
STATISTICS 385: STOCHASTIC CALCULUS
HOMEWORK ASSIGNMENT 1

DUE OCTOBER 10, 2016

Problem 1. First-passage time process. Let {Wt }t≥0 be a standard one-dimensional Wiener pro-
cess, and for each a ≥ 0 define τa to be the first time t that Wt = a . By the recurrence theorem for
Brownian motion (to be proved in class next week) and the continuity of paths, each τa is finite
and well-defined.

(A) Use the strong Markov property for Brownian motion to show that the stochastic process {τa }a≥0

has stationary, independent increments (i.e., it is a Lévy process).

(B) Check that the sample paths a 7→ τa are nondecreasing and left-continuous. (Note: A Lévy
process with nondecreasing paths is called a subordinator.)

(C) Prove that with probability one, the set {a ≥ 0 : τa+−τa > 0} of jump discontinuities is count-
able and dense. HINT: You will have to make use of what you know about Brownian paths.

(D) Use Brownian scaling to show that for every a > 0, the distribution of a 2τa is the same as that
of τ1.

(E) Use the results of (A) and (D) to show that τ1 has the same distribution as n−2
∑n

i=1τ
(i )
1 , where

τ(i )1 are independent, identically distributed random variables each with the same distribution as
τ1. Then use this to show that for some constant C > 0 the Laplace transform of τ1 is given by

E e −λτ1 = exp{−C
p

λ}.
(See the section of the notes on Wald’s identities for a proof that C =

p
2. )

Problem 2. Fix −a < 0 < b and let T = Ta ,b =min{t > 0 : Wt = −a or + b } be the time of first exit
from the interval (−a , b ).

(A) Calculate the Laplace transform of the distribution T , that is, for each λ> 0 evaluate E e −λT .

(B) Use your formula for the Laplace transform to evaluate E T and var(T ).

HINT: Use the third Wald identity for both +θ and −θ .

Problem 3. For each k = 0, 1, 2, . . . define stopping times Tk ,1, Tk ,2, . . . as follows:

Tk ,0 = 0 and Tk ,m+1 =min{t > Tk ,m : |Wt −WTk ,m
|= 2−k }.

These are the jump times of the k th level embedded simple random walk. For each s > 0 define
Nk (s ) to be max{m : Tk ,m < s }; thus, Nk (s ) is the number of jumps made by the k th level embedded
random walk by time s . Show that for each s ,

P − lim
k→∞

Nk (s )/4
k = s .

Here P − lim denotes convergence in probability. In fact, the convergence holds almost surely; if
you can prove this, all the better.
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Problem 4. Let {Wt }t≥0 be a standard one-dimensional Wiener process, and for each t ≥ 0 let
Mt =maxs≤t Ws .

(A) Use the reflection principle to find the joint distribution of (Wt , Mt ). (The answer is given in
Corollary 5 of the notes; your job is to supply the derivation.)

(B) Use the result of part (A) to conclude that for every t , the distribution of Mt −Wt is the same as
that of |Wt |.
(C) Formulate and prove a corresponding result for simple random walk on Z. HINT: You should
be able to do this directly, by induction on the number of steps.

Problem 5. Let {Wt }t≥0 be a standard one-dimensional Wiener process, and for each pair 0≤ s ≤ t
define M (s , t ) to be the maximum value attained by Wr for s ≤ r ≤ t .

(A) Show that with probability one, for every pair of rational 0≤ s < t ,

M (s , t )>max(Ws , Wt ).

(B) Conclude that with probability one, the local maxima of the Brownian path t 7→Wt are dense in
[0,∞). Also, prove that the set of times t at which the Brownian path has local maxima are dense
in [0,∞). NOTE: By definition, a local maximum occurs at any time t such that for some ε > 0,

Wt ≥ max
s∈[t−ε,t+ε]

Ws .

(C) Prove that with probability one, for every rational pair 0 ≤ s < t the maximum value M (s , t )
of the Brownian path on the time interval [s , t ] is attained at a unique time r ∈ (s , t ). Thus, with
probability one, the local maxima of the Brownian path are distinct.


