture that barring this sort of behavior would
remove the obstruction, but Lebesgue showed that this isn’t the only difficulty.

Example 3. (“Lebesgue’s Thorn”) LetD be the unit ball of R3 with the region Θ = {(x, y, z) :
x ≥ 0 and z2 + y2 ≤ f(x)} removed. Here f : [0, 1] → [0, .1] should be a nondecreasing,



continuous function such that f(0) = 0. If f(x) → 0 rapidly as x → 0 then the tip of the
thorn won’t be “visible” to Brownian motion started at points very near the origin, that is,
there will exist δ > 0 such that

P x{|W (τD)| = 1} ≥ δ (16)

for all points x = (x1, 0, 0) with x1 < 0. If this is the case then there exist continuous
functions on ∂D that do not extend continuously to harmonic functions onD. In particular,
let f = 1 on the unit sphere, 0 ≤ f ≤ 1 on ∂D, and f = 0 on ∂D∩{x ∈ R3 : |x| ≤ 1/2}. Any
harmonic extension of f would have to take values≥ δ on the line segment {(x1, 0, 0)x1<0},
and therefore would be discontinuous at the origin.

Exercise 5. Fill in the gap by showing that if f is suitably chosen then (16) holds.

Definition 4. A point x ∈ ∂D in the boundary of a domain D is said to be a regular point
for Dc if P x{τD = 0} = 1, where τD = inf{t > 0 : Wt ∈ Dc}. A domain D with nonempty
boundary is said to be regular if all its boundary points are regular for Dc.

Theorem 7. If D is a regular, transient domain then every bounded, continuous function f :
∂D → R has a unique bounded, harmonic extension.

Both hypotheses on the domain D (regularity and transience) are needed. Example 1
shows that a regular, transient domain may support several different harmonic extensions
of a bounded, continuous function on the boundary, but Theorem 7 implies that only one
of them can be bounded. Example 4 shows that the domain must in general be transient
in order that the conclusion of Theorem 7 hold.

The Poisson integral formula (10) implies that if a continuous function f on ∂D has a
bounded harmonic extension then it must be unique. So the real issue to be dealt with in
proving Theorem 7 is the existence of a bounded harmonic extension. This will be deduced
from the next two lemmas.

Lemma 2. Suppose that D is a regular, transient domain and that z ∈ ∂D is a regular boundary
point for Dc. Then for every ε > 0 there is a δ > 0 such that if x ∈ D is a point at distance less
than δ from z then

P x{|WτD − z| > ε} < ε. (17)

Proof. By hypothesis, if a Brownian motion is started at z then almost surely it will enter
Dc immediately. Thus, for any ε > 0 and β > 0 there exists γ > 0 such that

P z{Wt ∈ Dc for some t ∈ [γ, β]} > 1− ε.

Moreover, because sample paths of Brownian motion are continuous, if β > 0 is sufficiently
small then for all x,

P x{max
t≤β
|Wt − x| > ε} < ε.

By Corollary 2, there exists 0 < δ < ε so small that for any point x ∈ D within distance
δ of z a coupling between Brownian motions W x

t and W z
t started at x and z, respectively,

can be arranged in such a way that with probability at least 1− ε,

W x
t = W z

t for all t ≥ γ.



This implies that for any such x,

P x{τD ≤ β} > 1− 2ε.

By our choice of β, it now follows that for any x ∈ D at distance less than δ from z,

P x{|WτD − z| > 2ε} < 3ε.

Proof of Theorem 7. Let f : ∂D → R be bounded and continuous. For each x ∈ D, define
u(x) = Exf(WτD). Since D is a transient domain, this expectation is well-defined and
finite. By Theorem 6, u is harmonic in D, and since f is bounded, u must also be bounded.
Lemma 2 implies that if all points of the boundary are regular then u is a continuous
extension of f .

5.4 Maximum Principle

The usefulness of Brownian motion in studying harmonic functions is not limited to

Corollary 3. (Weak Maximum Principle) LetD be a transient domain. If f : D̄ → R is continuous
and bounded on the closure of a domain D and harmonic in D, with bounded partial derivatives up
to order 2, then it must attain its maximum value on the boundary ∂D.

Proof. This is an obvious consequence of the integral representation (??).

Example 4. The hypothesis that D is transient is needed for this corollary. In section 3 be-
low we will show that Brownian motion in dimensions d ≥ 3 is transient, and in particular
that if the initial point is outside the ball B1(0) of radius 1 centered at the origin then there
is positive probability that the Brownian motion will never hit B̄1(0). Thus, the domain
B̄1(0)c is not a transient domain.3 It will follow from this that if τ is the first exit time of
B̄1(0)c then the function

u(x) := P x{τ =∞}

is harmonic and positive on B̄1(0)c but identically 0 on the boundary. Thus, the Weak
Maximum Principle fails for the region B̄1(0)c.

