STATISTICS 385: STOCHASTIC CALCULUS
HOMEWORK ASSIGNMENT 1
DUE OCTOBER 10, 2016

Problem 1. First-passage time process. Let {V;},>, be a standard one-dimensional Wiener pro-
cess, and for each a > 0 define 7, to be the first time ¢ that W; = a. By the recurrence theorem for
Brownian motion (to be proved in class next week) and the continuity of paths, each 7, is finite
and well-defined.

(A) Use the strong Markov property for Brownian motion to show that the stochastic process {7, } ;>0
has stationary, independent increments (i.e., it is a Lévy process).

(B) Check that the sample paths a — 7, are nondecreasing and left-continuous. (Note: A Lévy
process with nondecreasing paths is called a subordinator.)

(C) Prove that with probability one, the set {a >0 : 7, —7, > 0} of jump discontinuities is count-
able and dense. HINT: You will have to make use of what you know about Brownian paths.

(D) Use Brownian scaling to show that for every a > 0, the distribution of a®7, is the same as that
of 7;.
(E) Use the results of (A) and (D) to show that 7; has the same distribution as n™2> """ T(li), where

T(li) are independent, identically distributed random variables each with the same distribution as

71. Then use this to show that for some constant C > 0 the Laplace transform of 7, is given by
Ee ™1 = exp{—C ﬁ}.
(See the section of the notes on Wald’s identities for a proof that C = v/2.)

Problem 2. Fix—a <0< b andlet T = T, ;, = min{t >0 : W; =—a or + b} be the time of first exit
from the interval (—a, b).

(A) Calculate the Laplace transform of the distribution T, that is, for each A > 0 evaluate Ee 7.
(B) Use your formula for the Laplace transform to evaluate E T and var(T).
HINT: Use the third Wald identity for both +8 and —0.

Problem 3. For each k=0,1,2,... define stopping times Tj ;, Ty », ... as follows:
Teo=0 and Ty s =min{t > Ty, 1 [W, — Wy, |=27F}

These are the jump times of the kth level embedded simple random walk. For each s > 0 define
Ni(s)tobe max{m : Tj ,, < s}; thus, Ni(s)is the number of jumps made by the kthlevel embedded
random walk by time s. Show that for each s,

P— lim Ni(s)/4*=s.
k—o00

Here P —lim denotes convergence in probability. In fact, the convergence holds almost surely; if

you can prove this, all the better.
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Problem 4. Let {W,},5, be a standard one-dimensional Wiener process, and for each ¢ > 0 let
M; =max;<; W;.

(A) Use the reflection principle to find the joint distribution of (W;, M,). (The answer is given in
Corollary 5 of the notes; your job is to supply the derivation.)

(B) Use the result of part (A) to conclude that for every ¢, the distribution of M; — W; is the same as
that of |[W;|.

(C) Formulate and prove a corresponding result for simple random walk on Z. HINT: You should
be able to do this directly, by induction on the number of steps.

Problem 5. Let {W,},>( be a standard one-dimensional Wiener process, and for each pair0 < s < ¢
define M(s, t) to be the maximum value attained by W, for s < r < t.
(A) Show that with probability one, for every pair of rational 0 < s < ¢,
M(s, t)> max(Ws, W,).
(B) Conclude that with probability one, the local maxima of the Brownian path ¢t — W; are dense in

[0, 00). Also, prove that the set of times t at which the Brownian path has local maxima are dense
in [0, c0). NOTE: By definition, a local maximum occurs at any time ¢ such that for some & >0,

W, > max W;.
s€[t—e,t+e€]
(C) Prove that with probability one, for every rational pair 0 < s < ¢t the maximum value M(s, t)
of the Brownian path on the time interval [s, t] is attained at a unique time r € (s, t). Thus, with
probability one, the local maxima of the Brownian path are distinct.



