SPANNING TREES

STEVEN P. LALLEY

1. PRELIMINARIES

1.1. SpanningTrees. Let G =(%, &) be afinite, connected graph with no multiple edges or self-
loops, and let N = | 2’| be the number of vertices. A spanning treeis a connected subgraph graph
T = (%, &) with no cycles. Because a spanning tree is connected, any two vertices x,y €
are connected by a path in T'; and because T has no cycles, this path is unique.

Any spanning tree T can be assigned a root vertex g in N different ways; the pair (T, p) is a
rooted spanning tree. The edges of arooted spanning tree (7, g) can be directed toward the root,
so that for every vertex x # p there is a unique edge leading out of x. (This is the first edge on
the unique path from x to p.) Since every edge of T has a direction, it follows that there must
be exactly N —1 edges in T, one for every vertex other than the root.

1.2. Simple Random Walk on a Graph. The simple random walk on the graph G =(%, §)is the
reversible Markov chain on the vertex set 2 associated with the conductance function C, =1,
that is, the Markov chain with transition probabilities

p(x,y)=1/d(x) if x,y are neighbors;
=0 otherwise.
Here d(x) is the degree of x in the graph, that is, the number of neighbors of x (which is also

the number of edges incident to x). Becasue the graph is connected, the simple random walk
is irreducible. Its unique stationary distribution v is proportional to the degree function:

Wx)=d(x)/D where D= Z d(y).
YEX

Since simple random walk is an irreducible Markov chain, there is a two-sided version (X},) <z
such that for each n, the distribution of X,, is the stationary distribution v. (See HW 8, Problem
4.)

Proposition 1. The simple random walk is invariant by time-reversal. Explicitly, the joint dis-
tribution of the sequence (X,,), <z is the same as that of (X_,)nez.-

Proof. (Sketch) It suffices to show that the cylinder sets
{Xi=x;V0<i<n} and {X_ ;=x;Y0<i<n}

This is a routine calculation (exercise) using the fact that the stationary distribution v is pro-
portional to the degree function d(x). ]
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2. ALDOUS-HOOVER THEOREM

Aldous and Hoover found a simple Markov chain on the space of rooted spanning trees of G
whose stationary distribution is the product of the uniform distribution on unrooted trees with
the stationary distribution v on the root. Thisleads to a relatively simple randomized algorithm
for constructing a uniformly distributed spanning tree, as will be explained below. The Markov
chain lives on the set of rooted spanning trees (T, x), where T is an unrooted spanning tree and
x € Z is aroot vertex; it evolves according to the following rules:

Transition Law: The one-step transition law (7, x)— (T’, y) can occur if and only if

(i) y and x are nearest neighbors, and
(i) T’isobtained from T by adding the (directed) edge from x to y and deleting the direced
edge outof y.

This transition occurs with probability
q((T,x),(T", y)=1/d(x).

Lemma 2. The transition probability matrix Q= (q((T, x),(T’, y))) is irreducible, and so there is
a unique stationary distribution .

Proof. (Sketch) It suffices to show that for any two rooted trees (T, x) and (T”, y) there is a finite
sequence of allowable transitions that take (T, x) to (T”, y). This can be done in two stages.

(1) First, take any path in the graph G from x to y and follow the sequence of transitions
dictated by this sequence; this moves (T, x) to a rooted tree (T”, y) with root y.

(2) Next, order the “branches” of the target tree T’ emanating from the root y; call these
By, By,--+, By. Let y be the path in G from y back to y that traverses the branches B;
one at a time, by depth-first search. Follow the sequence of transitions dictated by the
path y. This will transform (T”, y) to (T’, y).

0

Lemma [2| implies that the Markov chain has a unique stationary distribution 7. Conse-
quently (by HW 8, Problem 4) there is a two-sided version ((7},, X},)),,cz such that for any time
n the distribution of (T,,, X,,) is 7.

Proposition 3. The two-sided sequence (X,,), <z, is the stationary simple random walk on G.

Proof. 1t suffices to show that the sequence (X,,),cz is a simple random walk, because it will
then follow (HW 8 again) that it is stationary. But this is obvious, because by construction,
whenever the root X,, is x, it moves to a nearest neighbor y with (conditional) probability
1/(d(x)). O

Proposition 4. The tree Ty is uniquely determined by the past (X,,), <o by the following law: for
each vertex y # Xy, the unique edge of the rooted tree (Ty, X,) out of y is the edge crossed by the
random walk X,, on the step after the last visit to y before time0.

Proof. Whenever the random walk X,, visits the vertex y, this vertex becomes the root of the
tree, and therefore has no edge out. On the next step, the root moves to a nearest neighbor z of
¥, and the directed edge from y to z is added to the tree. This edge remains until the next visit
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of the random walk X, to the vertex y. Thus, between successive visits to y, the last exit from
y determines the directed edge out of y in the rooted spanning tree (7;,, X,,). g

Theorem 5. (Aldous-Hoover) The unique stationary distribution is (T, x) = Cd(x) ]_[ y (1/d(y)).
Consequently, the distribution of the unrooted tree Ty is uniform on the space of all spanning
trees.

Proof. It suffices to show that the function u(7, x) = d(x)l_[y(l /d(y)) satisfies the defining
equations of a stationary distribution, that is,

u(T,x)= > u(T’,2)q(T', 2),(T, x)).
(T",2)
The rooted trees (T’ z) for which the transition probability q((T’, z),(T, x)) is positive are those
for which x is a nearest neighbor of z, and such that T is obtained from T’ by adding the edge
from z to x and deleting the edge out of x in the rooted tree (7’, z). There are precisely d(x)
such pairs, one for each nearest neighbor z. Consequently, the equations for stationarity can
be rewritten as ,
d)[ Jayzawn=) (a@] Jasawna/ae).

y z~x y

This equation, on second look, is completely obvious. O

Aldous-Hoover Algorithm: To determine the spanning tree Ty, one must, by Proposition
follow the path of the random walk X,, backward in time to discover, for each vertex y # X,
which edge was crossed upon leaving y for the last time before time 0. Because the simple
random walk is time-reversible, it is possible to do this by (i) choosing a root vertex X, = x
from the stationary distribution », and then (ii) running a random walk X_,, backward in time
until the first n (i.e., last —n) when every vertex y has been visited at least once.

3. WILSON’S ALGORITHM

4. THE MATRIX-TREE THEOREM
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