Corollary 4. (Uniqueness Theorem) Let D be a transient domain. Suppose that f : D̄ → R and
g : D̄ → R are both continuous and bounded on the closure of a domain D and harmonic in D,
with bounded partial derivatives up to order 2. If f = g on ∂D then f = g in D.

Proof. Apply the maximum principle to the difference f − g.

3The terminology is a bit unfortunate. The Brownian motion is itself transient, but the domain B̄1(0)c is
not transient. In fact, it is the transience of the Brownian motion that causes B̄1(0)c not to be transient.



5.5 Harnack Principle

Proposition 2. Let D be a transient domain. Then for any two points x, x′ ∈ D the exit distri-
butions ωx(dy) = ω(x; dy) and ωx′(dy) = ω(x′; dy) are mutually absolutely continuous on ∂D,
and the Radon-Nikodym derivative dω′x/dωx is bounded away from 0 and∞ on ∂D. Moreover, for
each x ∈ D,

lim
x′→x

sup
y∈∂D

∣∣∣dωx′(y)

dωx(y)
− 1
∣∣∣ = 0. (18)

Proof. Fix x ∈ D and let r > 0 be small enough that B̄r(x) ⊂ D. Let τ be the time of first
exit from D̄, and let τ(Br(x)) be the first exit time of the ball B̄r(x). If a Brownian motion
starts at x then it must exit the ball B̄r(x) before exiting D̄, and so τ(Br(x)) ≤ τ . By the
rotational symmetry of Brownian motion, the exit distribution of the ball is the uniform
distribution on the boundary sphere. Consequently, by the strong Markov property, for
every bounded, continuous function f : D̄ → R,

Exf(Wτ ) =

∫
∂D

f(y)ωx(dy)

= ExEx(f(Wτ ) | Fτ(Br(x)))

=
1

|∂Br(x)|

∫
x′∈∂Br(x)

∫
y∈∂D

f(y)ωx′(dy).

This means that the exit distribution ωx of D must be the average, relative to the uniform
distribution on ∂Br(x), of the exit distributions ωx′ of D, where x′ ∈ ∂Br(x). Since this
also holds for every ball centered at x of radius r′ ≤ r, it follows that for any 0 ≤ r′ < r,

ωx(dy) =
1

|Ax(r′, r)

∫
x′∈Ax(r′,r)

ωx′(dy)

where Ax(r′, r) denotes the annular region Br(x)−Br′(x).
Now let x∗ be a point of D very near x. The exit distribution ωx∗ is, by the same

reasoning as above, the average of the exit distributions ωx′ where x′ lies in an annular
region centered at x∗. For x∗ near x the annular region for x∗ can be chosen so that it is
contained in the annular region for x, and hence ωx∗ � ωx. Similarly, ωx � ωx∗ . Moreover,
if x and x∗ are very close then these annular regions can be chosen so as to have the same
inner and outer radii and nearly 100% overlap. This implies the relation (18).

The foregoing argument shows that for every x ∈ D there is a neighborhood of x
in which the exit distributions are all mutually a.c., with Radon-Nikodym derivatives
bounded above and below by 1/2 and 2. Since D is pathwise connected, it follows that all
exit distributions are mutually a.c, and that the Radon-Nikodym derivatives are bounded
away from 0 and∞.

Corollary 5. (Strong Maximum Principle) Let D be a transient domain, and let f be a bounded,
harmonic function on D that extends continuously to the boundary ∂D. If f attains its maximum
value at an interior point of D, then f must be constant on D̄.



Proof. Suppose that f(x) = maxy∈D̄ f(y). Then by the integral representation formula (11)
it must be the case that f(y) = f(x) for ωx−almost every point y ∈ ∂D. But Proposition 2
implies that all exit distributions ωx′ , where x′ ∈ D, are mutually a.c. Consequently, for
any x′ ∈ D,

f(y) = f(x) for ωx′ − almost every y ∈ ∂D.

Therefore, by the Poisson integral representation (11), f(′x) = f(x) for every x′ ∈ D.

