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1. PRELIMINARIES

1.1. Spanning Trees. Let G = (X ,E )be a finite, connected graph with no multiple edges or self-
loops, and let N = |X |be the number of vertices. A spanning tree is a connected subgraph graph
T = (X ,ET ) with no cycles. Because a spanning tree is connected, any two vertices x , y ∈ X
are connected by a path in T ; and because T has no cycles, this path is unique.

Any spanning tree T can be assigned a root vertex % in N different ways; the pair (T ,%) is a
rooted spanning tree. The edges of a rooted spanning tree (T ,%) can be directed toward the root,
so that for every vertex x 6=% there is a unique edge leading out of x . (This is the first edge on
the unique path from x to %.) Since every edge of T has a direction, it follows that there must
be exactly N −1 edges in T , one for every vertex other than the root.

1.2. Simple Random Walk on a Graph. The simple random walk on the graph G = (X ,E ) is the
reversible Markov chain on the vertex setX associated with the conductance function Ce ≡ 1,
that is, the Markov chain with transition probabilities

p (x , y ) = 1/d (x ) if x , y are neighbors;

= 0 otherwise.

Here d (x ) is the degree of x in the graph, that is, the number of neighbors of x (which is also
the number of edges incident to x ). Becasue the graph is connected, the simple random walk
is irreducible. Its unique stationary distribution ν is proportional to the degree function:

ν(x ) = d (x )/D where D =
∑

y ∈X
d (y ).

Since simple random walk is an irreducible Markov chain, there is a two-sided version (Xn )n∈Z
such that for each n , the distribution of Xn is the stationary distribution ν. (See HW 8, Problem
4.)

Proposition 1. The simple random walk is invariant by time-reversal. Explicitly, the joint dis-
tribution of the sequence (Xn )n∈Z is the same as that of (X−n )n∈Z.

Proof. (Sketch) It suffices to show that the cylinder sets

{X i = xi ∀ 0≤ i ≤ n} and {X−i = xi ∀ 0≤ i ≤ n}.

This is a routine calculation (exercise) using the fact that the stationary distribution ν is pro-
portional to the degree function d (x ). �
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2. ALDOUS-HOOVER THEOREM

Aldous and Hoover found a simple Markov chain on the space of rooted spanning trees of G
whose stationary distribution is the product of the uniform distribution on unrooted trees with
the stationary distributionνon the root. This leads to a relatively simple randomized algorithm
for constructing a uniformly distributed spanning tree, as will be explained below. The Markov
chain lives on the set of rooted spanning trees (T , x ), where T is an unrooted spanning tree and
x ∈X is a root vertex; it evolves according to the following rules:

Transition Law: The one-step transition law (T , x ) 7→ (T ′, y ) can occur if and only if

(i) y and x are nearest neighbors, and
(ii) T ′ is obtained from T by adding the (directed) edge from x to y and deleting the direced

edge out of y .

This transition occurs with probability

q ((T , x ), (T ′, y )) = 1/d (x ).

Lemma 2. The transition probability matrixQ= (q ((T , x ), (T ′, y ))) is irreducible, and so there is
a unique stationary distribution π.

Proof. (Sketch) It suffices to show that for any two rooted trees (T , x ) and (T ′, y ) there is a finite
sequence of allowable transitions that take (T , x ) to (T ′, y ). This can be done in two stages.

(1) First, take any path in the graph G from x to y and follow the sequence of transitions
dictated by this sequence; this moves (T , x ) to a rooted tree (T ′′, y )with root y .

(2) Next, order the “branches” of the target tree T ′ emanating from the root y ; call these
B1, B2, · · · , Bk . Let γ be the path in G from y back to y that traverses the branches Bi

one at a time, by depth-first search. Follow the sequence of transitions dictated by the
path γ. This will transform (T ′′, y ) to (T ′, y ).

�

Lemma 2 implies that the Markov chain has a unique stationary distribution π. Conse-
quently (by HW 8, Problem 4) there is a two-sided version ((Tn , Xn ))n∈Z such that for any time
n the distribution of (Tn , Xn ) is π.

Proposition 3. The two-sided sequence (Xn )n∈Z is the stationary simple random walk on G .

Proof. It suffices to show that the sequence (Xn )n∈Z is a simple random walk, because it will
then follow (HW 8 again) that it is stationary. But this is obvious, because by construction,
whenever the root Xn is x , it moves to a nearest neighbor y with (conditional) probability
1/(d (x )). �

Proposition 4. The tree T0 is uniquely determined by the past (Xn )n≤0 by the following law: for
each vertex y 6= X0, the unique edge of the rooted tree (T0, X0) out of y is the edge crossed by the
random walk Xn on the step after the last visit to y before time 0.

Proof. Whenever the random walk Xn visits the vertex y , this vertex becomes the root of the
tree, and therefore has no edge out. On the next step, the root moves to a nearest neighbor z of
y , and the directed edge from y to z is added to the tree. This edge remains until the next visit
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of the random walk Xn to the vertex y . Thus, between successive visits to y , the last exit from
y determines the directed edge out of y in the rooted spanning tree (Tn , Xn ). �

Theorem 5. (Aldous-Hoover) The unique stationary distribution isπ(T , x ) =C d (x )
∏

y (1/d (y )).
Consequently, the distribution of the unrooted tree T0 is uniform on the space of all spanning
trees.

Proof. It suffices to show that the function µ(T , x ) = d (x )
∏

y (1/d (y )) satisfies the defining
equations of a stationary distribution, that is,

µ(T , x ) =
∑

(T ′,z )

µ(T ′, z )q ((T ′, z ), (T , x )).

The rooted trees (T ′z ) for which the transition probability q ((T ′, z ), (T , x )) is positive are those
for which x is a nearest neighbor of z , and such that T is obtained from T ′ by adding the edge
from z to x and deleting the edge out of x in the rooted tree (T ′, z ). There are precisely d (x )
such pairs, one for each nearest neighbor z . Consequently, the equations for stationarity can
be rewritten as

d (x )
∏

y

(1/d (y )) ?=
∑

z∼x

(d (z )
∏

y

(1/d (y )))(1/d (z )).

This equation, on second look, is completely obvious. �

Aldous-Hoover Algorithm: To determine the spanning tree T0, one must, by Proposition 4,
follow the path of the random walk Xn backward in time to discover, for each vertex y 6= X0,
which edge was crossed upon leaving y for the last time before time 0. Because the simple
random walk is time-reversible, it is possible to do this by (i) choosing a root vertex X0 = x
from the stationary distribution ν, and then (ii) running a random walk X−n backward in time
until the first n (i.e., last −n) when every vertex y has been visited at least once.

3. WILSON’S ALGORITHM

4. THE MATRIX-TREE THEOREM
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