Corollary 6. (Harnack Principle) For any domainD and compact subsetK ⊂ D there is a positive
constant C = CK,D with the following property. For every harmonic function u : D → (0,∞)
and all x, x′ ∈ K,

u(x′)

u(x)
≤ C (19)

Proof. The domain D is not assumed to be transient. However, since K is compact there
is an open set U ⊂ D containing K such that U has compact closure; this domain U must
therefore be transient. Furthermore, any function u that is harmonic in D is continuous on
Ū , and so the Poisson integral formula applies in U . Now Proposition 2 implies that there
is a finite constant C ≥ 1 such that for all x, x′ ∈ K and y ∈ D,

ωx′(dy)

ωx(dy)
≤ C.

This, together with the Poisson integral formula (11), implies (19).

Corollary 7. Assume that f : D̄ → R is continuous and bounded on the closure of a domain D
and harmonic in D, with bounded partial derivatives up to order 2. If f has a local maximum at an
interior point x ∈ D then f is constant on D.

Proof. Suppose that f has a local maximum at x ∈ D, and let Br(x) be a ball centered at x
whose closure is contained inD. If r > 0 is sufficiently small then f(x) ≥ f(y) for every y ∈
Br(x), because f(x) is a local max. Applying Theorem 5 for f in the ball Br(x) shows that
on the boundary ∂Br(x) the function f must be identically equal to f(x), because the exit
distribution of Brownian motion started at the center of a ball is the uniform distribution
on its boundary, by the rotational symmetry of Brownian motion. It follows that f must be
constant on the closed ball B̄r(x).

6 Harmonic Measure and Equilibrium Distribution

7 Appendix: Smoothing and Localization

The usual way to approximate a not-so-smooth function by a smooth (that is, infinitely
differentiable) one is by convolution with a smooth probability density. The next lemma
shows that such a convolution will be smooth.



Lemma 3. (Smoothing) Let ϕ : Rd → R be of class Ck for some integer k ≥ 0. Assume that ϕ
has compact support.4 Let µ be a finite measure on Rd that is supported by a compact subset of Rd.
Then the convolution

ϕ ∗ µ(x) :=

∫
ϕ(x− y) dµ(y) (20)

is of class Ck, has compact support, and its first partial derivatives satisfy

∂

∂xi
ϕ ∗ µ(x) =

∫
∂

∂xi
ϕ(x− y) dµ(y) (21)

Proof. (Sketch) The shortest proof is by induction on k. For the case k = 0 it must be
shown that if ϕ is continuous, then so is ϕ ∗ µ. This follows by a routine argument from
the dominated convergence theorem, using the hypothesis that the measure µ has compact
support (exercise). That ϕ ∗ µ has compact support follows easily from the hypothesis that
ϕ and µ both have compact support.

Assume now that the result is true for all integers k ≤ K, and let ϕ be a function of
class CK+1, with compact support. All of the first partial derivatives ϕi := ∂ϕ/∂xi of ϕ are
of class CK , and so by the induction hypothesis each convolution

ϕi ∗ µ(x) =

∫
ϕi(x− y) dµ(y)

is of class CK and has compact support. Thus, to prove that ϕ ∗ µ has continuous partial
derivatives of orderK+1, it suffices to prove the identity (21). By the fundamental theorem
of calculus and the fact that ϕi and ϕ have compact support, for any x ∈ Rd

ϕ(x) =

∫ 0

−∞
ϕi(x+ tei) dt

where ei is the ith standard unit vector in Rd. Convolving with µ and using Fubini’s
theorem shows that

ϕ ∗ µ(x) =

∫ ∫ 0

−∞
ϕi(x− y + tei) dtdµ(y)

=

∫ 0

−∞

∫
ϕi(x− y + tei) dµ(y)dt

=

∫ 0

−∞
ϕi ∗ µ(x+ tei) dt

This identity and the fundamental theorem of calculus (this time used in the reverse direc-
tion) imply that the identity (21) holds for each i = 1, 2, . . . , d.

Is there a smooth probability density with compact support? Yes:

Lemma 4. There exists an even, C∞ probability density ψ(x) on R with support [−1, 1].

4The hypothesis that ϕ has compact support isn’t really necessary, but it makes the proof a bit easier.



Proof. Let U,U1, U2, . . . be independent, identically distributed uniform-[−1, 1] random
variables and set

Y =

∞∑
n=1

Un/2
n.

The random variable Y is certainly between −1 and 1, and its distribution is symmetric
about 0, so if it has a density ψ the density must be an even function with support [−1, 1].
That it does have a density follows because each of the summands Un/2n has a density:
in general, if V,W are independent random variables and if V has a density then so does
V +W , and the density of V +W has at least as many continuous derivatives as does that
of V . (Just use the convolution formula, and differentiate under the integral.)

Thus, what remains to be shown is the density of Y is infinitely differentiable. For this
we will use Fourier analysis. First, the Fourier transform of the uniform distribution on
[−1, 1] is

EeiθU =
sin θ

θ
, and this implies

EeiθUn/2
n

= 2n
sin(θ/2n)

θ

Consequently,

E exp{iθ
n∑
j=1

Uj/2
j} = 2(n2)θ−n

n∏
j=1

sin(θ/2j) := ψn(θ)

This function decays like θ−n as |θ| → ∞, and so for n ≥ 2 it is integrable. Therefore,
the Fourier inversion theorem implies that for any n ≥ 2 the distribution of the random
variable

∑n
1 Uj/2

j has a density fn. Furthermore, |θ|n−2ψn(θ) is integrable, so Fourier
theory implies that the density fn has n − 2 bounded, continuous derivatives. Finally,
since the random variable Y is gotten by adding an independent random variable to the
finite sum

∑n
1 Uj/2

j , it follows that the distribution of Y has a density, and that it has at
least n− 2 bounded, continuous derivatives.

Say that a function f : Rd → R is a radial function if it is a function only of the distance
to the origin, that is,

f(x) = f(|x|).

Corollary 8. For any ε > 0 and d ≥ 1 there exists a C∞ radial probability density on Rd that is
supported by the ball of radius ε centered at the origin.

Proof. By Lemma 4, there is an even, C∞ probability density ψ on the real line supported
by the interval [−1, 1]. Fix δ > 0, and define g : Rd → R+ by

g(x) = ψ(|x|2/δ2).

This function is C∞ (why?), it is obviously nonnegative, and its support is contained in the
ball of radius δ centered at the origin. Moreover, its integral over Rd is positive, because ψ
must be bounded away from 0 on some subinterval of (0, 1). Thus, we can set

f(x) = g(x)/

∫
Rd
g(y) dy.



Arguments in stochastic calculus often turn on some kind of localization, in which a
smooth function f is replaced by a smooth function f̃ with compact support such that
f = f̃ in some specified compact set. Such a function f̃ can be obtained by setting f̃ = fv,
where v is a smooth function with compact support that takes values between 0 and 1, and
is such that v = 1 on a specified compact set. The next lemma implies that such functions
exist.

Lemma 5. (Mollification) For any open, relatively compact5 sets D,G ⊂ Rk such that the closure
D̄ of D is contained in G, there exists a C∞ function v : Rd → R such that

v(x) = 1 ∀ x ∈ D̄;

v(x) = 0 ∀ x 6∈ G;

0 ≤ v(x) ≤ 1 ∀ x ∈ Rd

Proof. By hypothesis, D̄ ⊂ G and Ḡ is compact. Hence, there exists ε > 0 such that no two
points x ∈ ∂D and y ∈ ∂G are at distance less than 4ε. Let F be the set of points x such
that dist(x, ∂D) ≤ 2ε, and let ϕ be a C∞ probability density on Rd with support contained
in the ball of radius ε centered at the origin. Define

f = ϕ ∗ 1F .

By Lemma 3, the function f is C∞. By construction, f = 1 on D and f = 0 outside G.
(Exercise: Explain why.)

The existence of C∞ probability densities with compact support has another conse-
quence that is of importance in stochastic calculus: it implies that continuous functions
can be arbitrarily well-approximated by C∞ functions.

Corollary 9. Let f : Rd → R be a continuous function with compact support, and let ϕ : Rd → R
be a C∞ probability density that vanishes outside the ball of radius 1 centered at the origin. For
each ε > 0, define

ϕε(x) =
1

εd
ϕ(x/ε). (22)

Then ϕε ∗ f converges to f uniformly as ε→ 0:

lim
ε→0
‖ϕε ∗ f − f‖∞ = 0. (23)

Proof. If Y is a d−dimensional random vector with density ϕ, then for any ε > 0 the
random vector εY has density ϕε. Consequently, for every ε > 0 and every x ∈ Rd,

ϕε ∗ f(x) = Ef(x+ εY ).

Since f has compact support, it is bounded and uniformly continuous. Clearly, εY → 0
as ε → 0, so the bounded convergence theorem implies that the expectation converges to
f(x) for each x. To see that the convergence is uniform in x, observe that

ϕε ∗ f(x)− f(x) = E{f(x+ εY )− f(x)}.
5Relatively compact means that the closure is compact.



Since f is uniformly continuous, and since |Y | ≤ 1 with probability 1, for any δ > 0 there
exists εδ > 0 such that for all ε < εδ,

|f(x+ εY )− f(x)| < δ

for all x, with probability one. Uniform convergence in (23) now follows immediately.
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